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The final test of a theory is its capacity to solve the problems which
originated it.

George B. Dantzig, 1963.
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Preface

A beautiful aspect of discrete optimization is the deep mathematical theory that com-
plements a wide range of important applications. It is the mix of theory and practice
that drives the most important advances in the field. There is, however, no denying the
adage that the theory-to-practice road can be both long and difficult. Indeed, under-
standing an idea in a textbook or on the blackboard is often but the first step towards
the creation of fast and accurate solution methods suitable for practical computation.
In this book we aim to present a guide for students, researchers, and practitioners who
must take the remaining steps. The road may be difficult, but the adoption of funda-
mental data structures and algorithms, together with carefully-planned computational
techniques and good computer-coding practices, can shorten the journey. We hope the
reader will find, as we do, elegance and depth in the engineering process of transform-
ing theory into tools for attacking optimization problems of great complexity.
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Chapter Seven

Dynamic Programming

So much for naive approaches to
optimization problems. It must be
realized that large-scale processes
will require both electronic and
mathematical resources for their
solution.

Richard Bellman and Stuart Dreyfus,
1962.

Shortest paths, spanning trees, network flows, and matchings all serve as build-
ing blocks in the practice of discrete optimization. It is a delight when an applied
problem comes down to the solution of one of these basic models, and a well-tuned
computer code is given heroic status by workers in the field of play. Unfortunately,
as Schrjiver [75] writes in the preface to Combinatorial Optimization, “most prob-
lems that come up in practice are NP -complete or worse.” On the bright side, NP -
complete does not mean unsolvable. Indeed, beginning with this chapter on dynamic-
programming algorithms, we present practical tools for attacking specific instances of
models that may in general be intractable.

7.1 MORE TINY TSPS

To get into things, let’s return to the tiny-TSP code from Chapter 1. You will recall that
the basic algorithm is to consider all possible traveling-salesman tours with a fixed city
in the final position. The tours are created by extending a path from the final point until
it either includes all other cities or until it can be pruned, that is, until we can be sure
that the path is not part of an optimal solution.

The first version of the algorithm used the most simple pruning device: we keep
track of the cost of the path we are creating and, assuming there are no negative travel
costs, we prune the search whenever the cost of the path matches or exceeds the cost
of a best-known tour. This enumeration strategy is sufficient to solve TSP instances
with twenty cities or so, but to take it up a notch we brought in spanning trees to serve
as a lower bound on the cost to complete a path into a tour. The idea is illustrated in
Figures 7.1 and 7.2. In the drawings, x is the fixed city and the algorithm has extended
a path through four cities ending at t; we let S denote the cities in the path and we let U
denote the set of cities not yet visited. To complete the x − t path into a tour we must

41



42

compbook December 29, 2014 6x9

CHAPTER 7

t

U

x S

Figure 7.1: Cities S in path and cities U not yet in path.

build a path from t, through all cities in U , and ending back at x. As a lower bound on
the cost of this additional t − x path, we use the cost of a minimum spanning tree for
the set U ∪ {x, t}. Thus, the TSP search is pruned if the cost of the x− t path plus the
cost of the tree is at least as large as the cost of a best-known tour.

t

U

x S

Figure 7.2: Lower bound from spanning tree of U ∪ {x, t} and path from x to t.

A major speed-up in the implementation of the algorithm was obtained by recording
in a hash table the cost of each computed minimum spanning tree, indexed by the
corresponding set S. When a set S is encountered a second time, the bound can be taken
from the hash table rather than repeating the spanning-tree computation. The success
of the approach suggests a potential further improvement that we did not explore in
Chapter 1, namely, we can take advantage of the observation that during the running
of the TSP algorithm we may encounter repeatedly the set S together with the same
ending city t. Indeed, if we reach an x − t path through S that is more costly than
a previously encountered x − t path through the same set S, then the search can be
pruned. We can record the cost of the x − t path in a hash table indexed by the pair
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(S, t) and at each step of the algorithm check to see if our current x− t path through S
is the cheapest we have explored thus far.

To see how this path-pruning idea works in practice, we generated a set of ten 100-
city random Euclidean instances to use as a test bed. In the table below, the results in
the first line were obtained using our best Lin-Kernighan-equipped code from Chapter 1
and the results in the second line were obtained using the same code with path pruning;
in both cases the running times are reported in seconds.

100-City Instances 1 2 3 4 5 6 7 8 9 10
No Path Pruning 6 3 97 86 23 3 91 171 5 2

Path Pruning 10 3 24 59 16 3 35 112 6 2

We see in the results a minor degradation on examples that are easy for the two codes
to solve, but a significant speed-up on several of the more challenging instances.

PRECOMPUTING PATHS

The path-pruning principle is simple: in a search for an optimal tour, for any set S
and t ∈ S, we need consider only the least-costly path among all those that start at
x, run through S, and end at t. Our hash-table approach makes a lazy use of the
principle, recording paths as they are encountered. In a more direct application, we
can precompute, for some positive integer k, the cheapest path from x through S and
ending at t for all k-element sets S and all t ∈ S. The full problem is then solved by
carrying out the tiny-TSP search process starting from each of the precomputed paths.

To implement the precomputation, for each i = 1, . . . , k, we build a hash table
indexed by pairs (S, t) with |S| = i and t ∈ S. At the ith level, we take each (S, t)
entry from the level-(i− 1) table, attach each of the n− i− 1 possible cities q to obtain
a path of length i ending at q, and, if the path cannot be pruned using the spanning-
tree bound, we either add or update the (S ∪ {q}, q) entry in the level-i hash table.
Thus, the collection of paths of length 1 are used to create the paths of length 2, which
are used to create the paths of length 3, and so on up the line until we reach all non-
pruned paths of length k. Such computations can require large amounts of storage for
the path collections, so once we have the paths of length i we go ahead and delete the
level-(i− 1) hash table.

In the tests reported below, we vary the value of k to consider precomputing paths
of length 10, length 25, and the full 99-city-length paths.

100-City Instances 1 2 3 4 5 6 7 8 9 10
k = 10 17 3 21 66 15 3 39 102 6 2
k = 25 14 7 18 57 11 2 34 81 5 2

Full Paths 8 3 7 20 7 2 13 41 3 2

The extra overhead of creating the sequence of hash tables does not pay off when we
consider only small values of k: some of the results are slightly better than those we
obtained with the lazy implementation of path-pruning, but others are worse. Inter-
estingly, if we go ahead and precompute the full-length paths, then we see a uniform
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improvement over our previous champion code. Many factors come into play, but the
step-by-step creation of full sets of non-pruned paths appears to be a better way to or-
ganize the search for an optimal tour. We must remark, however, that the success of the
method depends heavily on the Lin-Kernighan algorithm for obtaining a good starting
tour to set the pruning value bestlen, since full tours are only constructed at the final
stage of the search.

Although we are pushing the limits of the implementation, it is possible to solve
somewhat larger random Euclidean TSP examples using full-path computations. In-
deed, the following table reports results for ten 150-city instances.

150-City Instances 1 2 3 4 5 6 7 8 9 10
Full Paths 162 ∗∗ ∗∗ ∗∗ 53 650 15 381 2238 27

The “**” entries indicate that the code exceeded a 12-GByte memory limit without
solving the particular example. So on this test set we had seven successes and three
failures. That is not bad for such large instances of the TSP. We should probably drop
the use of the adjective “tiny” at the point!

BELLMAN-HELD-KARP ALGORITHM

The full-path implementation of our code, where we set k = n−1, is actually a souped-
up variant of an old TSP algorithm discovered independently by Richard Bellman [6, 8]
and Michael Held and Richard Karp [43] in the early 1960s. Their algorithm holds a
spot in the Pantheon of the TSP, since its O(n22n) running time for solving an n-
city instance is the best asymptotic bound that has been achieved to date, despite great
efforts over the past fifty years.

The Bellman-Held-Karp algorithm is based on the same level-by-level optimization
we employed. Indeed, the heart of the method can be described by a simple recursive
equation. To set this up, let x denote a fixed starting point for the tours and for any pair
of cities (i, j) let dist(i, j) denote the cost to travel from i to j. For any S such that
x /∈ S and for any t ∈ S, let opt(S, t) denote the minimum cost of a path starting x,
running through all points in S, and ending at t. We have

opt(S, t) = min(opt(S \ {t}, q) + dist(q, t) : q ∈ S \ {t}). (7.1)

Moreover, if we let N denote the set of all cities other than x, then the optimal value of
the TSP is

ν∗ = min(opt(N, t) + dist(t, x) : t ∈ N). (7.2)

Observe that for all q ∈ N we have opt({q}, q) = dist(x, q). Starting with these
values, the recursive equation (7.1) is used to build the values opt(S, t) for all S ⊆ N
and t ∈ S, working our way through sets with two elements, then sets with three
elements, and step by step up to the full set N . Once we have the values opt(N, t)
for all t ∈ N , we use (7.2) to find ν∗. Now, in a second pass, the optimal tour is
computed by first identifying a city vn−1 such that opt(N, vn−1) + dist(vn−1, x) =
ν∗, then identifying a city vn−2 ∈ N \ {vn−1} such that opt(N \ {vn−1}, vn−2) +
dist(vn−1, vn−2) = opt(N, vn−1), and so on until we have v1. The optimal tour is
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(x, v1, . . . , vn−1). This second pass is to permit the algorithm to store only the values
opt(S, t) and not the actual paths that determine these values.

The Bellman-Held-Karp algorithm can be implemented in just a few lines of C,
making use of recursion to compute the opt(S, t) values and storing them in a two-
dimensional integer array opt[][] to avoid any recomputations. In this implementa-
tion, a set S is represented by S, either an unsigned integer or an unsigned long integer,
where the 1-bits in S indicate the elements in S. To make this choice flexible, we use
the following typedef in our code.

typedef unsigned int Set;

Unsigned integers can handle TSP instances with up to 33 cities and unsigned long
integers can handle up to 65-city instances, although this later problem size is actually
well beyond the capabilities of the Bellman-Held-Karp algorithm on current computing
platforms.

Since there are few choices for t but many choices for S, we reverse the indices,
storing opt(S, t) in entry opt[t][S]. This allows us to dynamically allocate the array
with a sequence of malloc() calls when solving large instances. For small examples,
where maxN indicates the maximum number of cities, we can use the following static
allocation.

int opt[maxN-1][1<<(maxN-1)];

The main routine initializes opt as follows.

int i
Set S, setcount = 1<<(n-1);
for (i=0; i<n-1; i++) {

for (S=0; S<setcount; S++) opt[i][S] = -1;
opt[i][1<<i] = dist(i,n-1);

}

This code fragment assigns correctly the values for single-city sets and it initializes all
other entries to−1. Note that we are using city n− 1 as the starting point x, so the first
loop runs over the cities i = 0, . . . , n− 2.

The core of the algorithm is the following 15-line function to compute opt(S, t).

int solve(Set S, int t)
{

int i, v, minv = MAXCOST;
Set R;
if (opt[t][S] == -1) {

R = S & ˜(1<<t); // R = S\t
for (i=0; i<n-1; i++) {

if (!(R & (1<<i))) continue; // Is i in R?
v = solve(R,i) + dist(i,t);
if (v < minv) minv = v;
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}
opt[t][S] = minv;

}
return opt[t][S];

}

In the main routine, solve() is used to compute opt(N, t) for all cities t ∈ N =
{0, . . . , n− 2}; the optimal tour length is recorded in the variable bestlen.

int t, len, bestlen=MAXCOST;
Set N=(1<<(n-1))-1;
for (t=0; t<n-1; t++) {

len = solve(N,t) + dist(t,n-1);
if (len < bestlen) bestlen = len;

}

With the computed optimal tour length, we now run through the stored values of
opt(S, t) to gather the optimal tour itself, recording it in the integer array tour.

S=(1<<(n-1))-1;
tour[0]=n-1;
for (i=1; i<n; i++) {

for (j=0; j<n-1; j++) {
if ((S & (1<<j)) &&

bestlen == opt[j,S]+dist(j,tour[i-1])) {
bestlen -= dist(j,tour[i-1]);
tour[i]=j;
S &= ˜(1<<j);
break;

}
}

}

And that is it. A nice, compact computer code for the TSP. Of course, the running time
is indeed proportional to n22n, so we will not be solving 150-city test instances. As
we will see, however, the code is competitive on small instances when compared with
simple versions of our tiny-TSP enumeration algorithms.

Before reporting computational tests, we mention one optimization to the code. In
an algorithm of this type, a restricting factor is the large amount of memory needed
to store the many values of opt(S, t). Our implementation includes an array of 2n−1

integers for each city t. These integers represent all subsets of N , but we are only
interested in those that contain the city t. We can therefore save half of our memory
requirement by storing only the 2n−2 integers that we actually need. To implement
this, we use the following small function to take a set represented by n − 1 bits and
compute an integer less than 2n−2 by removing the t’th bit and shifting one to the right
all bits that are to the left of t.
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unsigned int setnum (unsigned int S, int t)
{

return (S & ((1<<t)-1)) | ((S & ˜((2<<t)-1))>>1);
}

The function solve() is modified to use setnum(S,t) as the index into the array
opt[t][], rather than using S as the index. A small change, but saving half of the
memory is worthwhile on test instances at the top of the range that can be handled with
the Bellman-Held-Karp algorithm.

Returning to our random Euclidean test instances from Chapter 1, the following
table reports running time in seconds for Bellman-Held-Karp on examples from ten
cities up to twenty cities. For comparison, we have included on a second line the times
for the tiny-TSP code that uses only the length of the current path as the pruning value.

Cities 10 11 12 13 14 15 16 17 18 19 20
B-H-K .000 .000 .001 .003 .006 .015 .03 .08 .18 .8 2.4

Tiny TSP .003 .01 .05 0.3 2 5 34 22 56 5325 646

The Bellman-Held-Karp code looks practical, but the n22n running time and memory
requirement overwhelms the implementation as we increase the number of cities.

Cities 21 22 23 24 25 26 27 28 29 30
Seconds 6 15 32 74 160 366 885 2175 ∗∗ ∗∗

When we reach n = 29, the memory requirement exceeds 12 GBytes and the test was
terminated without computing an optimal tour.

It is instructive to examine the huge difference in the capabilities of our Bellman-
Held-Karp code and the full-path tiny-TSP code we described above. The full-path
code solves the 29-city and 30-city examples in under one-tenth of a second, and it
solves routinely 100-city instances in under a minute. Yet the two algorithms are very
similar in the way they build optimal paths through subsets of cities. The decisive factor
is the use of a strong pruning device in the full-path code, aided by the Held-Karp cost
transformation and the Lin-Kernighan initial tour, allowing us to avoid the computation
and storage of the vast majority of the opt(S, t) values.

SEQUENTIAL ACCESS TO SUBSETS

The recursive implementation of the Bellman-Held-Karp algorithm gives a compact
code, but there is a penalty in time for the use of recursive function calls. A more direct
implementation fills in the opt(S, t) values by explicitly generating all subsets of size
k, working from k = 1 up to n − 1. We describe two approaches to carrying out such
a computation. The first is a straightforward change to the recursive algorithm, while
the second rearranges the order in which the opt(S, t) values are stored.

In the first version, we replace the recursive solve() function with three nested
for loops, running through the values of k in increasing order, then through all subsets
of S of cardinality k, and finally through all cities t ∈ S. To carry this out, we need a
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routine that takes a bit-representation of a set of cardinality k and returns the next set
of the same cardinality. This sounds tough, but the following clever and short function,
known as “Gosper’s hack,” does the trick.

Set nextset(Set S)
{

Set U = S & -S;
Set V = U + S;
if (V == 0) return 0;
return V + (((VˆS)/U)>>2);

}

We leave it as an exercise to work out the bit manipulations that prove Gosper’s hack
does indeed run through all sets of cardinality k when called repeatedly, beginning
with a bit representation of {0, 1, . . . , k− 1}. The triple loop can be written as follows,
assuming we have already taken care of the single element sets S.

for (k=2; k<n; k++) {
for (S = (1<<k)-1; S && S < ((Set)1<<(n-1));

S = nextset(S)) {
for (t=0; t<n-1; t++) {

if (!(S & (1<<t))) continue;
/* Compute opt[S,t] using values already */
/* computed for subsets of size k-1. */

}
}

}

This implementation makes clear the n22n running time: the outer two loops run
through 2n−1−n sets, the third loop runs through n cities, and inside the third loop we
have anO(n) computation to compute opt(S, t) using equation (7.1). The nested loops
also make clear that there is unfortunately no chance for the algorithm to get lucky
on any particular instance. For example, in a test on ten 25-city random Euclidean
instances, the running times varied only between 51.28 seconds and 51.49 seconds.
This is, however, a factor of three faster than results we obtained with the recursive
implementation, and the following running times for the triple-loop code show that the
speed-up holds also as we vary the number of cities.

Cities 21 22 23 24 25 26 27 28 29 30
Seconds 2 5 10 23 51 119 266 592 ∗∗ ∗∗

The code still fails to solve the n = 29 instance, after exceeding the 12 GBytes of
memory available on our test machine. The behavior of the implementation is that once
the code exceeds the physical memory, the operating system resorts to heavy paging,
that is, blocks of memory are written to and read from the computer’s disk drive, result-
ing in less than 1% usage of the central processing unit (CPU). This quick failure of the
paging mechanism suggests that the memory access required by the implementation is
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very much non-sequential. Indeed, the values of opt(S, t) are located at addresses that
are easy to compute given the representations of S and t, but the locations of consecu-
tive values needed in our triple loop are far apart in the physical memory. A significant
improvement in the running time can be obtained by rearranging this storage.

In a new layout of the opt(S, t) values, we place consecutively all pairs (S, t) for
a fixed set S and varying t ∈ S. We will also place consecutively, for k = 1 up
to n − 1, all blocks of (S, t) pairs having |S| = k. The values are stored in a one-
dimensional array V of length (n − 1)2n−2. With this set up, it is convenient to have
an array b[ncount] such that b[k] contains the starting point for the list of values
corresponding to sets of size k.

b[0] = 0;
for (i=1; i<n; i++) {

b[i] = b[i-1] + (i-1)*binomial[n-1][i-1];
}

In this code fragment, binomial[m][k] stores the binomial coefficient
(
m
k

)
, that

is, the number of k-element subsets chosen from a set of size m; these values can be
precomputed using the recurrence

(
m
k

)
=

(
m−1
k−1

)
+

(
m−1

k

)
.

The position of a pair (S, t) in our ordering will determine the set S and city t, so
we do not need to record explicit representations of the set and city. In working with a
particular set, however, we will use an integer array to hold its elements.

typedef int aSet[maxN];

To specify the ordering of the sets of size k, we use the following two functions.

void firstset(int k, aSet S)
{

int i;
for (i=0; i<k; i++) S[i] = i;

}
void nextset(int k, aSet S)
{

int i;
for (i=0; i<k-1 && S[i]+1 == S[i+1]; i++) S[i] = i;
S[i] = S[i]+1;

}

The first function sets the starting set to S = {0, . . . , k − 1} and the second function
modifies a set S to obtain the next set in the ordering. For n = 7 and k = 4, the
functions produce the following sequence, where the sets are ordered by column.

0123 0125 0245 0126 0246 0156 2356
0124 0135 1245 0136 1246 0256 0456
0134 0235 0345 0236 0346 1256 1456
0234 1235 1345 1236 1346 0356 2456
1234 0145 2345 0146 2346 1356 3456
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The sequence of sets provides the orders for blocks of values (S, t) for a fixed S and
varying t ∈ S. Within a block the values are ordered according to t’s position in S, that
is, (S,S[0]), (S,S[1]), up to (S,S[k-1]).

Now comes the tricky part. To use the stored values, we must be able to find the
location of (S, t) in the array V given a set S of size k and the position of a city t ∈ S.
This is handled by the following function, returning a pointer to opt(S, t).

int *Sval (int k, Set S, int t_indx) {
unsigned long int loc = 0;
int i;
for (i=0; i<k; i++) {

loc += binomial[S[i]][i+1];
}
return &V[b[k] + k*loc + t_indx];

}

The for loop computes loc, the position of the set S within the list of sets of size k.
For example, the set 1245 from the above list gets loc set to(

1
1

)
+

(
2
2

)
+

(
4
3

)
+

(
5
4

)
= 1 + 1 + 4 + 5 = 11

corresponding to its eleventh position in the list. (Remember that we count from zero.)
Like Gosper’s hack, it is a nice exercise to work out that Sval matches the ordering
given by nextset(). Now, the starting position for the list of values for sets of size
k is b[k], so we obtain the position of (S, t) by adding k*loc to b[k], since each
set yields k values, and adding the index of t.

Equipped with functions to build the ordering of the pairs (S, t) and to find for a
given (S, t) its location in the ordering, we can rewrite the triple loop as follows.

void build_V() {
int t, j, k, minv, v, *valbase;
aSet S, S_minus_t;

for (firstset(1,S); S[0]<n-1; nextset(1,S)) {

*Sval(1,S,0) = dist(S[0],n-1);
}
for (k=2; k<n; k++) {

for (firstset(k,S); S[k-1]<n-1; nextset(k,S)) {
for (t=1; t<k; t++) S_minus_t[t-1] = S[t];
for (t=0; t<k; t++) {

valbase = Sval(k-1,S_minus_t,0);
minv = MAXCOST;
for (j=0; j<k-1; j++) {

v = valbase[j] + dist(S[t],S_minus_t[j]);
if (v < minv) minv = v;

}
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*Sval(k,S,t) = minv;
S_minus_t[t] = S[t];

}
}

}
}

It is important to note that the inner for loop is now a fast sequential scan through
values of V starting at the position held by the variable valbase. This is a significant
gain, and the results below show another speed-up of a factor four on our test instances.

Cities 21 22 23 24 25 26 27 28 29 30
Seconds 0.6 1 3 6 13 27 58 125 269 2296

The n = 29 instance solved successfully, despite the fact that the required memory
exceeded that available on the computer; in this case the paging process was successful
in bringing the needed data back and forth from the computer’s disk drive. In fact, the
code also solved the n = 30 instance on the same computer, although in this case the
CPU utilization was often at only 25%, which explains the jump in the running time.
On a larger machine, equipped with 128 GByte of physical memory, we obtained the
following running times on instances with up to 32 cities.

Cities 29 30 31 32
Seconds w/ 128GB 290 617 1320 2840

This is still well behind our full-path tiny-TSP code, but the speed-up obtained by
arranging the data for sequential access is a good example to keep in mind for general
computational work.

7.2 THE PRINCIPLE OF OPTIMALITY

Richard Bellman’s presentation [8] of the Bellman-Held-Karp algorithm for the TSP
begins with the line “Consider the problem as a multistage decision process.” This is
a natural approach for the man who had spent much of the 1950s developing a general
framework for handling problems that involve sequences of decisions. For the TSP, the
sequence consists of the choices of cities to extend a path step by step, from the starting
point until we reach all cities and return home.

Bellman’s line-of-attack for the TSP and other multi-stage models is based on a
principle of optimality, quoted from his classic book Dynamic Programming [5].

An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy
with regard to the state resulting from the first decision.

Bellman studies the optimality principle in a wide swath of applied mathematics: his
book includes chapters on the calculus of variations, multi-stage games, inventory
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equations, bottleneck problems, continuous stochastic decision problems, and Marko-
vian decision processes. Our use of his framework is rather more restrictive, concerning
only deterministic problems and discrete decision processes.

In the application to the TSP, the optimality principle directly leads to the recursive
equation (7.1) that is the heart of the Bellman-Held-Karp algorithm:

opt(S, t) = min(opt(S \ {t}, q) + dist(q, t) : q ∈ S \ {t}).

Recall that opt(S, t) denotes the minimum cost of a path starting at x, running through
all cities in the subset S, and ending at t ∈ S. To line up the equation with Bellman’s
principle, from the definition of opt(S, t) we have immediately

opt(S, t) = min(cost(P ) + dist(q, t) : q ∈ S \ {t}, P ∈ path(S \ {t}, q)),

where path(R, y) denotes the set of all paths from x, through all cities in the subset R,
and ending at y ∈ R. For each choice of q, the optimality principle allows us to replace
the many cost(P ) + dist(q, t) terms by the single term opt(S \ {t}, q) + dist(q, t);
once the initial decision to travel from t to q is made, then we must select an optimal
route through the remaining cities S \{t}. Now from the simplified equation we obtain
an algorithm, handling the subproblems opt(S, t) one by one, starting with single-city
sets S and working our way towards a full solution. The step-by-step process is called
dynamic-programming.

In general, a dynamic-programming algorithm can be viewed as a traversal of an
acyclic directed graph, where the nodes of the graph correspond to subproblems and
the edges of the graph correspond to dependencies, that is, an edge from subproblem
A to subproblem B means that to solve B we should have in hand a solution to A. In
the case of the TSP, we have a node for each subproblem opt(S, t) and edges directed
from opt(S \ {t}, q) to opt(S, t) for each city q ∈ S \ {t}. To begin the algorithm,
we compute solutions to the subproblems corresponding to nodes having no incoming
edges—these are the single-city sets in the case of the TSP. Then in a general step we
select and solve a subproblem A such that for each incoming edge we have already
solved the subproblem corresponding to the edge’s other end. Such a traversal of the
graph is always possible; the order of the nodes we visit in the algorithm is called a
topological ordering of the graph.

WHAT IS IN A NAME?

In the first two lines of the preface to his book, Bellman explains the use of the term
dynamic programming.

The purpose of this work is to provide an introduction to the mathematical
theory of multi-stage decision processes. Since these constitute a some-
what formidable set of terms we have coined the term ‘dynamic program-
ming’ to describe the subject matter.

Dynamic programming is not a specific model such as linear programming, and this has
sometimes led to confusion. Concerning Bellman’s terminology, George Nemhauser
wrote the following in his book Introduction to Dynamic Programming [66].
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He invented the rather undescriptive but alluring name for the approach—
dynamic programming. A more representative but less glamorous name
would be recursive optimization.

Indeed, dynamic programming turns a recursive description of a process into a method
to produce an optimal solution. The art of dynamic programming is to find a suitable
recursion; one such that the implicit acyclic directed graph is not overwhelming large
and such that it is feasible to compute and store solutions to individual subproblems.

7.3 KNAPSACK PROBLEMS

A clean and simple example of Bellman’s dynamic-programming method is its use in
solving instances of the knapsack problem. The snappy problem name is derived from
the possible exercise of packing items into a knapsack with a restriction on the total
weight that can be carried. Consider, for example, the six items illustrated as rectangles
in Figure 7.3. The items have weights 3, 2, 4, 3, 1, and 5, respectively, indicated by

7

2

103 4

12

Figure 7.3: Six items to pack into a knapsack.

the length of each rectangle. Each item has an associated profit, that is, a measure of
how much we desire to have it with us in our knapsack; the profits are 7, 3, 10, 4, 2,
and 12, respectively, indicated by the values under each item. In Figure 7.4 we display

24

16

21

Figure 7.4: Three possible packings into a knapsack of capacity 10.

three possible ways to pack subsets of the six items into a knapsack that has weight
capacity 10; the values next to each of the three packings indicates the total profit we
obtain from the packed items. The knapsack problem is to find an allowable packing
of maximum total profit.

A general instance of the problem is specified by a collection of n items with pos-
itive integer weights w0, . . . , wn−1 and positive integer profits p0, . . . , pn−1, together
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with an integer capacity c. Any subset of items such that the sum of their weights is
not greater than c is a potential solution. The value of a solution is the sum of the
profits of the selected items, and an optimal packing is one with maximum possible
value. This model is also known as the 0-1 knapsack problem, since for each item we
have a 0-1 decision, either we include the item or we do not. Indeed, a packing of the
knapsack can be represented by an n-dimensional 0-1 vector, with the ith component
of the vector equal to one if the ith item is included in the solution and zero otherwise.
For convenience, in the remainder of the section, we will say “item i” to refer to the ith
item, where i is an integer between 0 and n− 1.

Two common variants of the knapsack problem are the unbounded knapsack prob-
lem, where any number of copies of each item may be placed in the knapsack, subject
to the capacity of the knapsack not being exceeded, and the bounded knapsack prob-
lem, where a specified bound is given for each item, indicating the maximum number
of copies of the item that can be placed into the knapsack.

This problem is NP -hard, and therefore we do not expect there to be a solution
algorithm that runs in polynomial-time, where the size of a problem instance is the
number of bits required to represent the input data. Unlike many otherNP -hard prob-
lems, however, one can often solve very-large instances of the knapsack problem in
reasonable time. Furthermore, unlike the TSP, there exists a fully polynomial-time
approximation scheme for the knapsack problem: given any ε > 0, there exists an al-
gorithm which finds a solution of an instance of the knapsack problem with value at
most (1 + ε) times the optimal solution value, and runs in time polynomial in the size
of the input data and 1/ε.

There are a wide range of methods for attacking the knapsack problem, but some of
the simplest are dynamic-programming algorithms, based on the following application
of Bellman’s principle of optimality. Given n items and a knapsack with capacity c, if
we know the best way of packing knapsacks with capacity 1, . . . , c using only the first
n − 1 items, then it is trivial to figure out the best of way of packing a knapsack of
capacity c with all n items. To see this, consider an optimal solution, and note that if it
contains item n− 1, then the remaining items in the solution form an optimal packing
of items 0, . . . , n − 2 into a knapsack of capacity c − wn−1. If the optimal solution
does not contain item n−1, then the remaining items form an optimal packing of items
0, . . . , n − 2 into a knapsack of capacity c. Thus the optimal solution value can be
determined from the optimal solution values of the two modified knapsack problems
with n− 1 items.

Applying the above idea, we can write immediately a simple code to obtain the
optimal solution of an instance of the knapsack problem. Assume the input data is
contained in the following C structures.

int p[n], w[n], c;

Here p[i] contains pi, the profit of the ith item, w[i] contains wi, and c contains
the capacity c. In a two-dimensional array of integers

int v[n][c+1];
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we store in v[i][j], for any i ∈ {0, . . . , n − 1} and j ∈ {0, . . . , c}, the optimal
solution value of the knapsack problem with items 0, . . . , i and capacity j. Note that
v[n-1][c] is the optimal value for the knapsack problem. The following function
fills in the array v.

int kp_dp()
{

int i, j;

for (j=0; j<w[0]; j++) v[0][j] = 0;
for (j=w[0]; j<=c; j++) v[0][j] = p[0];

for (i=1; i<n; i++){
for (j=0; j<w[i]; j++) {

v[i][j] = v[i-1][j];
}
for (j=w[i]; j<=c; j++) {

v[i][j] = MAX(v[i-1][j], p[i]+v[i-1][j-w[i]]);
}

}
return v[n-1][c];

}

The first two loops compute the optimal way of packing the first item in knapsacks of
capacity 0, . . . , c. The third loop fills in the values array by increasing number of items;
the function MAX(a,b) returns the maximum of two numbers a and b. The running-
time complexity of the algorithm is O(nc); the space requirement is also O(nc), since
the values array contains n(c+ 1) integers.

The entries v[i][j] correspond to states in standard dynamic-programming ter-
minology; they represent complete solutions to partial problems, involving a subset of
items and a portion of the capacity. The generated states for the example with six items
in Figure 7.4 are given in the following table, where the rows correspond to items and
the columns correspond to capacity values.

i/j 0 1 2 3 4 5 6 7 8 9 10
0 0 0 0 7 7 7 7 7 7 7 7
1 0 0 3 7 7 10 10 10 10 10 10
2 0 0 3 7 10 10 13 17 17 20 20
3 0 0 3 7 10 10 13 17 17 20 21
4 0 2 3 7 10 12 13 17 19 20 22
5 0 2 3 7 10 12 14 17 19 22 24

Once we have the optimal solution value returned by kp_dp(), we can com-
pute an optimal knapsack packing as follows. Note that if v[n-1][c] is equal to
v[n-2][c] then there is an optimal solution consisting of a subset of the first n − 1
items, and we can ignore item n− 1. On the other hand, if the two values are different,
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then every optimal solution contains item n − 1. The following code uses this idea to
obtain an optimal solution, similar to how we grabbed an optimal TSP tour.

void kp_dp_sol(int *bestsol)
{

int i, curcap = c;

for (i=n-1; i>=1; i--) {
if (v[i][curcap] == v[i-1][curcap]) {

bestsol[i] = 0;
} else {

bestsol[i] = 1;
curcap -= w[i];

}
}
bestsol[0] = (curcap >= w[0]) ? 1 : 0;

}

To study the performance of kp_dp(), we consider two types of randomly gen-
erated instances: the uncorrelated instances and the strongly correlated instances. In
the first class, given n and a range R, the weights and profits of items are chosen at
random, independently, from the range 1 to R. We set the capacity to be half the sum
of the weights. In the second class of instances, the weights are chosen in the same
way, but the profit of an item is set to its weight plus a fixed constant, in our case 10.

In the table below we give the running time in seconds to solve uncorrelated in-
stances for n = 100, 1000, 1000 and R = 100, 1000, 10000. A “**” indicates the
dynamic-programming code failed to solve the problem within 10 minutes.

n/R 100 1000 10000
100 .004 .017 .144
1000 .148 1.35 12.80
10000 13.53 ∗∗ ∗∗

We solve only one instance for each choice of n and R, since when n is fixed the
running time only varies with the capacity c, and the capacities are essentially the
same for different random instances. Also, the capacity of uncorrelated and strongly
correlated instances are essentially the same, and so kp_dp() takes nearly the same
time on both classes of instances.

When n = 10,000 and R = 100, the instance we consider has c ≈ 250,000. Thus
the values array requires about 2.5 billion integers, or about 10 GBytes, assuming four
bytes per integer. This is a lot of memory. Further, even on computers that have suffi-
cient memory, the declaration v[n][c+1] may not work; in C such arrays use con-
tiguous memory, and this large quantity of contiguous memory may not be available.
We thus use malloc() to allocate space for v in our test implementation. Finally,
when n = 10,000 and R = 1000, we need about 100 GBytes to store v, exceeding
the quantity of random-access memory available on our test machine; in this case disk
space is used to store the data and the program thus slows down considerably.
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FASTER COMPUTATION OF THE KNAPSACK OPTIMAL VALUE

The large storage requirement of kp_dp() is due to the fact that, to permit the ex-
ecution of kp_dp_sol(), all possible states are recorded in the array v. Suppose,
however, we require only the optimal solution value to an instance of the knapsack
problem, but not the solution itself. In this case there is no need to store the values of
states that have already been used in the propagation process. Indeed, when calculating
v[i][j] for a fixed i and varying j, we use only v[i-1][j’] for different j′ ≤ j.
This suggests the following approach to compute the optimal solution value using only
an array of size c+ 1, that we call nv.

int kp_dp_optval()
{

int i, j, nv[c+1];

for (j=0; j<w[0]; j++) nv[j]=0;
for (j=w[0]; j<=c; j++) nv[j]=p[0];

for (i=1; i<n; i++) {
for (j=c; j>=w[i]; j--) {

nv[j] = MAX(nv[j], p[i]+nv[j-w[i]]);
}

}
return nv[c];

}

Notice that the first two loops are essentially the same as in function kp_dp(); they
compute the best way to pack the first item into knapsacks of capacities from 0 to c.
The next loop differs in that it saves the optimal solution values for items up to i in the
same array that contains the values for items up to i − 1; for any j, the entries of nv
from nv[j] upto nv[c] contain the best way of packing i items, while the remaining
entries of the array contain the best way of packing i − 1 items and are subsequently
updated.

With this change, memory limitations cease to be an issue and we obtain the fol-
lowing computation times.

n/R 100 1000 10000
100 .002 .008 .061
1000 .065 .558 5.70
10000 5.47 58.18 ∗∗

It is interesting that for the same instances, where both functions terminate within our
time limit, the second function takes less than half the time as the first function. Though
the second function actually performs fewer computational steps than the first one (as
is clear from the code), this is not enough to explain the difference. The primary ex-
planation is the use of much less memory, a large part of which can fit into one of the
levels of cache available to the computer processor.
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It is clear from these tables that 0-1 knapsack instances with moderate sizes, having
both the number of variables and their weights at most a few thousand, can be easily
solved with a trivial dynamic-programming algorithm. Instances with 100,000 or more
variables are beyond the reach of kp_dp(), but later in this chapter we will see that
even such large uncorrelated instances can be solved by a more sophisticated dynamic-
programming implementation, and, in Chapter 8, by simple branch-and-bound codes.
In other words, these problems are surprisingly easy, though with the right techniques:
a perfect lesson that one should not necessarily be daunted by NP -hardness without
trying out a few different ideas.

THE UNBOUNDED KNAPSACK PROBLEM

Our simple dynamic-programming code handles 0-1 instances of the knapsack problem
only, but unbounded instances can by similarly solved in same O(nc) time complexity.
Indeed, consider an optimal packing of copies of items 0, . . . , n− 1 into a knapsack of
capacity c, where arbitrarily many copies of an item can be present in the packing. If
item n−1 is not used, then the packing is an optimal packing of items 0, . . . , n−2 into
the same knapsack. If a copy of item n− 1 is used, then the remaining objects form an
optimal packing of a knapsack of capacity c − wn−1. However, the remaining objects
can contain copies of item n − 1. Therefore, to obtain an code for the unbounded
knapsack problem, we can replace in kp_dp() the statement

v[i][j] = MAX(v[i-1][j], p[i]+v[i-1][j-w[i]]);

with the statement

v[i][j] = MAX(v[i-1][j], p[i]+v[i][j-w[i]]);

to correctly fill in the array v. Further, we need to compute the values v[0][j] for
j = 0, . . . , c as follows:

for (j=0; j<=c; j++) v[0][j] = p[0]*(j/w[0]);

The bounded knapsack problem can also be solved by an O(nc) algorithm [72],
but we will not present the details here; dynamic-programming solution methods for
bounded instances are much more involved than those for 0-1 instances or unbounded
instances.

REMOVING DOMINATED STATES

The simplicity of the 0-1 algorithm makes it a good example to illustrate a number of
strategies for improving the practical performance of dynamic programming in gen-
eral. So let’s see what we can do to speed up the computations. The primary target
will be to reduce the total number of computed states, thereby reducing computing
time and memory requirements. In this effort we will use the notion of removing dom-
inated states, and also consider removing or pruning a state if it cannot be extended
to an optimal solution. The algorithms developed here will be in closer in spirit to
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the dynamic-programming algorithms for the TSP discussed earlier, where we attempt
to generate all paths involving a subset of vertices, but delete many of them by using
upper bounds on the length of the best path through the remaining vertices.

Consider the state table of v[i][j] values for the example in Figure 7.4. The
entries v[0][3], v[0][4], . . ., v[0][10] are all equal to 7. In this case the
optimal solution value when we pack the first item into a knapsack of capacity of 3
remains the same when we pack the item into a knapsack of capacity between 4 and
10. This means that after deciding how to pack items 1, . . . , n − 1 into the original
knapsack of capacity 10, if the remaining capacity is a number greater than or equal
to 3 then an optimal way of packing the first item will be yielded by information from
the state v[0][3]. Thus the states v[0][4], . . ., v[0][10] need not be saved.
In general, if v[i][j] = v[i][k], where k > j, then the first state dominates the
second, as it yields the same profit with less capacity usage. By this definition, out of
the 66 states generated by kp_dp() for the example in Figure 7.4, a total of 22 are
dominated by other states. Note that for an index i and integer k ∈ [1, c], if no subset
of the items 0, . . . , i has weight equal to k, then the state v[i][k] will be dominated
by a state v[i][j] where 0 ≤ j < k and j equals the weight of some subset of the
items 0, . . . , i. Therefore, each non-dominated state v[i][j] corresponds to a subset
of items and the “capacity” j is equal to the weight of the items in the subset. Thus the
number of non-dominated states after i items have been considered is at most 2i, which
can be considerably less than the capacity for small values of i.

To implement an algorithm that stores only non-dominated states, we start off with
two states corresponding to the item 0, one where the item is used and the other where it
is not. Subsequently, for i = 1, . . . , n−1, we extend each existing state involving items
0, . . . , i − 1 to two states involving items 0, . . . , i, one by adding item i and the other
where we do not add item i. To prune new states, we sort them by increasing weight of
the item subsets and then apply the domination criteria mentioned above. We apply this
strategy in a function kp_dp_states(), presented below, that computes the optimal
knapsack value only, like our earlier function kp_dp_optval(). We assume the
following integer arrays are declared prior to invoking kp_dp_states(), in addition
to the arrays containing the input data.

int sw[c+1], sp[c+1];
int nsw[2*(c+1)], nsp[2*(c+1)], perm[2*(c+1)];

The weight of state k is saved in sw[k] and its profit in sp[k].

int kp_dp_states()
{

int i, j, ns, newns;
sw[0]=0; sw[1]=w[0];
sp[0]=0; sp[1]=p[0];
ns=2;
for (i=1; i<n; i++){

newns=0;
for (j=0; j<ns; j++){
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nsw[newns]=sw[j];
nsp[newns]=sp[j];
newns++;
if (sw[j]+w[i] <= c){

nsw[newns]=sw[j]+w[i];
nsp[newns]=sp[j]+p[i];
newns++;

}
}
ns=dom_prune (perm, newns, nsw, nsp, sw, sp);

}
return sp[ns-1];

}

At the start of the ith iteration of the outermost for loop, every state in sw corresponds
to a subset of items 0, . . . , i − 1 with weight at most c, the capacity, and therefore sw
and sp need to have at most c + 1 elements. The inner for loop computes two new
states per state in sw, and saves their weights and profits in nsw and nsp; these arrays
need at most 2(c+1) elements as a consequence. These states are passed to the function
dom_prune(), which applies the domination criteria described above, copies back
the undominated states to sw and sp, and returns the number of such states. The
following code implements this function.

int dom_prune(int *perm, int ns, int *sw, int *sp,
int *nsw, int *nsp)

{
int j, k=0;
for (j=0; j<ns; j++) perm[j]=j;
int_perm_quicksort(perm, sw, ns);
nsw[k] = sw[perm[0]];
nsp[k] = sp[perm[0]];

for (j=1; j<ns; j++){
if (sp[perm[j]] > nsp[k]){

if (sw[perm[j]] > nsw[k]) k++;
nsw[k]=sw[perm[j]];
nsp[k]=sp[perm[j]];

}
}
return k+1;

}

The first two lines of code sort the input states, given in sw and sp, by increasing
weight; more precisely, the array perm contains the permutation of states that yields a
sorted order. The second for loop copies the states to the ‘new’ state weight and profit
arrays, removing dominated states.
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We compare below this new code with kp_dp_optval() on uncorrelated in-
stances having 100 items and different values of R . Each number is the running time
in seconds averaged over ten instances.

R (n = 100) 10000 100000 1000000
kp_dp_optval() .061 .588 5.99
kp_dp_states() .009 .010 .011

For R = 10,000, the basic code is already considerably slower, taking .061 seconds in-
stead of the hundredth of a second taken by kp_dp_states(). WhenR is a million,
the first algorithm is almost 600 times slower. The difference in times is almost entirely
due to the small number of non-dominated states generated by kp_dp_states();
this number is about 57,000 whenR = 10,000, and 58,000 and 63,000 for the next two
values ofR. WhenR is a million, the total number of states processed by kp_dp_optval()
equals 100(c+ 1) and c is close to 25 million.

REMOVING NON-EXTENDABLE STATES

The total number of states removed by the above process is often impressive, but many
of the remaining non-dominated states are also not actually needed in the computation,
since these states are impossible to extend to optimal packings of the knapsack. Pruning
at least some of these non-extendable states can further improve the running time of the
algorithm. To accomplish this we adopt bounding ideas as in our TSP algorithms. To
begin, we need one reasonably good knapsack solution, in order to provide a lower
bound on the optimal solution value. An easy choice is the greedy solution, obtained
by first sorting items by decreasing efficiency, that is, profit to weight ratio, and then
iterating through the items from 0, . . . , n − 1, adding an item to the knapsack if it fits
into the remaining capacity and discarding it otherwise. Code to produce this solution
is given in the following kp_greedy() function, when it is invoked with beg=0.

int kp_greedy(int beg, int so_w[], int so_p[], int c)
{

int i, twt=0, tpt=0;
for (i=beg; i<n && twt<c; i++){

if (twt + so_w[i] <= c){
twt += so_w[i];
tpt += so_p[i];

}
}
return tpt;

}

We assume the arrays so_w[] and so_p[] give the weights and profits of the items
after sorting by decreasing efficiency, and c is the capacity. We will see later that
kp_greedy() can be usefully invoked with beg greater than 0, and c less than the
capacity.
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Suppose the weight of the greedy solution is l. Consider a state s, having weight
ws and profit ps, corresponding to a subset of items 0, . . . , i. If an upper bound on the
best possible solution that includes the subset of items corresponding to state s is at
most l, then s cannot be extended to a solution better than the greedy solution. Such an
upper bound can be obtained by adding ps to any upper bound on the value of a best
packing of items i + 1, . . . , n − 1 into a knapsack of capacity c − ws. The optimal
solution value of this c − ws instance is bounded above by the optimal solution value
of the unbounded knapsack problem on the same items with capacity c − ws. This
in turn can be bounded above by solving a fractional unbounded knapsack problem,
where fractional quantities of each item can be chosen. This latter problem is easy to
solve: simply take the item with maximum profit per unit weight consumed, that is,
maximum efficiency, and fill the knapsack with fractionally many copies of this item.
In other words, if item k ∈ [i + 1, n − 1] has the greatest value of p[k]/w[k], then the
optimal solution value is (c−ws)∗p[k]/w[k], and the floor of this value yields an upper
bound on the optimal solution value of the 0-1 knapsack problem with items i + 1 to
n− 1.

This leads to the following easy modification of kp_dp_states(). We assume
the efficiencies of the knapsack items are computed and saved in an array eff[n+1],
as in the following code fragment.

int i;
double eff[n+1], maxeff[n+1];

eff[n] = maxeff[n] = 0.0;
for (i=n-1; i>=0; i--){

eff[i] = ((double)p[i])/w[i];
maxeff[i] = MAX(maxeff[i+1], eff[i]);

}

The ith entry of maxeff stores the maximum efficiency of items i, . . . , n − 1; we
will see in a moment why it is convenient to store the value 0 in each of eff[n] and
maxeff[n]. We also assume the greedy solution value is stored in lb. We replace
the inner for loop in kp_dp_states() by

for (j=0; j<ns; j++){
if (sp[j] + floor(maxeff[i+1]*(c-sw[j])) > lb){

nsw[newns]=sw[j];
nsp[newns]=sp[j];
newns++;

}
if (sw[j] + w[i] <= c){

if (sp[j]+p[i] +
floor(maxeff[i+1]*(c-sw[j]-w[i])) > lb){

nsw[newns]=sw[j]+w[i];
nsp[newns]=sp[j]+p[i];
newns++;
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}
}

}
ns=0;
if (newns == 0) break;

When we exit the outermost for loop, it could be because all states have been pruned
after processing fewer than n items, in which case we have verified that no solution
better than lb exists. We therefore replace the statement

return sp[ns-1];

in kp_dp_states() by the statement

if (ns > 0) return sp[ns-1]; else return lb;

We call this modified code kp_dp_statesbnd(). In the next table, we compare the
number of states, rounded to the nearest 100, generated by kp_dp_states() and
by kp_dp_statesbnd().

R (n = 100) 10000 100000 1000000
kp_dp_states 57100 58000 63000

kp_dp_statesbnd 54200 56000 59700

The results are somewhat disappointing in that the modified code generates only 5%
fewer states. On closer examination, we see that the simple upper bounds used in
kp_dp_statesbnd() can be weak. For example, if item n− 1 has maximum effi-
ciency among all items, then it will always be used in solving the fractional unbounded
knapsack subproblem associated with the states. In particular, if a state at level i (after
processing i items) and another at level i+1 have the same profit and weight, the upper
bound on the best solution the states can be extended to does not change. On the other
hand, if the items were a priori sorted in order of decreasing efficiency before invoking
kp_dp_statesbnd(), then the maximum efficiency of items i, . . . , n−1 is greater
than or equal to that of items i + 1, . . . , n − 1, and we get tighter upper bounds as we
process more items. We call this modified function kp_dp_statesbnd2(). Note
that in this case, maxeff[i]=eff[i]. This simple change results in a dramatic
improvement.

R (n = 100) 10000 100000 1000000
kp_dp_statesbnd2 12300 13700 13800

On average, for the specific instances in the table, we generate less than a fourth of the
states generated by kp_dp_statesbnd(). This illustrates clearly the importance
of organizing computation in a way that upper bounds on the optimal solution value
improve as the algorithm progresses.

Running times in seconds for the new code are reported in the following table.

R (n = 100) 10000 100000 1000000
kp_dp_statesbnd2() .004 .004 .005
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For R = 1,000,000 and n = 100, our tests put kp_dp_statesbnd2() at one
thousand times faster than kp_dp_optval(). That is great, but the new code does
not always win the competition. Indeed, when n = 1,000 or 10,000 and R = 100, the
new code is five or six times slower than the original code. This discrepancy can be
explained as follows. When the ratio of the number of processed items to capacity is
high, then typically the number of stored states becomes fairly large and approaches the
capacity. In such cases a large amount of time is then spent sorting the states; in fact,
in the above two cases where kp_dp_optval() is faster, approximately 80% of the
time is spent in sorting. In the worst case, the new code has running-time complexity
O(nc logc) for instances with n items and capacity c, which is quite a bit worse than
the O(nc) running time of kp_dp_optval(); when n = 10,000 and R = 100, then
c ≈ 250,000 and thus log c ≈ 18.

It is important to note that, whereas kp_dp_optval() performs similarly for
uncorrelated instances and strongly correlated instances with the same n and R val-
ues, the performance of kp_dp_statesbnd2() changes dramatically with prob-
lem type. In the next table we report the number of states and running time for
kp_dp_statesbnd2() for both types of instances for different values of R, and
for n fixed to 100; here m stands for million.

uncorrelated strongly correlated
R (n = 100) 10000 100000 1m 10000 100000 1m

time .004 .004 .005 2.68 36.9 423
states 12300 13700 13800 11m 108m 845m

When R = 1,000,000 and n = 100, for a strongly correlated instance the running
time for kp_dp_statesbnd2() its almost 100,000 times its running time for an
uncorrelated instance. Furthermore, while the number of states and running time in-
creases slowly with R for the uncorrelated instances, the increase is much more rapid
for the strongly correlated examples. This is a common feature of NP -hard problems;
a technique that performs well on one class of instances often performs very poorly
on a different class, and one may need to try out a number of different approaches to
solving a given class of instances.

Let’s try to squeeze out a bit more performance on the strongly correlated exam-
ples. Notice that the lower bound on the optimal solution value does not change in
kp_dp_statesbnd2() as the algorithm progresses. This can be adjusted by us-
ing kp_greedy to extend the partial solution represented by a state. For example,
consider a non-dominated state s at the end of level i, with weight ws and profit ps.
Then

p_s + kp_greedy(i+1, so_w, so_p, c-w_s)

is the value of a knapsack solution obtained by taking the items in s and adding greedily
the remaining items in the remaining capacity c − ws. This computation is done in
the following fragment of code, added just after the invocation of dom_prune() in
kp_dp_statesbnd2().
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for (j=ns-1; j>=0; j -= 1){
double tlb = (sw[j] < c) ?
sp[j] + kp_greedy (i+1, w, p, c-sw[j]) : sp[j];
if (tlb > lb) lb = tlb;

}

This additional code is not very useful for uncorrelated instances, since the lower bound
from the first invocation of kp_greedy is often very close to the optimal solution
value. However, it seems useful for the strongly correlated instances, and we now
compare the running time of kp_dp_statesbnd2() for these instances with the
variant where we repeatedly invoke kp_greedy().

R (n = 100) 10000 100000 1000000
kp_dp_statesbnd2() 2.68 36.9 423

kp_dp_statesbnd2()+ kp_greedy() .709 8.65 49.9
kp_dp_statesbnd3() .482 6.66 39.9

We get an improvement of nearly a factor of ten on these instances. This combined code
is, however, much slower for larger values of n. For example, when n = 1,000 andR =
100, it takes 4.16 seconds versus only .659 seconds for kp_dp_statesbnd2(),
even though it generates fewer states. This is because we perform O(n) computa-
tions in kp_greedy() for every state. If we simply decrement j by, say, 20 in the
for loop fragment above instead of 1, that is, replace j -= 1 by j -= 20, then
we reduce time spent on generating heuristic solutions, but still increase lb enough
to reduce overall computing time for n = 100; see the last row in the previous ta-
ble. We call this variant kp_dp_statesbnd3(); it is also now comparable to
kp_dp_statesbnd2() when n = 1,000 and R = 100. However, for n = 1,000 or
more, it is still slower than kp_dp_optval().

A NEIGHBORHOOD-SEARCH ALGORITHM

The final dynamic-programming code we discuss differs from the previous ones in im-
portant ways. It can be viewed as a very-large-neighborhood search algorithm, and
is based on the MINKNAP algorithm of Pisinger [73]. Instead of beginning with an
empty knapsack, and generating states by adding items, the algorithm starts off with
a state corresponding to a good initial knapsack solution, and then explores states/so-
lutions generated, in an iterative fashion, by adding items not present in the solution
and removing items currently in the solution, thus in the neighborhood of the first so-
lution. As a state can be extended by removing items, we need to consider states with
weight more than the capacity c. However, as we wish to extend any state to a fi-
nal state with weight c or less, and we can only remove items present in the original
solution (which has weight at most c), it suffices to consider intermediate states with
weight at most 2c. Dominated states are eliminated using dom_prune(), and up-
per bounds on the best optimal solution a state can be extended to are obtained as in
kp_dp_statesbnd2() via an associated fractional unbounded knapsack problem,
though in a more subtle fashion. A crucial aspect of this algorithm is that any state that
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has weight at most c and profit more than the initial solution value yields a better solu-
tion, and thus an improved lower bound that is used in pruning states. This lower bound
is obtained at essentially no additional cost, unlike in kp_dp_statesbnd3().

An implementation of the above neighborhood-search algorithm is given in func-
tion kp_dp_nbsearch() below. Just as organizing items in a certain manner (by
decreasing efficiency) in kp_dp_statesbnd2() allowed easy computation of up-
per bounds, we will use a particular heuristic solution called the critical solution to
allow easy upper-bound computation. The justification for this solution will be given
only later when we discuss the use of LP-duality information in the branch-and-bound
chapter. We will assume items are sorted by decreasing efficiency as in the function
kp_dp_statesbnd2(). The critical item, denoted by ic, is simply the first item
(after sorting by decreasing efficiency) such that the weight of the item and previous
items exceeds the knapsack capacity, and the critical solution, denoted as solc, consists
of all items preceding the critical item. The following function generates the critical
solution and returns its weight and profit.

void heuristic_crit(int *critical, int *cwt, int *cpt)
{

int i;

*cwt = *cpt = 0;
for (i=0; i<n && *cwt+w[i]<=c; i++){

*cwt += w[i];

*cpt += p[i];
}

*critical=i;
}

Notice that the items in solc are consecutive items, and so are the items not present in
the solution.

The first state in kp_dp_nbsearch() has the weight and profit of solc, that is,
we assume all items in solc must be present, or are fixed to 1, and all other items must
be absent, or are fixed to 0. At level 0, we “unfix” item ic + 1, that is, all subsequent
items must be absent, and all items preceding ic must be present, but ic can be present
or absent. Now the first state had ic absent, so we create two new states, one with ic
absent (thus the profit and weight are unchanged), and another where we add ic; the
weight will exceed the capacity c (as ic is the critical item). At level 1, we unfix item
ic − 1; thus for each previous states (ic − 1 is present in them), we create two states,
one where we retain ic − 1 and another where we remove ic (and decrement profit and
weight values). At level 2, we unfix item ic + 2, and so on. We use variables s and
t to indicate the range of unfixed variables (they are consecutive). When s = 0 and
t = n − 1, we have solved the problem. We assume the following arrays are declared
globally in addition to the arrays containing the problem data.

int sw[2*(c+1)], sp[2*(c+1)];
int nsw[4*(c+1)], nsp[4*(c+1)], perm[4*(c+1)];
double eff[n+1];
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Further, we assume that eff[i] contains the efficiency of item i, and eff[n] con-
tains 0.0.

int kp_dp_nbsearch()
{

int i, j, s, t, twt, tpt;
int ns, newns, critical, lb;
double effs1;

heuristic_crit (&critical, &(sw[0]), &(sp[0]));
lb = sp[0];
ns = 1;
s = critical;
t = critical-1;

for (i=0; i<n; i++){
if (i%2 == 0) t++; else s--;
newns = 0;
effs1 = (s > 0) ? eff[s-1] : 0.0;

for (j=0; j<ns; j++){
if ((sw[j] <= c &&

sp[j] + floor(eff[t+1]*(c-sw[j])) > lb) ||
(sw[j] > c &&
sp[j] - ceil(effs1*(sw[j]-c)) > lb)) {

nsw[newns] = sw[j];
nsp[newns] = sp[j];
newns++;

}

twt = (i%2 == 0) ? sw[j] + w[t] : sw[j] - w[s];
tpt = (i%2 == 0) ? sp[j] + p[t] : sp[j] - p[s];
if (twt <= 2*c && twt >= 0){

if ((twt <= c &&
tpt + floor(eff[t+1]*(c-twt)) > lb) ||

(twt > c &&
tpt - ceil(effs1*(twt-c)) > lb)){

nsw[newns] = twt;
nsp[newns] = tpt;
newns++;

}
}

}
if (newns == 0) break;
ns = dom_prune (perm, newns, nsw, nsp, sw, sp);
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for (j=0; j<ns && sw[j]<=c; j++){
if (sp[j] > lb) lb = sp[j];

}
}
return lb;

}

We report running times for kp_dp_nbsearch() in the following table.

uncorrelated strongly correlated
n/R 100 1000 10000 100 1000 10000
100 .002 .002 .002 .002 .002 .076
1000 .002 .002 .003 .019 .078 .172
10000 .004 .005 .010 .050 1.19 25.2

This code is dramatically faster than the prior codes on all instances. On the uncorre-
lated instances, it is super fast! Indeed, for uncorrelated instances having R = 10,000
and n = 1,000,000, the running time is only .439 seconds. Such large instances are
unsolvable with our earlier codes. Moreover, in later chapters we will see how to speed
up this new code even a bit more using LP-duality information.

The development of the algorithms up to kp_dp_statesbnd3() shows again
that simple ideas can significantly speed up a code. In fact, many of the ideas we
discussed here are common ingredients in fast algorithms for other problem classes.
However, there is no obvious path leading to the development of an algorithm like
kp_nbsearch(), which involves a conceptual leap from previous methods. The
discovery of the MINKNAP algorithm and its effectiveness by Pisinger was preceded
and motivated by a substantial body of research into solution methods for knapsack
problems.

7.4 EXERCISES

1. Explain the operation of “Gosper’s hack” used in Section 7.1.

2. Write a function to fill a two-dimensional array binomial[][] with the bino-
mial coefficients

(
m
k

)
for m and k ranging from 0 up to n− 1, setting an entry to

0 if m < k.

3. Show that Sval matches the ordering given by nextset() in the code frag-
ments presented in Section 7.1.

4. When the Bellman-Held-Karp algorithm is used to solve a symmetric instance
of the TSP, it suffices to compute the values of opt(S, t) for sets S such that
S <= dn/2e. Modify the implementation of the algorithm to take advantage of
this fact.

5. Floyd-Warshall Algorithm. Let G = (V,E) be a directed graph with nodes
V = {0, 1, . . . , n− 1} and edge costs c = (ce : e ∈ E). For a path P from node
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i to node j, all nodes in P other than i and j are called internal. Letting d(i, j, k)
denote the length of the shortest directed path P from i to j such that all internal
nodes of P are in the set {0, 1, . . . , k − 1}, we have the recursive equation

d(i, j, k) = min(d(i, j, k − 1), d(i, k − 1, k − 1) + d(k − 1, j, k − 1)).

Use this to design and implement anO(n3) dynamic-programming algorithm for
the all-pairs shortest-path problem of finding a shortest directed path between
each pair of nodes.

6. Modify the code in kp_dp_optval() to compute the optimal solution value
for an instance of the unbounded knapsack problem using an integer array of size
c+ 1.

7. Write a code which solves an instance of the bounded knapsack problem using an
integer array of size n(c+ 1) as in function kp_dp(), and has time complexity
O(knc) where k is the largest bound on the different items.

7.5 NOTES AND REFERENCES

SECTION 7.1

The running-time bound of O(n22n) is better than checking all tours, but it would be
disappointing if Bellman-Held-Karp is the best we can do. In looking to beat the record,
one needs to focus on the 2n term: replacing n22n by n2n would not be considered an
important step. A nice reference for this type of work is Gerhard Woeginger’s survey
paper [82] on exact algorithms for NP -hard problems.

SECTION 7.2

Bellman created a large body of work in dynamic programming, including his 1957
book Dynamic Programming [5], a second book covering connections with control
theory Adaptive Control Processes: A Guided Tour [7], and together with S. E. Dreyfus
the book Applied Dynamic Programming [9].
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[24] Conforti, M., G. Cornuéjols, M. R. Rao. 1999. Decomposition of bal-
anced matrices. Journal of Combinatorial Theory, Series B 77, 292–406.
doi:10.1006/jctb.1999.1932.

[25] Cook, W. J. 2012. In Pursuit of the Traveling Salesman: Mathematics at the Lim-
its of Computation. Princeton University Press, Princeton, New Jersey, USA.

[26] Cook, S. A. 1971. The complexity of theorem-proving procedures. Proceedings
of the 3rd Annual ACM Symposium on the Theory of Computing. ACM Press, New
York, USA. 151–158.

[27] Dantzig, G., R. Fulkerson, S. Johnson. 1954. Solution of a large-scale traveling-
salesman problem. Operations Research 2, 393–410.



compbook December 29, 2014 6x9

103

[28] Dantzig, G. B. 1963. Linear Programming and Extensions. Princeton University
Press, Princeton, New Jersey, USA.

[29] Ding, G., L. Feng, W. Zang. 2008. The complexity of recognizing linear systems
with certain integrality properties. Mathematical Programming 114, 321–334.

[30] Edmonds, J. 1965. Paths, trees, and flowers. Canadian Journal of Mathematics 17,
449–467.

[31] Edmonds, J. 1991. A glimpse of heaven. J. K. Lenstra et al., eds. History of Math-
ematical Programming—A Collection of Personal Reminiscences. North-Holland.
32–54.

[32] Edmonds, J., R. Giles. 1977. A min-max relation for submodular functions on a
graph. P. L. Hammer, E. L. Johnson, B. H. Korte, G. L. Nemhauser, eds. Studies
in Integer Programming. Annals of Discrete Mathematics 1. North-Holland. 185–
204.

[33] Flood, M. M. 1956. The traveling-salesman problem. Operations Research 4, 61–
75.

[34] Fujishige, S. 1980. An efficient PQ-graph algorithm for solving the graph-
realization problem. Journal of Computer and System Sciences 21, 63–86.
doi:10.1016/0022-0000(80)90042-2.

[35] Frank, A. 2011. Connections in Combinatorial Optimization. Oxford University
Press, Oxford, United Kingdom.

[36] Fulkerson, D. R. 1972. Anti-blocking polyhedra. Journal of Combinatorial The-
ory, Series B 12, 50–71. doi:10.1016/0095-8956(72)90032-9.

[37] Fulkerson, D. R., A. J. Hoffman, R. Oppenheim. 1974. On balanced matrices.
Mathematical Programming Study 1, 120–132.

[38] Garey, M. R., D. S. Johnson. 1979. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, San Francisco, California, USA.

[39] Gomory, R. E. 1958. Outline of an algorithm for integer solutions to linear pro-
grams. Bulletin of the American Mathematical Society 64, 275–278.

[40] Gilmore, P. C., R. E. Gomory. 1961. A linear programming approach to the
cutting-stock problem. Operations Research 9, 849–859.

[41] Grötschel, M. 1980. On the symmetric travelling salesman problem: Solution of
a 120-city problem. Mathematical Programming Study 12, 61–77.

[42] Harbison, S. P., G. L. Steele. 2002. C: A Reference Manual (5th Edition). Prentice
Hall, Englewood Cliffs, New Jersey, USA.



104

compbook December 29, 2014 6x9

BIBLIOGRAPHY

[43] Held, M., R. M. Karp. 1962. A dynamic programming approach to sequencing
problems. Journal of the Society of Industrial and Applied Mathematics 10, 196–
210.

[44] Held, M., R. M. Karp. 1970. The traveling-salesman problem and minimum span-
ning trees. Operations Research 18, 1138–1162.

[45] Held, M., R. M. Karp. 1971. The traveling-salesman problem and minimum span-
ning trees: Part II. Mathematical Programming 1, 6–25.

[46] Hilbert, D. 1902. Mathematical problems, lecture delivered before the Interna-
tional Congress of Mathematicians at Paris in 1900. Bulletin of the American
Mathematical Society 8, 437–479. Translated from German by Dr. Mary Winston
Newson.

[47] Hoffman, A. J. 1974. A generalization of max flow-min cut. Mathematical Pro-
gramming 6, 352–359.

[48] Hoffman, A. J., J. B. Kruskal. 1956. Integral boundary points of convex poly-
hedra. H. W. Kuhn, A. W. Tucker, eds. Linear Inequalities and Related Systems.
Princeton University Press, Princeton, New Jersey, USA. 223–246.

[49] Hooker, J. N. 1994. Needed: an empirical science of algorithms. Operations Re-
search 42, 201–212.

[50] Johnson, D. S. 2002. A theoretician’s guide to the experimental analysis of algo-
rithms. In: M. Goldwasser, D. S. Johnson, C. C. McGeoch, eds. Data Structures,
Near Neighbor Searches, and Methodology: Proceedings of the Fifth and Sixth DI-
MACS Implementation Challenges. American Mathematical Society, Providence,
Rhode Island, USA. 215–250.
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