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1. Introduction

In this article, we prove the Gelfand–Raikov theorem. Before we are able to state the theorem,
we must give one definition.

Definition 1.1. We say that a subset S of the representations of a group G forms a complete
system if for every non-identity element of g ∈ G, there exists a representation of G in S
that does not send g to the identity map.

We are now ready to state the Gelfand–Raikov theorem.

Theorem 1.2. [1, Theorem 7] For every locally compact group, there exists a complete
system of irreducible unitary representations.

This theorem was originally proved in [1], and we follow the proof given there closely, only
modernizing some of the terminology. It is more common nowadays to phrase the theorem
a slightly different way, which we prove is equivalent to Theorem 1.2.

Proposition 1.3. [2, Theorem 3.34] The following statement is equivalent to Theorem 1.2:
"The irreducible unitary representations of a locally compact group G separate the points of
G. That is, if x, y ∈ G are distinct, there exists an irreducible unitary representation ϕ such
that ϕ(x) 6= ϕ(y)."

Proof. Since x and y are distinct, xy−1 6= e. By Theorem 1.2, there exists a complete system
of irreducible unitary representations for G. In particular, there exists an irreducible unitary
representation ϕ such that

ϕ(x)ϕ(y)−1 = ϕ(xy−1) 6= ϕ(e) = I,

where I is the identity operator, which implies ϕ(x) 6= ϕ(y). Therefore, Theorem 1.2 implies
the statement.

Conversely, suppose the statement holds. Then if x, y ∈ G are distinct, we can find an
irreducible unitary representation ϕ such that ϕ(x) 6= ϕ(y). But then

ϕ(xy−1) = ϕ(x)ϕ(y)−1 6= ϕ(e) = I,

so there exists a complete system of irreducible unitary representations of G. �

2. The Proof

Definition 2.1. Let G be a group. We say a function ϕ : G → C is positive-definite if for
all g1, ..., gn ∈ G and λ1, ..., λn ∈ C, we have

n∑
k=1

n∑
`=1

ϕ(g−1` gk)λkλ` ≥ 0.
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We now claim the following holds.

Proposition 2.2. [1, p. 2] Given a topological group G, for each continuous positive-definite
function ϕ : G→ C, there corresponds a unitary representation of the group on some Hilbert
space.

Proof. We construct the required Hilbert space as follows. First, let S be the space of
functions G→ C that have finite support. Given two functions λ, µ ∈ S, we define an inner
product

(λ, µ) :=
∑
h

∑
h′

ϕ(h′−1h)λ(h)µ(h′), (1)

which converges because λ and µ have finite support. We then define an equivalence relation
on S by the prescription that λ ∼ µ if (λ− µ, λ− µ) = 0. Let

K := S/ ∼ .

We then set the usual norm
|λ| :=

√
〈λ, λ〉,

and define
L2(ϕ) := K

|·|

to be the completion of K under the norm | · |. This is then a complete inner product space,
so it is a Hilbert space.

Given any g ∈ G, we have a corresponding translation operator Tg : S → S defined by

Tg(λ(h)) := λ(g−1h).

We claim that for every g ∈ G, the translation operator Tg is unitary. We calculate

(Tgλ, Tgµ) =
∑
h

∑
h′

ϕ(h′−1h)λ(g−1h)µ(g−1h′),

and making the substitution h 7→ gh, h′ 7→ gh′, we get

(Tgλ, Tgµ) =
∑
h

∑
h′

ϕ(h′−1h)λ(h)µ(h′) = (λ, µ).

It follows that Tg is a unitary operator for every g ∈ G. Since functions λ : G → C with
finite support are dense in L2(ϕ), Tg extends uniquely to an operator on L2(ϕ). It remains
to prove that the operator Tg, considered as acting on L2(ϕ), is continuous in g.

Indeed, let g, g′ ∈ G and η ∈ L2(ϕ). We have

|Tg′η − Tgη|2 = |Tg−1g′η − η|2 = 2[(η, η)− Re(Tg−1g′η, η)].

We wish to prove that for every η ∈ L2(ϕ), if g′ → g, then |Tg′η − Tgη| → 0. From
the equation above, it suffices to show that if g → e, where e is the identity of G, then
(Tgη, η)→ (η, η). But by (1) and the continuity of ϕ, we have

(Tgη, η) =
∑
h

∑
h′

ϕ(h′−1gh)η(h)η(h′)

→
∑
h

∑
h′

ϕ(h′−1h)η(h)η(h′) as g → e.



THE GELFAND–RAIKOV THEOREM 3

For any η ∈ L2(ϕ) and ε > 0, we can find some λ ∈ L2(ϕ) such that |η − λ| < ε
3
. Choose

some neighbourhood V of e such that |Tgλ − λ| < ε
3
for every g ∈ V . Then, if g ∈ V , we

have
|Tgη − η| ≤ |Tgη − Tgλ|+ |Tgλ− λ|+ |λ− η| = 2|λ− η|+ |Tgλ− λ| < ε.

We also have Tgh = TgTh, so the operators Tg form a unitary representation of G on L2(ϕ).
This completes the proof. �

Definition 2.3. We define the Kronecker delta function of the identity, ξ0(h) ∈ L2(ϕ), by

ξ0(h) :=

{
1 if h = e,

0 if h 6= e.

The vectors Thξ0 then generate L2(ϕ). Indeed, if λ ∈ L2(ϕ), then we can write

λ =
∑
h

λ(h)Thξ0.

It follows from this and Equation (1) that for every g ∈ G,
ϕ(g) = (Tgξ0, ξ0). (2)

We now provide a converse to Proposition 2.2.

Proposition 2.4. [1, p. 3] For every unitary representation of a topological group G, there
exists a collection of continuous positive-definite functions on G.

Proof. Suppose Ug are unitary operators forming a unitary representation of G on a Hilbert
space H. Then for every ξ ∈ H, the function

ϕ(g) := (Ugξ, ξ)

will be continuous and positive-definite. �

Moreover, if ξ 6= 0, then ϕ(g) 6= 0. Suppose H has a vector ξ0 such that {Ugξ0}g∈G generates
H. Then, letting

ϕ0(g) := (Ugξ0, ξ0),

the space H is isomorphic as a Hilbert space to the space L2(ϕ0) defined earlier. Indeed, an
explicit isomorphism is given by

H 3
∑
h

λ(h)Uhξ0 7→ λ(h) ∈ L2(ϕ0).

Definition 2.5. Suppose that ϕ, ψ : G → C are positive-definite functions. If ϕ − ψ is
positive-definite, we will write ψ � ϕ or ϕ� ψ.

We will need the following result, which we do not prove but for which we provide a reference.

Proposition 2.6. [4] If ϕ : G→ C is positive-definite, then for all g, h ∈ G, it satisfies
|ϕ(g)− ϕ(h)|2 ≤ 2ϕ(e)[ϕ(e)− Re(ϕ(h−1g))]. (3)

Lemma 2.7. [1, p. 3–4] Suppose that ϕ, ψ : G→ C are positive-definite, that ϕ is continu-
ous, and that ψ � ϕ. Then ψ is also continuous.

Proof. By Proposition 2.6, we have
|ϕ(g)− ϕ(h)|2 ≤ 2ϕ(e)[ϕ(e)− Re(ϕ(h−1g))].
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But since ψ � ϕ, ϕ(e)−ψ(e) ≥ 0, and ϕ(e)−ψ(e)−Re[ϕ(h−1g)−ψ(h−1g)] ≥ 0, so we have

|ψ(g)− ϕ(h)|2 ≤ 2ψ(e)[ψ(e)− Re(ψ(h−1g))] ≤ 2ϕ(e)[ϕ(e)− Re(ϕ(h−1g))].
Therefore, the continuity of ϕ at e implies the continuity of ψ at every g ∈ G. �

Definition 2.8. We say that a continuous positive-definite function ϕ is elementary if ψ � ϕ
implies that ψ = αϕ for some α ∈ C. (In particular, constant functions are elementary.)

The usefulness of the above definition is that the elementary functions can be used to obtain
irreducible representations of a group G, as we will now prove.

Theorem 2.9. [1, Theorem 1] Suppose ϕ : G→ C is elementary. (In particular, this means
it is continuous and positive-definite.) Then the unitary representation of G on the Hilbert
space L2(ϕ), as defined in Proposition 2.2, is irreducible.

Proof. Let P ∈ L2(ϕ) be a projection operator, and suppose that it commutes with the
translation operator Tg for each g ∈ G. Set

ψ(g) := (TgPξ0, ξ0),

where ξ0 is the Kronecker delta from Definition 2.3. Then ψ is a positive-definite function
such that ψ � ϕ. Indeed, if λ : G→ C is a function that is non-zero precisely at g1, ..., gn ∈
G, then

n∑
k=1

n∑
`=1

ψ(g−1` gk)λ(gk)λ(g`) =
n∑
k=1

n∑
`=1

(λ(gk)TgkPξ0, λ(g`)Tg`ξ0)

= (P
n∑
k=1

λ(gk)Tgkξ0,
n∑
`=1

λ(g`)Tg`ξ0) = (Pλ, λ)

and
n∑
k=1

n∑
`=1

ϕ(g−1` gk)λ(gk)λ(g`) = (λ, λ).

However, we also have 0 ≤ (Pλ, λ) ≤ (λ, λ). This implies that ψ and ϕ − ψ are positive-
definite. But ϕ is elementary, so ψ = αϕ for some α ∈ C. It follows that (Pλ, λ) = α(λ, λ)
for every λ with finite support. But such λ are dense in L2(ϕ), so P = αI, where I is the
identity operator. Since P is a projection, P 2 = P , so α = 0 or 1, and we see that the only
projection operators in L2(ϕ) commuting with every Tg are P = 0 and P = I. But if there
were a subspace of L2(ϕ) closed under the action of the Tg, then the Tg would commute with
the projection onto that subspace. It follows that our representation must be irreducible. �

We now prove the converse of the previous theorem.

Theorem 2.10. [1, Theorem 2] Positive-definite functions that give rise to irreducible uni-
tary representations of a group G in the manner of Proposition 2.2 are elementary.

Proof. Let Ug be the unitary operators on a Hilbert space H giving rise to an irreducible
representation of G. Then if ξ ∈ H is non-zero, we have that {Ugξ}g∈G generates H. Suppose
that ϕ(g) := (Ugξ, ξ), that ψ is positive-definite, and that ψ � ϕ. Suppose λ, µ : G → C
are positive-definite functions with finite support, so that we can write λ =

∑
h λ(h)Uhξ and

µ =
∑

h µ(h)Uhξ. We then define the operator B by

(Bλ, µ) :=
∑
h

∑
h′

ψ(h′−1h)λ(h)µ(h′).
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It follows that B is self-adjoint and that

0 ≤ (Bλ, λ) ≤ (λ, λ) =
∑
h

∑
h′

ϕ(h′−1h)λ(h)λ(h′).

But the vectors λ are dense in H, so B uniquely extends to a self-adjoint operator on H.
Furthermore, for every g, h ∈ G, we have

(UgBUhξ, Uhξ) = (BUHξ, Ug−1hξ) = ψ(h−1gh) = (BUgUhξ, Uhξ),

and since {Uhξ} is a basis for H, we have that for every η ∈ H,
(UgBη, η) = (BUgη, η),

which implies that B commutes with every Ug. But the Ug correspond to an irreducible
representation, so B = αI for some α ∈ C. Indeed, if the Tg commute with B, then they
commute with its spectral projections (from the statement of the spectral theorem), so so
these must be 0 or I. But this means that the spectrum of B must be concentrated at a
point α, so B = αI. It follows that

(BUgξ, ξ) = α(Ugξ, ξ),

which implies that ψ = αϕ. �

Given a topological group G, a sufficient condition that it have a complete system of ir-
reducible unitary representations is that for each g0 6= e in G, there exists an irreducible
representation {Ug} on some Hilbert space H0 such that Ug0 6= I. This situation inspires the
following definition.

Definition 2.11. We say there is a complete system of elementary continuous positive-
definite functions on G if for every g0 6= e in G, there exists an elementary continuous
positive-definite function ϕ0 such that ϕ0(g0) 6= ϕ0(e).

We now have the following result.

Theorem 2.12. [1, Theorem 3] A topological group G admits a complete system of irreducible
unitary representations if and only if it admits a complete system of elementary continuous
positive-definite functions.

Proof. If g0 6= e in G and ϕ0 is an elementary continuous positive-definite function such that
ϕ0(g0) 6= ϕ0(e), then the representation {Tg} that arises from ϕ0 by Proposition 2.2 satisfies
Tg0ξ0 6= ξ0, where ξ0 is the Kronecker delta from Definition 2.3 by Equation (2) from that
same Definition. Therefore, Tg0 6= I.

On the other hand, if {Ug} is an irreducible unitary representation such that Ug0 6= I, then
there exists a vector ξ0 such that (Ug0ξ0, ξ0) 6= (ξ0, ξ0). Therefore, setting ϕ0(g) := (Ugξ0, ξ0),
we have ϕ0(g0) 6= ϕ0(e). �

In what follows, we will suppose that our group G is locally compact, as we can then equip
it with a left-invariant Haar measure m(E). For any h ∈ G, m(Eh) is also a left-invariant
Haar measure, so by uniqueness of Haar measures, m(Eh) = `hm(E) for some constant `h
independent of E. It follows that `gh = `g`h and that `h is continuous in h.
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Definition 2.13. We write L1 for the space of measurable absolutely integrable functions
x : G→ C under the norm

||x|| :=
∫
|x(h)| dh.

Then, for every g ∈ G, we have a left translation operator Tg ∈ L1 given by

Tgx(h) := x(g−1h)

and a right translation operator Tg′ ∈ L1 given by

Tg′x(h) = x(hg−1).

Both of these operators are unitary. By the properties of Haar measures, for any x ∈ L1, as
g → g0, we have∫

|x(g−1h)− x(g−10 h)| dh→ 0 and
∫
|x(hg−1)− x(hg−10 )| dh→ 0. (4)

It follows that Tg and Tg′ are continuous in g and g′, respectively.

Definition 2.14. Recall that if x, y ∈ L1, then the convolution

x ∗ y :=

∫
x(h−1g)y(h) dh

exists for almost every g ∈ G and is in L1, since ||x ∗ y|| ≤ ||x||||y||. We write

x ∗ (g) := `−1g x(g−1).

Then we have ∫
x(g) dg =

∫
x(g−1)`−1g dg,

so whenever x ∈ L1, then x∗ ∈ L1 as well, since ||x|| = ||x∗||. We also see that (x∗)∗ = x
and (x ∗ y)∗ = y∗ ∗ x∗.
Definition 2.15. A linear functional L : L1 → C is positive if L(x ∗ x∗) ≥ 0 for every
x ∈ L1. (Note that this implies L(x ∗ x∗) is always real.) In particular, if ϕ : G → C is
essentially bounded, i.e., equal to a bounded function except on a set of measure zero, and if
ϕ is integrally positive-definite, i.e., if for every x ∈ L1, we have

x
ϕ(h−1g)x(g)x(h) dg dh ≥ 0,

then the functional
Lϕ(x) :=

∫
ϕ(g)x(g) dg

is positive.

We can now state the following theorem.

Theorem 2.16. [1, Theorem 4] For every positive linear functional L : L1 → C, there exists
some ϕ : G→ C such that

L(x) = Lϕ(x) =

∫
ϕ(g)x(g) dg for every x ∈ L1.

Proof. First, we define a bilinear functional
(x, y) := L(x ∗ y∗).
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Because
L((x+ λy) ∗ (x+ λy)∗) = L(x ∗ x∗) + λL(y ∗ x∗) + λL(x ∗ y∗) + λλL(y ∗ y∗),

we have
(x+ λy, x+ λy) = (x, x) + λ(y, x) + λ(x, y) + λλ(y, y),

but (x + λy, x + λy), (x, x), λλ(y, y) ∈ R as L is positive, so λ(y, x) + λ(x, y) ∈ R. Setting
λ =: a+ bi, (y, x) =: c+ di, and (x, y) =: e+ fi, and taking imaginary parts, we get

ad+ bc+ af − be = 0.

But λ was arbitrary, so a and b are arbitrary. Taking a = 1, b = 0 gives f = −d, which then
gives c = e, so (y, x) = (x, y).

Next, let L2(L) denote the Hilbert space obtained from L1 by identifying x and y whenever
(x− y, x− y) = 0 and then taking the completion with respect to the norm

|x| :=
√
(x, x).

If x ∈ L1, then we have
|x|2 = L(x ∗ x∗) ≤ |L|||x||||x∗|| = |L|||x||2,

so
|x| ≤

√
|L|||x||.

We claim that the space L2(L) will be isomorphic as a Hilbert space to one of the previously-
defined spaces L2(ϕ) for a suitable continuous positive-definite function ϕ : G→ C. We now
show how to construct this ϕ. The closure of L1 in L2(L) contains a distribution ξ0, the Dirac
delta function centred at the identity e, and the vectors Tgξ0 then generate L2(L); the con-
tinuous positive-definite function ϕ such that L2(L) ' L2(ϕ) is given by ϕ(g) := (Tgξ0, ξ0).

Let {V } be the collection of neighbourhoods of the identity in G, ordered by inclusion. A
unit, eV (g), is a function in L1 satisfying the conditions

eV (g) ≥ 0, eV (g) = 0 outside V, eV (g−1) = eV (g), ||eV || = 1

for every g ∈ G. Then, for any x ∈ L1, we have

||x ∗ e∗V − x|| = ||x ∗ eV − x|| =
∫
|
∫

[Thx(g)− x(g)]eV (h) dh| dg

≤
∫

(

∫
|Thx(g)− x(g)| dg)eV (h) dh ≤ sup

h∈V
||Thx− x||.

Because of the first relation in Equation (4) from the paragraph before Definition 2.14, this
implies that

||x ∗ e∗V − x|| → 0 as V → e.

Therefore,
(x, eV ) = L(x ∗ e∗V )→ L(x) as V → e for all x ∈ L1.

But eV is uniformly bounded in L2(L) (|eV | ≤
√
|L|) and the x ∈ L1 are dense in L2(L), so

it follows from the previous relation that limV→e(η, eV ) exists for every η ∈ L2(L). Indeed,
for every ε > 0, we can choose x ∈ L1 satisfying

|η − x| < ε

3
√
|L|

.
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We can then choose a neighbourhood V of e such that

|(x, eV1)− (x, eV2)| <
ε

3
for every V1, V2 ⊆ V . But then we will have

|(η, eV1)− (η, eV2)| ≤ |(η, eV1)− (x, eV1)|+ |(x, eV1)− (x, eV2)|+ |(x, eV2)− (η, eV2)|

≤ |η − x||eV1|+
ε

3
+ |η − x||eV2 | < ε.

It follows that as V → e, eV converges weakly to some ξ0 ∈ L2(L) with (x, ξ0) = L(x) for
every x. In particular, taking x = eV and letting V → e, we get (ξ0, ξ0) = limV→e L(eV ).
But we have eV ∗ e∗V = eV ∗ eV = eV −1V , so (eV , eV ) = L(eV −1V )→ (ξ0, ξ0). We thus see that

|eV − ξ0|2 = (eV , eV )− (ξ0, eV )− (eV , ξ0) + (ξ0, ξ0)→ 0,

and therefore eV converges strongly to ξ0 as V → e.

We have that Tgx∗ (Tgy)∗ = x∗ y∗, so (Tgx, Tgx) = (x, x) for every x ∈ L1, and by denseness
of L1, Tg uniquely extends to a unitary operator on L2(L) for every g ∈ G. Moreover, for
every xinL1,

|Tg′x− Tgx| ≤
√
|L|||Tg′x− Tgx|| → 0 as g′ → g,

so Tg is continuous in g on L2(L). Indeed, if η ∈ L2(L), then we can pick x ∈ L1 with
|x − η| < ε

3
and also pick a neighbourhood V of g with |Tg′x − Tgx| < ε

3
for every g′ ∈ V .

We then have
|Tg′η − Tgη| ≤ |Tg′η − Tg′x|+ |Tg′x− Tgx|+ |Tgx− Tgη|

= 2|η − x|+ |Tg′x− Tgx| < ε.

Finally, Tgh = TgTh, so {Tg} is a unitary representation of G. Hence ϕ(g) = (Tgξ0, ξ0) is
continuous and positive-definite, by Proposition 2.4.

It remains to show that the functional L arises from ϕ(g), i.e., that for every x ∈ L1, we
have

L(x) =

∫
(Tgξ0, ξ0)x(g) dg.

Indeed, eV converges strongly to ξ0, which implies that L(TgeV ) = (TgeV , ξ0) converges
uniformly to (Tgξ0, ξ0). Therefore,∫

(Tgξ0, ξ0)x(g) dg = lim
V→e

∫
L(TgeV )x(g) dg, (5)

but we also have ∫
L(TgeV )x(g) dg = L(

∫
TgeV x(g) dg). (6)

Indeed, suppose E ⊆ G is measurable, and set mL(E) := L(fe), where fE : G→ {0, 1} is the
characteristic function of E. Then mL(E) is a countably-additive complex-valued measure
and for every y ∈ L1, we have L(y) =

∫
y(h) dmL(h). By Fubini’s theorem, we obtain∫

L(TgeV )x(g) dg =

∫
(

∫
eV (g

−1h) dmL(h))x(g) dg

=

∫
(

∫
eV (g

−1h)x(g) dg) dmL(h) = L(

∫
TgeV x(g) dg),
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which is Equation (6). Using Equations (5) and (6), we calculate that∫
(Tgξ0, ξ0)x(g) dg = lim

V→e
L(

∫
TgeV x(g) dg) = lim

V→e
L(

∫
eV (g

−1h)x(g) dg)

= lim
V→e

L(

∫
eV (g

−1)x(hg) dg) = lim
V→e

L(

∫
eV (g)x(hg) dg).

But by the second relation in Equation (4) from the paragraph before Definition 2.14, we
have

||
∫
eV (g)x(hg) dg − x(h)|| =

∫
|
∫
[x(hg)− x(h)]eV (g) dg| dh

≤
∫

(

∫
|x(hg)− x(h)| dh)eV (g) dg ≤ sup

g∈V

∫
|x(hg)− x(h)| dh→ 0 as V → e.

This implies that

lim
V→e

L(

∫
eV (g)x(hg) dg) = L(x),

and the result follows. �

From Theorem 2.16 and the remarks preceding it, we obtain the following corollary.

Corollary 2.17. [1, p. 10] Every essentially bounded, integrally positive-definite function
differs from some continuous positive-definite function on a set of measure zero.

Proof. Suppose ψ is essentially bounded and integrally positive-definite. Let ϕ be the contin-
uous positive-definite function giving rise to the positive functional Lψ(x) =

∫
ψ(g)x(g) dg

in Theorem 2.16. Then, for every x ∈ L1, we have∫
ψ(g)x(g) dg =

∫
ϕ(g)x(g) dg.

This implies that ψ and ϕ differ on a set of measure zero. �

Definition 2.18. We say that a positive-definite function ϕ is normalized if ϕ(e) = 1.

Observe that the collection B of continuous positive-definite functions ϕ with ϕ(e) ≤ 1 is
convex, i.e., if it contains ϕ and ψ, then for every λ ∈ [0, 1], it contains λϕ+ (1− λ)ψ.

We define an extreme point of a convex set to be a point which is not an interior point of
any line segment contained in the set. In particular, the function ϕ ≡ 0 is an extreme point
of B

We claim the following.

Lemma 2.19. [1, p. 10–11] Any extreme point of B other than the zero function is a
normalized elementary positive-definite function.

Proof. Suppose ϕ is an extreme point of B that is not identically zero. Suppose also that
ψ � ϕ, ψ is not identically zero, and ψ is not equal to ϕ. These conditions imply that
ϕ−ψ is positive-definite and is not equal to ϕ or the zero function. Since the absolute value
of a positive-definite function is maximized at g = e, we have that ϕ(e) > ψ(e) > 0. We
also have that ϕ(e) = 1 because otherwise ϕ would be an interior point of the line segment



10 ANDREJ VUKOVIĆ

[0, ϕ(g)
ϕ(e)

]. We therefore have

ϕ(g) = ψ(e)
ψ(g)

ψ(e)
+ [1− ψ(e)]ϕ(g)− ψ(g)

1− ψ(e)
,

and thus, by extremality of ϕ, we have that
ψ(g)

ψ(e)
=
ϕ(g)− ψ(g)
1− ψ(e)

.

This implies that ψ(g) = ψ(e)ϕ(g), so ϕ(g) is elementary. �

Conversely, we have the following.

Lemma 2.20. [1, p. 11] Every normalized elementary continuous positive-definite function
is an extreme point of B.

Proof. Suppose ϕ is elementary and positive-definite, satisfying ϕ(e) = 1, and suppose fur-
ther that ϕ = λψ + (1− λ)χ for some ψ, χ ∈ B. Then we have ψ(e) = χ(e) = 1, and, since
λψ � ϕ, we have λψ = αϕ for some α ∈ C. By choosing g = e, we get α = λ, so ψ = ϕ and
furthermore χ = ϕ. It follows that ϕ is an extreme point of B. �

From the two preceding lemmas, it follows that we can think of normalized elementary con-
tinuous positive-definite functions as non-zero extreme points of the set B of continuous
positive-definite functions ϕ with ϕ(e) ≤ 1. We will now show there are "enough" such
extreme points.

We equip the set of continuous positive-definite functions with the weak topology, identifying
them with their corresponding linear functionals on L1. More precisely, given a continuous
positive-definite function ϕ0, we define a neighbourhood of it to be the set, given any finite
collection x1, ..., xn ∈ L1 and any ε > 0, of all continuous positive-definite functions ϕ such
that

|
∫
ϕ0(g)xk(g) dg −

∫
ϕ(g)xk(g) dg| < ε (k = 1, ..., n). (7)

We claim the following theorem holds.

Theorem 2.21. [1, Theorem 5] The set of continuous positive-definite functions ϕ with
ϕ(e) ≤ 1 is the smallest weakly closed convex set containing every normalized elementary
continuous positive-definite function as well as the zero function ϕ ≡ 0.

Proof. We write Re(L1) for the closed linear subspace spanned over the reals by functions
x ∈ L1 such that x∗ = x.Suppose L : L1 → C is a positive linear functional. Then, as we saw
earlier, L(y ∗ x∗) = L(x ∗ y∗), so taking y = eV and letting V → e, we obtain L(x∗) = L(x)
for every x ∈ L1. It follows that a positive linear functional on L1 can be thought of as a
positive real linear functional on Re(L1). On the other hand, given a real linear functional
on Re(L1), we can extend it uniquely to a linear functional on L1 by imposing

L(x) := L(Re(x)) + iL(Im(x)) with Re(x) :=
x+ x∗

2
and Im(x) :=

x− x∗

2i
.

It follows that positive linear functionals differing on L1 also differ on Re(L1), and that
the norm and weak topologies on the space of positive linear functionals do not depend on
whether the functionals are defined on L1 or on Re(L1).
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Given a positive linear functional L = Lϕ, we have |Lϕ| = ess sup |ϕ(g)|ϕ(e). (Recall that
the essential supremum is defined by taking the infimum of all essential upper bounds, i.e.,
upper bounds that the function only exceeds on a set of measure zero.) It follows that B can
be thought of as the convex set B′ of positive linear functionals L on Re(L1) with |L| ≤ 1.
But B′ is weakly closed in the space of real linear functionals defined on Re(L1), so by teh
Krein–Milman theorem (see [3] for a reference), B′ is the weakly closed convex hull of its
extreme points, and therefore B is also. But then the correspondence between extreme points
of B and normalized elementary continuous positive-definite functions gives the result. �

We now recall a construction of continuous positive-definite functions on any group that
admits a Haar measure (and in particular, on a locally compact group G). We write L2 for
the Hilbert space of square-integrable measurable functions under the inner product

(x, y) :=

∫
x(h)y(h) dh.

As usual, we have translation operators Ugx(h) := x(g−1h), which give a unitary represen-
tation of G in L2. It follows that for any x ∈ L2, the function (Ugx, x) =

∫
x(g−1h)x(h) dh

is continuous and positive-definite.

Therefore, on a locally compact group G, for each non-identity element g0, there exists a
continuous positive-definite function ϕ0 such that ϕ0(g0) 6= ϕ0(e). What’s more, if V is
a neighbourhood of e, then there exists a normalized continuous positive-definite function
vanishing outside V . Indeed, if W is a neighbourhood with WW−1 ⊆ V , then we can pick
a function xW (h) ∈ L2 with (xW , xW ) = 1 and xW (h) = 0 outside W . Then the function
ϕ(g) := (UgxW , xW ) satisfies all the required properties.

Next, we prove the following.

Theorem 2.22. [1, Theorem 6] Let G be a locally compact group. Then there exists a
complete system of elementary continuous positive-definite functions on G.

Proof. Suppose for the sake of contradiction that there exists some non-identity element
g0 ∈ G with ζ(g) = 1 for every normalized elementary continuous positive-definite function
ζ. Pick a real normalized continuous positive-definite function ϕ0 with ϕ0(g0) 6= 1. (By the
remarks preceding this theorem, we can do this because g0 6= e.) Choose a neighbourhood
V of the identity and some ε > 0 such that

1− ϕ0(g) < ε and |ϕ0(g0)− ϕ0(g0g)| < ε whenever g ∈ V. (9)

Next, consider a neighbourhood of ϕ0 defined by the functions x1 := 1
m(V )

fV , x2 := 1
m(V )

fV (g
−1
0 g)

and by the ε we have chosen. (Recall that the suitable notion of neighbourhood was defined
in Equation (7) in the preamble to Theorem 2.21.) By Theorem 2.21, this neighbourhood
will contain a function of the form ϕ = λ1ζ1 + ... + λkζk for some normalized elementary
continuous positive-definite functions ζ1, ..., ζk and some λ1, ..., λk ∈ R with λi ≥ 0 for ev-
ery i ∈ {1, ..., k} and λ1 + ...+ λk ≤ 1. This same neighbourhood will contain the real part
ψ := Re(ϕ), which is positive-definite if ϕ is. By assumption, we have that ψ(g0) = ψ(e) ≤ 1.
By our choices, we have

|
∫

[ϕ0(g)− ψ(g)]x1(g) dg| = |
1

m(V )

∫
V

[ϕ0(g)− ψ(g)] dg| < ε.
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By the first inequality in (9), this gives

1− ψ(e) = 1

m(V )

∫
V

[1− ψ(e)] dg ≤ 1

m(V )

∫
V

[1− ψ(g)] dg

≤ 1

m(V )

∫
V

[1− ϕ0(g)] dg + |
1

m(V )

∫
V

[ϕ0(g)− ψ(g)] dg| < 2ε. (10)

Moreover, we have
ϕ0(g0g)− ψ(g0g) = [ϕ0(g0)− ψ(g0)]− [ϕ0(g0)− ϕ0(g0g)] + [ψ(g0)− ψ(g0g)],

so

| 1

m(V )

∫
V

[ϕ0(g0g)− ψ(g0g)] dg| ≥ |ϕ0(g0)− ψ(g0)| − |
1

m(V )

∫
V

[ϕ0(g0)− ϕ0(g0g)] dg|

−| 1

m(V )

∫
V

[ψ(g0)− ψ(g0g)] dg|.

By successively applying the Cauchy–Schwarz inequality, Proposition 2.6, and (10) from this
proof, we obtain

| 1

m(V )

∫
V

[ψ(g0)− ψ(g0g)] dg|2 ≤
1

m(V )

∫
V

|ψ(g0)− ψ(g0g)|2 dg

≤ 2

m(V )

∫
V

[ψ(e)− ψ(g)] dg ≤ 2

m(V )

∫
[1− ψ(g)] dg < 4ε.

The second inequality in (9) gives

| 1

m(V )

∫
V

[ϕ0(g0)− ϕ0(g0g)] dg| < ε.

Therefore, by the inequality 1− ψ(e) < 2ε (from (10)), we obtain

| 1

m(V )

∫
V

[ϕ0(g0g)− ψ(g0g)] dg| > |ϕ0(g0)− ψ(g0)| − ε− 2
√
ε

= |ϕ0(g0)− ψ(e)| − ε− 2
√
ε > [1− ϕ0(g0)]− [1− ψ(e)]− ε− 2

√
ε

> 1− ϕ0(g0)− 3ε− 2
√
ε. (11)

But by our choices we have

|
∫

[ϕ0(g)− ψ(g)]x2(g) dg| = |
1

m(V )

∫
V

[ϕ0(g0g)− ψ(g0g)] dg| < ε. (12)

By (11) and (12),
1− ϕ0(g0) < 4ε+ 2

√
ε.

However, by assumption, 1 − ϕ0(g0) is a constant positive real number, so as ε → 0, we
obtain a contradiction. This proves the result. �

Finally, we recall and prove the Gelfand–Raikov theorem.

Theorem 2.23. [1, Theorem 7] For every locally compact group, there exists a complete
system of irreducible unitary representations.

Proof. By Theorem 2.22, there exists a complete system of elementary continuous positive-
definite functions on our group. But by Theorem 2.12, there exists a complete system of
irreducible unitary representations on our group. �
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