compbook August 7,2014 6x9

A Practical Guide to Discrete
Optimization
Chapter 1, Draft of 7 August 2014

David L. Applegate
William J. Cook
Sanjeeb Dash
David S. Johnson

compbook August 7, 2014 6x9

The final test of a theory is its capacity to solve the problems which
originated it.

George B. Dantzig, 1963.

compbook August 7, 2014 6x9

Preface

A beautiful aspect of discrete optimization is the deep mathematical theory that com-
plements a wide range of important applications. It is the mix of theory and practice
that drives the most important advances in the field. There is, however, no denying the
adage that the theory-to-practice road can be both long and difficult. Indeed, under-
standing an idea in a textbook or on the blackboard is often but the first step towards
the creation of fast and accurate solution methods suitable for practical computation.
In this book we aim to present a guide for students, researchers, and practitioners who
must take the remaining steps. The road may be difficult, but the adoption of funda-
mental data structures and algorithms, together with carefully-planned computational
techniques and good computer-coding practices, can shorten the journey. We hope the
reader will find, as we do, elegance and depth in the engineering process of transform-
ing theory into tools for attacking optimization problems of great complexity.

compbook August 7, 2014 6x9

compbook August 7, 2014 6x9

Chapter One

The Setting

I don’t think any of my theoretical
results have provided as great a thrill
as the sight of the numbers pouring
out of the computer on the night Held
and I first tested our bounding
method.

Richard Karp, 1985.

Discrete optimization is the study of problems that involve the selection of the best
alternative from a field of possibilities. The shortest-path problem asks for the quickest
way to travel from one point to another along a network of roads, the traveling salesman
problem asks for the shortest way to visit a collection of cities, optimal matching prob-
lems ask for the best way to pair-up a set of objects, and so on. Discrete-optimization
models, such as these, are typically defined on discrete structures, including networks,
graphs, and matrices.

As a field of mathematics, discrete optimization is both broad and deep, and excel-
lent reference books are available. The main lines of research described in this math-
ematics literature concern structural theory and the basic solvability of certain classes
of models. Discrete optimization is also studied in theoretical computer science, where
research focuses on solution algorithms that are provably efficient as problem sizes in-
crease to infinity. In both cases, the motivating interest stems from the computational
side of the subject, namely, the great number of problems of practical and theoretical
importance that come down to making an optimal selection. This computational side
has a natural home in the applied field of operations research, where discrete optimiza-
tion is an important tool in the solution of models arising in industry and commerce.

NEEDLE IN THE HAYSTACK

At first glance, discrete optimization, as an applied subject, seems particularly simple:
if you have a field of possibilities, then examine each alternative and choose the best.
The difficulty comes down to numbers. Paths, traveling salesman tours, matchings, and
other basic objects are all far too numerous to consider checking solutions one by one.

This numbers argument is easy to see in the case of the traveling salesman problem,
or TSP for short. Suppose we need to visit n cities in a tour that starts and ends at the
same city. The length of such a circular tour does not depend on where we begin, so
we may fix any city as the starting point. We then have n — 1 choices for the second

compbook August 7, 2014 6x9

2 CHAPTER 1

city, n — 2 choices for the third city, and so on. The total number of tours is thus
n—1)=nh-1)xn—-2)x(n—3)x -+ x2x1.

For ten cities this is only 362,800 possibilities and it would be easy enough to examine
them all with the help of a computer. Even twenty cities looks solvable by running
through all 1.2 x 10'7 candidates, if you have a very fast machine and sufficient pa-
tience. But going up to thirty cities gives 8.8 x 103° tours, and such a number is well
out of the reach of any available computing platforms. In interpreting such a statement,
keep in mind that although computers are fast, they do have limitations. The world’s
top-ranked supercomputer in 2011 has a peak performance of 34 x 10'® operations per
second. So even if it could be arranged so that checking each new tour requires a single
operation only, we would still need over 700,000 years for the full computation.

Now please do not read too much into this numbers game. The 700,000-year com-
putation does not imply that TSPs with thirty cities are unsolvable. Definitely not.
Instances of the salesman problem with hundreds or even thousands of cities are solved
routinely with current methodology. All the numbers game shows is that simple enu-
meration methods cannot succeed. The haystack is far too large to find the needle by
brute force, even with the help of the fastest computer in the world.

IS THE SALESMAN TOUGH?

Among discrete optimization problems, the TSP has a notorious reputation. At a con-
ference several years ago, Sylvia Boyd, a professor at the University of Ottawa, ran
a contest where fellow mathematicians were asked to find salesman tours through a
set of fifty points. The restriction was that contestants could use by-hand calculations
only. After several days a winner was announced, but the winning tour was in fact not
a best-possible solution to the problem. Some of the world’s top experts were unable
to solve a small instance of the TSP without the help of their computers and software.

We relate the story of Boyd’s contest to emphasize that, although the numbers game
does not prove the TSP is actually tough to solve, to date no one has discovered a
method that is both guaranteed to produce optimal tours and is provably efficient in a
way we describe later in the chapter. This does not contradict our earlier statement that
the solution of instances with hundreds of cities is routine: we may not have a provably
efficient method for the TSP, but through a sixty-year research effort it is now possible
to solve many typical examples of the problem, including those with a thousand or
more cities. Discrete optimization may be difficult, but a take-no-prisoners approach
can lead to optimal solutions in a surprising number of settings.

SHORTEST PATHS

If you have used one of the many Web services for obtaining driving directions, then
you have witnessed the nearly instantaneous solution of an optimization problem. The
underlying model in this application is the shortest-path problem. Finding shortest
paths again amounts to locating needles in huge haystacks, but in this case there are
easy-to-apply methods that would allow you, for example, to find an optimal solution

compbook August 7, 2014 6x9

THE SETTING 3

using by-hand computations on road networks of modest size. The existence of such
techniques does not, however, explain how a Web service can produce so quickly an
optimal solution over an enormous network of points and roads. Large-scale problem
instances call for sophisticated data structures and algorithms, bringing state-of-the-art
computer science techniques to deliver on-the-fly solutions.

PERFECT MATCHINGS

A perfect matching of an even number of points is a partition of the points into pairs,
that is, each point is paired up with exactly one other point. Given as input a cost
assigned to each pair, the problem is to compute a perfect matching of minimum to-
tal cost. Perfect-matching models arise in a number of contexts, such as organizing
cell-phone towers into pairs to serve as backups for one another, or pairing up human
subjects in medical tests.

In the early 1960s, Jack Edmonds designed an algorithm for computing minimum-
cost perfect matchings. His method involves deep ideas and it can hardly be called
easy-to-apply, but it is provably efficient, setting matching problems apart from those
like the TSP. Edmonds’s method is also practical, although it took a long line of re-
search papers to arrive at an effective computer implementation of his complex algo-
rithm. The work here involved a combination of mathematics, algorithmic theory, data
structures, software engineering, and computer hardware. Quite an effort. Indeed, the
complexity of solution methods in discrete optimization can sometimes make practical
work challenging, but the rewards in terms of problem solvability can be great.

THE GOAL

Difficult, large, and complex. These are the characteristics of computational settings in
discrete optimization. The aim of our book is to take the reader into this arena, cov-
ering aspects of the subject that are typically skipped over in standard presentations.
The book can be viewed as a how-to guide for practical work, ranging from the so-
Iution of models with tough-guy reputations, such as the TSP, through those like the
shortest-path problem, where successful application requires the solution of instances
of exceptionally large scale, and the perfect-matching problem, where efficiency can
be gained only through complex methodology. Throughout the book the focus will be
on integrating the mathematics of discrete optimization with the technology of modern
computing platforms.

1.1 NEED FOR SPEED

As a warm up, let’s take a look at finding solutions to instances of the TSP. You might
be surprised by this choice, since a generally efficient algorithm is not known for the
problem. This is the point, however, allowing us to discuss an implementation of an
extremely simple method. The tradeoff is that we must restrict ourselves to tiny test in-
stances. But don’t worry, later in the book we will see implementations of much more
sophisticated algorithms, including state-of-the-art attacks on the TSP. And although

compbook August 7, 2014 6x9

4 CHAPTER 1

the method we describe now is simple, it will bring up several important general issues
about speed and the need to avoid repeated computations. Indeed, our discussion fol-
lows the very nice TSP article “Faster and faster and faster yet” by Jon Bentley [10],
where he writes “And finally, we’ll go hog-wild and see speedups of, well, billions and
billions.”

To begin, suppose we have ten cities to visit and we wish to do so using the shortest
possible tour. Even more precisely, suppose we wish to visit the ten cities in the United
States displayed in Figure 1.1. These locations were part of a 33-city TSP contest,

°
7 - Butte
°
8 - Boise
. .
° I () 1 - Erie
9-Reno 4-Lincoln - 0- Chicago
® 3 -Kansas Cit
5 - Wichita 17
°
° °
6 - Amarillo 2 - Chattanooga

Figure 1.1: Ten cities in the United States.

ran by Procter & Gamble in the 1960s, that included a $10,000 prize for the shortest
tour. The city-to-city driving distances displayed in Table 1.1 are taken from the contest
rules. In this example, for each pair of cities A and B, the distance to drive from A
to B is the same as the distance to drive from B to A. When the input data satisfy
this property, the problem is known as the symmetric TSP. Our implementation takes
advantage of this symmetry, but it is easy to modify the general method to work also
with asymmetric data.

As a preliminary step, we need to decide how to represent a potential solution to
the problem. The simplest choice is to describe a tour by giving the itinerary for the
salesman. For example, starting at Chicago, visit the remaining cities in the order Erie,
Chattanooga, Wichita, Amarillo, Reno, Boise, Butte, Lincoln, Kansas City, and back
to Chicago. Using the city labels listed in Table 1.1, we can represent the tour as an
array of ten numbers:

[0[1]2[5[6[9]8[7[4]3]

A picture of the array is fine for a discussion, but we also need to describe it in a form
that can be manipulated by a computer code. Now this gets into a religious matter.

compbook August 7, 2014 6x9

THE SETTING 5

0 1 2 3 4 5 6 7 8 9
0 Chicago 0

1 Erie 449 0

2 Chattanooga | 618 787 0

3 Kansas City | 504 937 722 0

4 Lincoln 529 1004 950 219 0

5 Wichita 805 1132 842 195 256 0

6 Amarillo 1181 1441 1080 563 624 368 0

7 Butte 1538 2045 2078 1378 1229 1382 1319 0

8 Boise 1716 2165 2217 1422 1244 1375 1262 483 0

9 Reno 2065 2514 2355 1673 1570 1507 1320 842 432 O

Table 1.1: City to city road distances in miles.

In a large group of potential readers, we will no doubt find votes for any number of
programming languages to use in our presentation, such as C, C++, Java, Python, and
Matlab, to name just a few. Each language has its own strengths and weaknesses.
Keeping things somewhat old school, we have adopted C throughout the book, for the
good reason that most of the actual computer codes we draw upon for examples are
written in C. We will, however, attempt to use the language in a vanilla fashion, to keep
things familiar and to allow for easy translation.

In the C language, an array of ten integers, called tour, is declared by the state-
ment

int tour[N];

where N is defined to be the number of cities. The first element of the array is accessed
as tour [0], the second element is t our [1], and so on. For example, equipped with
an integer-valued function dist (i, J) that returns the travel distance between city ¢
and city j for any pair of cities, the following code will compute the length of a tour.

int tour_length ()
{

int i1, len = 0;

for (1 = 1; 1 < N; i++) {

len += dist(tour[i-1],tour[i]);
}
return len+dist (tour[N-1],tour[0]);

The for-loop runs through the first N-1 legs of the tour, adding the road distance to the
integer variable 1en; the final addition takes care of the leg back to the starting city.

compbook August 7, 2014 6x9

6 CHAPTER 1

Using tour_length () we can compute that our sample tour, drawn in Fig-
ure 1.2, covers the United States trip in a total of 6,633 miles. This looks pretty good,

7

Figure 1.2: Tour of length 6,633 miles.

but is the tour actually the shortest? One way to check is to simply run through all
possible tours of the ten cities and compute the length of each. An uninteresting, brute-
force approach, but it works fine for tiny instances.

ENUMERATING ALL TOURS

To carry out the brute-force search, we need only manipulate the first N-1 elements
of the tour array to generate all possible permutations of the values they store, since
this corresponds to fixing the final city in the tour. The tool we use in the manipulation
isa tour_swap () function that exchanges the element stored in position ¢ with the
element stored in position j.

void tour_swap(int i, int J)
{
int temp;
temp = tour[i]; tour[i] = tour[jl; tour[j] = temp;

}

For example, tour_swap (0, 8) will exchange the elements stored in positions 0
and 8. Now, to generate all permutations of the first N-1 elements, we will one-by-
one move each of the cities stored in the first N—1 positions to position N-2, and
then generate all permutations of the symbols now in the first N—2 positions. This is
accomplished by calling the following function as permute (N-1).

compbook August 7, 2014 6x9

THE SETTING 7

void permute (int k)
{

int i, len;

if (k == 1) {
len = tour_length();
if (len < bestlen) {

bestlen = len;
for (i = 0; i1 < N; i++) besttour[i] = tour[i];
}
} else {
for (i = 0; 1 < k; 1i++) {

tour_swap (i,k-1);
permute (k-1);
tour_swap (i,k-1);

The argument k indicates that all permutations of the first k& elements of tour should
be generated. If k is 1, then we have reached our next full permutation of the N cities
and we therefore compare the corresponding tour length with the best value we have
found previously. Whenever we find a new best tour, we record its value in a variable
bestlen and record the tour itself in an array besttour.

You might want to spend a few minutes convincing yourself that permute ()
works as claimed. At first glance it appears to be too simple, but the complexity is
hidden by the fact that the function calls itself recursively to generate the permutations
on one fewer elements. To give you a feeling for the operation of the function, we list in
the three columns of Table 1.2 the order in which permute () runs through all tours
for three, four, and five cities respectively.

To test the code yourself, you can refer to the listing given in Appendix A.1, where
we have added missing pieces to read the distance table, print the shortest tour and its
length, and wrap things in amain () function as required by the C language. Once the
code is compiled, you won’t have to wait long for the result: on a current desktop com-
puter, the 10-city example runs in under 0.01 seconds. The optimal tour is displayed in
Figure 1.3. Its length of 6,514 miles improves on our sample tour by traveling directly
from city 4 to city 0, picking up city 3 on the lower side of the tour.

If the goal is to solve the 10-city instance only, then we should declare victory at
this point. The algorithm is simple, the full code listing has only 72 non-blank lines,
and it runs in a hundredth of a second of computing time. A job well done. But why
stop at ten cities? With such a fast running time, we ought to be able to push ahead
to slightly larger examples. Here we turn to the random Euclidean TSP, where, in our
case, each city is defined by a point (x,y) with « and y integers chosen at random
between 0 and 1,000. The travel costs are the straight-line distances between pairs of

compbook August 7, 2014 6x9

8 CHAPTER 1

O =
—_= O
N DN
O = O N DN =
= o N O N
NN~ = OO
W W Ww www

OFFRF ONNF OFOWWHFOWONNWWRFWNDND
HF ONORFRFNREFOWORF WWONOWNDEFWNWRFN
NN R OOWWHFRFRFODONNWWOONNRFRFWW
WWWWWWNNNNNNNNNNRFERFERFERFERERFEOOOOOO
=R R

Table 1.2: Tours generated by permutation function for 3, 4, and 5 cities.

Figure 1.3: Optimal tour, length 6,514 miles.

points, rounded to the nearest integer. This test bed has the nice property that we can
readily produce examples as we slowly increase the number of cities n.

compbook August 7, 2014 6x9

THE SETTING 9

So, how does the brute-force code stack up? Looking at just one sample instance
for each value of n, here are the running times in seconds.

Cities 10 11 12 13 14 15
Seconds 0.01 0.1 1.1 17 215 3322

At this rate of growth, solving a twenty-city instance would likely take over a billion
seconds. This is where we have the need for speed.

SAVING TIME AND PRUNING TOURS

A first opportunity for a speed upgrade is the current overuse of the tour_length ()
function. Indeed, the time-per-tour can be reduced easily by keeping track of the length
of the path we build as the permutation is created. To handle this, we include a second
argument, tourlen, in permute () to keep track of the accumulated path length. In
the recursive call to the function we add to t ourlen the distance between cities k — 1
and k.

void permute (int k, int tourlen)

{

int 1i;

if (k == 1) {
tourlen += (dist (tour([0],tour([l])
dist (tour [N-1],tour[0]
if (tourlen < bestlen) {

+
)) i

bestlen = tourlen;
for (i = 0; i < N; i++) besttour[i] = tour[i];
}
} else {

for (1 = 0; i < k; i++) {
tour_swap (i, k-1);
permute (k—-1, tourlen+dist (tour[k-1],tour(k]));
tour_swap (i, k-1);

}

At each recursive call, the tourlen argument is equal to the length of the path fol-
lowing the cities in order from tour [k] to tour [N-1]. In the k¥ = 1 case, two
additions are used to account for the initial road in the tour and for the return journey
from the final city. The modified code reduces the running times to the following, for
the same set of test instances.

Cities 10 11 12 13 14 15
Seconds 0.006 0.04 0.6 11 116 1576

compbook August 7, 2014 6x9

10 CHAPTER 1

The computation has been cut by half for the 15-city example, but much more important
is that the code is now equipped with a useful bit of information. Namely, we know
that no matter how we complete the tour [k] to tour [N-1] path into a tour, it will
have length at least the value of t ourlen, assuming, quite reasonably, that travel costs
cannot be negative numbers. This means that if tourlen ever reaches the value of
our best-known tour, then we need not examine the tours that would be obtained by
completing the current path. Thus, adding the statement

if (tourlen >= bestlen) return;

at the start of permute () allows us to prune the search. This one line of code drops
the running time for the 15-city instance down to 5 seconds.

Cities 10 11 12 13 14 15 16 17 18 19 20
Seconds 0.003 0.01 0.05 03 2 5 34 22 56 5325 646

The improvement is so dramatic that we went ahead and pushed on to a 20-city exam-
ple, solving it in under 11 minutes of computing time. In these results, however, you
begin to see that our use of a single test instance for each value of 7 is not a good idea
in a computational study. Indeed, the running time for 19 cities is much greater than
the time needed for 20 cities. This is due to the complex operation of the algorithm,
where pruning can happen more quickly for some distributions of points than it does
for others. To be rigorous we would need a statistical analysis of a large number of test
instances for each n, but allow us to continue on with our simple presentation. We will
have a detailed discussion of appropriate test environments in Chapter 14.

Continuing with our implementation, the pruning idea looks like a winner, so let’s
carry it a bit further. When we cut off the search, we are assuming only that the re-
maining path through the cities stored in positions 0 through k£ — 1 must have length
at least zero. This is a simple rule, but it ignores any additional information we may
have concerning travel costs. An improvement comes from the following observation:
to complete a tour, we must select distinct roads entering each of the cities stored in
tour[k-1], tour[k—-2], down to tour[0], as well as a road returning to the fi-
nal city. We don’t know beforehand which of these roads make up the shortest path
through the cities, but each selected road must be at least as long as the shortest among
all roads entering the specific city. So here is what we do. Using a third argument,
cheapsum, in the function permute (), we keep track of the sum, over all cities
stored in positions 0 through k£ — 1 and the final city, of the shortest roads entering each
city. The pruning test is then changed to the following line of code.

if (tourlent+cheapsum >= bestlen) return;

To update cheapsum we compute, at the start of the code, an array cheapest that
stores the length of the shortest road entering each of the n cities in the problem. The
initial call to permute () sets cheapsum to be the sum of all of the values stored in
the array, and the recursive call becomes

compbook August 7, 2014 6x9

THE SETTING 11

permute (k-1, tourlen+dist (tour[k-1],tourlk]),
cheapsum-cheapest [tour[k-1]]);

Thus cheapsum is decremented by the length of the shortest road entering the next
city to be placed into the tour. A relatively minor change to the code, but with a big
impact: the running time for the 20-city instance decreases by a factor of 1,000, now
coming home in ten seconds. Here are the running times obtained for instances up to
25 cities.

Cites 15 16 17 18 19 20 21 22 23 24 25
Seconds 0.1 0.3 0.1 02 4 5 350 36 246 572 9822

Compared with our starting code, the total improvement is now up to a factor of one
hundred million for the 20-city Euclidean TSP, and more help in on the way.

TREES AND TOURS

The use of cheapsum brings in travel costs for completing a path into a tour, but
only in the most elementary way. Indeed, if we put together the roads that determine
the values in the cheapest array, they would typically not look anything like a path.
In fact, the roads would likely not even join up into a connected network. Finding a
shortest path to link up a subset of cities is similar in difficulty to the TSP itself, but
finding the cheapest way to connect a subset of cities is something that is quite easy to
do. We can use this to obtain a better lower bound on the cost to complete a path into a
tour, and thus a stronger method for pruning our search.

A minimal structure for connecting a set of cities is called a spanning tree. A
minimum-cost spanning tree for the 10-city Procter & Gamble instance is displayed in
Figure 1.4. It is clearly not a single path through the set of cities, but its length of 4,497

Figure 1.4: Minimum spanning tree, length 4,497 miles.

miles is at least as short as any single path, since each such path is itself a spanning
tree.

Efficient methods for computing minimum spanning trees were discovered in the
1920s, and the well-known algorithms of Kruskal and Prim were published in the

compbook August 7, 2014 6x9

12 CHAPTER 1

1950s. It is the method of Prim that fits best within our TSP application. A fast imple-
mentation of his algorithm, suitable for small examples, can be coded in about twenty
lines of C, but we leave the details until our discussion in Chapter 3. For now, suppose
we have a function mst (int d) that returns the length of a minimum spanning tree
through the first d cities stored in the t our array and the final city tour [N-1]. With
this new weapon, the cheapsum argument and pruning test can be replaced by the
statement

if (tourlen+mst (k+1) >= bestlen) return;

at the start of the permute () function. This more powerful bound brings the solution
time for the 20-city instance down to under a second.

Cities 20 21 22 23 24 25 26 27 28 29 30
Seconds 0.6 0.8 0.7 1.5 14 10 06 17 35 2 44

The improved running times point out that the spanning-tree bound is a valuable
tool for pruning the search, so we ought to make good use of it. In this direction, we
can attempt to get a low value for best len early in the computation, since this will
allow for quicker pruning of our tours. A good place to start is by calling the following
function to compute a nearest-neighbor tour.

void nntour ()

{
int i, j, best, best];

for (i = 0; i1 < N; 1i++) tour[i] = 1i;
for (1 = 1; 1 < N; i++) {
best = MAXCOST;

for (j = 1i; J < N; J++) {
if (dist(tour[i-1],tour[]j]) < best) {
best = dist (tour[i-1],tour([]j]);
bestj = 7J;
}
}

tour_swap (i, best]);

}

The algorithm begins at city O and at each step adds as the next city the nearest one that
has not yet been visited. At very little computational cost, we can initialize best len
to be the value of the tour we obtain. Doing so gives the following improvements in
running times for our test instances.

Cities 25 26 27 28 29 30 31 32 33 34 35
Seconds 7 0.5 10 7 0.7 11 155 969 189 1168 9

compbook August 7, 2014 6x9

THE SETTING 13

Notice that we are now handling examples with 7 in the mid 30s, thus giving us a shot at
solving the full 33-city Procter & Gamble instance. Indeed, the optimal tour of 10,861
miles, displayed in Figure 1.5, is found by the code in 47 seconds. Unfortunately we
are fifty years too late to make a claim for the $10,000 prize.

Figure 1.5: Optimal tour for 33-city Procter & Gamble contest.

BIGGER GUNS

The sequence of improvements we have described have added a total of 35 lines of C
to our original implementation. That leaves a tidy computer code for small instances
of the TSP; a full listing can be found in Appendix A.2. The next two upgrades are a
bit more heavy duty, each involving around fifty additional lines, but the payoffs are
dramatic.

First, it makes sense to try to obtain an even better starting value for bestlen
by working harder at our preliminary-tour construction. There are many TSP heuristic
methods that could be considered, but we focus on one of the simplest and earliest
ideas, proposed by Merrill Flood in the mid 1950s. Flood’s method is to take a nearest-
neighbor tour and repeatedly make improving two-opt moves. A two-opt move is the
operation of removing a pair of roads and reconnecting the resulting two paths. For
example, the move displayed in Figure 1.6 improves by 301 miles a nearest-neighbor
tour for the ten-city Procter & Gamble instance. The two-opt algorithm repeatedly
makes improving two-opt moves until a tour is obtained such that no further improving
moves exist.

The results of the two-opt algorithm are usually pretty good for small TSP in-
stances, but to give our code a chance to find a near-optimal initial tour, we imple-

compbook August 7, 2014 6x9

14 CHAPTER 1

Figure 1.6: Two-opt move, replacing (6-8, 7-9) by (6-9, 7-8).

mented a for-loop to run the algorithm n times, once for each of the nearest-neighbor
tours obtained by considering each possible city as the starting point.

The second improvement adopts an idea of Bentley [10]. If you observe the opera-
tion of the TSP enumeration algorithm equipped with the spanning-tree pruning mech-
anism, then you will notice that the same spanning trees are computed over and over
again. This violates a golden rule of computer implementations. Bentley’s suggestion
is to use a data structure called a hash table to store the length of each spanning tree
we compute, and then to check the table before each new spanning-tree computation
to see if we know already the result. Hash tables are one of the dynamos of efficient
computer codes in discrete optimization and we discuss their operation in Chapter 2.

Together with these two high-powered improvements, we could not resist making
one further minor tweak. With our symmetric data, it does not matter in which direction
we travel around a tour. Thus, our algorithms need only consider those tours such
that city 0 comes before city 1 as we work our way back from the fixed final city
tour [N-1]. To arrange this, we include a havezero argument in the permute ()
function and set it appropriately when we encounter city 0. This tweak results in a
minor speed up only, but for three lines of code is seems worthwhile.

Test results for the nearest-neighbor-based code and our three improved codes are
reported in Table 1.3, considering random Euclidean instances with up to 45 cities.
The codes get faster as we move from Nearest, to Two-Opt, to Hash Table, to Zero-
One, since we incorporate all of the previous upgrades when we add the next idea. You
would have to get out a calculator to estimate the total speed up we have obtained over
our original brute-force code, but solving a 45-city instance in a little over a minute
definitely qualifies as “billions and billions.”

SOME TSP HISTORY

The above computational results put us into the range of some historically important
test instances of the TSP. Indeed, as the problem first began to circulate in the math-
ematics community in the 1930s and 1940s, it was sometimes called the “48-states
problem,” referring to its instance of finding an optimal tour to visit a city in each of
the 48 states of the United States. The grandfather of all TSP papers, written by George

compbook August 7, 2014 6x9

THE SETTING 15

Cities Nearest Two-Opt Hash Table Zero-One

35 9 0.9 0.1 0.1
36 11729 133 5 3
37 265 6 0.4 0.3
38 43 32 2 1
39 2713 150) 4
40 17379 1968 84 63
41 461 187 8 8
42 4528 840 18 13
43 2739 132) 4
44 14021 6781 7 49
45 190820 8156 172 73

Table 1.3: Running times in seconds for four simple TSP codes.

Dantzig, Ray Fulkerson, and Selmer Johnson [27] in 1954, considered such an exam-
ple, throwing in also Washington, D.C. for good measure. Through a trick with their
particular data set, Dantzig et al. were able to reduce their 49-city instance to a 42-city
problem, which they solved with by-hand computations. Their result stood as a world
record in TSP computation for 17 years, until Michael Held and Richard Karp [45] pro-
duced an algorithm, computer code, and computational study that solved several larger
examples, including 48-city and 57-city tours through the United States.

Our tiny-TSP code solves the Dantzig et al. 42-city instance in 0.3 seconds, the
Held-Karp 48-city instance in 0.2 seconds, and the 57-city instance in 656 seconds.
And, in case you are wondering, Sylvia Boyd’s 50-city instance solves in 8§ hours.

The techniques we have used were all known in the mid 1950s, including minimum
spanning trees, the nearest-neighbor algorithm, the two-opt algorithm, and hash tables.
Of course, what emphatically was not available in the 1950s was the high-powered
computer we adopted or the great platform provided by the C programming language.
Maybe this was good fortune. The linear-programming methods developed by Dantzig
et al. to first solve the 48-states challenge were a true revolution, and their techniques
continue to dominate the research and practice of attacks on difficult problems in dis-
crete optimization.

TRANSFORMING THE TRAVEL COSTS

Our discussion has taken us through a sequence of clear steps to improve the tiny-
TSP code, in each case either avoiding certain computations or avoiding the explicit
examination of large numbers of non-optimal tours. Rather than a clear improvement,
our next upgrade is a heuristic attempt to transform instances of the TSP to run more
quickly on our existing code. The upgrade may be heuristic, but the running-time
improvements are clear: the 45-city instance from Table 1.3 will solve in 0.3 seconds
and Boyd’s 50-city example will solve in 0.4 seconds.

compbook August 7, 2014 6x9

16 CHAPTER 1

The idea is to create an equivalent TSP where the spanning-tree bound is likely to be
more effective. The transformation tool, described by Merrill Flood [33] in connection
with his test of the nearest-neighbor algorithm, is based on the following observation:
if we subtract the same value & from the travel cost of every road meeting a selected
city, then we have not altered the TSP. Indeed, every tour in the transformed problem
is exactly 26 shorter than the same tour in the original problem. So both instances rank
the tours in the same way. Moreover, we can repeat the process, for each ¢ subtracting
a value §; from every road meeting city 7. In other words, if the cost to travel from city
i to city j in the original instance is dist(i, 7), then the travel cost in the transformed
instance is dist(i,j) — 6; — 0;. We are free to select any values we like for the §’s, so
let’s try to create new travel costs such that a minimum spanning tree in the transformed
instance resembles a tour.

Flood selected ¢’s to maximize the sum » (2d; : ¢ = 0,...,n — 1) subject to the
condition that all travel costs remain nonnegative, that is, for each pair of cities ¢ and
J we have the constraint 6; + 0; < dist(i, j). For Euclidean instances of the TSP,

&

o
i

Go
€S

Figure 1.7: Flood’s d-values for a 45-city TSP instance.

such §’s can be visualized as disks of the given radius centered at each city, where the
constraints on the §’s correspond to the condition that disks do not overlap. The values
for the 45-city test instance are displayed in Figure 1.7. The black and red edges drawn
between pairs of cities in the figure indicate the method Flood used to compute his §’s.
Indeed, Flood employed an algorithm to solve a variation of an optimization problem
known as the assignment problem. In this case, the problem assigns 1/2 and 1 values to
edges such that each city meets a total value of one, that is, either two red edges or one

compbook August 7, 2014 6x9

THE SETTING 17

black edge. We discuss the assignment problem in Chapter 2, showing how standard
solution methods produce the § values as a by-product.

Flood’s transformation brings cities next to one another, allowing both the optimal
tour and the minimum spanning tree to share many roads that now have cost zero. It
is thus reasonable to test the use of the transformation within our tiny-TSP code, so
we added around 60 lines of C to implement an assignment-problem algorithm and
obtained the following results.

Cities 45 46 47 48 49 50
Seconds 3 11 201 10735 101 18

The running times are better, but the drawing in Figure 1.7 suggests that further im-
provements should be possible. Indeed, the assignment-problem 4’s produce many
isolated pairs of cities, meaning that there are no zero-cost roads to join the pairs into
a tour or tree. A way to handle this is to allow disks to overlap and in the optimiza-
tion problem include a penalty for the length of the overlapping portion. The resulting
disks for the 45-city TSP instance are displayed in Figure 1.8, obtained by solving the
fractional-2-factor problem that assigns 1/2 and 1 values to edges such that each city
meets a total value of two; this problem is discussed in Chapter 9. The penalties en-

Figure 1.8: Improved J-values for a 45-city TSP instance.

sure that each disk overlaps at most two other disks, creating chains of disks that either
touch or overlap, that is, paths of roads that have either zero or negative travel costs

compbook August 7, 2014 6x9

18 CHAPTER 1

in the transformed problem. These paths allow the optimal tour and minimum tree to
resemble each other even more than in the assignment-value transformation, leading to
much better running times.

Cities 45 46 47 48 49 50
Seconds 0.2 6 1 8 2 0.5

In our code, we need around 70 lines of C to compute the 2-factor §’s, so it is nearly a
one-for-one replacement for the implementation of Flood’s transformation.

So far we are using still Dantzig-Fulkerson-Johnson-era machinery. For our final
improvement we jump ahead to the late 1960s and employ an idea due to Held and Karp
[44, 45]. It was used originally within a sophisticated branch-and-bound algorithm
for solving the TSP, repeatedly computing new spanning-tree-based lower bounds for
subproblems obtained by including or excluding certain roads. We describe the Held-
Karp branch-and-bound method in Chapter 8, but our use of the idea here is much
simpler.

Held and Karp work with an object known as a /-tree, obtained by selecting one
city and the two cheapest roads meeting it, together with a minimum spanning tree of
the remaining cities. Every tour is an example of a 1-tree, so the minimum 1-tree gives
a bound on the cost of any tour. Given travel costs transformed by J values, Held and
Karp compute a minimum 1-tree. For each city ¢ that meets more than two roads in the
1-tree, they increase the value of §;, and for each city ¢ that meets only one road in the
1-tree they decrease §;. The modified &’s guide the 1-tree towards the case where all
cities meet exactly two roads, that is, towards the case where the 1-tree is a tour. The
process is repeated many times, gradually decreasing the amounts by which the §’s are
changed. In an attempt to not bias the method by a particular choice of a special city,
we create our §’s by averaging the values obtained by considering in turn each of the n
cities as the special one. Thus, we apply the Held-Karp process n times to obtain our
¢’s. The implementation adds about 40 lines of C to our tiny-TSP code.

In Figure 1.9 we display the minimum spanning tree for the 45-city example with
costs transformed by the Held-Karp 4’s. You can see that the tree in the transformed
problem is rather tour-like, with many cities included on long paths. It is this property
that leads to the outstanding performance of the new code, as indicated by the following
running times.

Cities 45 46 47 48 49 50
Seconds 0.3 0.5 0.3 09 09 04

The code also solves the 42-city, 48-city, and 57-city instances through the United
States in 0.3 seconds, 0.3 seconds, and 12 seconds, respectively, and, as we mentioned,
Boyd’s 50-city example solves in 0.4 seconds.

Moving up to larger random Euclidean instances shows off even better the power
of the travel-cost transformations. The four rows in the following table give running
times in seconds for instances with up to 65 cities, using the original travel costs, the
assignment-problem costs, the fractional-2-factor costs, and the Held-Karp costs, re-

compbook August 7, 2014 6x9

THE SETTING 19

Figure 1.9: Minimum-spanning tree with Held-Karp costs for a 45-city TSP instance.

spectively; the “**” entries indicate trials that did not complete in 200,000 seconds.

Cities 50 99 60 65
Original Costs 46 9919 Kok *%
Assignment Costs 18 19314 1619 sx
2-Factor Costs 0.5 99 13 6552
Held-Karp Costs 0.4 0.9 0.5 2

The code with the original travel costs was unable to solve the 60-city instance, whereas
the Held-Karp transformation allowed us to complete the work in half a second. It thus
seems safe to assume that by the time we get up to the 65-city example we can add
another layer of “billions” to our list of speed ups.

THE POWER OF BETTER PRUNING VALUES

Let’s wrap things up with a final upgrade, allowing us to push our tiny-TSP computa-
tions up to instances having 100 or more cities. To accomplish this we return to our
earlier observation that a good starting value for best len is crucial for pruning the
search for an optimal tour. We pursued this theme with the use of the nearest-neighbor
and two-opt algorithms, but with the stepped up power of the Held-Karp transformed
spanning-tree lower bound it is time to look to further improvements in the initialization
of bestlen.

Ideally we would somehow know the value of an optimal tour and set bestlen
appropriately. We don’t of course have this knowledge, but we can cheat and make

compbook August 7, 2014 6x9

20 CHAPTER 1

an aggressive guess for an initial value for best len. Using the guessed value, if we
conclude our search without finding a tour of value best 1en or better, then we repeat
the process starting with a slightly larger guess. Thus, we create a loop, increasing
bestlen at each iteration until we find the optimal tour. To be more specific, we can
begin by setting best 1en to the value of the 1-tree bound. If the search fails, then we
repeatedly increase bestlen to the value (« * bestlen) + 1 rounded down to the
nearest integer, where « is any constant larger than or equal to one. In our tests we set
o = 1.001. This is a general approach that can work well whenever we have a search
problem that comes with a very strong lower bound for pruning candidate solutions.

As an alternative to this staged search, we can attempt to upgrade the two-opt al-
gorithm we use for computing an initial tour. A good choice here is the Lin-Kernighan
algorithm proposed by Shen Lin and Brian Kernighan [62] in 1973. We describe this
method in detail in Chapter 11; it remains a champion technique for tour finding and a
model for a class of heuristics known as local-search algorithms. To fit into our tiny-
TSP code, we implemented a simplified version of the heuristic that requires about 50
additional lines in C.

The table below reports running times in seconds for three versions of our code,
using the two-opt tour we described earlier, using the staged approach of increasing
bestlen, and using the Lin-Kernighan tour, respectively.

Cities 70 75 8 8 90 95 100

Two-Opt Bound 1 26 118 2577 221 1041 2336
Staged Search 06 1 11 22 12 529 247
Lin-Kernighan Bound 0.6 1 27 9 10 183 87

The Lin-Kernighan algorithm often delivers the optimal tour on this class of instances
and thus typically achieves the best results, but the performance of the staged approach
is impressive for such a simple tweak to the existing code.

As our last word, we note that 100 cities puts us within range of another milestone in
TSP computation, namely Martin Grétschel’s optimal 120-city tour of Germany [41],
found in 1975. Not that we encourage calculations such as the following, but this
instance of the TSP would require roughly 10'%° seconds to solve using the simple
code that began our discussion some fifteen pages ago. On the other hand, the Lin-
Kernighan-equipped version of our code needs only 412 seconds to solve Grotschel’s
example. That makes the final tiny-TSP code about twenty-one factors of a billion
faster than the initial code. Implementation details can indeed make a difference!

1.2 THE ART OF IMPLEMENTATION

It would be nice to have a set of golden rules to guide implementation work, leading
us quickly, for example, to the final version in the tiny-TSP example. Nice, but not
likely. Indeed, in a mild complaint to one of the authors of this book, a colleague at
AT&T Labs noted that hard-and-fast implementation advice he receives one month of-
ten contradicts hard-and-fast advice he received the previous month. That can happen.
Nevertheless, we feel safe in laying down a number of general principles that will, at

compbook August 7, 2014 6x9

THE SETTING 21

least, allow us to set the tone for the problem-specific studies to come later. But keep in
mind that implementation is a creative activity, so general principles must necessarily
leave plenty of room for interpretation.

KNOW WHAT YOU ARE DOING

Let’s begin with a principle that seems unassailable. Namely, writing a code fragment
should be like proving a lemma. You might sometimes be wrong, but you should always
have in your mind a proof that the fragment does what you have planned. The idea that
one can quickly type in code, toss it over to a test environment, and hope for the best is
doomed to fail when the fragment is part of a large implementation project.

NO REPETITIONS

Nothing slows down an algorithm more than repeatedly performing the same computa-
tion. This is a trivial statement, and there are sometimes easy fixes. At a deeper level,
however, avoiding repetitions, and other superfluous computations, is a large part of the
implementation art.

MEMORY MATTERS

In these days, when a few gigabytes of random-access memory costs less than a good
meal, it is tempting to think we have unlimited workspace for our computations. As a
general rule, however, memory usage definitely still matters. Indeed, modern comput-
ers have complex, hierarchical memory architectures, going from registers, to several
grades of on-chip cache, to off-chip random-access memory, and finally to disk space.
Access to information from each level in the hierarchy comes at a great time penalty
over access from the earlier level. Effective codes are those that squeeze as much
computation as possible onto each level. Attempting to manage this can become over-
whelmingly complex, but it is typically sufficient to keep in mind simply that memory
matters, use only what you need.

GETTING LUCKY

A little luck is always good, particularly when attempting to solve a problem instance
of size or complexity well beyond what could be expected from a worst-case analysis
of a particular solution method. The saying “fortune favors the brave” does not really
apply here, but codes should be designed so that brave users have a fighting chance.
Here is what we mean. Suppose you have an algorithm that is known to require at most
n? steps to solve a problem instance having n points. This should not in general mean
that it is fine to include a double loop in your code, running through all n? pairs of
points no matter what specific example is given as input. Such a construction turns the
n? worst-case algorithm into an n? best-case running time.

Turning worst to best is bad practice. A worst-case analysis must not become an
excuse to relax. Indeed, an understanding of worst-case behavior should direct you to
avoid the bottleneck computation if at all possible when processing specific input. Al-
most any sophisticated implementation work will serve as an example of this principle.

compbook August 7, 2014 6x9

22 CHAPTER 1

To mention just one, there are implementations of Edmonds’ matching algorithm that
have as worst-case performance a multiple of n* steps, for an n-point input, and yet
are run routinely on examples having more than a million points. A quick calculation
will convince you that the authors of these codes did not surrender and create an n*
best-case implementation.

REUSE

“Reuse, Reduce, and Recycle” is the snappy slogan of many conservation campaigns.
This is not bad advice also for algorithm implementers. By this we do not mean re-
cycling blocks of previously written code, although this itself is sound practice if you
have a supply of good routines to draw upon. The principle we have in mind is to reuse
or recycle previously computed objects during the execution of a solution procedure.
Clear examples of this are various re-start methods that make minor adjustments to
known optimal solutions when presented with slightly altered input data.

The reuse principle overlaps, of course, with the no repetitions principle: if you
have computed something once, why compute it again? Going beyond this, it pays to
consider how one can get multiple uses out of a computed structure.

EXPLOIT ALTERNATIVES

There is often a choice of solution methods to tackle a given problem, and it is usually
the case that one of the methods will perform better than others on particular input data,
while a second method performs better on other inputs. If there are easily computed
parameters that allow you to detect which of the methods is likely to be superior on a
given instance, then it is simple enough matter to have your code make the decision on-
the-fly. A typical scenario, however, will not have such an easy selection rule. Indeed,
the behavior of a complex solution process may be very difficult to determine without
actually applying the process itself. In such cases it may be possible to go ahead and
run several solution strategies in parallel, halting the software when the fastest of these
completes its work. If only a single thread of execution is available, then it may be
possible to see-saw between two methods A and B, applying first A for & seconds, then,
if A was not successful, applying B for 2k seconds, followed by A for 4k seconds, and
so on until the problem is solved by one or another of the methods. In short, it may pay
to exploit alternatives when faced with a difficult computation.

1.3 COMPUTATIONAL COMPLEXITY

Our list of general implementation principles emphasizes the main theme of the book,
namely, a dogged approach to the solution of problem instances in discrete optimiza-
tion. This is at odds somewhat with the focus of algorithmic work in computer science,
where results on finite examples are not of direct concern. Nonetheless, the theoreti-
cal studies of that community are a very important source of techniques for practical
computation. The challenge is to sift through material to pick out algorithms and data
structures that are appropriate for the particular instances that need to be solved. This

compbook August 7, 2014 6x9

THE SETTING 23

topic will be discussed in the next two chapters, but it is also important to understand
the basics of complexity theory, which serves as a guide in computer-science theory.

ALGORITHMS AND TURING MACHINES

A solution technique for an optimization problem is most typically an algorithm, that
is, a list of simple steps that together produce a solution to any instance of the problem.
We have used freely the word algorithm in the text thus far, relying on the reader’s
intuitive concept of a step-by-step solution strategy, such as the one employed in the
tiny-TSP discussion. To have a theory of complexity, however, the intuitive concept
must be made precise. This issue came to the forefront in the early 1900s with David
Hilbert’s Entscheidungsproblem, that asks, roughly, whether there exists an algorithm
that can decide if any given statement is, or is not, provable from a set of axioms.

At the time of Hilbert it was not clear how the concept of an algorithm should in
general be defined. This is a deep question, but Alan Turing provided an answer in
1936, introducing a mathematical model known as a Turing machine. The hypothetical
machine has a tape for holding symbols, a head that moves along the tape reading and
writing symbols in individual cells, and a controller to guide the read/write head. It also
has a finite set of states, with two special states being initial and halt. The controller
is a table that indicates what the machine should do if it is in a particular state s and
it reads a particular symbol z. The “what it should do” is to print a new symbol x’ on
the cell of the tape, move the head either left or right one cell, and enter a new state s’.
To solve a problem, the machine starts in its initial state, with the input to the problem
written on the tape; it terminates when it reaches the halt state.

Let’s consider a simple case: given a string of 0’s and 1’s, determine if the number
of 1I’s is odd or even. To construct a Turing machine for this problem we can have
four states, initial, odd, even, and halt, two symbols, 0 and 1, and the transition table
displayed in Figure 1.10. The table has a row for each symbol (including a blank “_)

initial odd even

0 | _ right,even | _ right,odd | _ right, even
1| _ right,odd | _ right,even | _, right,odd
_ 0, _, halt 1,_, halt 0, _, halt

Figure 1.10: Transition table for a parity-checking Turing machine.

and a column for each state other than halt. The entry in the table is a triple, giving the
symbol to write, the direction to move on the tape, and the next state. For example, if
the machine is in state odd and we read the symbol 1, then we write a blank symbol in
the cell, move one cell to the right, and change the state to even. Presented with a string
of 0’s and 1’s, arranged in consecutive cells on the tape, and with the read/write head
positioned on the leftmost symbol, the Turing machine will move to the right until it
reaches a blank cell, indicating the end of the string. When it halts, a 0 is written on the
tape if the number of 1’s is even, and a 1 is written on the tape if the number of 1’s is
odd.

compbook August 7, 2014 6x9

24 CHAPTER 1

The beauty of the Turing machine model is that, although it is very simple, if some-
thing is computable on a modern day computer, then a Turing machine can be de-
signed to carry out the computation. Indeed, it is a working assumption, known as the
Church-Turing Thesis, that we can equate algorithms and Turing machines. This thesis
is widely accepted and it gives the formal model of an algorithm used in complexity
theory.

POLYNOMIAL-TIME COMPLEXITY

Turing provided a model for a theory of algorithms, but the arrival of digital computers
in the 1950s quickly drew to attention to the issue of efficiency. It is one thing to know
a problem can be solved by a Turing machine, it is quite another to know the Turing
machine will deliver its solution in an acceptable amount of time. Operations research
pioneer Merrill Flood [33] makes this point in his 1956 paper concerning the TSP.

It seems very likely that quite a different approach from any yet used may
be required for successful treatment of the problem. In fact, there may well
be no general method for treating the problem and impossibility results
would also be valuable.

His call for impossibility results is a direct statement that finite is not good enough. This
issue was addressed in the early 1960s, led by the work and steady campaigning of Jack
Edmonds. The better-than-finite notion Edmonds proposed is known as polynomial-
time complexity. Formally, a polynomial-time algorithm is a Turing machine such that
if n is the number of symbols on the input tape, then the machine is guaranteed to halt
after a number of steps that is at most ¢ - nF + d, for some constants k, ¢, and d. In this
definition we could replace the Turing machine by a powerful modern digital computer
without altering the concept. Indeed, the simulation of a modern computer via a Turing
machine will slow down computations, but the slow-down factor is only polynomial in
n.

A quick calculation of n® versus 2" for several values of n makes it clear why
Edmonds [30] referred to polynomial-time algorithms as “good algorithms.”

For practical purposes computational details are vital. However, my pur-
pose is only to show as attractively as I can that there is an efficient algo-
rithm. According to the dictionary, “efficient” means “adequate in oper-
ation or performance.” This is roughly the meaning I want—in the sense
that it conceivable for maximum matching to have no efficient algorithm.
Perhaps a better word in “good.”

The polynomial-time notion provides researchers a clear target when approaching a
new class of problems. Edmonds notes that computational details are vital in practice
and it is indeed true that not all polynomial-time algorithms are suitable for imple-
mentation. Nonetheless, polynomial-time complexity has been amazingly successful
in generating methods that are not just good in theory, but good in practice as well.

compbook August 7, 2014 6x9

THE SETTING 25

BIG-OH NOTATION

Edmonds divides the world of algorithms into good and bad, but it is also useful to dis-
tinguish among polynomial-time algorithms for a given problem. The notion adopted
in the complexity community is based on asymptotic performance. By this standard,
an algorithm guaranteed to run in no more than 10012 steps is preferable to one with a
running-time guarantee of 10n3, since for large enough n we have 100n? < 10n3. This
concept is captured by “big-oh” notation: given two positive real-valued functions on
the set of nonnegative integers, f(n) and g(n), we say f(n) is O(g(n)) if there exists a
constant ¢ > 0 such that f(n) < c¢- g(n) for all large enough values of n. An algorithm
is said to be O(g(n)) if it comes with a running-time guarantee that is O(g(n)). Thus
we write that a matching algorithm is O(n*) or a sorting algorithm is O(nlogn) and
do not worry about the constant factors in the running-time guarantees.

Like the concept of polynomial-time complexity, the use of big-oh notation does
not always rank correctly the practical performance of two algorithms. Indeed, there
are well-known examples of algorithms having nice O(n?) guarantees that are impos-
sible to implement due to enormous constants hidden by the notation. But once again,
this rough classification provides natural targets to researchers, and the race to obtain
the best big-oh guarantees has led to many of the fundamental algorithmic techniques
described in the next two chapters.

NON-DETERMINISTIC POLYNOMIAL TIME: THE CLASS N'P

Of particular importance in complexity theory are problems that have yes or no an-
swers. For such decision problems Richard Karp [53] introduced the short notation P
to denote those that have polynomial-time algorithms. Optimization problems can be
cast in this form by asking for a solution of a specified quality, for example, is there a
TSP tour of length less than 1,000 miles?

The class P is the gold standard for decision problems, but Stephen Cook [26] stud-
ied a possibly larger class that arises in a natural way. Adopting a notion of Edmonds,
Cook considered problems such that yes answers can be verified in polynomial time.
To verify an answer, a certificate is provided together with the statement of the problem
instance, allowing a Turing machine to check that the answer is indeed yes. For exam-
ple, to verify that a set of cities can be visited in less than 1,000 miles we can provide
the machine with such a tour.

An alternative view of verifications is via nondeterministic Turing machines. Such
“machines” are not part of the physical world, since they have the capability of dupli-
cating themselves during a computation. If there is a polynomial-time verification, then
a nondeterministic machine can guess the correct certificate in one of its many copies
and determine that the answer to the problem is yes. This view led Karp to propose the
shorthand NV P for Cook’s class of problems.

On the surface, it would appear to be much easier to be a member of A/ P than to be
amember of P. Indeed, the TSP is a case where checking a solution is easy, but finding
the solution may be difficult. Many more examples can be constructed, but these only
hint that NP is a larger class than P. It is currently not known if there is a problem in
NP that is definitely not in P.

compbook August 7, 2014 6x9

26 CHAPTER 1

N P-COMPLETE PROBLEMS

In the paper that began the formal study of AP, Stephen Cook put forth a certain
problem in logic as a candidate for a member that may itself not be in P. His problem,
commonly known as the satisfiability problem, is to determine whether or not true
and false values can be assigned to a collection of logical variables so as to make a
given formula evaluate to true. The components of the formula are the variables and
their negations, joined up by logical and’s and logical or’s. More important than the
problem itself is Cook’s reason for making the conjecture: his theorems show that every
problem in A/ P can be formulated as a satisfiability problem.

The key component of Cook’s theory is the idea of reducing one problem to another.
Formally, a problem reduction is defined as a polynomial-time Turing machine that
takes any instance of problem A and creates an instance of problem B, such that the
answers to A and B are the same, either both yes or both no. It is clear that reductions
are useful in sorting out the many members of A/P. To show a problem is easy, you
can try to reduce it to another easy problem. To show a problem is hard, you can try
to reduce a known hard problem to your problem. But the amount of order provided
by reductions is surprising. Indeed, Cook proved that every problem in A/P can be
reduced to the satisfiability problem. A problem reduction from A to B implies that if
B isin P, then so is A. Thus, if satisfiability is in P, then there exist polynomial-time
algorithms for every problem in A'P. Cook thought it unlikely that P = A P, hence
his conjecture that there does not exist a polynomial-time algorithm for the satisfiability
problem.

An N P problem is called N P-complete if every member of A/ P can be reduced to
it. Cook followed his proof that satisfiability is N/ P-complete with a quick argument
that a graph-theory problem known as subgraph isomorphism is also A/ P-complete: he
showed that satisfiability can be reduced to subgraph isomorphism. So, any member
of NP can be first reduced to satisfiability and then reduced to subgraph isomorphism.
Building a single Turing machine to carry out both problem reductions, one after the
other, shows that subgraph isomorphism is A’ P-complete.

This idea of chaining together problem reductions created an explosion of interest
in complexity theory, led by Karp’s research paper [53], written one year after the an-
nouncement of Cook’s results. Karp’s paper presents a now famous list of twenty-one
N P-complete problems, including two versions of the TSP, together with their reduc-
tions from Cook’s satisfiability problem. The list of twenty-one has since grown to
a catalog of many of hundreds of N P-complete problems. Indeed, it is an unfortu-
nate fact that most problems that need to be solved in applied settings turn out to be
N P-complete.

P VERSUS N P

The working hypothesis is that there can be no polynomial-time algorithm for an N P-
complete problem, but there is no compelling evidence that P and NP are actually dis-
tinct. Indeed, the P versus AP question is perhaps the most prominent open problem
in all of mathematics and a $1,000,000 prize has been offered by the Clay Mathematics
Institute. But even if P # N P we are still faced with the task of finding solutions

compbook August 7, 2014 6x9

THE SETTING 27

to specific instances of A/ P-complete problems. It is important to bear in mind that
computational complexity concerns the worst-case asymptotic behavior of algorithms.
In particular, a problem being A/ P-complete does not mean that any specific instance
is impossible to solve, by hook or by crook.

1.4 EXERCISES

1. Modify the code in Appendix A.1 to include the cheapsum argument in the
function permute (), as described in Section 1.1. Extra: As an alternative,
develop a pruning procedure based on the fact that each city not yet assigned in
a partial tour must eventually be the neighbor of two cities in a full tour.

2. Modify the code in Appendix A.1 to consider only tours such that city 0 comes
before city 1 as we work our way back from the final city in the tour.

3. Applications of the TSP that involve a person traveling from place to place often
include time restrictions on when the person may arrive at each given city, that is,
for each city i there is a window [a;, b;] such that the visit to city ¢ must occur no
earlier than time a; and no later than time b;. In this version, we have as input a
specified starting city and the time to travel between each pair of cities. The goal
is to minimize the total travel time of a tour that visits each city in its specified
time window. The model is known as the TSP with time windows, or TSPTW.
Design and implement an enumeration algorithm to solve small instances of the
TSPTW.

4. In the pure Euclidean version of the TSP an instance is specified by coordi-
nates (z;,y;) for each city i, and the travel cost between city ¢ and city j is
the straight-line distance \/(x; — z;)% + (y; — y;)2. The implementation of the
simple enumeration algorithm presented in Section 1.1 is designed for integer-
valued travel costs and thus cannot be applied directly to solve such Euclidean
instances. Using an arithmetic package such as the GNU Multiple Precision
Arithmetic Library (GMP), modify the TSP implementation to solve Euclidean
instances, assuming that the input coordinates (x;, y;) are integer valued.

5. Continuing Exercise 4, in the Euclidean TSP it is easy to see that there exists
always an optimal solution such that the tour does not cross itself. Use this fact
as an additional pruning rule in the enumeration algorithm. Does this improve
the running time of your implementation?

6. Modern computers come equipped with multiple-core processors that can be uti-
lized in TSP enumeration. Develop a parallel implementation of the enumera-
tion algorithm and compare the speed-ups obtained when varying the number of
available processor cores. Extra: Implement the algorithm on a graphics pro-
cessing unit (GPU).

compbook August 7, 2014 6x9

28 CHAPTER 1

7. Starting with the tiny-TSP code given in Appendix A.2, implement a version of
the Held-Karp d-transformation to pre-process travel costs to improve the perfor-
mance of the enumeration algorithm.

8. In the TSP enumeration process, for a subset S C {0,...,n — 2} and a selected
city i € S, among the tours that begin with a path P from city n — 1, through
S, and ending at city ¢, we need only consider those where P has the shortest
length among all such paths. Use this observation by pre-computing all such
shortest paths where .S contains only two cities and using these paths to initialize
the input to the permute () function. Extra: Design your code to handle sets S
of cardinality k, for k larger than 2. What is the impact on the total running time
as k is increased?

9. Design and implement an enumeration algorithm to solve small instances of the
perfect-matching problem. In this case, take as input a list of integer weights,
one for each unordered pair of points.

10. Design a Turing machine that can add two non-negative integers given in binary
notation. Extra: Also design a machine to multiply two non-negative integers.

1.5 NOTES AND REFERENCES

The field of discrete optimization, also known as combinatorial optimization, has ad-
vanced rapidly over the past fifty years, reaching a milestone in 2003 with the publica-
tion of Alexander Schrijver’s three-volume monograph Combinatorial Optimization:
Polyhedra and Efficiency [75], totaling 1,881 pages and including over 4,000 refer-
ences. Schrijver’s beautiful scholarly writing has defined the field, giving combinato-
rial optimization an equal footing with much older, more established areas of applied
mathematics. His books are highly recommended, as are the texts by Andrds Frank
[35] and Bernhard Korte and Jens Vygen [58].

SECTION 1.1

A great general reference for the C programming language is the classic book by Brian
Kernighan and Dennis Ritchie [56]. Their presentation contains beautiful examples,
great explanations, and complete coverage. There is no need to go any further if you
want to program in C, but if you wish to become an expert in the language we recom-
mend the reference manual by Samuel Harbison and Guy Steele [42].

Our presentation of the enumeration algorithm for tiny TSP instances follows Jon
Bentley’s paper [10]. Further discussions of methods for tiny instances can be found
in Chapters 7 and 8, along with much more material on the TSP. For an informal look
at the problem, we recommend, subject to the bias of one of our authors, the book by
William Cook [25].

The connection between spanning trees and TSP was known in the 1950s. In fact,
Kruskal’s research paper [59] was titled “On the shortest spanning subtree of a graph
and the traveling salesman problem.” The idea of visualizing § transformations for

compbook August 7, 2014 6x9

THE SETTING 29

Euclidean instances is presented in a paper by Michael Jiinger and William Pulley-
blank [51].

The 48-city United States instance solved by Held and Karp in 1971 was first de-
scribed in their 1962 paper [43]. The 57-city United States instance was constructed
by Robert Karg and Gerald Thompson [52] with travel distances taken from a 1962
Rand-McNally road atlas.

SECTION 1.2

Bentley’s books Programming Pearls [12] and More Programming Pearls [11] are a
good source for success stories in the art of implementation.

SECTION 1.3

The classic reference for complexity theory is Michael Garey and David Johnson’s
book Computers and Intractability: A Guide to the Theory of NP-Completeness [38];
we recommend a thorough reading, again subject to the bias of one of our authors.
An excellent recent treatment is Computational Complexity: A Modern Approach by
Sanjeev Arora and Boaz Barak [3].

compbook August 7, 2014 6x9

compbook August 7, 2014 6x9

Appendix A

Sample Codes

A.1 TSP ENUMERATION

#include <stdio.h>

#define maxN 20
#define MAXCOST 1000000

int tour[maxN], besttour[maxN], distmatrix[maxN] [maxN];
int ncount, bestlen = maxN x MAXCOST;

int main (int ac, char xxav);
void dist_read (char =xin);
int dist(int i, int 3j);

int tour_length();

void tour_swap(int i, int 3J);
void permute (int k);

int main (int ac, char *=*av)
{
int 1i;
if (ac !'= 2) {
printf ("Usage: %s distance_table\n", =xav); return 1;

dist_read (av([1]);
for (i = 0; i < ncount; i++) tour[i] = 1i;
permute (ncount-1) ;

printf ("Optimal Tour Length: %d\n", bestlen);

printf ("Optimal Tour: ");

for (i1 = 0; 1 < ncount; i++) printf ("%d ", besttour[i]);
printf ("\n");

return 0;

void dist_read (char =*in)

{
FILE *fin = fopen (in, "r");
int i, 3, k;

fscanf (fin, "%d", &ncount);

for (i1 = 0; 1 < ncount; i++) {

for (3 = 0; j <= 1; J++) {

fscanf (fin, "%d", &k);
distmatrix[i][J] = distmatrix[]j]l[i] = k;

31

compbook August 7, 2014 6x9

32 APPENDIX A

int dist(int i, int j)

return distmatrix[i][]j];

int tour_length ()
{

int i, len = 0;

for (1 = 1; i1 < ncount; i++) {
len += dist (tour[i-1],tour([i]);
}

return len+dist (tour[ncount-1],tour[0]);

void tour_swap (int i, int j)
{
int temp;
temp = tour[i]; tour[i] = tour[j]; tour[]j] = temp;

void permute (int k)
{

int i, len;

if (k == 1) {
len = tour_length();
if (len < bestlen) {
bestlen len;
for (1 = 0; i < ncount; i++) besttour[i] = tour[i];

}
} else {
for (i = 0; i < k; i++) {
tour_swap (i, k-1);
permute (k-1) ;
tour_swap (i,k-1);

compbook August 7, 2014 6x9

SAMPLE CODES 33

A.2 TSP ENUMERATION WITH PRUNING

We skip the listings of the functions dist (), dist_read (), and tour_swap ()
that are identical to those given in Appendix A.1.

#include <stdio.h>

#define maxN 50
#define MAXCOST 1000000

int tour[maxN], besttour[maxN];
int datx[maxN], daty[maxN], distmatrix[maxN] [maxN];
int ncount, bestlen = maxN x MAXCOST;

int main (int ac, char *=*av);
void permute (int k, int tourlen);
int mst (int count);

int nntour();

int main (int ac, char *=*av)
{
int 1i;
if (ac !'= 2) {
printf ("Usage: %s distance_matrix\n", <*av); return 1;

dist_read(av[l]);

bestlen = nntour();

for (i = 0; i < ncount; i++) besttour[i] = tour[i];
for (i = 0; i < ncount; i++) tour[i] = i;

permute (ncount-1,0);

printf ("Optimal Tour Length = %d\n", bestlen);
printf ("Optimal Tour: ");

for (i = 0; i < ncount; i++) printf ("%d ", besttour([il]);
printf ("\n");
return 0;

void permute (int k, int tourlen)
{
int i;
if (tourlen+mst (k+1) >= bestlen) return;

if (k == 1) {
tourlen += (dist (tour[0],tour[l]) + dist (tour[ncount-1],tour(0]));
if (tourlen < bestlen) {
bestlen = tourlen;
for (i1 = 0; 1 < ncount; 1i++) besttour[i] = tour[i];
}
} else {
for (1 = 0; i < k; 1i++) {
tour_swap (i, k-1);
permute (k-1, tourlen+dist (tour[k-1],tourlk]));
tour_swap (i, k-1);

compbook August 7, 2014 6x9

34 APPENDIX A

int mst (int count) /% Adopted from Bentley, Unix Review 1996 x/
{

int i, m, mini, newcity, mindist, thisdist, len = 0;

int pcity[maxN], pdist[maxN];

if (count <= 1) return O0;

for (i = 0; 1 < count; i++) {
pcity[i] = tour[i]; pdist[i] = MAXCOST;
}
if (count != ncount) pcity[count++] = tour[ncount-1];

newcity = pcityl[count-1];

for (m = count-1; m > 0; m——) {
mindist = MAXCOST;
for (1 = 0; i < m; i++) {
thisdist = dist (pcityl[i],newcity);
if (thisdist < pdist[i]) pdist[i] = thisdist;
if (pdist[i] < mindist) { mindist = pdist[i]; mini = i; }

}

newcity = pcity[mini];

len += mindist;

pcity[mini] = pcity[m-1]; pdist[mini] = pdist[m-1];
}

return len;

int nntour ()
int i, j, best, bestj, len = 0;

for (1 = 0; i < ncount; i++) tour[i] = i;
for (1 = 1; 1 < ncount; i++) {
best = MAXCOST;
for (j = i; J < ncount; J++) {
if (dist(tour[i-1],tour[j]) < best) {
best = dist (tour[i-1],tour[]j]); bestj = 3J;

}
len += best; tour_swap (i, bestj);
}

return len+dist (tour[ncount-1],tour(0]);

compbook August 7, 2014 6x9

Bibliography

[1] Ali, A. I, H.-S. Han, 1998. Computational implementation of Fujishige’s graph
realizability algorithm. European Journal of Operational Research 108, 452-463.
doi:10.1016/S0377-2217(97)00167-7.

[2] Applegate, D. L., R. E. Bixby, V. Chvatal, W. Cook. 2006. The Traveling Salesman
Problem: A Computational Study. Princeton University Press, Princeton, New Jer-
sey, USA.

[3] Arora, S., B. Barak. 2009. Computational Complexity: A Modern Approach. Cam-
bridge University Press, New York, USA.

[4] Bartz-Beielstein, T., M. Chiarandini, L. Paquete, M. Preuss, eds. 2010. Experimen-
tal Methods for the Analysis of Optimization Algorithms. Springer, Berlin, Ger-
many.

[5] Bellman, R. 1957. Dynamic Programming. Princeton University Press, Princeton,
New Jersey, USA.

[6] Bellman, R. 1960. Combinatorial processes and dynamic programming. R. Bell-
man, M. Hall, Jr., eds. Combinatorial Analysis. American Mathematical Society,
Providence, Rhode Island, USA. 217-249.

[7] Bellman, R. 1961. Adaptive Control Processes: A Guided Tour. Princeton Univer-
sity Press, Princeton, New Jersey, USA.

[8] Bellman, R. 1962. Dynamic programming treatment of the travelling salesman
problem. Journal of the Association for Computing Machinery 9, 61-63.

[9] Bellman, R. E., S. E. Dreyfus. 1962. Applied Dynamic Programming. Princeton
University Press, Princeton, New Jersey, USA.

[10] Bentley, J. L. 1997. Faster and faster and faster yet. Unix Review 15, 59—67.

[11] Bentley, J. 1988. More Programming Pearls. Addison-Wesley, Reading, Mas-
sachusetts, USA.

[12] Bentley, J. 2000. Programming Pearls (2nd Edition). Addison-Wesley, Reading,
Massachusetts, USA.

35

compbook August 7, 2014 6x9

36 BIBLIOGRAPHY

[13] Berge, C. 1961. Firbung von Graphen, deren sdmtliche bzw. deren unger-
ade Kreise starr sind (Zusammenfassung). Wiss. Z. Martin-Luther-Univ. Halle-
Wittenberg Math.-Natur. Reihe 10, 114.

[14] Berge, C. 1970. Sur certains hypergraphes généralisant les graphes bipartis. P.
Erdés, A. Rényi, V. S6s, eds. Combinatorial Theory and its Applications I. Colloqg.
Math. Soc. Janos Bolyai, Vol. 4. North-Holland. 119-133.

[15] Berge, C. 1972. Balanced matrices. Mathematical Programming 2, 19-31.

[16] Bixby, R. E., W. H. Cunningham. 1995. Matroid optimization and algorithms.
In: R. L. Grapham, M. Grotschel, L. Lovasz, eds. Handbook of Combinatorics,
Volume 1. North-Holland. 551-609.

[17] Bixby, R. E., D. K. Wagner. 1988. An almost linear-time algorithm for graph
realization. Mathematics of Operations Research 13, 99-123.

[18] Cargill, T. 1992. C++ Programming Style. Addison-Wesley, Reading, Mas-
sachusetts, USA.

[19] Chudnovsky, M., G. Cornuéjuls, X. Liu, P. Seymour, K. Vuskovic. 2005. Recog-
nizing Berge graphs. Combinatorica 25, 143—-186. doi:10.1007/s00493-005-0012-
8.

[20] Chudnovsky, M., N. Robertson, P. Seymour, R. Thomas. 2006. The strong perfect
graph theorem. Annals of Mathematics 164, 51-229.

[21] Chvatal, V. 1975. On certain polyhedra associated with graphs. Journal of Com-
binatorial Theory, Series B 18, 138—154. doi:10.1016/0095-8956(75)90041-6.

[22] Clay Mathematics Institute. 2000. Millennium problems. http://www.
claymath.org/millennium/.

[23] Conforti, M., G. Cornuéjols, A. Kapoor, K. Vuskovic. 2001. Balanced 0, -1
matrics II. Recognition algorithm. Journal of Combinatorial Theory, Series B 81,
275-306. doi:10.1006/jctb.2000.2011.

[24] Conforti, M., G. Cornuéjols, M. R. Rao. 1999. Decomposition of bal-
anced matrices. Journal of Combinatorial Theory, Series B 77, 292-406.
doi:10.1006/jctb.1999.1932.

[25] Cook, W.J. 2012. In Pursuit of the Traveling Salesman: Mathematics at the Lim-
its of Computation. Princeton University Press, Princeton, New Jersey, USA.

[26] Cook, S. A. 1971. The complexity of theorem-proving procedures. Proceedings
of the 3rd Annual ACM Symposium on the Theory of Computing. ACM Press, New
York, USA. 151-158.

[27] Dantzig, G., R. Fulkerson, S. Johnson. 1954. Solution of a large-scale traveling-
salesman problem. Operations Research 2, 393—410.

compbook August 7, 2014 6x9

37

[28] Dantzig, G. B. 1963. Linear Programming and Extensions. Princeton University
Press, Princeton, New Jersey, USA.

[29] Ding, G., L. Feng, W. Zang. 2008. The complexity of recognizing linear systems
with certain integrality properties. Mathematical Programming 114, 321-334.

[30] Edmonds, J. 1965. Paths, trees, and flowers. Canadian Journal of Mathematics 17,
449-467.

[31] Edmonds, J. 1991. A glimpse of heaven. J. K. Lenstra et al., eds. History of Math-
ematical Programming—A Collection of Personal Reminiscences. North-Holland.
32-54.

[32] Edmonds, J., R. Giles. 1977. A min-max relation for submodular functions on a
graph. P. L. Hammer, E. L. Johnson, B. H. Korte, G. L. Nemhauser, eds. Studies
in Integer Programming. Annals of Discrete Mathematics 1. North-Holland. 185—
204.

[33] Flood, M. M. 1956. The traveling-salesman problem. Operations Research 4, 61—
75.

[34] Fujishige, S. 1980. An efficient PQ-graph algorithm for solving the graph-
realization problem. Journal of Computer and System Sciences 21, 63-86.
doi:10.1016/0022-0000(80)90042-2.

[35] Frank, A. 2011. Connections in Combinatorial Optimization. Oxford University
Press, Oxford, United Kingdom.

[36] Fulkerson, D. R. 1972. Anti-blocking polyhedra. Journal of Combinatorial The-
ory, Series B 12, 50-71. doi:10.1016/0095-8956(72)90032-9.

[37] Fulkerson, D. R., A. J. Hoffman, R. Oppenheim. 1974. On balanced matrices.
Mathematical Programming Study 1, 120-132.

[38] Garey, M. R., D. S. Johnson. 1979. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, San Francisco, California, USA.

[39] Gomory, R. E. 1958. Outline of an algorithm for integer solutions to linear pro-
grams. Bulletin of the American Mathematical Society 64, 275-278.

[40] Gilmore, P. C., R. E. Gomory. 1961. A linear programming approach to the
cutting-stock problem. Operations Research 9, 849-859.

[41] Grotschel, M. 1980. On the symmetric travelling salesman problem: Solution of
a 120-city problem. Mathematical Programming Study 12, 61-77.

[42] Harbison, S. P., G. L. Steele. 2002. C: A Reference Manual (5th Edition). Prentice
Hall, Englewood Cliffs, New Jersey, USA.

compbook August 7, 2014 6x9

38 BIBLIOGRAPHY

[43] Held, M., R. M. Karp. 1962. A dynamic programming approach to sequencing
problems. Journal of the Society of Industrial and Applied Mathematics 10, 196—
210.

[44] Held, M., R. M. Karp. 1970. The traveling-salesman problem and minimum span-
ning trees. Operations Research 18, 1138-1162.

[45] Held, M., R. M. Karp. 1971. The traveling-salesman problem and minimum span-
ning trees: Part II. Mathematical Programming 1, 6-25.

[46] Hilbert, D. 1902. Mathematical problems, lecture delivered before the Interna-
tional Congress of Mathematicians at Paris in 1900. Bulletin of the American
Mathematical Society 8, 437-479. Translated from German by Dr. Mary Winston
Newson.

[47] Hoffman, A.J. 1974. A generalization of max flow-min cut. Mathematical Pro-
gramming 6, 352-359.

[48] Hoffman, A. J., J. B. Kruskal. 1956. Integral boundary points of convex poly-
hedra. H. W. Kuhn, A. W. Tucker, eds. Linear Inequalities and Related Systems.
Princeton University Press, Princeton, New Jersey, USA. 223-246.

[49] Hooker, J. N. 1994. Needed: an empirical science of algorithms. Operations Re-
search 42, 201-212.

[50] Johnson, D. S. 2002. A theoretician’s guide to the experimental analysis of algo-
rithms. In: M. Goldwasser, D. S. Johnson, C. C. McGeoch, eds. Data Structures,
Near Neighbor Searches, and Methodology: Proceedings of the Fifth and Sixth DI-
MACS Implementation Challenges. American Mathematical Society, Providence,
Rhode Island, USA. 215-250.

[51] Jiinger, M., W. R. Pulleyblank. 1993. Geometric duality and combinatorial op-
timization. S. D. Chatterji, B. Fuchssteiner, U. Kluish, R. Liedl, eds. Jahrbuck
Uberblicke Mathematik. Vieweg, Brunschweig/Wiesbaden, Germany. 1-24.

[52] Karg, R. L., G. L. Thompson. 1964. A heuristic approach to solving travelling
salesman problems. Management Science 10, 225-248.

[53] Karp, R. M. 1972. Reducibility among combinatorial problems. In: R. E. Miller, J.
W. Thatcher, eds. Complexity of Computer Computations. IBM Research Symposia
Series. Plenum Press, New York, USA. 85-103.

[54] Karp, R. M. 1986. Combinatorics, complexity, and randomness. Communications
of the ACM 29, 98-109.

[55] Kernighan, B. W., P. J. Plauger. 1974. The Elements of Programming Style.
McGraw-Hill, New York, USA.

[56] Kernighan, B. W, D. M. Ritchie. 1978. The C Programming Language. Prentice
Hall, Englewood Cliffs, New Jersey, USA.

compbook August 7, 2014 6x9

39

[57] Knuth, D. E. 2011. The Art of Computer Programming, Volume 4A, Combinato-
rial Algorithms, Part 1. Addison-Wesley, Upper Saddle River, New Jersey, USA.

[58] Korte, B., J. Vygen. Combinatorial Optimization: Theory and Applications,
Fourth Edition. Springer, Berlin, Germany.

[59] Kruskal, J. B. 1956. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical Society 7, 48—50.

[60] Lawler, E. L., J. K. Lenstra, A. H. G. Rinnooy Kan, D. B. Shmoys, eds. 1985. The
Traveling Salesman Problem. John Wiley & Sons, Chichester, UK.

[61] Lin, S. 1965. Computer solutions of the traveling salesman problem. The Bell
System Technical Journal 44, 2245-2269.

[62] Lin, S., B. W. Kernighan. 1973. An effective heuristic algorithm for the traveling-
salesman problem. Operations Research 21, 498-516.

[63] Little, J. D. C., K.G. Murty, D.W. Sweeney, C. Karel. 1963. An algorithm for the
traveling salesman problem. Operations Research 11, 972-989.

[64] Lovasz, L. 1972. A characterization of perfect graphs. Journal of Combinatorial
Theory, Series B 13, 95-98. doi:10.1016/0095-8956(72)90045-7.

[65] Miiller-Hannemann, M., A. Schwartz. 1999. Implementing weighted b-matching
algorithms: towards a flexible software design. Journal of Experimental Algo-
rithms 4. doi:10.1145/347792.347815.

[66] Nemhauser, G. L. 1966. Introduction to Dynamic Programming. John Wiley &
Sons, New York, USA.

[67] Nesettil, J. 1993. Mathematics and art. In: From the Logical Point of View 2,2.
Philosophical Institute of the Czech Academy of Sciences, Prague.

[68] von Neumann, J. 1947. The Mathematician. In: Works of the Mind, Volume 1,
Number 1. University of Chicago Press, Chicago, Illinois, USA. 180-196.

[69] von Neumann, J. 1958. The Computer and the Brain. Yale University Press. New
Haven, Connecticut, USA.

[70] Orchard-Hays, W. 1958. Evolution of linear programming computing techniques.
Management Science 4, 183—190.

[71] Orchard-Hays, W. 1968. Advanced Linear-Programming Computing Techniques.
McGraw-Hill, New York, USA.

[72] Pferschy, U. 1999. Dynamic programing revisited: improving knapsack algo-
rithms. Computing 63, 419-430.

[73] Pisinger, D. 1997. A minimal algorithm for the 0-1 knapsack problem. Operations
Research 45, 758-767.

compbook August 7, 2014 6x9

40 BIBLIOGRAPHY

[74] Robertson, N., P. Seymour. 2004. Graph minors. XX. Wagner’s conjecture. Jour-
nal of Combinatorial Theory, Series B 92, 325-357.

[75] Schrijver, A. 2003. Combinatorial Optimization: Polyhedra and Efficiency.
Springer, Berlin, Germany,

[76] Seymour, P. D. 1980. Decomposition of regular matroids. Journal of Combinato-
rial Theory, Series B 28, 305-359. doi:10.1016/0095-8956(80)90075-1.

[77] Seymour, P. 2006. How the proof of the strong perfect graph conjecture was
found. Gazette des Mathematiciens 109, 69-83.

[78] Tarjan, R. E. 1983. Data Structures and Network Algorithms. STAM, Philadelphia,
Pennsylvania, USA.

[79] Truemper, K. 1990. A decomposition theory for matroids. V. Testing of ma-
trix total unimodularity. Journal of Combinatorial Theory, Series B. 49, 241-281.
doi:10.1016/0095-8956(90)90030-4.

[80] Walter, M., K. Truemper, 2011. Impementation of a unimodularity test. In prepa-
ration. http://www.utdallas.edu/~klaus/TUtest/index.html.

[81] Wolfe, P, L. Cutler. 1963. Experiments in linear programming. In: R. L. Graves
and P. Wolfe, eds. Recent Advances in Mathematical Programming. McGraw-Hill,
New York, USA. 177-200.

[82] Woeginger, G. J. 2003. Exact algorithms for NP-hard problems: A survey. M.
Jiinger, G. Reinelt, G. Rinadli, eds. Combinatorial Optimization—Eureka, You
Shrink! Lecture Notes in Computer Science 2570. Springer, Heidelberg, Germany.
185-207.

[83] Zambelli, G. 2004. On Perfect Graphs and Balanced Matrices. Ph.D. Thesis. Tep-
per School of Business, Carnegie Mellon University.

[84] Zambelli, G. 2005. A polynomial recognition algorithm for bal-
anced matrices. Journal of Combinatorial Theory, Series B 95, 49-67.
doi:10.1016/}.jctb.2005.02.006.

