MATH 147 : Honours Calculus 1: Advanced

Electronic Assignment #1

Instructions:

- Ensure you have read and completed "Chapter 1: A Short Introduction to Mathematical Logic and Proof" in the Course Lecture Notes. You will require this information to complete the following questions.
- Read and complete the following assignment.

Part 1: Multiple Choice: Choose the best answer. (1 mark each) [There are 12 possible marks, but the assignment will be counted out of 10.]

The following questions are based on material in your course notes.

For each of the following questions choose the best answer:

- 1) To prove the statement " $\forall n \in \mathbb{N} : P(n)$ " it suffices to give one example.
 - a) True
 - b) False
 - c) Not enough information.
- 2) To prove the statement " $\exists n \in \mathbb{N} : P(n)$ " it suffices to give one example.
 - a) True
 - b) False
 - c) Not enough information.
- 3) To show that the statement " $\forall n \in \mathbb{N} : P(n)$ " is false, it suffices to give one example.
 - a) True
 - b) False
 - c) Not enough information.
- 4) To show that the statement " $\exists n \in \mathbb{N} : P(n)$ " is false, it suffices to give one example.
 - a) True
 - b) False
 - c) Not enough information.

- 5) The statement "6 is larger than every member of the empty set \emptyset " is:
 - a) True
 - b) False
 - c) Not enough information.
- 6) The statement "I always lie" cannot be true.
 - a) True
 - b) False
 - c) Not enough information.
- 7) If we know that p is true but q is false, then $p \Rightarrow q$ is:
 - a) True
 - b) False
 - c) Not enough information.
- 8) If we know that $\neg q \Rightarrow \neg p$ is true, then $p \Rightarrow q$ is:
 - a) True
 - b) False
 - c) Not enough information.
- 9) $\neg q \Rightarrow \neg p$ is called:
 - a) The negation of $p \Rightarrow q$.
 - b) The contrapositive of $p \Rightarrow q$.
 - c) None of the above
- 10) To prove a statement p using a proof by contradiction, we assume the statement $\neg p$ is true and show it leads to a contradiction.
 - a) True
 - b) False
 - c) Not enough information

- **11)** If $[(p \lor q) \Rightarrow r]$ is true and p is true, then r is true.
 - a) True
 - b) False
 - c) Not enough information
- **12)** If $[(p \land q) \Rightarrow r]$, and if p is true but r is false, then q is:
 - a) True
 - b) False
 - c) Not enough information