Foundations of Calculus 1 for Teachers

Instructor: Brian Forrest

 

Access to the course notes and online lectures are available according to the following terms of use. The course notes are available as a PDF file. The lectures are available as MP4 files. These files are being made available so that students may view the course notes and lectures on their mobile devices. No technical support is available.


Terms of Use


IMPORTANT:

 

All rights, including copyright, images, slides, audio, and video components, of the content of this course are owned by the course authors Barbara Forrest and Brian Forrest.

 

By accessing these web pages, you agree that you may only download the content for your own personal, non-commercial use.

 

You are not permitted to copy, broadcast, download, store (in any medium), transmit, show or play in public, adapt, or change in any way the content of these web pages for any other purpose whatsoever without the prior written permission of the course authors.

 

Author Contact Information:

 

Barbara Forrest (baforres@uwaterloo.ca)

Brian Forrest (beforres@uwaterloo.ca)

 

 

 

 


Course Notes


 

Click on the following link to access the course notes.

 

Foundations of Calculus 1 for Teachers: Course Notes

 

 

 


Lectures


 

Click on any of the following links to access the lectures that accompany the course notes for this course.

 

All lectures are available as MP4 files. You must have an MP4 player installed on your device in order to view the files.

 

 

 

Module 1: Foundations

 

1.    Basic Notation

1b.    Basic Notation: Sets

2.    Products of Sets

3.    Functions Part I: Basic Properties

4.    Functions Part II: One-to-one and Onto Functions

5.    Inverse Functions

6.     Induction Part I: The Principle of Mathematical Induction

7.    Induction Part II: Applications

8.    Enrichment: Sets and Boolean Arithmetic

 

Module 2: Real Numbers

 

1.    Absolute Values

2.    Least Upper Bound Property

3.    Archimedean Property

 

Module 3: Sequences

 

1.    Introduction to Sequences

2.    Examples of Recursively Defined Sequences

3.    Heron's Algorithm

4.    Subsequences and Tails of Sequences

5.     Limits of Sequences (part 1)

6.    Limits of Sequences (part 2)

7.    Limits of Sequences (part 3)

8     Divergence to Infinity

9.    Arithmetic for Limits of Sequences (part 1): Introduction

10.    Arithmetic of Sequences (part 2): Products

11.    Arithmetic of Sequences (part 3): Quotients

12.    Arithmetic of Sequences (part 4): Examples

13.    Arithmetic of Sequences (part 5): Examples II

14.   Squeeze Theorem

15.    Monotone Convergence Theorem

16.    Introduction to Series

17.    Geometric Series

18.     Divergence Test

19.     Bolzano-Weierstrass Theorem

19b.     Limit Points

20.     Cauchy Sequences

 

Module 4: Limits and Continuity

 

1.    Definition of Limits Part 1: The Formal Definition

2.    Definition of Limits Part 2: Examples

3.    Uniqueness of Limits

4.    Sequential Characterization of Limits Part I: The Characterization

5.    Sequential Characterization of Limits Part II: Two More Strange Functions

6.    Arithmetic for Limits of Functions

7.    One-Sided Limits

8.    Squeeze Theorem for Limits of Functions

9.    Fundamental Trig Limit

10.    Horizontal Asymptotes and Limits at Infinity (part 1)

11.    Horizontal Asymptotes and Limits at Infinity (part 2)

12.    Fundamental Log Limit

13.    Vertical Asymptotes and Infinite Limits

14.   Continuity

15.    Continuity of Polynomials, Trigonometric Functions, and Exponentials

16.    Types of Discontinuities

17.    Arithmetic Rules for Continuity

18.    Continuity of an Interval

19.     Intermediate Value Theorem Part I: Introduction

20.     Intermediate Value Theorem Part II: Proof

21.    Approximating Roots of a Polynomial

22.    Bisection Algorithm for Approximating Zeros

23.    Extreme Value Theorem Part I: Introduction

24.    Extreme Value Theorem Part II: Proof

25.    Uniform Continuity Part I: Introduction

26.    Uniform Continuity Part II: Continuous Functions on [a,b]

27.    Curve Sketching

 

Module 5: Derivatives

 

1.    Instantaneous Velocity

2.    Derivatives

3.    Derivatives and Continuity

4.    The Derivative Function

5.    Derivatives of the Sine and Cosine Functions

6.     Derivatives of Exponential Functions

7.    Linear Approximation Part I: Basics

8.    Linear Approximation Part II: The Error

9.    Linear Approximation Part III: Applications

9b.    Linear Approximation Part IV: Newton's Method

10.    Arithmetic Rules for Differentiation

11.   Chain Rule

11b.   Chain Rule: Proof

12.   More Trigonometric Derivatives

13.    Inverse Function Theorem Part I: Introduction

14.    Inverse Function Theorem Part II: Proof

15.    Derivatives of Inverse Trigonometric Functions

16.    Implicit Differentiation

17.    Local Extrema

 

 

Module 6: The Mean Value Theorem

 

1.    Mean Value Theorem

2.    Applications of the MVT: Antiderivatives

3.    Applications of the MVT: Increasing Function Theorem

4.    Applications of the MVT: Functions with Bounded Derivatives

5.    Applications of the MVT: Comparing Functions through their Derivatives

6.    Applications of the MVT: Concavity

7.    Applications of the MVT: First Derivative Test

8.    Applications of the MVT: Second Derivative Test

9.    L'Hopital's Rule Part I: Introduction

10.    L'Hopitals' Rule Part II: More Examples

11.    Cauchy Mean Value Theorem

12.    L'Hopital's Rule Part III: Proof

13. Curve Sketching (revisited)

 

 

 

Module 7: Taylor Polynomials and Taylor's Theorem

 

 

1.    Taylor Polynomials

2.    Taylor Polynomials: Examples : Part 1

3.    Taylor Polynomials: Examples : Part 2

4.    Taylor's Theorem

5.    Taylor's Approximation Theorem

6.    Big-O Notation

7.    Arithmetic with Big-O Notation: Part 1

8.    Arithmetic with Big-O Notation: Part 2

9.     Big-O Notation: Examples

10.    Big-O Notation: Calculating Taylor Polynomials


This page is maintained by Barbara Forrest.

Users are encouraged to contact the authors to report any errors.