Calculus 1 for Honours Mathematics

Instructor: Barbara Forrest

 

Access to the course notes and online lectures are available according to the following terms of use. The course notes are available as a PDF file. The lectures are available as MP4 files. These files are being made available so that students may view the course notes and lectures on their mobile devices. No technical support is available.


Terms of Use


IMPORTANT:

 

All rights, including copyright, images, slides, audio, and video components, of the content of this course are owned by the course authors Barbara Forrest and Brian Forrest.

 

By accessing these web pages, you agree that you may only download the content for your own personal, non-commercial use.

 

You are not permitted to copy, broadcast, download, store (in any medium), transmit, show or play in public, adapt, or change in any way the content of these web pages for any other purpose whatsoever without the prior written permission of the course authors.

 

Author Contact Information:

 

Barbara Forrest (baforres@uwaterloo.ca)

Brian Forrest (beforres@uwaterloo.ca)

 

 

 

 


Course Notes


 

Click on the following link to access the course notes.

 

Calculus 1 for Honours Mathematics: Course Notes

 

 

 


Lectures


 

Click on any of the following links to access the lectures that accompany the course notes for this course.

 

All lectures are available as MP4 files. You must have an MP4 player installed on your device in order to view the files.

 

Beside each lecture link is a link to a PDF file that contains lecture slides that you may download and use to make notes.

 

 

 

Chapter 1: Sequences and Convergence

 

A.    Absolute Value and the Triangle Inequality    ---    [PDF Lecture Slides]

B.    Introduction to Sequences    ---    [PDF Lecture Slides]

C.    Examples of Recursively Defined Sequences    ---    [PDF Lecture Slides]

D.    Heron's Algorithm    ---    [PDF Lecture Slides]

E.    Subsequences and Tails of Sequences    ---    [PDF Lecture Slides]

F.     Limits of Sequences (part 1)    ---    [PDF Lecture Slides]

G.    Limits of Sequences (part 2)    ---    [PDF Lecture Slides]

H.    Limits of Sequences (part 3)    ---    [PDF Lecture Slides]

I.       Divergence to Infinity    ---    [PDF Lecture Slides]

J.      Arithmetic for Limits of Sequences(part 1)    ---    [PDF Lecture Slides]

K.    Arithmetic for Limits of Sequences (part 2)    ---    [PDF Lecture Slides]

L.      Arithmetic for Limits of Sequences (part 3)    ---    [PDF Lecture Slides]

M.   Squeeze Theorem for Sequences    ---    [PDF Lecture Slides]

N.    Least Upper Bound Property    ---    [PDF Lecture Slides]

O.    Monotone Convergence Theorem    ---    [PDF Lecture Slides]

P.    Introduction to Series    ---    [PDF Lecture Slides]

Q.    Geometric Series    ---    [PDF Lecture Slides]

R.     Divergence Test    ---    [PDF Lecture Slides]

 

Chapter 2: Limits and Continuity

 

A.    Limits of Functions (part 1)    ---    [PDF Lecture Slides]

B.    Limits of Functions (part 2)    ---    [PDF Lecture Slides]

C.    Uniqueness of Limits    ---    [PDF Lecture Slides]

D.    Sequential Characterization of the Limit    ---    [PDF Lecture Slides]

E.    Arithmetic Rules for Limits of Functions    ---    [PDF Lecture Slides]

F.     One-Sided Limits    ---    [PDF Lecture Slides]

G.    Squeeze Theorem for Limits of Functions    ---    [PDF Lecture Slides]

H.    Fundamental Trig Limit    ---    [PDF Lecture Slides]

I.       Horizontal Asymptotes and Limits at Infinity (part 1)    ---    [PDF Lecture Slides]

J.      Horizontal Asymptotes and Limits at Infinity (part 2)    ---    [PDF Lecture Slides]

K.    Fundamental Log Limit    ---    [PDF Lecture Slides]

L.      Vertical Asymptotes and Infinite Limits    ---    [PDF Lecture Slides]

M.   Continuity    ---    [PDF Lecture Slides]

N.    Types of Discontinuities    ---    [PDF Lecture Slides]

O.    Continuity of Polynomials, Trigonometric Functions, and Exponentials    ---    [PDF Lecture Slides]

P.    Arithmetic Rules for Continuity    ---    [PDF Lecture Slides]

Q.    Continuity of an Interval    ---    [PDF Lecture Slides]

R.     Intermediate Value Theorem    ---    [PDF Lecture Slides]

S.    Approximating Roots of a Polynomial    ---    [PDF Lecture Slides]

T.      Bisection Algorithm for Approximating Zeros    ---    [PDF Lecture Slides]

U.    Extreme Value Theorem    ---    [PDF Lecture Slides]

V.    Curve Sketching (part 1)    ---    [PDF Lecture Slides]

 

Chapter 3: Derivatives

 

A.    Instantaneous Velocity    ---    [PDF Lecture Slides]

B.    Derivatives    ---    [PDF Lecture Slides]

C.    Derivatives and Continuity    ---    [PDF Lecture Slides]

D.    The Derivative Function    ---    [PDF Lecture Slides]

E.    Derivatives of the Sine and Cosine Functions    ---    [PDF Lecture Slides]

F.     Derivatives of Exponential Functions    ---    [PDF Lecture Slides]

G.    Linear Approximation    ---    [PDF Lecture Slides]

H.    The Error in Linear Approximation    ---    [PDF Lecture Slides]

I.       Linear Approximation Applications    ---    [PDF Lecture Slides]

J.      Newton's Method    ---    [PDF Lecture Slides]

K.    Arithmetic Rules for Differentiation    ---    [PDF Lecture Slides]

L.      Chain Rule    ---    [PDF Lecture Slides]

M.   More Trigonometric Derivatives    ---    [PDF Lecture Slides]

N.    Inverse Function Theorem    ---    [PDF Lecture Slides]

O.    Derivatives of Inverse Trigonometric Functions    ---    [PDF Lecture Slides]

P.    Implicit Differentiation    ---    [PDF Lecture Slides]

Q.    Extrema    ---    [PDF Lecture Slides]

R.     Exponential Growth and Decay (optional)    ---    [PDF Lecture Slides]

 

 

Chapter 4: The Mean Value Theorem

 

A.    Mean Value Theorem    ---    [PDF Lecture Slides]

B.    Applications of the MVT: Antiderivatives    ---    [PDF Lecture Slides]

C.    Applications of the MVT: Increasing Function Theorem    ---    [PDF Lecture Slides]

D.    Applications of the MVT: Functions with Bounded Derivatives    ---    [PDF Lecture Slides]

E.    Applications of the MVT: Comparing Functions through their Derivatives    ---    [PDF Lecture Slides]

F.    Applications of the MVT: Concavity    ---    [PDF Lecture Slides]

G.    Applications of the MVT: First Derivative Test    ---    [PDF Lecture Slides]

H.    Applications of the MVT: Second Derivative Test    ---    [PDF Lecture Slides]

I.     L'Hospital's Rule (part 1)    ---    [PDF Lecture Slides]

J.    L'Hospital's Rule (part 2)    ---    [PDF Lecture Slides]

K. Curve Sketching (part 2)    ---    [PDF Lecture Slides]

 

 

Chapter 5: Taylor Polynomials and Taylor's Theorem

 

 

A.    Taylor Polynomials    ---    [PDF Lecture Slides]

B.    Taylor Polynomials: Examples : Part 1    ---    [PDF Lecture Slides]

C.    Taylor Polynomials: Examples : Part 2    ---    [PDF Lecture Slides]

D.    Taylor's Theorem    ---    [PDF Lecture Slides]

E.    Taylor's Approximation Theorem    ---    [PDF Lecture Slides]

F.    Big-O Notation    ---    [PDF Lecture Slides]

G.    Arithmetic with Big-O Notation: Part 1    ---    [PDF Lecture Slides]

H.    Arithmetic with Big-O Notation: Part 2    ---    [PDF Lecture Slides]

I.     Big-O Notation: Examples    ---    [PDF Lecture Slides]

J.    Big-O Notation: Calculating Taylor Polynomials    ---    [PDF Lecture Slides]

 


This page is maintained by Barbara Forrest.

Users are encouraged to contact the authors to report any errors.