
Digital Object Identifier (DOI) 10.1007/s10107-003-0440-4

Math. Program., Ser. B 97: 91–153 (2003)

David Applegate · Robert Bixby · Vašek Chvátal · William Cook

Implementing the Dantzig-Fulkerson-Johnson algorithm
for large traveling salesman problems

Received: December 6, 2002 / Accepted: April 24, 2003
Published online: May 28, 2003 – © Springer-Verlag 2003

Abstract. Dantzig, Fulkerson, and Johnson (1954) introduced the cutting-plane method as a means of attack-
ing the traveling salesman problem; this method has been applied to broad classes of problems in combinatorial
optimization and integer programming. In this paper we discuss an implementation of Dantzig et al.’s method
that is suitable for TSP instances having 1,000,000 or more cities. Our aim is to use the study of the TSP as
a step towards understanding the applicability and limits of the general cutting-plane method in large-scale
applications.

1. The cutting-plane method

The symmetric traveling salesman problem, or TSP for short, is this: given a finite num-
ber of “cities” along with the cost of travel between each pair of them, find the cheapest
way of visiting all of the cities and returning to your starting point. The travel costs are
symmetric in the sense that traveling from city X to cityY costs just as much as traveling
from Y to X; the “way of visiting all of the cities” is simply the order in which the cities
are visited.

The prominence of the TSP in the combinatorial optimization literature is to a large
extent due to its success as an engine-of-discovery for techniques that have application
far beyond the narrow confines of the TSP itself. Foremost among the TSP-inspired
discoveries is Dantzig, Fulkerson, and Johnson’s (1954) cutting-plane method, which
can be used to attack any problem

minimize cT x subject to x ∈ S (1)

such that S is a finite subset of someRm and such that an efficient algorithm to recognize
points of S is available. This method is iterative; each of its iterations begins with a linear
programming (LP) relaxation of (1), meaning a problem

minimize cT x subject to Ax ≤ b (2)

D. Applegate: Algorithms and Optimization Department, AT&T Labs – Research, Florham Park, NJ 07932,
USA

R. Bixby: Computational and Applied Mathematics, Rice University, Houston, TX 77005, USA

V. Chvátal: Department of Computer Science, Rutgers University, Piscataway, NJ 08854, USA

W. Cook�: Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
� Supported by ONR Grant N00014-03-1-0040

92 D. Applegate et al.

such that the polyhedron P defined as {x : Ax ≤ b} contains S and is bounded. Since
P is bounded, we can find an optimal solution x∗ of (2) such that x∗ is an extreme point
of P . If x∗ belongs to S, then it constitutes an optimal solution of (1); otherwise some
linear inequality is satisfied by all the points in S and violated by x∗; such an inequality
is called a cutting plane or simply a cut. In the latter case, we find a nonempty family
of cuts, add them to the system Ax ≤ b, use the resulting tighter relaxation of (1) in the
next iteration of the procedure.

Dantzig et al. demonstrated the power of their cutting-plane method by solving a
49-city instance of the TSP, which was an impressive size in 1954. The TSP is a special
case of (1) withm = n(n−1)/2, where n is the number of the cities, and with S consist-
ing of the set of the incidence vectors of all the Hamiltonian cycles through the set V of
the n cities; in this context, Hamiltonian cycles are commonly called tours. In Dantzig
et al.’s attack, the initial P consists of all vectors x, with components subscripted by
edges of the complete graph on V , that satisfy

0 ≤ xe ≤ 1 for all edges e (3)

and ∑
(xe : v ∈ e) = 2 for all cities v. (4)

(Throughout this paper, we treat the edges of a graph as two-point subsets of its vertex-
set: v ∈ emeans that vertex v is an endpoint of edge e; e∩Q �= ∅ means that edge e has
an endpoint in set Q; e −Q �= ∅ means that edge e has an endpoint outside set Q; and
so on.) All but two of their cuts have the form

∑
(xe : e∩Q �= ∅, e−Q �= ∅) ≥ 2 such

that Q is a nonempty proper subset of V . Dantzig et al. called such inequalities “loop
constraints”; nowadays, they are commonly referred to as subtour elimination inequal-
ities; we are going to call them simply subtour inequalities. (As for the two exceptional
cuts, Dantzig et al. give ad hoc combinatorial arguments to show that these inequalities
are satisfied by incidence vectors of all tours through the 49 cities and, in a footnote,
they say “We are indebted to I. Glicksberg of Rand for pointing out relations of this kind
to us.”)

The original TSP algorithm of Dantzig et al. has been extended and improved by
many researchers, led by the fundamental contributions of M. Grötschel and
M. Padberg; surveys of this work can be found in Grötschel and Padberg (1985), Padberg
and Grötschel (1985), Jünger et al. (1995, 1997), and Naddef (2002). The cutting-plane
method is the core of nearly all successful approaches proposed to date for obtaining
provably optimal solutions to the TSP, and it remains the only known technique for solv-
ing instances having more than several hundred cities. Beyond the TSP, the cutting-plane
method has been applied to a host of NP-hard problems (see Jünger et al. (1995)), and is
an important component of modern mixed-integer-programming codes (see Marchand
et al. (1999) and Bixby et al. (2000, 2003)).

In this paper we discuss an implementation of the Dantzig et al. algorithm designed
for TSP instances having 1,000,000 or more cities; very large TSP instances arise is
applications such as genome-sequencing (Agarwala et al. (2000)), but the primary aim
of our work is to use the TSP as a means of studying issues that arise in the general
application of cutting-plane algorithms for large-scale problems. Instances of this size
are well beyond the reach of current (exact) solution techniques, but even in this case

Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems 93

the cutting-plane method can be used to provide strong lower bounds on the optimal
tour lengths. For example, we use cutting planes to show that the best known tour for a
specific 1,000,000-city randomly generated Euclidean instance is no more than 0.05%
from optimality. This instance was created by David S. Johnson in 1994, studied by
Johnson and McGeoch (1997, 2002) and included in the DIMACS (2001) challenge
test set under the name “E1M.0”. Its cities are points with integer coordinates drawn
uniformly from the 1,000,000 by 1,000,000 grid; the cost of an edge is the Euclidean
distance between the corresponding points, rounded to the nearest integer.

The paper is organized as follows. In Section 2 we present separation algorithms for
subtour inequalities and in Section 3 we present simple methods for separating a further
class of TSP inequalities known as “blossoms”; in these two sections we consider only
methods that can be easily applied to large problem instances. In Section 4 we discuss
methods for adjusting cutting planes to respond to changes in the optimal LP solution
x∗; again, we consider only procedures that perform well on large instances. In Section 5
we discuss a linear-time implementation of the “local cut” technique for generating TSP
inequalities by mapping the space of variables to a space of very low dimension. The
core LP problem that needs to be solved in each iteration of the cutting-plane algorithm is
discussed in Section 6. Data structures for storing cutting planes are treated in Section 7
and methods for handling the n(n − 1)/2 edges are covered in Section 8. In Section 9
we report on computational results for a variety of test instances.

The techniques developed in this paper are incorporated into the Concorde computer
code of Applegate et al. (2003) ; the Concorde code is freely available for use in research
studies.

2. Subtour inequalities

A separation algorithm for a class C of linear inequalities is an algorithm that, given any
x∗, returns either an inequality in C that is violated by x∗ or a failure message. Separation
algorithms that return a failure message only if all inequalities in C are satisfied by x∗ are
called exact; separation algorithms that may return a failure message even when some
inequality in C is violated by x∗ are called heuristic.

We present below several fast heuristics for subtour separation, and discuss briefly
the Padberg and Rinaldi (1990a) exact subtour separation procedure.

2.1. The x(S, T) notation

Let V be a finite set of cities, letE be the edge-set of the complete graph on V , and letw
be a vector indexed by E. Given disjoint subsets S, T of V , we write w(S, T) to mean

∑
(we : e ∈ E, e ∩ S �= ∅, e ∩ T �= ∅).

This notation is adopted from Ford and fulkerson (1962); using it, the subtour inequality
corresponding to S can be written as

x(S, V − S) ≥ 2.

94 D. Applegate et al.

2.2. Parametric connectivity

Let G∗ denote the graph with vertices V and whose edges are all e such that x∗
e > 0.

IfG∗ is disconnected, then subtour inequalities violated by x∗ are readily available: the
vertex-set S of any connected component of G∗ satisfies x∗(S, V − S) = 0.

The power of this separation heuristic is illustrated on a TSP instance generated in the
same way as David Johnson’s E1M.0 (cities are points with integer coordinates drawn
uniformly from the 1,000,000 by 1,000,000 grid; the cost of an edge is the Euclidean
distance between the corresponding points, rounded to the nearest integer) except that
it has only 100,000 cities. We repeatedly apply the heuristic untilG∗ is connected; then
we compare the final lower bound to the “subtour bound” obtained by optimizing over
all subtour inequalities and also compare it to the length of the best tour we found (using
the tour-merging heuristic of Cook and Seymour (2003)). The results

Gap to Subtour Bound Gap to Optimal
0.394% ≤ 1.111%

demonstrate that even this simple idea leads to a respectable bound for this geometric
instance.

To improve on this connectivity heuristic, we observe that looking for subtour
inequalities violated by x∗ simply by listing connected components ofG∗ means throw-
ing away much information about x∗: all nonzero x∗

e , regardless of their actual values,
are treated the same. Such lack of discrimination can have its repercussions. For exam-
ple, consider an x∗ whose G∗ is disconnected and let S1, . . . , Sk denote the vertex-sets
of the connected components of G∗: slight perturbations of the components of x∗ can
make G∗ connected while maintaining the conditions

0 ≤ xe ≤ 1 for all edges e,
∑
(xe : v ∈ e) = 2 for all cities v,

and x∗(Si, V − Si) < 2 for all i. In this example, we could have spotted the sets
S1, S2, . . . , Sk as the vertex-sets of connected components of the graph with edges e
such that x∗

e > ε for some fixed positive ε. Pursuing this idea further, we make ε a
parameter ranging from 1 down to 0 and arrive at Algorithm 2.1.

With m standing for the number of edges of G∗, each individual test for x∗(S, V −
S) < 2 in Algorithm 2.1 may take time in �(m), which puts the total running time of
Algorithm 2.1 in�(mn). It is quicker to first collect all the relevant S and then evaluate
all the corresponding values of x∗(S, V − S). All the relevant S may be recorded in a
decomposition forest whose leaves are the n vertices ofG∗ and whose interior nodes are
in a one-to-one correspondence with sets S for which Algorithm 2.1 tests the inequality
x∗(S, V − S) < 2; each interior node w of the decomposition forest corresponds to the
set Sw of all leaves of the decomposition forest that are descendants of w. One way of
constructing the decomposition forest is Algorithm 2.2; there, roots are nodes equal to
their own parents and Root(w) is the root of the tree that contains w.

Except for the evaluations of Root, straightforward implementations ofAlgorithm 2.2
take time�(n+m log n), with the bottleneck�(m log n) taken up by sorting these edges.

Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems 95

Algorithm 2.1 Testing connected components in a parametric family.

initialize an empty list L of sets;
F = the graph with the vertex-set of G∗ and with no edges;
for all edges e of G∗ in a nonincreasing order of x∗

e

do if the two endpoints of e
belong to distinct connected components of F

then add edge e to F ;
S = vertex-set of the connected component of F

that contains e;
if x∗(S, V − S) < 2 then add S to L end
if F consists of two connected components
then return L
end

end
end
return L;

Algorithm 2.2 Constructing a decomposition forest.

for all cities w do parent(w) = w end
counter = n;
for all edges e of G∗ in a nonincreasing order of x∗

e

do u, v = the two endpoints of e;
u∗ =Root(u), v∗ =Root(v);
if u∗ �= v∗
then get a new node w;

parent(u∗)= w, parent(v∗)= w, parent(w)= w;
counter = counter−1;
if counter = 2 then return array parent end

end
end
return array parent;

To implement the evaluations of Root, we may use the following triple of operations
that maintain a changing family F of disjoint sets with each set in F named by one of
its elements:

Makeset(w), with w in no set in F , adds {w} to F ;
Find(u), with u in some set in F , returns the name of this set;
Link(u, v), with u �= v, deletes the sets named u and v from F

and adds their union to F .

96 D. Applegate et al.

In our application, members of F are the sets Sw such that parent(w)= w; if, for each
Sw in F , we maintain a pointer root from the name of Sw to the root w of Sw, then we
can evaluate Root(u) simply as root(Find(u)). This policy is used in Algorithm 2.3.

Algorithm 2.3 An implementation of Algorithm 2.2.

for all cities w
do parent(w) = w, root(w) = w, Makeset(w);
end
counter = n;
for all edges e of G∗ in a nonincreasing order of x∗

e

do u, v = the two endpoints of e;
u∗ = root(Find(u)), v∗ = root(Find(v));
if u∗ �= v∗
then get a new node w;

parent(u∗)= w, parent(v∗)= w, parent(w)= w;
Link(u∗, v∗), root(Find(u)) = w;
counter = counter−1;
if counter = 2 then return array parent end

end
end
return array parent;

A celebrated result of Tarjan (1975) (see also Tarjan and van Leeuwen (1984) and
Chapter 2 ofTarjan (1983)) asserts that a simple and practical implementation of these
three operations runs very fast: the time it requires to execute any sequence of k opera-
tions is in O(kα(k)) with α the very slowly growing function commonly referred to as
“the inverse of the Ackermann function.” Hence Algorithm 2.3 can be implemented so
that the total time spent on calls of Makeset, Find, and Link is in O(mα(m)).

Algorithm 2.4 Computing all the values of x∗(Sw, V − Sw).

for all edges e of G∗
do w(e) = the lowest common ancestor of two endpoints of e;
end
for all nodes w of the decomposition forest
do x∗(Sw, V − Sw) = 2|Sw|;
end
for all edges e of G∗
do x∗(Sw(e), V − Sw(e)) = x∗(Sw(e), V − Sw(e))− 2x∗

e

end

Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems 97

The final step in the parametric connectivity procedure is to evaluate x∗(Sw, V −Sw)
for all nodes w of the decomposition tree; we describe this in Algorithm 2.4.

Harel and Tarjan (1984) and Schieber and Vishkin (1988) designed implementations
of the first for loop inAlgorithm 2.4 that run in time inO(m); a straightforward recursive
implementation of the second for loop runs in timeO(n); the third for loop runs in time
O(m).

To illustrate its power on the 100,000-city instance described earlier in this section,
we repeatedly apply Algorithm 2.1 until it returns without finding any cuts. The results

Gap to Subtour Bound Gap to Optimal
0.029% ≤ 0.746%

show a nice improvement over the bounds obtained by working only with the connected
components of G∗.

2.3. Shrinking heuristic

Crowder and Padberg (1980) and Land (1979) developed a heuristic for subtour inequali-
ties that is based on the intuitive notion of shrinking a subset of cities. Formally, shrinking
a subset S ofV means replacingV with V̄ defined as (V −S)∪{σ } for some new vertex σ
(representing the shrunk S) and replacing x with x̄ defined on the edges of the complete
graph with vertex set V̄ by

x̄{σ,t} = x(S, {t}) for all t ∈ V − S

and
x̄{u,v} = x{u,v} for all u, v ∈ V − S.

The heuristic proceeds by examining the components of the solution vector x∗ and
shrinking the ends {u, v} of any edge satisfying x∗

{u,v} = 1. If this process creates an

edge e satisfying x̄∗
e > 1, then the set of original vertices S corresponding to the ends

of e gives a violated subtour inequality; we record S and continue by shrinking the ends
of e. We repeat this procedure until all edges e in the remaining graph satisfy x̄∗

e < 1.
The shrinking heuristic is a very effective technique for finding violated subtour

inequalities. Combining the shrinking cuts with the parametric connectivity heuristic,
we obtain the results

Gap to Subtour Bound Gap to Optimal
0.0009% ≤ 0.7174%

for our 100,000-city instance. The lower bound produced in this way is very close to the
optimal value over all subtour inequalities.

2.4. Subtour cuts from tour intervals

In this subsection we present another fast heuristic separation algorithm for subtour
inequalities, allowing us to take advantage of any approximation to an optimal tour
that we might have obtained by running a tour-finding heuristic. Our motivation for the
design of this algorithm comes from the following argument:

98 D. Applegate et al.

Since the optimal solution x∗ of the current LP relaxation of our TSP instance approx-
imates an optimal tour and since our best heuristically generated tour x̂ approximates
an optimal tour, the two vectors x∗ and x̂ are likely to approximate each other at least
in the sense that x∗(S, V −S) ≈ x̂(S, V −S) for most subsets S of V . In particular,
sets S that minimize x∗(S, V − S) subject to S ⊂ V, S �= V, S �= ∅ are likely to be
found among sets S that minimize x̂(S, V − S) subject to the same constraints.

This argument may be not entirely convincing, but its conclusion was confirmed by
our experience: in examples we have experimented with, many of the sets S such that
x∗(S, V − S) < 2 and S �= V, S �= ∅ satisfied x̂(S, V − S) = 2.

Sets S with x̂(S, V − S) = 2 are characterized trivially: if v0v1 . . . vn−1v0 is the
cyclic order on V defined by the tour x̂, then x̂(S, V − S) = 2 if and only if S or V − S

is one of the intervals Iit (1 ≤ i ≤ t ≤ n− 1) defined by

Iit = {vk : i ≤ k ≤ t}.
Since x∗(V − S, S) = x∗(S, V − S) for all subsets S of V , we are led to search for
intervals I such that x∗(I, V − I) < 2. We might set our goal at finding just one such
interval or we might set it at finding all of them. The objective accomplished by our
computer code comes between these these two extremes: for each i = 1, 2, . . . , n− 2,
we

find a t that minimizes x∗(Iit , V − Iit) subject to i ≤ t ≤ n− 1 (5)

and, in case x∗(Iit , V − Iit) < 2, we record the subtour inequality violated by x∗.
We describe an algorithm that solves the sequence of problems (5) in time that, with

m standing again for the number of positive components of x∗, is in �(m log n).
We reduce each of the problems (5) to a minimum prefix-sum problem,

given a sequence s1, s2, . . . , sN of numbers,
find a t that minimizes

∑t
k=1 sk subject to 1 ≤ t ≤ N .

To elaborate, let us write

s(i, k) =
{

0 if 1 ≤ k ≤ i ≤ n− 1,
1 − ∑

i≤j<k x∗({vj , vk}) if 1 ≤ i < k ≤ n− 1.

If 1 ≤ t ≤ i, then
∑t
k=1 s(i, k) = 0; if i ≤ t ≤ n− 1, then

t∑

k=1

s(i, k) =
t∑

k=i+1

s(i, k) = (t − i)−
∑

i≤j<k≤t
x∗({vj , vk});

since
x∗(Iit , V − Iit) = 2|Iit | − 2

∑

i≤j<k≤t
x∗({vj , vk}),

it follows that

t∑

k=1

s(i, k) =
{

0 if t ≤ i,
(x∗(Iit , V − Iit)/2)− 1 if t ≥ i.

Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems 99

Hence problem (5) reduces to the problem

find a t that minimizes
∑t
k=1 s(i, k) subject to 1 ≤ t ≤ n− 1. (6)

We solve the sequence of minimum prefix-sum problems (6) for i = n − 2, n −
3, . . . , 1 in this order; after each decrement of i, we use the formula

s(i, k) =





s(i + 1, k) if k ≤ i,
1 − x∗({vi, vk}) if k = i + 1,
s(i + 1, k)− x∗({vi, vk}) if k > i + 1

to update the input of (6). The resulting scheme is Algorithm 2.5.

Algorithm 2.5 Finding intervals I such that x∗(I, V − I) < 2.

initialize an empty list L of intervals;
for k = 1, 2, . . . , n− 1 do sk = 0 end
for i = n− 2, n− 3 . . . , 1
do si+1 = 1;

for all edges {vi, vk} such that x∗({vi, vk}) > 0 and i < k

do sk = sk − x∗({vi, vk});
end
t = a subscript that minimizes

∑t
k=1 sk subject to 1 ≤ t ≤ n− 1;

if
∑t
k=1 sk < 0 then add Iit to L end

end
return L;

Each of the minimum prefix-sum problems

t = a subscript that minimizes
∑t
k=1 sk subject to 1 ≤ t ≤ n− 1

in Algorithm 2.5 can be solved trivially in time that is in�(n); the total running time of
the resulting implementation of Algorithm 2.5 is in�(n2). Our implementation reduces
this total to �(m log n) by making use of the fact that each of the minimum prefix-sum
problems that has to be solved is related to the minimum prefix-sum problem solved in
the previous iteration.

Let us set this implementation in the more general framework of the following three
operations:

Initialize(N) sets s1 = s2 = . . . = sN = 0,
Reset(k, value) sets sk = value,
Min-Prefix returns a t that

minimizes
∑t
k=1 sk subject to 1 ≤ t ≤ N .

100 D. Applegate et al.

We are going to describe a data structure that supports these three operations in such a
way that

each Initialize takes time in �(N),
each Reset takes time in �(logN),
each Min-Prefix takes time in �(logN).

This data structure is a full binary treeT (meaning, as usual, any binary tree in which each
node other than a leaf has both a left child and a right child) with leaves u1, u2, . . . , uN in
the left-to-right order and such that each node u of T holds a pair of numbers s(u), p(u)
defined recursively by

– s(uk) = p(uk) = sk
whenever uk is a leaf,

– s(u) = s(v)+ s(w), p(u) = min{p(v), s(v)+ p(w)}
whenever u is a node with left child v and right child w.

For each node u of T , there are subscripts a(u) and b(u) such that a leaf uk is a
descendant of u if and only if a(u) ≤ k ≤ b(u); it is easy to see that

s(u) =
b(u)∑

k=a(u)
sk and p(u) = min






t∑

k=a(u)
sk : a(u) ≤ t ≤ b(u)





;

in particular, p(root) = min{∑t
k=1 sk : 1 ≤ t ≤ N}. These observations suggest the

implementations of Initialize, Reset, and Min-Prefix that are spelled out in Algo-
rithm 2.6.

To keep the running time of Reset and Min-Prefix in�(logN), it is imperative to
choose a T in Initialize so that the depth of T is in �(logN). Our choice is the heap
structure with nodes 1, 2, . . . , 2N − 1. There, every node i with i < N has left child 2i
and right child 2i + 1; nodes N,N + 1, . . . , 2N − 1 are leaves in the left-to right order;
the depth of this tree is �lg(2N − 1)�.

The resulting algorithm is presented as Algorithm 2.7.
We illustrated the power of Algorithm 2.5 on our 100,000-city instance. Taking the

algorithm as the only source of cutting planes, the result (3.175% gap to the subtour
bound) is worse than that obtained using just the connected components of G. This is
not too surprising, given the restricted form of subtour cuts that are produced by Algo-
rithm 2.5 (the argument that x∗(S, V − S) ≈ x̂(S, V − S) does not hold well for the
x∗ vectors that appear after the addition of only subtour inequalities). If, however, we
combine this algorithm with the heuristics presented earlier in this section, the results

Gap to Subtour Bound Gap to Optimal
0.0008% ≤ 0.7173%

are a slight improvement over our previous lower bounds. Although this improvement is
rather small, the cuts generated by this procedure are particularly useful in the Concorde
code, where we store inequalities based on their representation as the union of intervals
from the heuristic tour x̂ (see Section 7).

Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems 101

Algorithm 2.6 Three operations for solving a sequence of minimum prefix-sum prob-
lems.

Initialize(N):
T = a full binary tree of depth in �(logN)

and with leaves u1, u2, . . . , uN in the left-to right order;
for each node u of T do s(u) = 0, p(u) = 0 end

Reset(k, value):
s(uk) = value, p(uk) = value;
u = uk;
while = u is not the root
do u = parent of u;

v = left child of u, w = right child of u;
s(u) = s(v)+ s(w), p(u) = min{p(v), s(v)+ p(w)};

end

Min-Prefix:
u = the root;
while = u is not a leaf
do v = left child of u, w = right child of u;

if p(u) = p(v) then u = v else u = w end
end
return the subscript t for which u = ut ;

Algorithm 2.7 An efficient implementation of Algorithm 2.5.

initialize an empty list L of intervals;
Initialize(n− 1);
for i = n− 2, n− 3, . . . , 1
do Reset(i + 1, 1);

for all edges {vi, vk} such that x∗({vi, vk}) > 0 and i < k

do Reset(k, s(uk)− x∗({vi, vk});
end
if p(root) < 0
then t =Min-Prefix;

add Iit to L;
end

end
return L;

102 D. Applegate et al.

2.5. Padberg-Rinaldi exact-separation procedure

Given a vector w of nonnegative edge weights, the global minimum-cut problem is to
find a proper subset of vertices S ⊆ V such that w(S, V − S) is minimized. To solve
the exact separation problem for subtour inequalities, one can letwe = x∗

e for each edge
e, find a global minimum cut S, and check if x∗(S, V − S) < 2. This approach was
adopted as early as Hong (1972), and it is a common ingredient in implementations of
the Dantzig et al. algorithm.

Hong (1972) found the global minimum cut in his study by solving a series of n− 1
max-flow/min-cut problems (choose some vertex s and for each other vertex t find an
(s, t)-minimum cut Sst , that is, a set Sst ⊆ V with s ∈ Sst and t /∈ Sst , minimizing
w(Sst , V − Sst)). Padberg and Rinaldi (1990a) combined this approach with shrinking
techniques (generalizing the procedure described above in Subsection 2.3) to obtain a
method suitable for large TSP instances (in Padberg and Rinaldi (1991), their approach
is used on examples having up to 2,392 cities).

We adopt the Padberg-Rinaldi approach in our code, using an implementation of
Goldberg’s (1985) algorithm to solve the (s, t)-minimum cut problems that arise. The
effectiveness of the Padberg-Rinaldi shrinking rules together with the good practical per-
formance of Goldberg’s algorithm allows us to apply the separation algorithm to very
large instances (we have carried out tests on up to 3,000,000 cities). On our 100,000-city
instance, the exact subtour separation algorithm produced the result

Gap to Optimal
≤ 0.7166%

It is important to note that a single run of the Padberg-Rinaldi algorithm can produce
a large collection of violated subtour inequalities, rather than just the single inequality
determined by the global minimum cut. This is crucial for large-scale instances where
subtour heuristics usually fail before the subtour bound is reached. This point is dis-
cussed by Levine (1999) in his study combining Concorde with Karger and Stein’s
(1996) random-contraction algorithm for global minimum cuts.

Further computational studies of global minimum cut algorithms can be found in
Chekuri et al. (1997) and in Jünger et al. (2000). A conclusion of these studies is that
the Padberg-Rinaldi shrinking method is an important pre-processing tool, even if the
full procedure is not adopted.

We remark that Fleischer (1999) describes a fast algorithm for building a cactus
representation of all minimum cuts and a practical implementation of her method is
described in Wenger (2002), together with computational results for instances with up
to 18,512 cities. We have not pursued this method in our implementation.

3. Fast blossoms

Let S0, S1, . . . , Sk be subsets of V such that k is odd, S1, . . . , Sk are pairwise disjoint,
and for each i = 1, . . . , k we have Si ∩S0 �= ∅ and Si −S0 �= ∅. Every incidence vector
x of a tour satisfies

∑
(x(Si, V − Si) : i = 0, . . . , k) ≥ 3k + 1. (7)

Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems 103

Inequalities (7) are known as comb inequalities. The name comes from Chvátal (1973),
who introduced a variant of (7) with S1, . . . , Sk not required to be pairwise disjoint but
for each i = 1, . . . , k the subset Si is required to S0 in exactly one city. The present
version is due to Grötschel, and Padberg (1979a, 1979b), who have shown that it prop-
erly subsumes the original theme; we follow them in referring to S0 as the handle of the
comb and referring to S1, . . . , Sk as its teeth.

After subtour inequalities, combs are the most common class of inequalities that have
been used as cuts in TSP computations. Unlike subtours, however, no polynomial-time
exact separation algorithm is known for this class; establishing the complexity of comb
separation is an important open problem in the TSP (it is not known to be NP -hard).
Recent progress on comb separation has been made by Letchford and Lodi (2002), giv-
ing a polynomial-time separation algorithm for the class of combs satisfying, for each
i = 1, . . . k, either |Si ∩ S0| = 1 or |Si − S0| = 1. Their result generalizes the Padberg
and Rao (1980) exact separation algorithm for blossom inequalities, that is, the case
where |Si | = 2 for each i = 1, . . . , k. (Blossoms were defined by Edmonds (1965) in
connection with two-matchings. See also Pulleyblank (1973).)

Computer codes for the TSP have relied on heuristics for comb separation, often
combined with the Padberg-Rao exact algorithm for blossoms. Comb heuristics based
on shrinking subsets of cities, followed by application of the Padberg-Rao algorithm,
are described in Padberg and Grötschel (1985) and in Grötschel and Holland (1991);
heuristics based on the structure of the graph G1/2 having vertex-set V and edge-set
{e : 0 < x∗

e < 1} are described in Padberg and Hong (1980), in Padberg and Rinaldi
(1990b) , and in Naddef and Thienel (2002a). (Related separation algorithms can be
found in Applegate et al. (1995) , Fleischer and Tardos (1999) , and Letchford (2000).)

In our cutting-plane implementation for large-scale TSP instances, we use fast and
simple heuristics for blossom inequalities, relying on the techniques described in the
next section to extend the blossoms to more general comb inequalities.

Padberg and Hong (1980) propose a blossom-separation algorithm that builds the
graph G1/2 (as described above), and examines the vertex-sets V1, . . . , Vq of the con-
nected components of G1/2. If for some i in {1, . . . , q} the set of edges

T = {e : e ∩ Vi �= ∅, e − Vi �= ∅, x∗
e = 1}

has odd cardinality, then the blossom inequality with handle Vi and with teeth consisting
of the sets of endpoints of T is violated by x∗. We refer to this technique for finding
blossoms as the odd-component heuristic. (Variants of this method can be found in Hong
(1972) and in Land (1979).)

Combining the odd-component heuristic with the subtour separation routines de-
scribed in Section 2 produces the result

Gap to Optimal
≤ 0.3387%

on our 100,000-city instance. To obtain this result, we ran the separation algorithms until
they returned without any violated cuts. The addition of the blossom inequalities to the
mix of cuts closed over half of the gap between the subtour bound and the length of the
best tour we know.

104 D. Applegate et al.

The odd-component heuristic for blossoms suffers from the same problem as the
connected-component heuristic for subtours we discussed in Section 2.2, namely, small
perturbations in x∗ can hide the odd components that make up the handles of the blos-
soms. We do not have an analogue of the parametric connectivity procedure in this case,
but Grötschel and Holland (1987) proposed a method for handling a fixed perturbation
ε in the heuristic. Their idea is to consider as possible handles the vertex-sets of the
components of the graph Gε having vertices V and edges {e : ε ≤ x∗

e ≤ 1 − ε}. Let Vi
denote the vertex-set of such a component, and let e1, . . . , et be the edges in the set

{e : e ∩ Vi �= ∅, e − Vi �= ∅, x∗
e > 1 − ε}

in a nonincreasing order of x∗
e ; if t is even, then et+1 is the edge in

{e : e ∩ Vi �= ∅, e − Vi �= ∅, x∗
e < ε}

with the greatest x∗
e and t is incremented by one; now t is odd. For each odd integer k

from 1 up to t such that

x∗(Vi, V − Vi)+
k∑

j=1

x∗(ej , V − ej) < 3k + 1,

Grötschel and Holland find a subtour inequality or a blossom inequality violated by
x∗. If two of the edges ej intersect inside Vi , then these two edges are removed from
the collection and their intersection is deleted from Vi ; if two of the edges ej intersect
outside Vi , then these two edges are removed from the collection and their intersection
is added from Vi . Eventually, the collection consists of an odd number of disjoint edges;
if there are at least three, then they form the teeth of a violated blossom inequality; if
there is just one, then the handle alone yields a violated subtour inequality.

We have implemented a variation of the Grötschel-Holland heuristic, where we con-
sider only k = t or (if x∗(et−1, V − et−1)+ x∗(et , V − et) < 6) k = t − 2; in choosing
the value of ε, we follow the recommendation of Grötschel and Holland and set ε = 0.3.
Using this algorithm allows us to produce the result

Gap to Optimal
≤ 0.3109%

for our 100,000-city instance. Here, we combined the Grötschel-Holland heuristic, the
odd-component heuristic, and the subtour separation heuristics, running the cutting-
plane procedures until no further cuts were produced.

4. Tightening and teething

Watching our implementation of the cutting-plane method run, we have observed that
optimal solutions x∗ of the successive LP relaxations often react to each new cut we add
by shifting the defect prohibited by the cut to an area just beyond the cut’s control. An
obvious remedy is to respond to each slight adjustment of x∗ with slight adjustments of
our cuts. In this section we describe two methods for making these adjustments

Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems 105

To describe our cut-alteration procedures, it will be convenient to introduce standard
notation for describing the types of cuts we consider in our computer code.

A hypergraph is an ordered pair (V ,F) such that F is a family of (not necessarily
distinct) subsets of V ; the elements of F are called the edges of the hypergraph. Given
a hypergraph (V ,F) denoted H, we write

H ◦ x =
∑

(x(S, V − S) : S ∈ F)

and we letµ(H) stand for the minimum of H◦x taken over the incidence vectors of tours
through V . Every linear inequality satisfied by all the incidence vectors of tours through
V is the sum of a linear combination of equations (4) and a hypergraph inequality,

H ◦ x ≥ t

with t ≤ µ(H).
We express all cutting planes used in our computer code as hypergraph inequali-

ties. For example, if H = (V ,F) is a comb with subsets F = {S0, S1, . . . , Sk}, then
µ(H) = 3k + 1 and H ◦ x ≥ 3k + 1 is the corresponding comb inequality.

4.1. Tightening an inequality

Let H be a hypergraph and let E1, E2, . . . Em be the edges of H. For each subset I of
{1, 2, . . . , m}, we set

α(I,H) =
⋂

i∈I
Ei −

⋃

i �∈I
Ei ;

we refer to each nonempty α(I,H) as an atom of H. We write H � H′ to signify that
H and H′ are hypergraphs with the same set of vertices and the same number of edges
such that α(I,H′) �= ∅ whenever α(I,H) �= ∅; it is not difficult to see that

H � H′ implies µ(H′) ≥ µ(H).

By tightening a hypergraph H0, we mean attempting to modify H0 in such a way that
the resulting hypergraph, H, satisfies

H0 � H and H ◦ x∗ < H0 ◦ x∗. (8)

Here, “attempting” and “modify” are the operative words: by tightening, we do not mean
finding a solution H of (8). Rather, we mean a swift and not necessarily exhaustive search
for a solution H of (8) such that each edge of H is either identical with the corresponding
edge of H0, or it differs from it in just a few elements.

When the edges of H are E1, . . . Em and the edges of H′ are E′
1, . . . E

′
m, we write

H′ ≈ H to signify that there is a subscript j such that Ei,E′
i are identical whenever

i �= j and differ in precisely one element when i = j . Our starting point for tightening
a prescribed hypergraph H0 is the greedy search specified in Algorithm 4.1.

106 D. Applegate et al.

Algorithm 4.1 Greedy search.

H = H0;
repeat H′ = hypergraph that minimizes H′ ◦ x∗

subject to H0 � H′ and H′ ≈ H;
if H′ ◦ x∗ < H ◦ x∗ then H = H′ else return H end

end

One trouble with greedy search is that it terminates as soon as it reaches a local
minimum, even though a better solution may be just around the corner. One remedy is
to continue the search even when H′ ◦ x∗ ≥ H ◦ x∗; now the best H found so far is not
necessarily the current H, and so it has to be stored and updated; furthermore, measures
that make the search terminate have to be imposed. In our variation on this theme, the
search terminates as soon as H′ ◦ x∗ > H ◦ x∗ (we prefer missing a solution of (8) to
spending an inordinate amount of time in the search and letting H stray far away from
H0), but it may go on when H′ ◦x∗ = H ◦x∗. We don’t have to worry about storing and
updating the best H found so far (this H is our current H), but we still have to ensure
that the modified search terminates.

Consider a vertex v of H and an edge Ei of H. The move (v, i) is the replacement
of Ei by Ei ∪ {v} in case v �∈ Ei and by Ei − {v} in case v ∈ Ei . In this terminology,
H′ ≈ H if and only if H′ can be obtained from H by a single move; with H ⊕ (v, i)

standing for the hypergraph obtained from H by move (v, i) and with

�(v, i) =
{
x∗({v}, Ei)− 1 if v �∈ Ei,
1 − x∗({v}, Ei) if v ∈ Ei,

we have
(H ⊕ (v, i)) ◦ x∗ = H ◦ x∗ − 2�(v, i).

In each iteration of our modified greedy search, we find a move (v, i) that maximizes
�(v, i) subject to H0 � H ⊕ (v, i). If �(v, i) > 0, then we substitute H ⊕ (v, i) for
H; if �(v, i) < 0, then we return H; if �(v, i) = 0, then we either substitute some
H⊕ (w, j)with H0 � H⊕ (w, j) and�(w, j) = 0 for H or return H. More precisely,
we classify all the moves (v, i) with �(v, i) = 0 into three categories by assigning to
each of them a number χ(v, i) in {0, 1, 2}. If

max{�(v, i) : H0 � H ⊕ (v, i)} = 0,

then we find a move (w, j) that maximizes χ(w, j) subject to H0 � H ⊕ (w, j) and
�(w, j) = 0; if χ(w, j) > 0, then we substitute H ⊕ (w, j) for H; if χ(w, j) = 0,
then we return H.

To describe this policy in different terms, let us write

(�1, χ1) ≺ (�2, χ2) to mean that �1 < �2 or else �1 = �2 = 0, χ1 < χ2.

(Note that this ≺ is a partial order similar to, but not identical with, the lexicographic
order on all the pairs (�, χ): in ≺, the second component of (�, χ) is used to break ties

Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems 107

only if the first component equals zero.) In each iteration of our modified greedy search,
we find a move (v, i) that

maximizes (�(v, i), χ(v, i)) subject to H0 � H ⊕ (v, i)

in the sense that no move (w, j) with H0 � H ⊕ (w, j) has (�(v, i), χ(v, i)) ≺
(�(w, j), χ(w, j)). If (0, 0) ≺ (�(v, i), χ(v, i)), then we substitute H ⊕ (v, i) for H;
if (�(v, i), χ(v, i)) � (0, 0), then we return H.

The values of χ(v, i) are defined in Algorithm 4.2.

Algorithm 4.2 Tightening H0.

for = all vertices v and all i = 1, 2, . . . , m
do if v ∈ Ei then χ(v, i) = 1 else χ(v, i) = 2 end
end
H = H0;
repeat = (v, i) = move that

maximizes (�(v, i), χ(v, i)) subject to H0 � H ⊕ (v, i);
if (�(v, i), χ(v, i)) � (0, 0)
then if χ(v, i) = 1

then if �(v, i) = 0
then χ(v, i) = 0;
else χ(v, i) = 2;
end

else χ(v, i) = 1;
end
H = H ⊕ (v, i);

else return H;
end

end

This definition of χ(v, i) is motivated by three objectives:

(i) to make the search terminate,
(ii) to steer the search towards

returning a hypergraph with relatively small edges,
(iii) to improve the chances of

finding a hypergraph H with H ◦ x∗ < H0 ◦ x∗.

To discuss these three items, let S denote the sequence of moves made by the search.
Each move (v, i) in S is either an add, Ei �→ Ei ∪ {v}, or a drop, Ei �→ Ei − {v};
each move (v, i) in S is either improving, with �(v, i) > 0, or nonimproving, with
�(v, i) = 0.

For an arbitrary but fixed choice of v and i, let S∗ denote the subsequence of S that
consists of all the terms of S that equal (v, i). Trivially, adds and drops alternate in S∗;
hence the definition of χ(v, i) guarantees that S∗ does not contain three consecutive

108 D. Applegate et al.

nonimproving terms; since S∗ contains only finitely many improving terms, it follows
that S∗ is finite; in turn, as v and i were chosen arbitrarily, it follows that S is finite.

In S∗, a nonimproving drop cannot be followed by a nonimproving add (which has
� = 0, χ = 0), but a nonimproving add can be followed by a nonimproving drop
(which has� = 0, χ = 1). This asymmetry pertains to objective (ii): our search returns
a hypergraph H such that, for all choices of v and i with v ∈ Ei , we have �(v, i) < 0
or else H0 �� H ⊕ (v, i).

The algorithm prefers nonimproving adds with χ > 0 (these have χ = 2) to non-
improving drops with χ > 0 (these have χ = 1). This asymmetry pertains to objective
(iii): its role is to offset the asymmetry introduced by objective (ii). When no improv-
ing move is immediately available, we let edges of H shift by nonimproving moves in
the hope of eventually discovering an improving move. Nonimproving adds that lead
nowhere can get undone later by nonimproving drops, after which additional nonim-
proving drops may lead to a discovery of an improving move. However, nonimproving
drops that lead nowhere cannot get undone later by nonimproving adds, and so they may
forbid a sequence of nonimproving adds leading to a discovery of an improving move.

The importance of objective (ii) comes from the facts that (a) the LP solver works
faster when its constraint matrix gets sparser and (b) cuts defined by hypergraphs with
relatively small edges tend to have relatively small numbers of nonzero coefficients.
(Part (b) of this argument could be criticized on the grounds that a hypergraph cut is
invariant under complementing an edge and so, in problems with n cities, hypergraph
edges of size k are just as good as edges of size n− k. However, this criticism is just a
quibble: in hypergraphs that we use to supply cuts, edges tend to have sizes far smaller
than n/2.)

To implement the instruction

(v, i) = move that
maximizes (�(v, i), χ(v, i)) subject to H0 � H ⊕ (v, i),

we maintain

– a priority queue Q of all pairs (w, j) such that
(�(w, j), χ(w, j)) � (0, 0) and H0 � H ⊕ (w, j);

to speed up the update Q after each iteration, we maintain a number of auxiliary objects.
Call vertices v and w neighbors if x∗

vw > 0 and write

V ∗(H) = {w : w belongs to or has a neighbor in an edge of H }.

We keep track of

– a superset V ∗ of V ∗(H)

initialized as V ∗(H0) and updated by V ∗ = V ∗ ∪ V ∗(H) after each iteration; for each
w in V ∗, we maintain

– the values of (�(w, j), χ(w, j)) in an array of length m.

(Note that each w outside V ∗ has (�(w, j), χ(w, j)) = (−1, 2) for all j .) In addition,
we store

Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems 109

– the family A of all sets I such that α(I,H0) is an atom of H0;

for each I in A, we maintain

– a doubly linked list A(I) that holds the elements of α(I,H) ∩ V ∗

(the only I in A that may have α(I,H) �⊆ V ∗ is the empty set, which labels the exterior
atom of H); for each w in V ∗, we define I (w) = {j : w ∈ Ej } and maintain

– a pointer a(w) to A(I (w)), with a(w) = NULL if I (w) �∈ A.

Initializing all this information and updating it after each iteration is a routine task;
we will discuss its details only for the sake of clarity.

Inserting a new vertex w into V ∗ – with �(w, j) and χ(w, j) set as if w remained
outsideV ∗ – is a simple operation; for convenience, we set it apart as function Insert(w)
defined in Algorithm 4.3. The membership of a move (w, j) in Q may change after each

Algorithm 4.3 Insert(w).

V ∗ = V ∗ ∪ {w};
for j = 1, 2, . . . m do �(w, j) = −1, χ(w, j) = 2 end

change of H. Algorithm 4.4 defines a function Membership(w, j), that, given a move
(w, j) such that w ∈ V ∗, inserts (w, j) into Q or deletes it from Q as necessary. The
initialization defined in Algorithm 4.5 replaces the first four lines of Algorithm 4.2; the
update defined in Algorithm 4.6 replaces the line

H = H ⊕ (v, i);

of Algorithm 4.2; the current H is represented by χ since

Ej = {w ∈ V ∗ : χ(w, j) = 1}.

Algorithm 4.4 Membership(w, j).

if a(w) points to a list that includes only one item
then if (w, j) ∈ Q then delete (w, j) from Q end
else if (�(w, j), χ(w, j)) � (0, 0)

then if (w, j) �∈ Q then insert (w, j) into Q end
else if (w, j) ∈ Q then delete (w, j) from Q end
end

end

We apply the tightening procedure in our code in two ways. Firstly, we scan the cuts
that we currently have in our LP and try tightening each of them in turn. Secondly, if a
scan of the list of inequalities we maintain in a pool (inequalities that have at one time
been added to the LP, but may no longer be present; see Section 6), does not produce

110 D. Applegate et al.

Algorithm 4.5 Initialization.

V ∗ = ∅;
for i = 1, 2, . . . , m
do for all v in Ei

do if v �∈ V ∗ then Insert(v) end
χ(v, i) = 1;
for all neighbors w of v
do if w �∈ V ∗ then Insert(w) end
end

end
end

A = ∅;
for all v in V ∗
do I = {i : χ(v, i) = 1};

if I �∈ A
then add I to A and initialize an empty list A(I);
end
insert v into A(I) and make a(v) point to A(I);

end

Q = ∅;
for all v in V ∗
do for all neighbors w of v

do if w ∈ V ∗
then for i = 1, 2, . . . m

do if χ(w, i) �= χ(v, i)

then �(v, i) = �(v, i)+ x∗
vw;

end
end

end
end
for i = 1, . . . , m do Membership(v, i) end

end

sufficiently many cuts then we try tightening each one that is within some fixed tolerance
ε of being violated by the current x∗ (we use ε = 0.1).

Using these separation routines in combination with the algorithms presented in
Section 2 and in Section 3, we obtained the result

Gap to Optimal
≤ 0.1722%

for our 100,000-city instance.

Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems 111

Algorithm 4.6 Update.

if a(v) �= NULL
then A = the list that a(v) points to;

delete v from A;
if |A| = 1
then w = the unique vertex in A;

for j = 1, . . . , m do Membership(w, j) end
end

end

I = {j : χ(v, j) = 1};
if I ∈ A
then insert v into A(I) and make a(v) point to A(I);

if |A(I)| = 2
then w = the unique vertex in A(I) other than v;

for j = 1, . . . , m do Membership(w, j) end
end

else a(v) = NULL;
end

�(v, i) = −�(v, i);
Membership(v, i);

for all neighbors w of v
do if w �∈ V ∗

then Insert(w);
insert w into A(∅) and make a(w) point to A(∅);

end
if χ(w, i) ≡ χ(v, i) mod 2
then �(w, i) = �(w, i)− x∗

vw;
else �(w, i) = �(w, i)+ x∗

vw;
end
Membership(w, i);

end

4.2. Teething a comb inequality

The Grötschel-Holland heuristic mentioned in Section 3 builds a blossom inequality
with a prescribed handle by attaching to this handle a set of two-node teeth selected in
a greedy way. Its generalization would replace the set of two-node teeth of any comb
inequality by an optimal set of two-node teeth. Unfortunately, such a procedure would

112 D. Applegate et al.

have to take care to avoid teeth with nonempty intersection. Fortunately, if a two-node
tooth intersects another tooth in a single node, then an even stronger inequality can be
obtained by adjusting the hypergraph (or discovering a violated subtour inequality); if
a two-node tooth intersects another tooth in more than a single node, then it must be
contained in the other tooth. Concorde exploits this relationship in an algorithm which
we refer to as teething.

More precisely, we say that a tooth is big if its size is least three, and small if its size
is two; given a comb H0, we set

�(H0) = min{H ◦ x∗ − µ(H) : H is a comb such that
H and H0 have the same handle and
all big teeth of H are teeth of H0};

teething a comb H0 means finding either a comb H such that all big teeth of H are teeth
of H0 and

if �(H0) ≤ 0 then H ◦ x∗ − µ(H) ≤ �(H0)

or else a subtour inequality violated by x∗.
As a preliminary step in teething, we test the input H0 for the property

x(S, V − S) ≥ 2 whenever S is an edge of H0; (9)

if (9) fails, then we have found a subtour inequality violated by x∗. The remainder of
the algorithm consists of three parts.

The first part involves the notion of a pseudocomb, which is just like a comb ex-
cept that its small teeth are allowed to intersect – but not to be contained in – other
teeth. More rigorously, a pseudocomb is a hypergraph with edge-set {H } ∪ T such
that

• if T ∈ T , then T ∩H �= ∅ and T −H �= ∅,
• if T1, T2 ∈ T , T1 �= T2, and |T1| ≥ 3, |T2| ≥ 3, then T1 ∩ T2 = ∅,
• if T1, T2 ∈ T and |T1| = 2, |T2| ≥ 3, then T1 �⊂ T2,
• |T | is odd.

Given an arbitrary hypergraph H with edge-set E , we write

ν(H) =
{

3|E | − 2 if |E | is even,
3|E | − 3 if |E | is odd;

note that ν(H) = µ(H) whenever H is a comb. In the first part, we

(i) find a pseudocomb H1 that minimizes H1 ◦ x∗ − ν(H1)

subject to the constraints that H1 and H0 have the same handle
and that all big teeth of H1 are teeth of H0.

Trivially, H1 ◦ x∗ − ν(H1) ≤ �(H0). If H1 ◦ x∗ − ν(H1) ≥ 0, then we give up; else
we proceed to the second part. This part involves the notion of a generalized comb,
which is just a comb without some of its teeth. More rigorously, a generalized comb is
a hypergraph with edge-set {H } ∪ T such that

Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems 113

• H �= ∅ and H �= V ,
• if T ∈ T , then T ∩H �= ∅ and T −H �= ∅,
• if T1, T2 ∈ T and T1 �= T2, then T1 ∩ T2 = ∅.

In the second part, we

(ii) find either a generalized comb H2 such that
all teeth of H2 are teeth of H1 and
H2 ◦ x∗ − ν(H2) ≤ H1 ◦ x∗ − ν(H1)

or else a subtour inequality violated by x∗;

in the third part, we

(iii) we find either a comb H such that
all teeth of H are teeth of H2 and
H ◦ x∗ − µ(H) ≤ H2 ◦ x∗ − ν(H2)

or else a subtour inequality violated by x∗.

To discuss implementations of part (i), let H denote the handle of H0, set

S = {T : |T ∩H | = 1, |T −H | = 1},

and let B denote the set of big teeth of H0. In this notation, we may state the problem of
finding H1 as

minimize
∑
T ∈T (x

∗(T , V − T)− 3)
subject to T ⊆ S ∪ B,

T1 �⊂ T2 whenever T1, T2 ∈ T ,
|T | ≡ 1 mod 2.

(10)

Now let us write

S∗ = {e ∈ S : x∗
e > 0}.

We claim that (10) has a solution T such that T ⊆ S∗ ∪B, and so the problem of finding
H1 can be stated as

minimize
∑
T ∈T (x

∗(T , V − T)− 3)
subject to T ⊆ S∗ ∪ B,

T1 �⊂ T2 whenever T1, T2 ∈ T ,
|T | ≡ 1 mod 2.

(11)

To justify this claim, note that property (9) with S = H guarantees S∗ �= ∅ and consider
an arbitrary solution T of (10). If some T1 in S −S∗ belongs to T , then x(T1, V −T1) =
4 > x(T , V − T) for all T in S∗; hence T must include a set T2 other than T1; since
property (9) with S = T2 guarantees x(T2, V − T2) ≥ 2, the removal of T1 and T2
from T yields another solution of (10). Iterating this process, we arrive at the desired
conclusion.

Concorde’s way of solving problem (11) is specified in Algorithm 4.7. The initial
part of this algorithm computes sets R0(i), R1(i) with i = 0, 1, 2, . . . , k such that each
Rt(i) with 1 ≤ i ≤ k

114 D. Applegate et al.

Algorithm 4.7 First part of a teething iteration.

H = the handle of H0;
T1, T2, . . . , Tk = the big teeth of H0;
for i = 0, 1, . . . k do ρ0(i) = 0, ρ1(i) = +∞, R0(i) = R1(i) = ∅ end
for all vertices u in H
do for all vertices v such that x∗

uv > 0 and v �∈ H
do if u, v ∈ Tj for some j then i = j else i = 0 end

P0 = R0(i), P1 = R1(i), ν0 = ρ0(i), ν1 = ρ1(i);
if ν1 + (1 − 2x∗

uv) < ν0
then ρ0(i) = ν1 + (1 − 2x∗

uv), R0(i) = P1 ∪ {{u, v}};
end
if ν0 + (1 − 2x∗

uv) < ν1
then ρ1(i) = ν0 + (1 − 2x∗

uv), R1(i) = P0 ∪ {{u, v}};
end

end
end

for i = 1, 2, . . . , k
do if x(Ti, V − Ti)− 3 < ρ1(i)

then R1(i) = {Ti}, ρ1(i) = x(Ti, V − Ti)− 3
end
P0 = R0(0), P1 = R1(0), ν0 = ρ0(0), ν1 = ρ1(0);
if ν1 + ρ1(i) < ν0 + ρ0(i)

then ρ0(0) = ν1 + ρ1(i), R0(0) = P1 ∪ R1(i);
else ρ0(0) = ν0 + ρ0(i), R0(0) = P0 ∪ R0(i);
end
if ν0 + ρ1(i) < ν1 + ρ0(i)

then ρ0(0) = ν0 + ρ1(i), R1(0) = P0 ∪ R1(i);
else ρ0(0) = ν1 + ρ0(i), R1(0) = P1 ∪ R0(i);
end

end
H1 = hypergraph with edge-set {H } ∪ R1(0);

minimizes
∑
T ∈T (x

∗(T , V − T)− 3)
subject to T ⊆ S∗,

T ⊂ Ti whenever T ∈ T ,
|T | ≡ t mod 2

and Rt(0)
minimizes

∑
T ∈T (x

∗(T , V − T)− 3)
subject to T ⊆ S∗,

T �⊂ Ti whenever T ∈ T and 1 ≤ i ≤ k,

|T | ≡ t mod 2.

Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems 115

The i-th iteration of the last for loop computes sets R0(0), R1(0) such that Rt(0)

minimizes
∑
T ∈T (x

∗(T , V − T)− 3)
subject to T ⊆ S∗ ∪ B,

T1 �⊂ T2 whenever T1, T2 ∈ T ,
T �⊆ Tj whenever T ∈ T and i < j ≤ k,

|T | ≡ t mod 2.

Lemma 1. Let A,B and T1, . . . Ts be distinct sets such that

Tj ⊆ (A− B) ∪ (B − A) and |Tj ∩ (A− B)| = |Tj ∩ (B − A)| = 1

whenever 1 ≤ j ≤ s. Then

x(A ∪ B,V − (A ∪ B))+ x(A ∩ B,V − (A ∩ B))

≤ x(A, V − A)+ x(B, V − B)+
s∑

j=1

x(Tj , V − Tj)− 4s.

Proof. Observe that

∑
(x∗
e : e ⊆ A)+

∑
(x∗
e : e ⊆ B)+

s∑

j=1

∑
(x∗
e : e ⊆ Tj)

≤
∑

(x∗
e : e ⊆ A ∪ B)+

∑
(x∗
e : e ⊆ A ∩ B).

Substituting |S| − 1
2x

∗(S, V − S) for each
∑
(x∗
e : e ⊆ S) in this inequality yields the

desired result. ��
Let us use Lemma 1 to show that Algorithm 4.8 maintains the following invariant:

x∗(H, V −H)+
∑

T ∈T
x∗(T , V − T)

≤
{

H1 ◦ x∗ − ν(H1)+ 3|T | + 1 if |T | is odd,
H1 ◦ x∗ − ν(H1)+ 3|T | if |T | is even.

(12)

For this purpose, consider first the change of H and T made by an iteration of the first
for loop. Lemma 1 with A = H , B = T ′, and T1, . . . Ts the sets in T distinct from
T ′ and contained in H ∪ T ′ guarantees that the left-hand side of (12) drops by at least
4s + 2. If s is odd, then the right-hand side of (12) drops by 3(s + 1); if s is even, then
the right-hand side of (12) drops by at most 3(s + 1)+ 1; in either case, the right-hand
side of (12) drops by at most 4s + 2. Hence all iterations of the first for loop maintain
invariant (12); the same argument with V −H in place ofH shows that all iterations of
the second for loop maintain invariant (12).

In particular, if Algorithm 4.8 gets around to constructing H2, then

H2 ◦ x∗ − ν(H2) ≤ H1 ◦ x∗ − ν(H1).

Note that (12) and the assumption H1 ◦x∗−ν(H1) < 0 guarantee that Algorithm 4.8
maintains the invariant

116 D. Applegate et al.

Algorithm 4.8 Second part of a teething iteration.

H = the handle of H1;
T = the set of all teeth of H1;
for all vertices v outside H
do if v belongs to at least two sets in T

then T ′ = largest set in T such that v ∈ T ′;
if x(T ′ ∩H,V − (T ′ ∩H)) ≥ 2
then H = H ∪ T ′;

T = {T ∈ T : T �⊆ H };
else return T ′ ∩H ;
end

end
end
for all vertices v in H
do if v belongs to at least two sets in T

then T ′ = largest set in T such that v ∈ T ′;
if x(T ′ −H,V − (T ′ −H)) ≥ 2
then H = H − T ′;

T = {T ∈ T : T ∩H �= ∅};
else return T ′ −H ;
end

end
end
H2 = the hypergraph with edge-set {H } ∪ T ;

• T �= ∅;
trivially, it maintains the invariant

• if T ∈ T , then T ∩H �= ∅ and T −H �= ∅.
The first for loop changes H and T so that

if T1, T2 ∈ T and T1 �= T2, then (T1 ∩ T2)−H = ∅;
the second for loop changes H and T so that

• if T1, T2 ∈ T and T1 �= T2, then T1 ∩ T2 = ∅.
To summarize, if the algorithm gets around to constructing H2, then H2 is a generalized
comb with at least one tooth.

A practical variation on Algorithm 4.8 takes the conditions

x∗(T ′ ∩H,V − (T ′ ∩H)) ≥ 2 and x∗(T ′ −H,V − (T ′ −H)) ≥ 2

for granted: skipping the persistent tests speeds up the computations. If the resulting
hypergraph H2 satisfies

H2 ◦ x∗ − ν(H2) ≤ H1 ◦ x∗ − ν(H1),

Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems 117

then all is well and we proceed to part (iii); else we simply give up. In the latter case,
we know that some big tooth T of H1 satisfies

x∗(T ∩H,V − (T ∩H)) < 2 or x∗(T −H,V − (T −H)) < 2;

the option of finding this T now remains open, even though its appeal may be marred by
the fact that violated subtour inequalities can be spotted reasonably fast from scratch.

Part (iii) of teething is trivial. If H2 has at most two teeth, then

H2 ◦ x∗ < 2(1 + |T |),

and so at least one edge S of H2 has x∗(S, V − S) < 2. If the number of teeth of H2
is at least three and odd, then we may set H = H2. If the number of teeth of H2 is at
least four and even, then we may let H be H2 with an arbitrary tooth deleted: we have
µ(H) = ν(H2) − 2 and (9) guarantees that H ◦ x∗ ≤ H2 ◦ x∗ − 2; in this case, the
number of distinct cuts we obtain is the number of teeth of H2.

In our code, as a heuristic separation algorithm, we apply teething to each comb
inequality in the current LP. Adding this routine to our mix of cuts improves the bound
on our 100,000-city instance to

Gap to Optimal
≤ 0.1671%

5. Local cuts

The development of the cut-finding techniques of Section 2 and Section 3 conforms to
the following paradigm:

1. describe a class C of linear inequalities that are satisfied by the set S of incidence
vectors of all the tours through the n cities and then

2. design an efficient (exact or heuristic) separation algorithm for C.

The cut-finding technique of the present section deviates from this paradigm: the kinds
of cuts it finds are unspecified and unpredictable.

The idea is to first map S and x∗ to a space of very low dimension by some suitable
linear mapping φ and then, using standard general-purpose methods, to look for linear
inequalities

aT x ≤ b (13)

that are satisfied by all points of φ(S) and violated by φ(x∗): every such inequality
yields a cut,

aT φ(x) ≤ b, (14)

separating S from x∗. (Boyd’s (1993, 1994) variation on a theme by Crowder, Johnson,
and Padberg (1983) can also be outlined in these terms, with φ a projection onto a small
set of coordinates, but his general-purpose method for finding cuts in the low-dimen-
sional space is radically different from ours.) In our implementation of this idea, φ is

118 D. Applegate et al.

defined by a partition of V into pairwise disjoint nonempty sets V0, V1, . . . , Vk and can
be thought of as shrinking each set Vi into a single node: formally,

φ : Rn(n−1)/2 → R(k+1)k/2

is defined by φ(x) = x with

xij = x(Vi, Vj) whenever 0 ≤ i < j ≤ k.

Let us write

V = {0, 1, . . . , k}.
With φ defined by shrinking each set Vi into the single node i, the change of variable
from x in (13) to x in (14) is particularly easy to implement when (13) is a hyper-
graph inequality: substitution from the definitions of xij converts each linear function
x(Q, V −Q) to the linear function x(Q, V −Q) whereQ is the set of all cities that are
mapped into Q by the function that shrinks V onto V .

Shrinking V onto V reduces each tour through V to a spanning closed walk through
V ; it reduces the incidence vector x of the tour to a vector x such that

• each xe is a nonnegative integer,
• the graph with vertex-set V and edge-set {e : xe > 0} is connected,
• ∑

(xe : v ∈ e) is even whenever v ∈ V ;

we will refer to the set of all the vectors x with these three properties as tangled tours
through V . This notion, but not the term, was introduced by Cornuéjols, Fonlupt, and
Naddef (1985); they refer to the convex hull of the set of all tangled tours through a
prescribed set as the graphical traveling salesman polytope.

For a particular choice of φ, finding a hypergraph inequality that is satisfied by all
tangled tours through V and violated by x∗ – if such an inequality exists at all – is
relatively easy; we try many different choices of φ; the resulting scheme is summarized
in Algorithm 5.1.

Our computer code deviates from the scheme of Algorithm 5.1 in minor ways. When
it comes to including a new cut in L, we are more selective than Algorithm 5.1 sug-
gests. We accept only cuts that have integer coefficients and integer right-hand sides; to
produce such cuts, our variation on the theme of Algorithm 5.1 uses integer arithmetic
whenever necessary. In addition, cuts that are violated only slightly by x∗ are of little
use to a cutting-plane algorithm; instead of adding such a weak cut to L, we move on to
the next choice of V0, V1, . . . , Vk as if x∗ belonged to the graphical traveling salesman
polytope on V .

In certain additional cases, we may also fail to return a cut separating x∗ from all
tangled tours through V , even though x∗ lies well outside the graphical traveling sales-
man polytope on V . This happens whenever computations using integer arithmetic are
about to create overflow and whenever the number of iterations or recursive calls of
some procedure has exceeded a prescribed threshold. In such circumstances, we once
again move on to the next choice of V0, V1, . . . , Vk just as if x∗ belonged to the graphical
traveling salesman polytope on V .

Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems 119

Algorithm 5.1 A scheme for collecting TSP cuts.

initialize an empty list L of cuts;
for selected small integers k and

partitions of V into nonempty sets V0, V1, . . . , Vk
do x∗ = the vector obtained from x∗ by shrinking each Vi into singleton i;

V = {0, 1, . . . , k};
if x∗ lies outside the graphical traveling salesman polytope on V
then find a hypergraph inequality that is

satisfied by all tangled tours through V and violated by x∗,
change its variable from x to x, and
add the resulting hypergraph inequality to L;

end
end
return L;

5.1. Making choices of V0, V1, . . . , Vk

Concorde’s choices of V0, V1, . . . , Vk in Algorithm 5.1 are guided by x∗ in a way sim-
ilar to that used by Christof and Reinelt (1996) in their algorithm for finding cuts that
match templates from a prescribed large catalog. First, it constructs once and for all an
equivalence relation on V in such a way that each equivalence class V � of this relation
satisfies

x∗(V �, V − V �) = 2;
then it makes many different choices of V0, V1, . . . , Vk in such a way that each of
V1, . . . , Vk is one of these equivalence classes and V0 = V − (V1 ∪ . . . ∪ Vk).

WithW standing for the set of the equivalence classes onV , the first stage amounts to
preshrinking V ontoW ; making each of the many different choices of V0, V1, . . . , Vk in
the second stage means choosing a small subset ofW and shrinking the entire remainder
ofW onto a single point. In terms of the preshrunk setW , each choice of V0, V1, . . . , Vk
in the second stage zooms in onto a relatively small part of the problem – typically k is
at most thirty or so and |W | may run to hundreds or thousands – and effectively discards
the rest. For this reason, we developed the habit of referring to the cuts produced by
Algorithm 5.1 as local cuts. In terms of the original V , each of the sets V1, . . . , Vk could
be quite large, which makes the qualifier “local” a misnomer. Still, a crisp label for the
cuts produced by Algorithm 5.1 is convenient to have and “local cuts” seems to be as
good a name as any other that we managed to think up.

The equivalence relation is constructed by iteratively shrinking two-point sets into a
single point. At each stage of this process, we have a setW and a mapping π : W → 2V

that defines a partition of V into pairwise disjoint subsets π(w) with w ∈ W . Initially,
W = V and each π(w) is the singleton {w}; as long as there are distinct elements u, v,w
of W such that

x∗(π(u), π(v)) = 1 and x∗(π(u), π(w))+ x∗(π(v), π(w)) = 1, (15)

120 D. Applegate et al.

we keep replacing π(u) by π(u) ∪ π(v) and removing v from W ; when there are no
u, v,wwith property (15), we stop. (During this process, we may discover pairsu, vwith
x∗(π(u), π(v)) > 1, in which case x∗ violates the subtour inequality x(Q, V −Q) ≥ 2
with Q = (π(u) ∪ π(v)).

To make the many different choices of V1, . . . , Vk , we first set the value of a parame-
ter t that nearly determines the value of k in the sense that t−3 ≤ k ≤ t . For large-scale
instances we simply set t = tmax, where tmax is a prescribed integer (at least 8). For
smaller instances, we let the value of t range between 8 and tmax. More precisely, the
search always begins with t = 8. Whenever a value of t is set, Concorde adds all the
resulting cuts produced by Algorithm 5.1 to the LP relaxation of our problem and it
solves the tightened LP relaxation; if the increase in the value of the relaxation is not
satisfactory and t < tmax, then the next iteration takes place with t incremented by one.

For each w in W , we choose a subset C of W so that w ∈ C and t − 3 ≤ |C| ≤ t ;
the corresponding V1, . . . , Vk are the π(v)with v ∈ C. The choice of C is guided by the
graph with vertex-set W , where u and v are adjacent if and only if x∗(π(u), π(v)) > ε

for some prescribed zero tolerance ε: starting at w, we carry out a breadth-first search
through this graph, until we collect a set C of t − 3 vertices. If there are any vertices u
outside this C such that x∗(π(u), π(v)) = 1 for some v in C, then we keep adding these
vertices u to C as long as |C| ≤ t .

It seems plausible that such a crude way of choosing C can be improved. However,
we found its performance satisfactory; none of the alternatives that we tried appeared to
work better.

5.2. Testing the if condition in Algorithm 5.1

Each choice of V0, V1, . . . , Vk yields an x∗, the vector obtained from x∗ by shrinking
each Vi into singleton i; this x∗ defines a set of tangled tours through V = {0, 1, . . . , k},
which we call strongly constrained; specifically, a tangled tour is strongly constrained
if, and only if,

xe = 0 for all e such that x∗
e = 0,

xe = 1 for all e such that x∗
e = 1 and e ⊂ {1, 2, . . . , k},

∑
(xe : u ∈ e) = 2 for all u in {1, 2, . . . , k}.

Since every tangled tour x satisfies the inequalities

xe ≥ 0 for all e,
∑
(xe : u ∈ e) ≥ 2 for all u,

x(e, V − e) ≥ 2 for all e,

and since ∑
(x∗
e : u ∈ e) = 2 for all u in {1, 2, . . . , k},

x∗ belongs to the graphical traveling salesman polytope on V (defined as the convex
hull of the set of all tangled tours through V) if and only if it belongs to the convex hull
of the set of all strongly constrained tangled tours through V . Algorithm 5.2, given x∗,
returns either

Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems 121

• a vector a and a scalar b such that the inequality aT x ≤ b is satisfied by all strongly
constrained tangled tours through V and violated by x∗

or

• a failure message indicating that x∗ belongs to the convex hull of the set of all
strongly constrained tangled tours through V .

Algorithm 5.2 Testing the if condition in Algorithm 5.1:

if there is a strongly constrained tangled tour x through V
then make x the only specimen in a collection of

strongly constrained tangled tours through V ;
repeat if some linear inequality aT x ≤ b is

satisfied by all x in the collection and violated by x∗
then find a strongly constrained tangled tour x through V

that maximizes aT x;
if aT x ≤ b

then return a and b;
else add x to the collection;
end

else return a failure message;
end

end
else return [0, 0, . . . , 0]T and −1;
end

To sketch our implementation of Algorithm 5.2, let

E1/2 denote the set of all the edges e such that
e ⊂ {1, 2, . . . , k}, x∗

e �= 0, x∗
e �= 1.

The significance of E1/2 comes from the fact that every strongly constrained tangled
tour x satisfies

x0u = 2 − ∑
(xe : e ⊂ {1, 2, . . . , k}, u ∈ e) for all u in {1, 2, . . . , k},

xe = 0 for all e such that e ⊂ {1, 2, . . . , k} and x∗
e = 0,

xe = 1 for all e such that e ⊂ {1, 2, . . . , k} and x∗
e = 1,

and so the condition

some linear inequality aT x ≤ b is
satisfied by all x in the collection and violated by x∗

122 D. Applegate et al.

in Algorithm 5.2 is equivalent to the condition

some linear inequality aT x ≤ b with ae = 0 whenever e �∈ E1/2 is
satisfied by all x in the collection and violated by x∗.

To test this condition, Concorde solves a linear programming problem. With

ψ(x) standing for the restriction of x
on its components indexed by elements of E1/2,

with A the matrix whose columns ψ(x) come from specimens x in the collection, and
with e standing – as usual – for the vector [1, 1, . . . , 1]T whose number of components
is determined by the context, this problem – in variables s, λ,w – reads

maximize s
subject to sψ(x∗)− Aλ+ w = 0,

−s + eT λ = 0,
w ≤ e, (16)

−w ≤ e,

λ ≥ 0.

Since its constraints can be satisfied by setting s = 0, λ = 0,w = 0, problem (16) either
has an optimal solution or else it is unbounded. In the former case, the simplex method
applied to (16) finds also an optimal solution of its dual,

minimize eT(u+ v)

subject to aT ψ(x∗)− b = 1,
−aT A+ beT ≥ 0,
a + u− v = 0,

u ≥ 0, v ≥ 0;

(17)

this optimal solution provides a vector a and a scalar b such that the linear inequality
aT ψ(x) ≤ b is satisfied by all x in the collection and violated by x∗; in fact, a and b

maximize
aT ψ(x∗)− b

‖a‖1

subject to the constraint that aT ψ(x) ≤ b for all x in the collection. In the latter case,
(17) is infeasible, and so no linear inequality is satisfied by all x in the collection and
violated by x∗.

To find specimens x for the collection, we use a function Oracle that, given an
integer vector c, returns either a strongly constrained tangled tour x through V that
maximizes cT x or the message “infeasible” indicating that no tangled tour through V
is strongly constrained. Concorde implements Oracle as two algorithms in tandem: if
a primitive branch-and-bound algorithm fails to solve the instance within a prescribed
number of recursive calls of itself, then we switch to a more sophisticated branch-and-cut
algorithm. To reconcile

• the floating-point arithmetic of the simplex method,
which finds a and b,

with

Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems 123

• the integer arithmetic of Oracle,
which uses a and b,

Concorde approximates the floating-point numbers by rationals with a small common
denominator; for this purpose, it uses the continued fraction method (see, for instance,
Schrijver (1986)).

5.3. Separating x∗ from all tangled tours

If x∗ lies outside the graphical traveling salesman polytope, then Algorithm 5.2 returns
a linear inequality which is satisfied by all strongly constrained tangled tours through V
and violated by x∗. Just converting this inequality into a hypergraph inequality which
is satisfied by all tangled tours through V and violated by x∗ would be easy; we make
the task more difficult by requiring this hypergraph inequality to induce a facet of the
graphical traveling salesman polytope on V . Concorde does it in three phases:

– in Phase 1, we find a linear inequality that
separates x∗ from all moderately constrained tangled tours and
induces a facet of their convex hull.

– in Phase 2, we find a linear inequality that
separates x∗ from all weakly constrained tangled tours and
induces a facet of their convex hull.

– in Phase 3, we find a linear inequality that
separates x∗ from all tangled tours and
induces a facet of their convex hull.

Weakly constrained tangled tours are defined as tangled tours that satisfy
∑
(xe : u ∈ e) = 2 for all u in {1, 2, . . . , k};

moderately constrained tangled tours are defined as weakly constrained tangled tours
that satisfy

xe = 0 for all e such that e ⊂ {1, 2, . . . , k} and x∗
e = 0,

xe = 1 for all e such that e ⊂ {1, 2, . . . , k} and x∗
e = 1;

note that strongly constrained tangled tours are precisely the moderately constrained
tangled tours that satisfy

x0u = 0 for all u in {1, 2, . . . , k} such that x∗
0u = 0.

In Phase 1 and Phase 2, we use a function Oracle that,

given integer vectors c, �, u and a threshold t (an integer or −∞),
returns either

a weakly constrained tangled tour x that maximizes cT x
subject to � ≤ x ≤ u, cT x > t

or
the message “infeasible” indicating that
no weakly constrained tangled tour x satisfies
� ≤ x ≤ u, cT x > t .

124 D. Applegate et al.

This is the same function that is used, with a fixed �, a fixed u, and t = −∞, to find
items x for the collection in Algorithm 5.2.

5.3.1. Phase 1. Moderately constrained tangled tours are like strongly constrained
tangled tours in that every such tangled tour x is determined by its restriction ψ(x) on
E1/2; they are unlike strongly constrained tangled tours in that (unless x∗ violates a
readily available subtour inequality) the set

{ψ(x) : x is a moderately constrained tangled tour}
includes the 1 + |E1/2| vertices of the unit simplex, whereas the set

{ψ(x) : x is a strongly constrained tangled tour}
does not necessarily have full dimension (and may even be empty). This is why we
choose moderately constrained tangled tours as an intermediate stop on the way from
strongly constrained tangled tours to all tangled tours.

Algorithm 5.2 has produced a linear inequality aT ψ(x) ≤ b which is satisfied by all
strongly constrained tangled tours and violated by x∗; since b < aT ψ(x∗) ≤ ||a||1, the
inequality

aT ψ(x)− (||a||1 − b)
∑
(x0u : x∗

0u = 0) ≤ b

is satisfied by all moderately constrained tangled tours and violated by x∗. In Phase 1,
we convert this inequality into a linear inequality that induces a facet of the convex hull
of the set of all moderately constrained tangled tours and is violated by x∗. We start out
with an integer vector a, an integer b, and a (possibly empty) set I such that

– all moderately constrained tangled tours x have aT x ≤ b,
– aT x∗ > b,
– I is an affinely independent set of moderately constrained tangled tours,
– aT x = b whenever x ∈ I.

Algorithm 5.3 maintains these four invariants while adding new elements to I and adjust-
ing a and b if necessary; when |I| reaches |E1/2|, the current cut aT x ≤ b induces a
facet of the convex hull of all moderately constrained tangled tours.

In early iterations of the while loop in Algorithm 5.3, Concorde gets its v and w by
scanning the list of inequalities

xe ≥ 0 such that e ∈ E1/2,

−xe ≥ −1 such that e ∈ E1/2,

x0u ≥ 0 such that u ∈ {1, 2, . . . , k} :

if any of any of these inequalities vT x ≥ w happens to satisfy

vT x = w whenever x ∈ I,

then it provides the v and thew for use, with an arbitrary moderately constrained tangled
tour x0, in the next iteration. If this source dries up and yet |I| < |E1/2|, then Concorde
finds v as a nonzero solution of the system

vT x = 0 for all x in I,

ve = 0 for all e outside E1/2,

Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems 125

Algorithm 5.3 From a cut to a facet-inducing cut:

while |I| < |E1/2|
do find an integer vector v, an integer w, and

a moderately constrained tangled tour x0 such that
• vT x = w whenever x ∈ I,
• some moderately constrained tangled tour x has vT x �= w,

and
• either vT x∗ ≥ w and vT x ≥ w for all moderately constrained

tangled tours x,
or else aT x0 < b and vT x0 = w;

find an integer vector a′, an integer b′, and
a moderately constrained tangled tour x′ such that

• all moderately constrained tangled tours x have a′T x ≤ b′,
• equation a′T x = b′ is a linear combination of

aT x = b and vT x = w,
• a′T x′ = b′ and (aT x′, vT x′) �= (b,w),
• a′T x∗ > b′;

a = a′, b = b′, I = I ∪ {x′};
end
return a and b;

it sets w = 0, and it lets x0 be the moderately constrained tangled tour such that x0
e = 0

for all e in E1/2.
To add new elements to I and to adjust a and b if necessary, Concorde’s implemen-

tation of Algorithm 5.3 uses a function Tilt, which, given integer vectors a, v, integers
b, w, and a moderately constrained tangled tour x0 such that

• if all moderately constrained tangled tours x have vT x ≤ w,
then aT x0 < b and vT x0 = w,

returns a nonzero integer vector a′, an integer b′, and a moderately constrained tangled
tour x′ such that

• all moderately constrained tangled tours x have a′T x ≤ b′,
• inequality a′T x ≤ b′ is a nonnegative linear combination of

aT x ≤ b and vT x ≤ w,
• a′T x′ = b′ and (aT x′, vT x′) �= (b,w).

In the iterations of the while loop in Algorithm 5.3 where v and w are drawn from the
list of inequalities, Concorde calls Tilt (a, b, v,w, x0) for (a′, b′, x′); in the iterations
where v is computed by solving a system of linear equations and w = 0, Concorde
computes

(a+, b+, x +) = Tilt(a, b, v, 0, x0),
(a−, b−, x −) = Tilt(a, b,−v, 0, x0)

126 D. Applegate et al.

and then it sets

a′ = a+, b′ = b+, x′ = x+ if a+T x∗ − b+ ≥ a−T x∗ − b−,
a′ = a−, b′ = b−, x′ = x− otherwise.

Algorithm 5.4 implements Tilt by the Dinkelbach method of fractional programming
(see, for instance, Sect. 5.6 of Craven (1988) or Sect. 4.5 of Stancu-Minasian (1997)).

Algorithm 5.4 Tilt (a, b, v,w, x0):

x = moderately constrained tangled tour that maximizes vT x;
λ = vT x − w, µ = b − aT x;
if λ = 0
then return (v,w, x0);
else if µ = 0

then return (a, b, x);
else return Tilt (a, b, λa + µv, λb + µw, x);
end

end

5.3.2. Phase 2. Let us write

E0 = {e : e ⊂ {1, 2, . . . , k}, x∗
e = 0},

E1 = {e : e ⊂ {1, 2, . . . , k}, x∗
e = 1};

in this notation, a weakly constrained tangled tour x is moderately constrained if and
only if

xe = 0 whenever e ∈ E0 and xe = 1 whenever e ∈ E1.

The linear inequality aT x ≤ b constructed in Phase 1 separates x∗ from all moderately
constrained tangled tours and induces a facet of their convex hull; in Phase 2, we find
integers �e (e ∈ E0 ∪ E1) such that the inequality

aT x + ∑
(�exe : e ∈ E0 ∪ E1) ≤ b + ∑

(�e : e ∈ E1)

separates x∗ from all weakly constrained tangled tours and induces a facet of their convex
hull.A way of computing the�e one by one originated in the work of Gomory (1969) and
was elaborated by Balas (1975), Hammer, Johnson, and Peled (1975), Padberg (1973,
1975), Wolsey (1975a, 1975b), and others; it is known as sequential lifting; its appli-
cation in our context is described in Algorithm 5.5. Both while loops in this algorithm
maintain the invariant

aT x ≤ b induces a facet of the convex hull of
all weakly constrained tangled tours x such that
xe = 0 whenever e ∈ F0 and xe = 1 whenever e ∈ F1.

Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems 127

Algorithm 5.5 Sequential lifting

F0 = E0 , F1 = E1 ;
while F1 �= ∅
do f = an edge in F1;

find a weakly constrained tangled tour xmax that
maximizes aT x subject to
xe = 0 whenever e ∈ F0 ∪ {f },
xe = 1 whenever e ∈ F1 − {f };

replace aT x ≤ b by aT x + (aT xmax − b)xf ≤ aT xmax;
delete f from F1;

end
while F0 �= ∅
do f = an edge in F0;

find a weakly constrained tangled tour xmax that
maximizes aT x subject to
xe = 0 whenever e ∈ F0 − {f },
xf = 1;

replace aT x ≤ b by aT x + (b − aT xmax)xf ≤ b;
delete f from F0;

end

Concorde implements Phase 2 as a streamlined version of Algorithm 5.5, where the
problem of finding xmax may include constraints xe = 0 with e �∈ F0 ∪ F1 and certain
edges may be deleted from F0 without finding xmax and updating aT x ≤ b; for details,
see Sect. 4.4 of Applegate et al. (2001).

5.3.3. Phase 3. Let E denote the edge-set of the complete graph with vertex-set V .
Naddef and Rinaldi (1992) call inequalities

∑
(aexe : e ∈ E) ≥ b (18)

tight triangular if ae ≥ 0 for all e and

min{auw + awv − auv : u �= v, u �= w, v �= w} = 0 for all w;

their arguments can be used to justify the following claims.

Theorem 1. If (18) is satisfied by all weakly constrained tangled tours, if ae ≥ 0 for all
e, and if auw + awv ≥ auv for all choices of distinct u, v,w, then (18) is satisfied by all
tangled tours.

Theorem 2. If a linear inequality induces a facet of the convex hull of all weakly con-
strained tangled tours and if it is tight triangular, then it induces a facet of the graphical
traveling salesman polytope.

128 D. Applegate et al.

These theorems are the reason why we choose weakly constrained tangled tours as an
intermediate stop on the way from moderately constrained tangled tours to all tangled
tours.

The linear inequality aT x ≤ b constructed in Phase 2 separates x∗ from all weakly
constrained tangled tours and induces a facet of their convex hull; since Concorde sub-
stitutes in Phase 1

2 − ∑
(xe : e ⊂ {1, 2, . . . , k}, u ∈ e)

for each x0u, we have a0u = 0 for all u; since aT x ≤ b induces a facet of the convex
hull of all weakly constrained tangled tours, it follows that ae ≥ 0 for all e. It is a trivial
matter to construct a hypergraph H on V − {0} and positive integers λQ(Q ∈ H) such
that the linear form ∑

(λQ
∑
(xe : e ⊆ Q) : Q ∈ H)

is identically equal to aT x (Concorde does it by a greedy heuristic aiming to minimize∑
λQ); since every weakly constrained tangled tour x and every subset Q of V − {0}

satisfy
2|Q| = 2

∑
(xe : e ⊆ Q)+ x(Q, V −Q),

the inequality
∑
(λQx(Q, V −Q) : Q ∈ H) ≥ ∑

(2λQ|Q| : Q ∈ H)− 2b (19)

separates x∗ from all weakly constrained tangled tours and induces a facet of their convex
hull; Theorem 1 guarantees that (19) is satisfied by all tangled tours.

Theorem 2 points out an easy way of converting (19) into a linear inequality that
induces a facet of the graphical traveling salesman polytope and is violated by x∗:

• subtract
∑k
w=0 δwx({w}, V − {w}) from the left-hand side of (19) and

• subtract
∑k
w=0 2δw from the right-hand side of (19)

with δ0, δ1, . . . , δk chosen to make the resulting inequality tight triangular; specifically,

δw = min{τ(u, v,w) : u �= v, u �= w, v �= w},
where

τ(u, v,w) = ∑
(λQ : Q ∈ H, u ∈ Q, v ∈ Q,w �∈ Q)

+ ∑
(λQ : Q ∈ H, u �∈ Q, v �∈ Q,w ∈ Q)

for all choices of distinct points u, v, w of V . (This procedure fails to work if and only
if the left-hand side of the new, tight triangular, inequality turns out to be 0T x; it can
be shown that this will happen if and only if (19) is a positive multiple of the subtour
inequality x({0}, V −{0}) ≥ 2, which induces a facet of the graphical traveling salesman
polytope.)

Concorde’s pricing mechanism (see Section 8) is incompatible with negative coef-
ficients in hypergraph constraints; for this reason, it settles in its implementation of
Algorithm 5.1 for adding to L the hypergraph inequality resulting when the variable x of
(19) is changed to x. Still, even (19) is often tight triangular, in which case it induces a
facet of the graphical traveling salesman polytope: the greedy heuristic used to construct
H and λQ(Q ∈ H) tends to minimize the number of vertices w such that δw > 0.

Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems 129

Table 1. Local cuts on 100,000-city TSP

tmax ≤ Gap to Optimal
8 0.138%
10 0.126%
12 0.119%
14 0.112%
16 0.107%
18 0.103%
20 0.100%
22 0.097%

5.4. Experimental findings on the 100,000-city Euclidean TSP

In Table 1, we report the lower bounds obtained by applying local cuts to our 100,000-
city instance. Here we let tmax vary from 8 up to 22, increasing the parameter by 2 in each
run. Note that individual runs are started from scratch (we do not pass the LP and cut
pool from one run to the next, as we do in the large-scale runs described in Section 9.3
and in Section 9.4).

6. The core LP

The LPs that need to be solved during a TSP computation contain far too many columns
to be handled directly by an LP solver. It is therefore necessary to combine the cut-
ting-plane method with the dual concept known as column generation. For background
material on linear programming and column generation, we refer the reader to standard
reference works by Chvátal (1983), Schrijver (1986), Nemhauser and Wolsey (1988),
Wolsey (1998), and Vanderbei (2001).

The column generation technique is used to explicitly solve only a core LP contain-
ing columns corresponding to a small subset of the complete set of edges. The edges not
in the core LP are handled by computing from time to time the reduced costs that the
corresponding columns would give with respect to the current LP dual solution; if any
columns have negative reduced cost, then some subset of them can be added to the core
LP. We discuss several aspects of this procedure below (see also Section 8), together
with techniques for keeping the size of the core LPs small by deleting cutting planes
that no longer appear to be useful in solving the particular TSP instance.

6.1. Initial edge-set

The first systematic use of core edge-sets is in the work of Land (1979). Her test set of
problem instances included a number of 100-city examples (so 4,950 edges), but she
restricted the number of core edges to a maximum of 500. The initial edge-set she chose
consisted of the union of the edges in the best tour she found together with the 4-nearest
neighbor edge-set (that is, the 4 minimum cost edges containing each city).

Land’s edge-set was also used by Grötschel and Holland (1991); they ran tests with
the initial set consisting of the union of the best available tour and the k-nearest neigh-
bor edge-set, for k ∈ {0, 2, 5, 10}. Jünger et al. (1994) carried out further tests, using

130 D. Applegate et al.

Table 2. Initial edge-set for 100,000-city TSP

Edge-set |E|-initial |E|-final CPU Time (seconds)
2-Nearest 146,481 231,484 24,682
3-Nearest 194,569 240,242 40,966
4-Nearest 246,716 270,096 26,877
5-Nearest 300,060 312,997 26,257
10 Tours 167,679 224,308 23,804
50 Tours 215,978 247,331 24,187

k ∈ {2, 5, 10, 20}. In this later study, the conclusion was that k = 20 produced far too
many columns and slowed down their solution procedure, but the smaller values of k all
led to reasonable results.

A different approach was adopted by Padberg and Rinaldi (1991), taking advantage
of the form of their tour-finding heuristic. In their study, Padberg and Rinaldi com-
pute a starting tour by making k independent runs of the heuristic algorithm of Lin and
Kernighan (1973); for their initial edge-set, they take the union of the edge-sets of the k
tours. Although we do not use repeated runs of Lin-Kernighan to obtain an initial tour,
the Padberg-Rinaldi tour-union method remains an attractive idea since it provides an
excellent sample of the edges of the complete graph (with respect to the TSP).

In Table 2, we compare the Padberg-Rinaldi idea with the k-nearest set on our
100,000-city instance. The tours were obtained with short runs of the Chained Lin-
Kernighan heuristic of Martin et al. (1991), using the implementation described in
Applegate et al. (2003); the short runs each used |V |/100 + 1 iterations of the heuristic.
(For k-nearest, we also include the edges in the best available tour).

In each case, we ran the cutting-plane separation algorithms we described in
Sections 2, 3, 4, and 5 (with the local cuts’ tmax set to 8), together with column generation
over the edges of the complete graph on the 100,000 points. For each of the edge-sets we
report the initial number of edges and the final number of edges in the core LP (after the
cutting-plane and column-generation routines terminated), as well as the total running
times on a EV67-based (667 MHz) Compaq AlphaServer ES40. We choose the union of
10 tours in our implementation – it has the lowest CPU time in the test and it maintains
the smallest edge-set during the computations.

6.2. Adding and deleting edges

The results in Table 2 indicate the growth of the cardinality of the core edge-set as the
combined cutting-plane and column generation algorithm progresses. To help limit this
growth, we are selective about the edges that are permitted to enter the core and we also
take steps to remove edges from the core if they do not appear to be contributing to the
LP solution.

When an edge is found to have negative reduced cost in our pricing routine, it is not
directly included in the core edge-set, but rather it is added to a queue of edges that are
waiting for possible inclusion in the core. The Concorde code will at irregular intervals
(determined by the increase of the optimal value of the LP relaxation) remove the N
edges from the queue having the most negative reduced cost (we useN = 100), and add
these to the core LP. An LP solver is then used to obtain new optimal primal and dual

Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems 131

solutions, and the reduced costs for the remaining edges in the queue are recomputed;
any edge in the queue that has reduced cost greater than some small negative tolerance
(we use negative 0.00001) is removed from the queue.

After an edge e is added to the LP, we monitor the corresponding component of x∗ at
each point when the LP solver produces a new solution. If for L1 consecutive LP solves
the value of x∗

e is less than some small tolerance ε1, then we remove edge e from the
core LP. (We set L1 = 200 and ε1 = 0.0001.)

6.3. Adding and deleting cuts

Like in the case for edges, when a cutting plane is found by a separation routine, it is
attached to the end of a queue of cuts that are waiting to be added to the core LP. The
Concorde code repeatedly takes the first cut from the queue for processing and checks
that it is violated by the current x∗ by at least some small tolerance (we use 0.002). If
the cut does not satisfy this condition, then it is discarded; otherwise it is added to the
core LP. (Note that the current x∗ may perhaps not be the same as the vector that was
used in the separation algorithm that produced the cut.)

After k cuts have been added to the LP (we use k = 2000 in our code for large
instances) or after the cut queue becomes empty, an LP solver is called to compute opti-
mal primal and dual solutions for the new core LP. If the slack variable corresponding
to a newly added cut is in the optimal LP basis, then the cut is immediately deleted
from the LP. Otherwise, the cut remains in the LP and a copy of the cut is added to a
pool of cuts that is maintained for possible later use by the separation routines. (Subtour
inequalities are not added to the pool, since an efficient exact separation routine for them
is available.)

Once a cut is added, after each further point where the LP solver produces new
solutions, we check the dual variable corresponding to the cut. If for L2 consecu-
tive LP solves the dual variable is less than some fixed tolerance ε2, then the cut is
deleted from the LP. (We use L2 = 10 and ε2 = 0.001.) This deletion condition is
weaker than the standard practice of deleting cuts only if they are slack (that is, only
if they are not satisfied as an equation by the current x∗); for our separation routines
on large TSP instances, we found that the core LP would accumulate a great number
of cuts that were satisfied as an equation by the current x∗ if we only removed slack
inequalities.

It may well happen in our computation that a cut is deleted from the LP, but
then added back again after a number of further LP solves. Although this is obvi-
ously a waste of computing time, when working on large instances it seems neces-
sary to be very aggressive in attempting to keep the core LP small (both for mem-
ory considerations and to help the LP solver – the results in Section 9 indicate that
the solution of the LP problems is the dominant part of a TSP computation on large
instances).

(Notice that the tolerances and constants we use for cuts and edges differ by large
amounts. These values were obtained through computational experiments, and they are
dependent on the method used to solve the core LP problems.)

132 D. Applegate et al.

7. Cut storage

The storage of cutting planes and their representation in an LP solver account for a great
portion of the memory required to implement the Dantzig et al. algorithm. In this section
we discuss the methods used by Concorde to attempt to reduce this demand for memory
when solving large problem instances.

There are three places in the computer code where we need to represent cuts: in
the LP solver, in the external LP machinery, and in the pool of cuts. We discuss below
representations for each of these components.

7.1. Cuts in the LP solver

The cutting planes we use in our implementation can all be written as

H ◦ x ≥ µ(H). (20)

This is how we like to think about the cuts, but we need not be restricted to this form
when carrying out a computation. Indeed, the degree equations (4) give us a means to
dramatically alter the appearance of a cut. For example, we can write (20) as

∑

S∈F
x({e : e ⊆ S}) ≤ IH (21)

for some constant IH. The representation (21) can further be altered by replacing some
sets S by their complements V − S. Moreover, starting with any form, we can add or
subtract multiples of degree equations to further manipulate a cut’s appearance. We make
use of this freedom in selecting the representation of the cut in the LP solver.

The most important criterion for choosing the LP representation of a cut is the num-
ber of nonzero entries the representation adds to the constraint matrix. The amount of
memory required by the solver is proportional to the total number of nonzeros, and, other
things being equal, LP solvers are more efficient in solving LPs with fewer nonzeros.

We compare four different representations: (1) each cut in the form given in (20)
(the “outside” form), (2) each cut in the form given in (21) (the “inside” form), (3) each
cut in the inside form with individual sets S complemented if it decreases the number
of nonzero coefficients among the columns in the core LP, and (4) individual cuts in the
form (either outside, or inside with complemented sets) that gives the least number of
nonzeros.

For each of these representations we consider three different algorithms for selecting
multiples of the degree equations to add or subtract from the individual cuts to reduce
the number of nonzeros among the columns in the core LP.

In the first method, for each cut we simply run through the cities in order, and subtract
the corresponding degree equation from the cut if it is advantageous to do so (that is, if
it will decrease the number of nonzeros).

The second method is a greedy algorithm that, for each cut, first makes a pass through
all of the cities and counts the number of nonzeros that can be saved by subtracting the
corresponding degree equation. It then orders the cities by nonincreasing values of this
count and proceeds as in the first method.

Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems 133

Table 3. Nonzeros in LP representations

Algorithm Outside Inside Complemented Best
None 1.00 2.81 2.07 0.90

Straight 0.54 1.40 1.11 0.49
Greedy 0.52 1.19 0.95 0.48
Queues 0.49 1.07 0.87 0.45

The third method is similar to greedy, but adjusts the counts to reflect the current
status of the cut. In this algorithm, we keep two priority queues, one containing cities
whose corresponding degree equation can be advantageously subtracted from the cut
and another containing cities whose degree equation can be advantageously added to the
cut. Both priority queues are keyed by the number of nonzeros that the operations save,
that is, cities that save more nonzeros have priority over cities that save fewer nonzeros.
At each step of the algorithm, we select the cuts having the maximum key and either
subtract or add the corresponding equation. We then update the keys appropriately, pos-
sibly inserting new cities into the queues. The algorithm terminates when both queues
are empty. (Notice that this algorithm permits equations to be added or subtracted a
multiple number of times.)

We tested these algorithms and representations on core LPs taken from our com-
putations on 21 small problems from the TSPLIB collection maintained by Reinelt
(1991); the 21 instances range in size from 1,000 cities to 7,397 cities. The results are
reported in Table 3, in multiples of the number of nonzeros in the outside representa-
tion.

The immediate conclusions are that the outside form of cuts clearly dominates the
inside form (even with complementation) and that the reduction routines appear to be
worthwhile. Although the “best" form of cuts is slightly preferable to the outside form,
we use the outside form in our implementation since this simplification leads to a more
efficient routine for computing the reduced costs of columns that are not in the core LP.

For our reduction algorithm, we use the queue-based routine: it is efficient and is
slightly better than the other two methods.

The representations chosen in earlier computational studies vary greatly from re-
search team to research team. Dantzig et al. (1954), Hong (1972), Clochard and Naddef
(1993), Jünger et al. (1994), and Naddef and Thienel (2002b) appear to have used the
outside form of subtour inequalities, whereas Miliotis (1978), Land (1979), Padberg and
Hong (1980), Crowder and Padberg (1980), Grötschel and Holland (1991), and Padberg
and Rinaldi (1991) all appear to have used the inside form. Clochard and Naddef (1993)
and Naddef and Thienel (2002b) used the outside form of combs and more general
inequalities, and Land (1979) used a special outside form for blossoms, but each of the
other studies used the inside form for all cuts other than subtours. The complementa-
tion of subtours was probably carried out in most of the studies that used the inside
form of the inequalities, but Padberg and Rinaldi (1991) is the only paper that mentions
complementing other inequalities – they consider complementing the handles in combs.

134 D. Applegate et al.

7.2. External storage of cuts

It is not sufficient to use the LP solver’s internal list of the current cutting planes as
our only representation of the cuts. The trouble is that this internal representation does
not support the computation of the reduced costs of the edges not present in the core
LP. What is needed is a scheme for storing the cuts in their implicit form, that is, as
hypergraphs H = (V ,F), where F is a family of subsets of V . The most important
criteria for evaluating such an external representation scheme are the total amount of
storage space required and the ease with which the data structure supports a fast edge
pricing mechanism.

In our implementation, we choose a very compact representation of the cuts, one
that fits in well with the pricing routine that we describe in Section 8. Before we discuss
the representation, we present some alternative schemes that have appeared in earlier
studies.

7.2.1. Previous work The external representation of cuts is first treated in Land (1979).
Land’s technique for storing subtour inequalities is to pack a collection of pairwise dis-
joint subsets of V into a single vector of length |V |, where the subsets correspond to the
vertex sets of the subtours. The entries of the vector provide a labeling of the vertices
such that each of the subsets is assigned a distinct common label. This representation
was particularly useful for Land since her separation routines (connectivity cuts and a
version of subtour shrinking) naturally produced collections that were pairwise disjoint.

Land used this same technique for storing the handles of blossom inequalities. She
got around the problem of storing the teeth of the blossoms by requiring that these edges
be part of the core LP. This meant that the routines for pricing out edges outside the core
were never needed to compute the reduced cost of a tooth edge.

Grötschel and Holland (1991) also used column generation, but they did not report
any details of the external representation scheme used in their study, writing only: “After
some experiments we decided to trade space for time and to implement space-consuming
data structures that allow us to execute pricing in reasonable time.”

A similar philosophy of trading off space for time was adopted by Padberg and
Rinaldi (1991) . They used a full |V |-length vector to represent each of the cuts. The
representation, however, allowed them to compute the reduced cost of an edge by mak-
ing a very simple linear scan through the cuts, performing only a constant amount of
work for each cut.

A more compact representation was used by Jünger et al. (1994). They store a cut for
the hypergraph H = (V ,F) by keeping the sets in F as an array that lists the vertices in
each set, one after another. The lists are preceded by the number of sets, and each set in
the list is preceded by the number of vertices it contains. In the typical case, the length
of the array will be much less than |V |, but the extraction of the cut coefficient on an
individual edge is more costly than in Padberg and Rinaldi’s approach.

Our scheme is similar to Jünger et al., but uses a different representation for the
individual sets in the cut. It suffers the same drawback in extracting individual edge
coefficients, but the pricing mechanism we describe in Section 8 does not make use
of single coefficient extraction, using instead a strategy that calls for the simultaneous
pricing of a large group of edges. This simultaneous pricing allows us to spend a small

Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems 135

amount of CPU time, up front, setting up an auxiliary data structure that will speed the
coefficient generation for the edges in the pricing group. This strategy allows us to take
advantage of the compact cut representation without incurring a significant penalty in
the performance of our pricing engine.

7.2.2. Hypergraphs The majority of the space used in Jünger et al.’s cut representation
is occupied by the lists of the vertices in individual sets. To improve on this, we must
either find a way to write these lists more compactly or find a way to avoid writing them
altogether. We postpone a discussion of list compression, and first consider a method for
reducing the number of lists.

The idea is simple: we reuse old representations. To carry this out, if we have a
collection of cuts H1 = (V ,F1),H2 = (V ,F2), . . . ,Hr = (V ,Fr), we represent sep-
arately the sets S = F1 ∪ F2 ∪ · · · ∪ Fr and the hypergraphs H1,H2, . . . ,Hr . In this
setup, the hypergraphs are lists of pointers to the appropriate sets, rather than lists of the
sets themselves. The benefit of this split representation is that the number of sets in S is
typically considerably less than the sum of the cardinalities of the individual Fi’s. (This
split representation also helps our are pricing routine, as we describe in Section 8.)

When a cut H = (V ,F) is added to the core LP, we add to S the sets from F that
do not already appear in S, and we build a list of pointers for H into S. To delete a cut
H = (V ,F), we delete H’s list of pointers as well as all sets in S that were only being
referenced by H. To do this efficiently, we keep track of the number of times each set in
S is being referenced (increasing the numbers when we add a cut, and decreasing them
we delete a cut), and remove any set whose reference number reaches 0. The elements
of S are stored as entries in an array, using a hash table to check whether a prescribed
set is currently in S.

7.2.3. Tour intervals In Subsection 2.4 we discussed that fact that as our core LP
matures, the LP solution vector x∗ approximates the incidence vector x̄ of an optimal
tour, and hence x∗(S, V − S) ≈ x̄(S, V − S) for most subsets S of V . For this reason,
the sets that appear in cutting planes can be expected to have a small x̄(S, V − S) value.
An interpretation of this is that sets from our cutting planes can be expected to consist
of a small number of intervals in an optimal tour.

We put this to the test, using a pool for the 7,397-city TSPLIB instance pla7397.
The pool consists of 2,868,447 cuts and 1,824,418 distinct sets in S. (The large pool of
cuts was accumulated over a branch-and-cut run; working with this small TSP instance
allowed us to build the pool in a reasonable amount of computing time.) The average
number of vertices in the members of S is 205.4, but the sets can be represented using
an average of only 5.4 intervals from a specific optimal tour – a savings of a factor of
38. This is typical of the compression ratios we obtained in other tests, so we adopt the
interval list approach as our representation scheme, using the best available initial tour
as a substitute for an optimal tour.

At the start of our TSP computation, we reorder the cities in the problem so that the
best tour we have found up to that point is simply 0, 1, 2, . . . , |V | − 1. A set is then
recorded as an array of pairs of integers giving the starting and ending indices of the
intervals that make up the set, with a separate field giving the total number of intervals
stored in the array.

136 D. Applegate et al.

7.3. Pool of cuts

Like the external representation for the LP, the pool needs to store cuts in the implicit
(hypergraph) form. In this case, the important criteria for evaluating a representation are
the amount of storage space required and the speed with which we can compute, for
a prescribed x∗, the slacks of the individual cuts in the pool, that is, µ(H) − H ◦ x∗.
Our approach is to use the methods we adopted in our external LP representation, but
take advantage of the distribution of the references into S to further reduce the storage
requirements.

Consider again the pla7397 pool we mentioned above. The 2,868,447 cuts make a
total of 33,814,752 references to sets, and the sets make a total of 696,150,108 references
to cities. Representing each of the cuts as an |V |-length integer vector would require
approximately 78 Gigabytes of memory on machines that uses 4 bytes to represent an
integer. The representation of Jünger et al. (1994) lowers the storage requirement con-
siderably, calling for a little over 1.3 Gigabytes of memory. To achieve this, we use only
2 bytes for each reference to a city, taking advantage of the fact that the instance has
less than 216 cities in total. (Recall that a byte can represent 8 binary digits.) The split
interval representation we described above would use 4 bytes for each interval, to specify
its ends; 2 additional bytes for each set in S, to specify the number of intervals used by
the set; 3 bytes for each reference to a set in S, using the fact that we have less than 224

sets; and 2 additional bytes for each cut, to specify the number of sets. The collection S
has a total of 1,824,418 sets that use a total of 9,877,792 intervals, so the pool can be
stored in approximately 143 Megabytes of memory with this representation.

7.3.1. Removing edge teeth The savings in storage for the split interval representation
is roughly a factor of 9 over the set-list representation for the pla7397 pool. This mag-
nitude of savings is a big step towards making the direct use of large pools possible,
but it is also somewhat disappointing, given the factor of 38 compression we obtained
in the representation of the sets in S. The poor showing can be explained by examining
the data in Table 4, giving the number of sets of each size used by the cuts in the pool.
Nearly two-thirds of the sets have cardinality just two, and over four-fifths of the sets
of cardinality five or less. This means that, for the majority of the set references, we are
not winning very much over the set-list representation.

An aggressive way to turn this lopsided distribution of set sizes to our advantage is
to simply remove all of the references to sets of cardinality two, using a teething-like

Table 4. Sets in the pla7397 pool of cuts

Size Number Percentage
2 21342827 63.1%
3 3255535 9.6%
4 2267058 6.7%
5 736881 2.2%
6 651018 1.9%
7 261641 0.8%
8 337799 1.0%
9 140427 0.4%

≥ 10 4821566 14.3%

Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems 137

algorithm to reconstruct the sets on-the-fly. We did not pursue this idea, however, due
to the considerable time this would add to the algorithm for searching for violated cuts
among the entries in the pool.

7.3.2. Set references Another route for decreasing the space requirements of our pool
representation is to be more efficient in specifying our references to sets in S. The
straightforward method of using an integer (or 3-byte) value for each reference is clearly
wasteful if one considers the distribution of the references among the cuts: there are
1,362,872 sets in S that are referenced only once, whereas the top ten most used sets
are each referenced more than 100,000 times. An efficient representation should use less
space to reference the sets that appear most often in the cuts. One way to do this is to
use only a single byte to reference the most frequently used sets, use two bytes for next
most frequently used sets, and restrict the use of three or four bytes to the sets that have
very few references. There are a number of techniques for implementing this strategy.
For example, the first byte in a set reference could either specify a set on its own, or
indicate that a second, third, or forth byte is needed. This is the strategy we adopt. If
the first byte of our set reference contains a number,K , between 0 and 127, then the set
index is simply K . If K is between 128 and 191, then the difference K − 128 together
with a second byte are used to represent the index. If K is between 192 and 223 then
K − 192 plus two additional bytes are used, and if K > 224 then K − 224 plus three
additional bytes are used. (In the pla7397 pool, no reference requires 4 bytes, but we
want to have a representation that would also work for much larger pools.)

Using 3 bytes for each of the 33,814,752 sets contributes 97 Megabytes to the storage
requirements for the split interval representation of the pla7397 pool. The compressed
form of the references brings this down to 62 Megabytes.

This technique for expressing the set references using variable-length byte strings
is a very rudimentary data compression technique. Better results can be obtained using
an encoding developed by Huffman (1952) (see Cormen et al. (1990) or Knuth (1968)).
Working with a byte-level Huffman code, this would save about 1 Megabyte from the 62
Megabyte total. If we are willing to work at the bit level, then the set reference storage
can be reduced to 54 Megabytes for the pool. It should be noted, however, that work-
ing with binary encodings would result in some computational overhead to address the
individual bits in the reference strings.

7.3.3. Interval references The list of intervals accounts for approximately 38 Mega-
bytes of the storage requirement for the pla7397 pool. Since there are only 245,866
distinct intervals among the lists, adding another level of indirection, together with a
method for compressing the interval references, could result in savings similar to what
we achieved for the set references. Rather than doing this, however, we use a direct
method to reduce the 4-byte per interval requirement that the straightforward technique
of writing the ends of the intervals provides. The idea is to represent the interval from
i to j as the number i together with the offset j − i, using 2 bytes to write i and either
0, 1 or 2 bytes to write j . This reduces the storage needed for the intervals down to 28
Megabytes.

This offset technique can be pushed a little further, writing the entire list of intervals
for a prescribed set as a sequence of 1 or 2 byte offsets (splitting any interval that contains

138 D. Applegate et al.

city 0 into two smaller intervals, to avoid the issue of intervals wrapping around from
city |V | − 1 to city 0). This is the method we use in our code, and it lowers the storage
requirement for the interval lists down to approximately 23 Megabytes, for the pla7397
pool.

7.3.4. Summary The memory requirements for the representations of the pla7397 pool
are summarized in Table 5. The entries are progressive in the sense that “Compressed

Table 5. Memory requirements for the pla7397 pool of cuts

Representation Size (Megabytes)
|V |-length vector 80940

List of sets 1403
Split lists of cities 826

Split intervals 143
Compressed set references 109
Start plus offset intervals 99

List of interval offsets 96

set references” works with the split-interval representation, “Start plus offset intervals”
uses the compressed set references, and so on.

In our computer code, we use the split interval representation of the pool, with com-
pressed set references and lists of interval offsets (the “List of interval offsets” entry
from Table 5).

8. Edge pricing

Column generation for the TSP is a simple operation for small instances – we simply
run through all of the edges not currently in the core LP, compute their reduced costs,
and add any negative edges into the core. This method breaks down on larger instances,
however, due both to the time required to price the entire edge-set and to the large num-
ber of negative reduced-cost edges that the pricing scans will detect. In this section we
describe the techniques we adopt to handle these two difficulties.

8.1. Previous work

We begin with a discussion of some earlier TSP column generation systems, starting
with the paper of Land (1979).

In Land’s study, the problem instances are described by specifying the geometric
coordinates of the cities. Thus, she did not explicitly store the complete set of edges,
relying instead on the ability to compute the cost between any prescribed pair of cities
in order to carry out a pricing scan. This implicit treatment of the edge-set raised two
problems. First, since her external LP representation did not list the teeth in blossom
inequalities, the reduced costs for these edges could not be computed from the represen-
tation. Secondly, edges in the core LP that were not in the optimal basis but were set to

Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems 139

the upper bound of 1, could appear to have negative reduced costs in the pricing scan.
To deal with these “spurious infeasibilities”, she maintained a data structure (consisting
of an ordered tree and an extra list for edges that did not fit into the tree) to record the
teeth edges and the non-basic 1-edges, and skipped over these pairs of cities during the
pricing scan. Every negative edge that was detected in a scan was added to the core
until a limit of 500 core edges was reached. After that, any further negative edges were
swapped with core edges that were both non-basic and set to 0.

The pricing scans in Land’s code were carried out at fixed points in the solution
process, where the code moved from one phase to another. These transition points were
determined by the completion of subtour generation, the completion of blossom genera-
tion, the detection of an integral LP solution, and the production of an LP optimal value
that was above the cost of the best computed tour.

The issue of spurious edges was avoided by Grötschel and Holland (1991), us-
ing an original approach to edge generation. Before starting the LP portion of their
TSP code, they passed the entire edge-set through a preprocessor that eliminated the
majority of the edges from further consideration. Working with this reduced set, they
maintained the core edges and the non-core edges as disjoint lists and restricted the
pricing scans to the non-core set. Their scans were carried out after the cutting-plane
phase of the computation ended without finding a new cut. If additional edges were
brought into the core LP, their code reentered the cutting-plane phase and continued to
alternate between cutting and pricing until all non-core edges had nonnegative reduced
cost.

The preprocessor used by Grötschel and Holland takes the output of a run of the Held
and Karp (1971) lower-bound procedure, computes the implicit reduced costs, and uses
the resulting values to indicate edges that cannot be contained in any tour that is cheaper
than the best tour computed up to that point. These edges could thus be discarded from
further consideration. For the instances they studied, this process resulted in sufficiently
many deletions to permit them to implement their explicit edge list approach without
running into memory difficulties.

Padberg and Rinaldi [1991] did not use preprocessing, but obtained a similar effect
by implementing an approach that permitted them to quickly eliminate a large portion
of the edge-set based on the LP reduced costs. At the start of their computation, they
stored a complete list of the edge costs, ordered in such a way that they could use a
formula (involving a square root computation) to obtain the two endpoints of an edge
with a prescribed index. Their pricing scans were carried out over this list, and possible
spurious infeasibilities were handled by checking that candidate edges having negative
reduced cost were not among the current nonbasic core edges that have been set to their
upper bound of 1. Each of the remaining negative reduced cost edges were added to
the core set after the scan. Taking advantage of this simple rule, Padberg and Rinaldi
stopped the computation of the reduced cost of an edge once it had been established that
the value would indeed be negative.

Edge elimination comes into the Padberg and Rinaldi approach once a good LP lower
bound for the problem instance has been obtained. Their process works its way through
the complete set of edges, adding to a “reservoir” any edge that could not be eliminated
based on its reduced cost and the value of the best computed tour. If the number of
edges in the reservoir reaches a prescribed maximum, then the elimination process is

140 D. Applegate et al.

broken off and the index k of the last checked edge in the complete list is recorded.
From this point on, pricing scans can be carried out by working first through the edges in
the reservoir and then through the edges in the complete list starting at index k. Further
elimination rounds attempt to remove edges from the reservoir and increase the number
of preprocessed edges by working from k and adding any non-eliminated edges to the
free places in the reservoir.

Padberg and Rinaldi also introduced the idea of permitting the status of the LP to
determine when a pricing scan should be carried out, rather than using fixed points in the
solution process. Their stated purpose is to try to keep the growth in the size of the core
edge-set under control. To achieve this, they wanted to avoid the bad pricing scans that
can arise after a long sequence of cutting-plane additions. Their strategy was simple:
carry out a pricing scan after every five LP computations.

Jünger et al. (1994) adopt the Padberg-Rinaldi reservoir idea, but they also keep a
precomputed “reserve” set of edges and do not price over the entire edge-set until each
edge in the reserve set has nonnegative reduced cost. When their initial set of core edges
is built from the k-nearest neighbors, the reserve set consists of the (k+5)-nearest graph.
The default value for k is 5, but Jünger et al. also carried out tests using other values.

Following the Padberg and Rinaldi approach, Jünger et al. carry out a price scan
after every five LP computations. They remark that, with this setup, the time spent on
pricing for the instances in their test set (which included TSPs with up to 783 cities) was
between 1% and 2% of the total running time.

8.2. Underestimating the reduced costs

A pricing mechanism for larger problem instances must deal with two issues that were
not treated in the earlier studies. First, in each of the above approaches, the entire edge-
set is scanned, edge by edge, at least once, and possibly several times. This would be
extremely time consuming for instances having 106 or more cities. Secondly, although
the Padberg and Rinaldi approach of carrying out a pricing scan after every five LP
computations is aimed at keeping the size of the core set of edges under control, early
on in the computation of larger instances, far too many of the non-core edges will have
negative reduced costs (if we begin with a modestly sized initial core edge-set) to be
able to simply add all of these edges into the core LP. This latter problem is a subtle
issue in column generation and we have no good remedy, using only a simple heuristic
for selecting the edges (see Section 6.2 and Section 8.4). The first problem, on the other
hand, can be dealt with quite effectively using an estimation procedure that allows us to
skip over large numbers of edges during a pricing scan, as we now describe.

Suppose we would like to carry out a scan with a core LP specified by the cuts
H1 = (V ,F1),H2 = (V ,F2), . . . ,Hr = (V ,Fr). The dual solution provided by the
LP solver consists of a value yv for each city v and a nonnegative value Yj for each cut
Hj . Let S = F1 ∪ · · · ∪Fr be the collection of member sets of the hypergraphs and, for
each S in S, let πj (S) denote the number of times S is included in Fj , for j = 1, . . . , r .
(Recall that the members of Fj need not be distinct.) For each S in S, let

YS =
∑

(πj (S)Yj : j = 1, . . . , r).

Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems 141

The reduced cost of an edge e = {u, v}, having cost ce, is given by the formula

αe = ce − yu − yv −
∑

(YS : e ∩ S �= ∅, e − S �= ∅).

The computational expense in evaluating this expression comes from both the number
of terms in the summation and the calculations needed to determine the sets S that make
up this sum. A quick estimate can be obtained by noting that each of these sets S must
contain either u or v. To use this we can compute

ȳv = yv +
∑

(YS : v ∈ S and S ∈ S)

for each city v and let
ᾱe = ce − ȳu − ȳv.

For most edges, ᾱe will be a good approximation to αe. Moreover, since ᾱe is never
greater than αe, we only need to compute αe if the estimate ᾱe is negative.

The simplicity of the ᾱe computation makes it possible to work through the entire
set of edges of a TSP instance in a reasonable amount of time, even in the case of the 500
billion edges that make up an instance having 106 cities. It still requires us to examine
each edge individually, however, and this would not work for instances much larger
than 106 cities. Moreover, the time needed to explicitly pass through the entire edge-set
would restrict our ability to carry out multiple price scans. What we need is a scheme
that is able to skip over edges without computing the ᾱe’s. Although we cannot do this
in general, for geometric problem instances we can accomplish this by taking advantage
of the form of the edge-cost function when carrying out a pricing scan. The approach we
take is similar to that used by Applegate and Cook (1993) to solve matching problems.

Suppose we have coordinates (vx, vy) for each city v and that the cost c{u,v} of an
edge {u, v} satisfies

c{u,v} ≥ t |ux − vx | (22)

for some positive constant t , independent of u and v.

For these instances, we have

αe ≥ ᾱe ≥ t |ux − vx | − ȳu − ȳv.

So we only need to consider pricing those edges {u, v} such that

t |ux − vx | − ȳu − ȳv < 0. (23)

This second level of approximation allows us to take advantage of the geometry. (Con-
dition (23) holds for each “EDGE WEIGHT TYPE” in the TSPLIB, other than the
EXPLICIT and SPECIAL categories.)

At the start of a pricing scan, we compute tvx − ȳv for each city v and build a linked
list of the cities in nondecreasing order of these values. We then build a permutation of
the cities to order them by nondecreasing value of vx . With these two lists, we begin
processing the cities in the permuted order. While processing city v, we implicitly con-
sider all edges {u, v} for cities u that have not yet been processed. The first step is to

142 D. Applegate et al.

delete v from the linked list. Then, since ux ≥ vx for each of the remaining cities u, we
can write the inequality (23) as

tux − ȳu < tvx − ȳv. (24)

We therefore start at the head of the linked list, and consider the cities u in the linked
list order until (24) is no longer satisfied, skipping over all of the cities further down in
the order. For each of the u’s that we consider, we first compute ᾱ{u,v} and then compute
α{u,v} only if this value is negative.

This cut-off procedure is quite effective in limiting the number of edges that need
to be explicitly considered. For the cost functions that are supported by kd-trees (see
Bentley (1992)), however, it would be possible to squeeze even more performance out of
the pricing routine by treating the ȳ values as an extra coordinate in a kd-tree (as David
S. Johnson (personal communication) proposed in the context of the Held-Karp lower
bound procedure) and replacing the traversal of the linked list by a nearest-neighbor
search.

8.3. Batch pricing

Coming out of the approximate pricing, we have edges for which we must explicitly
compute αe. As we discussed in Section 7.2, extracting these reduced costs from the
external LP representation is considerably more time consuming than with the memory-
intensive representation used by Padberg and Rinaldi (1991). It is therefore important,
in our case, to make a careful implementation of the pricing scheme.

Jünger et al. (1994) were faced with a similar problem. Their method is to build a
pricing structure before the start of a pricing scan, and use this to speed up their com-
putations. The structure consists of lists, for each city v, of the hypergraphs that contain
v in one of their member sets. Working with the inside form of cuts, they compute the
reduced cost of an edge {v,w} by finding the intersection of the two hypergraph lists
and working through the sets to extract the appropriate coefficients.

We also build a pricing structure, but the one we use is oriented around edges, rather
than cities. To make this work, we price large groups of edges simultaneously, rather than
edge by edge. This fits in naturally with the pricing scan mechanism that we have set up,
since we can just hold off on computing the necessary αe’s until we have accumulated
some prescribed number of edges (say 20,000).

In our setup, to compute the reduced costs of a prescribed set, U , of edges, we can
begin with the ᾱe values that have already computed. To convert ᾱe to αe, we need to
add 2 ∗ YS for each set S in S that contains both ends of e. The structure we build to
carry this out consists of an incidence list for each city v, containing the indices of the
edges of U that are incident with v. For each set S in S having YS > 0, we run though
each city v in S and carry out the following operation. We consider, in turn, each edge in
v’s incidence list and check whether the other end of the edge is marked. If it is indeed
marked, then we add 2 ∗ YS to the edge’s ᾱe value. Otherwise, we simply move on to
the next edge. After all of the edges have been considered, we mark the city v and move
on to the next city in S. The marking mechanism can be handled by initially setting a

Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems 143

mark field to 0 for all cities, and, after each set is processed, incrementing the value of
the integer label that we consider to be a “mark” in the next round.

After all sets have been processed, the ᾱe values have been converted to αe for each
e ∈ U . We then attach each of the edges having negative αe to a queue that holds the
edges that are candidates for entering the core LP (see Subsection 6.2). Finally, the
incidence structure is freed, and we wait for the next set of edges that need to be priced.

8.4. Cycling through the edges

Our pricing strategy does not require us to implicitly consider the entire edge-set during
each pricing scan, but only that a good sampling of the potentially bad edges be scanned.
We therefore use the pricing algorithm in two modes, as in Jünger et al. (1994). In the
first mode, we only consider the k-nearest edges for some integer k (say k = 50), and
in the second mode we treat the full edge-set. In both cases, the routine works its way
through the edges, city by city, accumulating the set U of edges having ᾱe < 0 that will
be priced exactly. Each time it is called, the search picks up from the last city that was
previously considered, wrapping around to city 0 whenever the end of the city list is
reached.

The approximate pricing algorithm is reset whenever the yv’s and Yj ’s are updated.
A reset involves the computation of the new YS’s and ȳi’s, as well as the creation of a
new linked list order. If successive calls to the algorithm, without a reset, allow us to
process all of the edges, then we report this to the calling routine and carry out no further
approximate pricing until the next reset occurs; this provides information that can be
used to terminate a pricing scan.

8.5. Permitting negative edges

During our column generation procedure we take advantage of the fact that if z∗ is the
objective value of the LP solution and p is the sum of the reduced costs of all edges
having negative reduced cost, then z∗ + p is a lower bound for the TSP instance. This
observation follows from LP duality, using the dual variables corresponding to the xe ≤ 1
constraints for each edge e.

In our computations, we terminate the column generation process when |p| falls
below some fixed value (0.1 in our code). This small penalty in the lower bound is
accepted in order to avoid the bad behavior that can arise as we try to complete the
column generation while maintaining a small core LP.

9. Computational results

The tests reported in this section were carried out on a CompaqAlphaServer ES40 Model
6/500, with 8 GBytes of random access memory, running True64 Unix (version 4.0F).
The processor speed of the AlphaServer is 500 MHz; the SPEC CPU2000 benchmarks
are SPECint2000 = 299 and SPECfp2000 = 382. The Concorde code was compiled with
“cc -arch host -04 -g3”; the LP solver used was ILOG CPLEX (version 7.1). In all of

144 D. Applegate et al.

our tests, we utilize only a single processor of the AlphaServer (it contains a total of 4
processors).

9.1. Subtour bound

Let V denote the set of cities for an instance of the TSP and let E denote the edge-set of
the complete graph on V . Recall that the subtour bound for the TSP is the optimal value
of

Minimize
∑
(cexe : e ∈ E) (25)

subject to

x({v}, V − {v}) = 2 for all v ∈ V (26)

x(S, V − S) ≥ 2 for all S ∈ V, S �= ∅, S �= V (27)

0 ≤ xe ≤ 1 for all e ∈ E, (28)

that is, the optimal value of the LP obtained by appending the set of all subtour inequal-
ities to the degree equations for the instance.

As an initial test of our cutting-plane implementation, we compute the subtour bound
for a randomly generated 1,000,000-city Euclidean instance. Our test instance was ob-
tained by specifying the options “-s 99 -k 1000000” in the Concorde code; just as in
David Johnson’s E1M.0, its cities are points with integer coordinates drawn uniformly
from the 1,000,000 by 1,000,000 grid and the cost of an edge is the Euclidean distance
between the corresponding points, rounded to the nearest integer.

In Table 6, we report the running times (in CPU hours on the Compaq AlphaServer
ES40 5/600) for various choices of the subtour separation heuristics we described in
Section 2. In each case, we run the code until the exact separation routine returns with-
out any cuts, and the column generation routine returns without any edges. The running
times do not vary widely, but the results indicate that for this type of uniformly distrib-
uted TSP instance, it is preferable to include only a subset of the separation heuristics.
In the remaining tests in this section, we will restrict our subtour cuts to the combination
of the connected-component and interval heuristics, together with the Padberg-Rinaldi
exact separation routine.

The tests reported in Table 6 were not run with our standard initial edge-set, con-
sisting of the union of 10 heuristically generated tours. Although the tour-union idea
performs very well when we are trying to compute a strong lower bound on a TSP
instance, an initial set that is more closely tied to the subtour bound is preferable in
the present case. In choosing such a set, we begin by computing an approximation to
the reduced costs that would occur if we optimized over the subtour-bound LP. One

Table 6. 1,000,000-city subtour bound: choice of cuts

Cuts CPU hours
Connect, interval, shrink, exact 26.75

Connect, shrink, exact 26.89
Connect, interval, exact 24.65

Connect, exact 24.63

Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems 145

way to do this is to first solve the degree LP consisting of only the constraints (26) and
(28). The degree LP is a simple network optimization problem that can be solved via
a combinatorial primal-dual algorithm, combined with a column generation routine to
price over the complete graph, as in Applegate and Cook (1993) and Miller and Pekny
(1995). Once we have the dual solution for the degree LP, we can select for each city v
the k edges having the least reduced-cost among the edges meeting v. The tests reported
in Table 6 were run with the initial edge-set consisting of 4 least-reduced-cost edges
meeting each city, together with a tour generated by a greedy algorithm.

In Table 7, we compare the total CPU time needed to obtain the 1,000,000-city sub-
tour bound starting with three different initial edge-sets. The “10 Tours” set is obtained
using short runs of Chained Lin-Kernighan to generate the tours; the “4-Nearest” set
consists of the 4 least-cost edges meeting each city, together with a tour generated by a
greedy algorithm; the “Fractional 4-nearest” is the set used in Table 6.

The best of the results reported in Table 7 was obtained with the fractional 4-nearest
edge-set. The running time can be improved further, however, by increasing the density
of the set, as we report in Table 8. The best of the runs in this test used the fractional
6-nearest, taking just over 19 hours to compute the subtour bound for this 1,000,000-city
instance.

In Table 9, we indicate the growth in the running time used to compute the subtour
bound for randomly generated Euclidean instances ranging from size 250,000 up to
1,000,000. The results suggest that the running time is growing as a quadratic function
of the number of cities. To explore this, we give a rough profile of the running time for the
1,000,000-city instance in Table 10. In the profile, the “50-nearest pricing” entry is the
time spent in repeatedly computing the reduced costs over the 50-nearest edge-set (the
first phase of our column generation procedure) and the “Full pricing” entry is the time
spent to price over the complete set of edges (this was only carried out once, since no
negative reduced cost edges were found in this second phase of our column generation
procedure).

The results of Table 9 and Table 10 suggest that the time spent in the LP solver grows
quadratically with the number of cities. In Table 11, we report the number of nonzero

Table 7. 1,000,000-city subtour bound: choice of initial edge-set

Edge-set CPU Hours
10 Tours 44.26
4-Nearest 30.91

Fractional 4-Nearest 24.31

Table 8. 1,000,000-city subtour bound: size of initial edge-set

Edge-set CPU hours
Fractional 4-Nearest 24.31
Fractional 5-Nearest 19.62
Fractional 6-Nearest 19.02
Fractional 7-Nearest 19.16
Fractional 8-Nearest 20.13
Fractional 9-Nearest 20.92
Fractional 10-Nearest 21.97

146 D. Applegate et al.

Table 9. Growth of running time for subtour bound

Number of cities CPU hours
250,000 1.74
500,000 6.47

1,000,000 24.31

Table 10. Growth of running time for subtour bound

Task CPU time
Initial edges and tour 0.71%

Connect cuts 0.07%
Interval cuts 0.28%
Exact cuts 0.64%

50-nearest pricing 1.47%
Full pricing 0.70%

LP solve after adding edges 34.42%
LP solve after adding cuts 61.71%

Table 11. Number of nonzeros in final LP

Number of cities Nonzeros
250,000 1,518,920
500,000 3,027,376

1,000,000 6,059,563

coefficients in the final core LP for the three runs that were used in Table 9. The growth
in the size of the LP problems appears to be linear, indicating the quadratic behavior is
either within the LP solver itself or it is due to the strategy we use for adding cuts and
edges to the LP (we add cuts in groups of 2,000 and we add edges in groups of 100; see
Section 6).

9.2. 85,900-city TSPLIB instance

The largest test instance in Reinelt’s (1991) TSPLIB contains 85,900 cities. This
“pla85900” instance was contributed by David S. Johnson; it arose in a programma-
ble logic array application at AT&T in 1986. The cities in pla85900 are specified as
coordinates in R2, and the edge costs are the Euclidean distances rounded up to the next
integer.

The best known tour for pla85900 has length 142,384,358; the tour was found by
Hisao Tamaki using the algorithm described in Tamaki (2002). The best known lower
bound for this instance is 142,307,500, showing that Tamaki’s tour is no more than
0.055% away from optimal. This lower bound was found by Concorde, using a short
branch-and-cut run.

Although 85,000 cities is well below the target for our large-scale implementation,
the code is still an effective way to obtain a good lower bound in a reasonably short
amount of CPU time. To illustrate this, we ran Concorde using the connect-interval-
exact combination of subtour cuts, together with the separation routines described in
Section 4 and the local cuts procedure with tmax = 8. In Figure 1, we plot the gap (to
Tamaki’s tour) versus the CPU time.

Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems 147

100 1000 10000
CPU Seconds (Log-Scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

%
 G

ap
 to

 B
es

t K
no

w
n

T
ou

r

Fig. 1. Concorde run on pla85900

The plot in Figure 1 shows that the improvement in the lower bound tails off as we
exhaust the useful cuts that can be supplied by our separation routines, but in under 10
hours of CPU time the code was able to obtain an optimality gap of under 0.1%.

9.3. 1,000,000-city Euclidean TSP

The best known tour for David Johnson’s randomly generated Euclidean 1,000,000-city
instance E1M.0 has length 713,302,702; it was found by Keld Helsgaun in 2002 using
a variant of the LKH heuristic described in Helsgaun (2000).

We ran Concorde on E1M.0 using the same selection of cutting-plane separation
routines that were used in Section 9.2, but in this case we gradually increased the size
of the local cuts’ tmax parameter from 0 up to 28. Each successive run in this study was
initialized with the LP and cut pool that were produced in the previous run. The results
are reported in Table 12. The “Bound” column gives the final lower bound that was
achieved by each run and the “Gap” column reports the % gap to the cost of the tour
found by Helsgaun, that is 100 ∗ (713302702 −Bound)/Bound . The cumulative CPU
time is reported in days, again using the Compaq AlphaServer ES40 Model 6/500.

Table 12. Concorde run on 1,000,000-city Euclidean TSP

Cuts Bound Gap Total CPU days
tmax = 0 711088074 0.311% 2.1
tmax = 8 712120984 0.166% 11.0
tmax = 10 712651618 0.091% 23.6
tmax = 12 712746082 0.078% 29.2
tmax = 14 712813323 0.068% 38.9
tmax = 20 712903086 0.056% 72.1
tmax = 24 712954779 0.049% 154.2
tmax = 28 713003014 0.042% 308.1

148 D. Applegate et al.

Fig. 2. World TSP

The results in Table 12 demonstrate the ability of the local cuts procedure to permit
cutting-plane codes to achieve strong lower bounds on even very large problem instances.
The total running time of the study was nearly one year, however, indicating that further
progress needs to be made. In this test, approximately 97% of the CPU time was used by
the LP solver to produce optimal primal and dual solutions after the addition of cutting
planes and after the addition of edges to the core LP, so this is a natural area for future
research. We will comment further on the LP solver in the next section.

9.4. World TSP

In this section we study the “World TSP”, a 1,904,711-city instance available at
www.math.princeton.edu/tsp/world/. This instance was created in 2001,
using data from the National Imagery and Mapping Agency1 and from the Geographic
Names Information System2 to locate populated points throughout the world. The cities
in the World TSP are specified by their latitude and longitude, and the cost of travel
between cities is given by an approximation of the great circle distance on the Earth,
treating the Earth as a ball. (This cost function is a variation of the TSPLIB GEO-norm,
scaled to provide the distance in meters rather than in kilometers.)

The distribution of the points in the World TSP is indicated in Figure 2. The best
known tour for this instance was again found by K. Helsgaun, using a variant of the
LKH heuristic; the length of the tour is 7,519,173,074 meters.

To study the cutting-plane method on this large instance, we repeated the test we
made on the 1,000,000-city instance in the previous section. In this case, we let the local
cuts’ parameter tmax increase from 0 up to 16; the results are reported in Table 13. We
did not attempt to run local cuts with larger values of tmax due to the overall running
time of the code.

As in the 1,000,000-city test, the CPU usage is dominated by the time spent in the
LP solver after the addition of cutting planes and after the addition of edges. In this case,

1 http://164.214.2.59/gns/html/
2 http://geonames.usgs.gov/

Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems 149

Table 13. Concorde run on 1,904,711-city World TSP

Cuts Bound Gap Total CPU days
tmax = 0 7500743582 0.245% 12.0
tmax = 8 7504218236 0.199% 22.0
tmax = 12 7508333052 0.144% 77.9
tmax = 14 7510154557 0.120% 163.6
tmax = 16 7510752016 0.112% 256.1

Table 14. LP2000 statistics

Rows Columns Nonzeros Nonzeros per column
2,635,893 4,446,024 23,397,782 5.26

the portion of time spent solving LP problems was approximately 98% of the total CPU
time (and the percentage was growing as the run progressed).

9.5. Conclusions

The computational tests on the 1,000,000-city and World TSPs demonstrate the effec-
tiveness of the mix of cutting planes that have been developed for the TSP. Of particular
interest for general large-scale applications of the cutting-plane method may be the cut-
alteration procedures (Section 4) and the local-cut procedure (Section 5), since both of
these themes can be adapted for applications beyond the context of the TSP.

The tests also indicate the need for further research into solution methods for large-
scale LP problems – the CPU time in our tests was dominated by the time spent in the
LP solver. We comment on this in more detail below.

To give an indication of the properties of the LP problems that arose in our compu-
tations, we isolated a single LP that was created by adding 2,000 subtour inequalities to
a previously solved core LP during our test of the World TSP. We refer to this problem
as LP2000; it was taken from the end of the World TSP run.

In Table 14, we report some statistics on the size of LP2000. Note that the number of
rows includes the original 1,904,711 degree constraints, so at this point in the computa-
tion the core LP contained 731,182 cutting planes. Note also the sparsity of LP2000 (the
“Nonzeros” entry counts the number of nonzero coefficients in the constraint matrix);
this is due in part to the internal representation of the LP we described in Section 7.1.

Starting with the optimal basis for the previously solved core LP, the CPLEX code
produced an optimal solution for LP2000 in 46,341 seconds on the CompaqAlphaServer
ES40 6/500, using the dual-steepest-edge simplex algorithm (starting with unit norms).

Although the running time of the CPLEX solver is remarkably small for a problem
of the size and complexity of LP2000, our study certainly suggests that the solution of
LP problems remains the bottleneck in implementations of the Dantzig et al. method for
large-scale instances. One possibility for overcoming this difficulty is to explore the use
of alternative methods for solving the LP problems, rather than relying on the simplex
algorithm. Indeed, LP2000 can be solved in approximately 11,000 seconds if we use the
CPLEX barrier code and run on all 4 processors of the AlphaServer ES40 (at the present
time there is no effective way to run the simplex algorithm in a parallel environment on

150 D. Applegate et al.

LP instances of the size and shape of LP2000). A difficulty with this approach, however,
is that our cutting-plane separation routines have not been designed to deal effectively
with the dense solutions produced by barrier codes (as opposed to the basic solutions
found by the simplex algorithm). Although it is possible to use a crossover routine to
obtain a basic optimal solution from a barrier solution, in this instance the CPLEX
crossover function required over six days of CPU time to carry out the conversion.

Acknowledgements. We would like to thank the late Michael Pearlman for his tireless technical support that
provided us with a superb computational platform for carrying out the tests reported in this study.

References

Agarwala, R., Applegate, D.L., Maglott, D., Schuler, G.D., Schäffer, A.A.: A fast and scalable radiation hybrid
map construction and integration strategy. Genome Res. 10, 350–364 (2000)

Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Finding cuts in the TSP (A preliminary report). DIMACS
Technical Report. DIMACS, New Jersey: Rutgers University, New Brunswick, USA, 1995, pp. 95–105

Applegate, D., Bixby, R., Chvátal, V., Cook, W.: On the solution of traveling salesman problems. Documenta
Mathematica Journal der Deutschen Mathematiker-Vereinigung. Int. Con. Math., 645–656 (1998)

Applegate, D., Bixby, R., Chvátal, V., Cook, W.: TSP cuts which do not conform to the template paradigm. In:
M. Jünger, D. Naddef, eds. Computational Combinatorial Optimization, Heidelberg: Springer, Germany,
2001, pp. 261–304

Applegate, D., Bixby, R., Chvátal, V., Cook, W.:Concorde, 2003. Available at www.math.princeton.edu/tsp
Applegate, D., Cook, W.: Solving large-scale matching problems. Johnson, D.S., McGeoch, C.C. eds. Algo-

rithms for Network Flows and Matching. A. Math. Soc., Providence, Rhode Island, USA, 1993, pp. 557–
576

Applegate, D., Cook, W., Rohe, A.: Chained Lin-Kernighan for large traveling salesman problems. INFORMS
J. Comp. 15, 82–92 (2003)

Balas, E.: Facets of the knapsack polytope. Math. Programming 8, 146–164 (1975)
Bentley, J.L.: Fast algorithms for geometric traveling salesman problems. ORSA J. Com. 4, 387–411 (1992)
Bixby, R., Fenelon, M., Gu, Z., Rothberg, E., Wunderling, R.: MIP. In: Theory and practice – closing the gap,

Powell, M.J.D., Scholtes, S. eds. System Modelling and Optimization: Methods, Theory andApplications,
Dordrecht: Kluwer Academic Publishers, The Netherlands, 2000, pp. 19–49

Bixby, R., Fenelon, M., Gu, Z., Rothberg, E., Wunderling, R.: Mixed-Integer Programming. In: A Progress
Report, Grötschel, M., ed. The Sharpest Cut, Festschrift in honor of Manfred Padberg’s 60th birthday,
SIAM, Philadelphia. To appear

Boyd, E.A.: Generating Fenchel cutting planes for knapsack polyhedra. SIAM J. Optimization 3, 734–750
(1993)

Boyd, E.A.: Fenchel cutting planes for integer programs. Operations Res. 42, 53–64 (1994)
Chekuri, C., Goldberg, A.V., Karger, D.R., Levine, M.S., Stein, C.: Experimental study of minimum cut

algorithms. Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, New
York: ACM Press, USA, 1997, pp. 324–333. (The full version of the paper is available at www.cs.dart-
mouth.edu/˜cliff/papers/MinCut Implement.ps.gz.)

Christof, T., Reinelt, G.: Parallel cutting plane generation for the TSP. P. Fritzson, L. Finmo, eds. Parallel
Programming and Applications, Amsterdam: IOS Press, The Netherlands, 1995, pp. 163–169

Chvátal, V.: Edmonds polytopes and weakly hamiltonian graphs. Math. Programming 5, 29–40 (1973)
Chvátal, V.: Linear Programming, New York: W.H. Freeman and Company, USA, 1983
Clochard, J.-M., Naddef, D.: Using path inequalities in a branch and cut code for the symmetric traveling

salesman problem. G. Rinaldi, L. Wolsey, eds. Third IPCO Conference, 1993, pp. 291–311
Cook, W., Seymour, P.D.: Tour merging via branch decomposition. INFORMS J. Com., 2003. To appear
Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. Cambridge: The MIT Press, Massa-

chusetts, USA, 1990
Cornuéjols, G., Fonlupt, J., Naddef, D.: The traveling salesman problem on a graph and some related integer

polyhedra. Math. Programming 33, 1–27 (1985)
Craven, B.D.: Fractional Programming. Berlin: Heldermann, Germany, 1988
Crowder, H., Johnson, E.L., Padberg, M.: Solving large-scale zero-one linear programming problems. Oper-

ations Res. 31, 803–834 (1983)

Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems 151

Crowder, H., Padberg, M.W.: Solving large-scale symmetric travelling salesman problems to optimality. Man-
agement Sci. 26, 495–509 (1980)

DIMACS: 8th DIMACS implementation challenge the traveling salesman problem, 2001,
www.research.att.com/˜dsj/chtsp/

Edmonds, J.: Maximum matching and a polyhedron with 0,1-vertices. J. Res. National Bureau of Standards–B.
69B, 125–130 (1965)

Fleischer, L.: Building chain and cactus representations of all minimum cuts from Hao-Orlin in the same
asymptotic run time. J. Algorithms 33, 51–72 (1999)

Fleischer, L., Tardos, É.: Separating maximally violated comb inequalities in planar graphs. Math. Operations
Res. 24, 130–148 (1999)

Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton, NJ, USA, 1962
Goldberg, A.V.: A new max-flow algorithm. Technical Report MIT/LCS/TM 291. Laboratory for Computer

Science, Cambridge: Massachusetts Institute of Technology, Massachusetts, USA, 1985
Gomory, R.E.: Some polyhedra related to combinatorial problems. Linear Algebra and Its Applications 2,

451–558 (1969)
Grötschel, M., Holland, O.: A cutting-plane algorithm for minimum perfect 2-matchings. Computing 39,

327–344 (1987)
Grötschel, M., Holland, O.: Solution of large-scale symmetric travelling salesman problems. Math. Program-

ming 51, 141–202 (1991)
Grötschel, M., Padberg, M.: On the symmetric traveling salesman problem I: inequalities. Math. Programming

16, 265–280 (1979a)
Grötschel, M., Padberg, M.: On the symmetric traveling salesman problem II: lifting theorems and facets.

Math. Programming 16, 281–302 (1979b)
Grötschel, M., Padberg, M.: Polyhedral theory. E. L. Lawler, J.K. Lenstra,A.H.G. Rinnooy Kan, D.B. Shmoys,

eds, The Traveling Salesman Problem, John Wiley & Sons, Chichester, UK, 1985, pp. 252–305
Hammer, P.L., Johnson, E.L., Peled, U.N.: Facets of regular 0-1 polytopes. Math. Programming 8, 179–206

(1975)
Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J. Com. 13, 338–355

(1984)
Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning trees: Part II. Math. Program-

ming 1, 6–25 (1971)
Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur. J. Opera-

tional Res. 126, 106–130 (2000) The LKH code is available at www.dat.ruc.dk/˜keld/research/LKH/
Hong, S.: A Linear Programming Approach for the Traveling Salesman Problem. Ph.D. Thesis. The Johns

Hopkins University, Baltimore, Maryland, USA, 1972
Huffman, D.A.: A method for the construction of minimum-redundancy codes. Proceedings of the IRE. 40,

1098–1101 (1952)
Johnson, D.S., McGeoch, L.A.: The traveling salesman problem: a case study. E. Aarts, J.K. Lenstra, eds.

Local Search in Combinatorial Optimization. John Wiley & Sons, Chichester, UK, 1997, pp. 215–310
Johnson, D.S., McGeoch, L.A.: Experimental analysis of heuristics for the STSP. G. Gutin, A. Punnen, eds.

The Traveling Salesman Problem and its Variations, Dordrecht: Kluwer Academic Publishers, The Neth-
erlands, 2002, pp. 369–443

Jünger, M., Reinelt, G., Rinaldi, G.: The traveling salesman problem. M. Ball, T. Magnanti, C.L. Monma,
G. Nemhauser, eds. Handbook on Operations Research and Management Sciences: Networks, North
Holland, Amsterdam, The Netherlands, 1995

Jünger, M., Reinelt, G., Rinaldi, G.: The traveling salesman problem. M. Dell’Amico, F. Maffioli, S. Martello,
eds.Annotated Bibliographies in Combinatorial Optimization. John Wiley & Sons, Chichester, UK, 1997,
pp. 199–221

Jünger, M., Reinelt, G., Thienel, S.: “Provably good solutions for the traveling salesman problem”. Zeitschrift
für Operations Res. 40, 183–217 (1994)

Jünger, M., Reinelt, G., Thienel, S.: Practical problem solving with cutting plane algorithms. W. Cook, L.
Lovász, P. Seymour, eds. Combinatorial Optimization. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science 20. American Mathematical Society, Providence, Rhode Island, USA,
1995, pp. 111–152

Jünger, M., Reinelt, G., Thienel, S.: Practical performance of minimum cut algorithms. Algorithmica 26,
172–195 (2000)

Karger, D.R., Stein, C.: A new approach to the minimum cut problem. J. ACM 43, 601–640 (1996)
Knuth, D.: Fundamental Algorithms. Adison Wesley, Reading, Massachusetts, USA, 1968
Land, A.: The solution of some 100-city travelling salesman problems. Technical Report. London: London

School of Economics, UK, 1979

152 D. Applegate et al.

Letchford, A.N.: Separating a superclass of comb inequalities in planar graphs. Math. Operations Res. 25,
443–454 (2000)

Letchford, A.N., Lodi, A.: Polynomial-time separation of simple comb inequalities. W.J. Cook, A.S. Schulz,
eds. Integer Programming and Combinatorial Optimization. Lecture Notes in Computer Science 2337.
Heidelberg: Springer, Germany, 2002, pp. 93–108

Levine, M.: Finding the right cutting planes for the TSP. M.T. Goodrich, C.C. McGeoch, eds. Algorithm
Engineering and Experimentation, International Workshop ALEXNEX’99. Lecture Notes in Computer
Science 1619. Heidelberg: Springer, Germany, 1999, pp. 266–281

Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Operations
Res. 21, 498–516 (1973)

Marchand, H., Martin,A., Weismantel, R., Wolsey, L.A.: Cutting planes in integer and mixed-integer program-
ming. Technical Report CORE DP9953. Université Catholique de Louvain, Louvain-la-Neuve, Belgium,
1999

Martin, O., Otto, S.W., Felten, E.W.: Large-step Markov chains for the traveling salesman problem. Complex
Systems 5, 299–326 (1991)

Miliotis, P.: Using cutting planes to solve the symmetric travelling salesman problem. Math. Programming.
15, 177–188 (1978)

Miller, D.L., Pekny, J.F.: A staged primal-dual algorithm for perfect b-matching with edge capacities. ORSA
J. Com. 7, 298–320 (1995)

Naddef, D.: Polyhedral theory and branch-and-cut algorithms for the symmetric TSP. G. Gutin, A. Punnen,
eds. The Traveling Salesman Problem and its Variations. Dordrecht: Kluwer Academic Publishers, The
Netherlands, 2002, pp. 29–116

Naddef, D., Rinaldi, G.: The graphical relaxation: A new framework for the symmetric traveling salesman
polytope. Math. Programming 58, 53–88 (1992)

Naddef, D., Thienel, S.: Efficient separation routines for the symmetric traveling salesman problem I: general
tools and comb separation. Math. Programming. 92, 237–255 (2002a)

Naddef, D., Thienel, S.: Efficient separation routines for the symmetric traveling salesman problem II: sepa-
rating multi handle inequalities. Math. Programming 92, 257–283 (2002b)

Nemhauser, G.L, Wolsey, L.A.: Integer and Combinatorial Optimization. John Wiley & Sons, New York,
USA, 1988

Padberg, M.W.: On the facial structure of set packing polyhedra. Math. Programming 5, 199–215
Padberg, M.W.: A note on zero-one programming. Operations Res. 23, 833–837
Padberg, M., Grötschel, M.: Polyhedral computations. E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B.

Shmoys, eds, The Traveling Salesman Problem. Chichester: John Wiley & Sons, UK, 1985, pp. 307–360
Padberg, M.W., Hong, S.: On the symmetric travelling salesman problem: a computational study. Math.

Programming Study 12, 78–107 (1980)
Padberg, M.W., Rao, M.R.: Odd minimum cut-sets and b-matchings. Math. Operations Res. 7, 67–80 (1982)
Padberg, M.W., Rinaldi, G.:An efficient algorithm for the minimum capacity cut problem. Math. Programming

47, 19–36 (1990a)
Padberg, M.W., Rinaldi, G.: Facet identification for the symmetric traveling salesman polytope. Math. Pro-

gramming 47, 219–257 (1990b)
Padberg, M.W., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-scale symmetric traveling

salesman problems. SIAM Rev. 33, 60–100 (1991)
Pulleyblank, W.R.: Faces of Matching Polyhedra. Ph.D. Thesis. Department of Combinatorics and Optimiza-

tion, University of Waterloo, Waterloo, Ontario, Canada, 1973
Reinelt, G.: TSPLIB – A traveling salesman problem library. ORSA J. Comp 3, 376–384 (1991). An updated

version of the library is available at http://www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95/
Schieber, B., Vishkin, U.: On finding lowest common ancestors: simplification and parallelization. SIAM J.

Comp. 17, 1253–1262 (1988)
Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons, Chichester, UK, 1986
Stancu-Minasian, I.M.: Fractional Programming. Kluwer, Dordrecht, The Netherlands, 1997
Tamaki, H.: Alternating cycles contribution: a tour merging strategy for the traveling salesman problem, 2002.

Submitted
Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. Association of Com. Machinery 22,

215–225 (1975)
Tarjan, R.E.: Data Strutures and Network Algorithms. SIAM, Philadelphia, 1983
Tarjan, R.E., van Leeuwen, J.: Worst-case analysis of set union algorithms. J. Association Com. Machinery.

31, 245–281 (1984)
Vanderbei, R.J.: Linear Programming: Foundations and Extensions. Kluwer Academic Publishers, Boston,

USA, 2001

Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems 153

Wenger, K.M.: A new approach to cactus construction applied to TSP support graphs. W.J. Cook, A.S. Schulz,
eds. Integer Programming and Combinatorial Optimization. Lecture Notes in Computer Science 2337.
Heidelberg: Springer, Germany, 2002, pp. 109–126

Wolsey, L.A.: Faces for a linear inequality in 0-1 variables. Math. Programming 8, 165–178 (1975)
Wolsey, L.A.: Facets and strong valid inequalities for integer programs. Operations Res. 24, 367–372
Wolsey, L.A.: Integer Programming. John Wiley & Sons, New York, USA, 1998

