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1 Introduction

Let G = (V,E) be an undirected graph with a set V of vertices and a set E
of edges. We follow the usual notation n = |V | and m = |E|. A stable set is a
subset S ⊂ V composed of pairwise non-adjacent vertices, that is, {v, w} 6∈ E
for all v, w ∈ S. A coloring of G, or a k-coloring, is a partition of V into k
stable sets S1, . . . , Sk. The minimum k such that a k-coloring exists in G is
called the chromatic number of G and is denoted χ(G).

A clique is a subset C ⊂ V composed of pairwise adjacent vertices, that
is, {v, w} ∈ E for all v, w ∈ C. Cliques are stable sets in the complement
G := (V, {{v, w} ∈ V × V : {v, w} 6∈ E, v 6= w}). In a coloring the vertices in
a clique C must be in different stable sets and thus |C| ≤ χ(G). Consequently,
the clique number ω(G), defined as the size of a largest clique in G, is a
lower bound for χ(G). However, there are graphs with clique size two and
arbitrarily high chromatic number [18]. Similarly, the stability number α(G),
defined as the maximum size of a stable set in G, provides another lower bound
dn/α(G)e ≤ χ(G).

Letting S denote the set of all maximal stables sets in G, it is well known
that χ(G) is the optimal value of the following integer-programming problem
(e.g. see [16])

χ(G) = min
∑
S∈S

xS

s.t.
∑

S∈S:v∈S
xS ≥ 1 ∀v ∈ V

xS ∈ {0, 1} ∀S ∈ S.

(CIP)

Indeed, a solution to (CIP) with objective value k can be transformed into
a k-coloring by removing each vertex from all but one of the stable sets to
which it is assigned. Vice versa, by extending all stable sets of a k-coloring to
become maximal stable sets, a feasible solution of (CIP) with objective value
k is generated.

The optimal value, χf (G), of the linear-programming (LP) relaxation of
(CIP)

χf (G) := min
∑
S∈S

xS

s.t.
∑

S∈S:v∈S
xS ≥ 1 ∀v ∈ V

0 ≤ xS ≤ 1 ∀S ∈ S

(CLP)

is called the fractional chromatic number of G. It defines the lower bound
dχf (G)e for χ(G). In [13] it was shown that the integrality gap between χ(G)
and χf (G) is O(log n) wherefore it is NP-hard to compute χf (G). In fact, for
all ε > 0, approximating χ(G), χf (G), or α(G) with an approximation ratio
of n1−ε is NP-hard [29].

Mehrotra and Trick [16] proposed to solve (CLP) via column generation
and, accordingly, (CIP) via branch and price. Their process is the most suc-
cessful exact coloring method proposed to date, including impressive results
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obtained recently by Gualandi and Malucelli [10] and by Malaguti, Monaci,
and Toth [14]. See also Hansen, Labbé, and Schindl [11] for polyhedral studies
and a comparison with an alternative packing formulation.

A correct implementation of the Mehrotra-Trick process, using modern LP
software, must necessarily involve a mechanism for handling errors that can
occur in floating-point computation. Indeed, LP solvers typically do not pro-
vide guarantees of either the feasibility or optimality of solutions computed
for instances of LP models. To illustrate the potential problem, consider the
112,517-variable LP instance sgpf5y6 from the Mittelmann test suite [17].
This instance has a very sparse constraint matrix and is solved easily with
variants of the simplex algorithm. The difficulty is that software can produce
varying results, for example, the CPLEX 12.1 code returns the optimal objec-
tive value -6425.87 when solved with the primal simplex method and -6484.47
when solved with the dual simplex method; results reported by other simplex
LP solvers are listed in Steffy [23]. This example is not an instance of the frac-
tional chromatic number, but it suggests that it would be an unsafe practice
to use dχf (G)e as a lower bound on χ(G) in practical computations.

A standard response, in an implementation of Mehrotra-Trick, would be
to select a fixed ε > 0 and to use the truncated value dχf (G) − εe as a lower
bound on χ(G). For a sufficiently large choice of ε, this method can avoid
typical floating-point errors, but its correctness depends on LP software that
is not guaranteed to produce solutions accurate to within the ε tolerance. In
contrast, the focus of our study is an alternative implementation of Mehrotra-
Trick that is guaranteed to produce correct results, independent of the floating-
point accuracy of LP software employed in the computation; the methodology
is applicable to other settings where column-generation is employed. The tech-
nique is to avoid inaccuracy by computing a numerically-safe lower bound on
χf (G), using a floating-point LP solution as a guide. To drive the process,
we also present a new combinatorial branch-and-bound algorithm to compute
maximum-weight stable sets in graphs; the new method is particularly well
suited for instances of the problem that arise in the Mehrotra-Trick proce-
dure. With this safe methodology, we are able to verify results reported in
previous studies as well to obtain new best-known bounds for a number of
instances from the standard DIMACS test collection. In particular, we have
improved previously reported results on four of the eight open DSJCxxx in-
stances created by David S. Johnson in 1989, including the optimal solution
of DSJC250.9.

The paper is organized as follows. In Section 2 we describe the Mehrotra-
Trick algorithm, including the new algorithm for solving stable-set subprob-
lems. Numerically safe computations are discussed in Section 3 and an im-
proved process to compute lower bounds is presented in Section 4, together
with a branch-and-price implementation. Experimental results are presented
in Section 5.
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2 Column generation

Let S ′ ⊆ S contain a feasible solution to (CLP), that is, V =
⋃
S∈S′ S, and

consider the restricted LP problem defined as

χf (G,S ′) := min
∑
S∈S′

xS

s.t.
∑

S∈S′:v∈S
xS ≥ 1 ∀v ∈ V

0 ≤ xS ≤ 1 ∀S ∈ S ′.

(CLP-r)

Let (x, π) be an optimum primal-dual solution pair to (CLP-r), where the dual
solution vector π = (πv)v∈V contains a value πv ∈ [0, 1] for every v ∈ V . By
setting xS = 0 for all S ∈ S \ S ′, x can be extended naturally to a feasible
solution of (CLP). Now, either (x, π) is also optimum or π is dual infeasible
with respect to (CLP). In the latter case, there is a stable set S ∈ S \S ′ with

π(S) > 1, (1)

where we use the notation π(X) :=
∑
v∈X πv for a subset X ⊆ V . A stable

set satisfying (1) exists if and only if the weighted stability number

απ(G) := max
∑
v∈V

πvyv

s.t. yv + yw ≤ 1 ∀ {v, w} ∈ E
yv ∈ {0, 1} ∀ V ∈ V

(MWSS)

is greater than one.
Note that any π ≥ 0 with απ(G) ≤ 1 is dual feasible to (CLP) and thus

defines a lower bound π(V ) for χf (G). Consequently, with πv = 1/α(G) for
all v ∈ V , the aforementioned lower bound n/α(G) for the chromatic number
is also valid for the fractional chromatic number: n/α(G) ≤ χf (G).

2.1 Finding maximum-weight stable sets

As mentioned in the introduction the maximum-cardinality stable-set problem
and its weighted variant defined by (MWSS) are among the hardest combi-
natorial optimization problems. However, for very dense graphs, for example
with edge-density

ρ(G) := m/(n(n− 1)/2) ∼ 0.9,

the size and number of maximal stable sets is quite low and can be enumer-
ated. A particularly efficient way of solving (MWSS) in dense graphs is via
Östergård’s CLIQUER algorithm [30]. For sparse graphs CLIQUER becomes
less efficient and for such instances we employ a new algorithm described be-
low.
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2.1.1 Combinatorial branch and bound

The branch-and-bound algorithm presented here uses depth-first search and
adopts ideas from algorithms presented in [4,3,22,27].

A subproblem in the branch-and-bound tree consists of a lower bound, de-
noted LB, which is the weight of the heaviest stable set found so far, the
current stable set S = {v1, v2, . . . , vd} (where d is the depth of the sub-
problem in the search tree), the set of free vertices F , and a set of vertices
X that are excluded from the current subproblem (which will be explained
below). The goal of the subproblem is to either prove that this subprob-
lem cannot produce a heavier stable set than the heaviest one found so far
(that is, π (S) + απ (G [F ]) ≤ LB) or find a maximum-weight stable set in
G [F ] (given a vertex set W ⊆ V , its induced subgraph G [W ] is defined as
G [W ] := (W, {{v, w} ∈ E : v, w ∈W})).

An overview is given in Algorithm 1. The algorithm consists of a recursive
subfunction mwss_recursion(S, F,X) that is called with S = ∅, F = V and
X = ∅.

Algorithm 1 An Exact Maximum-Weight Stable Set Algorithm.
function mwss_recursion(S,F,X)

LB = max (LB, π (S));
if F = ∅ then return;
end if
if ∃ x ∈ X with πx ≥ π ((S ∪ F ) ∩N (x)) then return;
end if
Find a weighted clique cover of G [F ];
if weight of the clique cover ≤ LB − π (S) then return;
end if
Determine the branch vertices F ′′ = {f1, f2, . . . , fp} ⊂ F

using the three branching rules;
for i = p down to 1 do

Fi = F\ (N (fi) ∪ {fi, fi+1, . . . , fp});
mwss_recursion(S ∪ {fi} , Fi, X);
X = X ∪ {fi};

end for
end function
mwss_recursion(∅, V, ∅);

The algorithm uses two methods to prune subproblems. The first method
works as follows. LetX be the set of vertices that have been excluded from con-
sideration in the current subproblem because they have already been explored
in an ancestor of the current subproblem (see Algorithm 1 to see how X is cre-
ated). If there exists a vertex x ∈ X such that πx ≥ π ((S ∪ F ) ∩N (x)), then
the current subproblem cannot lead to a heavier stable set than has already
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been found. To see this, let S′ be the heaviest stable set that can be created by
adding vertices from F to S. Now consider the stable set S′′ = {x}∪ S′\N (x)
created by adding x to S′ and removing any of its neighbors from S′. Then

π (S′′) = π ({x} ∪ S′\N (x))
= πx + π (S′\N (x))
= πx + π (S′)− π (S′ ∩N (x))
≥ πx + π (S′)− π ((S ∪ F ) ∩N (x))
≥ π (S′) ,

where the second to last inequality follows from the fact that S′ is con-
tained in S ∪ F and the last inequality follows from the hypothesis that
πx ≥ π ((S ∪ F ) ∩N (x)). Furthermore, every vertex in S′′ was available when
x was explored as a branch vertex, thus LB must have been greater than or
equal to π (S′′) when the algorithm returned from exploring x as the branch
vertex. Consequently, LB ≥ π (S′′) ≥ π (S′). Hence, this subproblem can be
pruned.

The second method of pruning subproblems uses weighted clique covers. A
weighted clique cover for a set of vertices F is a set of cliques K1,K2, . . . ,Kr

together with a positive weight Πi for each clique Ki such that
∑
i:f∈Ki

Πi ≥
πf for each vertex f ∈ F . The weight of the clique cover is defined to be∑r
i=1 Πi. It is easy to show that απ (G [F ]) is less than or equal to the weight

of any clique cover of F . Hence, if a clique cover of weight less than or equal
to LB − π (S) can be found for F , then this subproblem can be pruned.

An iterative heuristic is used to find weighted clique covers, as presented in
Algorithm 2. The heuristic repeatedly chooses the vertex v with the smallest
positive weight, finds a maximal or maximum cliqueKi that contains v, assigns
the weight Πi = πv to Ki, and subtracts Πi from the weight of every vertex
in Ki.

Algorithm 2 Weighted Clique Cover Heuristic.
π′f = πf ∀f ∈ F
i = 0
while π′ 6= 0 do

v = arg min
{
π′f : π′f > 0

}
i = i+ 1
Find a clique Ki ⊆ {u ∈ N (v) ∩ F : π′u > 0}
Ki = Ki ∪ {v}
Πi = π′v
π′u = π′u − π′v ∀u ∈ Ki\ {v}
π′v = 0

end while
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The algorithm uses three branching rules to create subproblems. The first
two rules adopt a weighted variation of a technique employed by Balas and
Yu [5,4]. Suppose that F ′ ⊆ F and it can be proved that

απ (G [F ′]) ≤ LB − π (S) ,

then a stable set containing S that is heavier than LB must contain at least
one vertex from F ′′ = F\F ′. Therefore, we branch into all possibilities of
extending S by a vertex from F ′′, avoiding multiple enumerations of the same
sets. To this end let F ′′ = {f1, f2, . . . , fp} and

Fi = F\ (N (fi) ∪ {fi, fi+1, . . . , fp}) .

If απ (G [F ]) > LB − π (S) , then

απ (G [F ]) = max
i=1,...,p

πfi + απ (G [Fi]) .

Hence, one branch is created for each set F1, . . . , Fp. Note, if απ (G [F ]) ≤
LB − π (S) , the maximum-weight stable set in G[F ] might consist of vertices
from F ′ only and the above equality might be false, but in this case no better
stable set can be found in the current branch.

The first branching rule uses the weighted clique cover to create F ′. The
clique cover heuristic is halted as soon as the weight of the clique cover would
exceed LB − π (S). Then F ′ is defined as the set of vertices whose remaining
weight is zero (that is, F ′ =

{
f ∈ F : π′f = 0

}
) and F ′′ = F\F ′.

The second branching rule uses a method similar to the first method of
pruning. If there exists a vertex x ∈ X such that πx ≥ π (S ∩N (x)), then it
can be shown that if απ (G [F ]) > LB − π (S), then every maximum-weight
stable set in G [F ] must contain at least one neighbor of x that is in F . The
proof is similar to the proof for the first method of pruning. In such a case,
F ′′ is set equal to N (x) ∩ F .

The third branching rule searches for a vertex f ∈ F such that πf ≥
π (F ∩N (f)). If such a vertex exists, it is easy to prove that there exists an
maximum-weight stable set of G [F ] that includes f, hence a single branch is
created (that is, F ′′ = {f}).

The algorithm uses the rule that generates the smallest F ′′ (ties are broken
in favor of the first rule and then the third rule). For both the second and the
third branching rules, the set of vertices F ′′ are sorted in increasing order of
their degree in G [F ] .

In the context of column generation the running time can be reduced fur-
ther because the actual maximum-weight stable set need not necessarily be
found. Instead, it is sufficient to either find a stable set S with π(S) > 1 or
decide that no such set exists. This gives two effective ways to decrease the
number of branches that are processed during the course of Algorithm 1.

Firstly, LB can be initialized as 1, because only solutions of value bigger
than one are of interest, while the exact value and elements of a maximum-
weight stable set S are discarded if π(S) ≤ 1. Secondly, it is sufficient to stop
the algorithm once a stable set S with π(S) > 1 is found.
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With these two modifications the running time of Algorithm 1 can be
reduced significantly, for example, from almost 3 hours to 7 seconds for solving
the final maximum-weight stable set instance on 3-Insertions_5 from the
DIMACS benchmarks.

2.1.2 Heuristics

Within the column-generation process, a stable set with π(S) > 1 can often be
found by heuristic methods. The heuristics we use create an initial solution by a
greedy strategy and then improve this solution with local search. The greedy
algorithms build a stable set S by starting with an empty set and adding
vertices one by one. A vertex v ∈ V \ S is added to S if S ∪ {v} is a stable
set. Mehrotra and Trick proposed to traverse the vertices in non-decreasing
order of their weight [16]. Another strategy is to consider the weight of a vertex
related to the weights of its neighbors. The surplus of a vertex v ∈ V is defined
as π+

v = πv −
∑
w∈N(v) πw. If a preliminary stable set S is already found, the

surplus can be refined by neglecting neighbors of S that are not eligible for
insertion. We use the following three greedy orderings: as the next vertex, try
a not yet processed vertex v ∈ V \ (N(S) ∪ S) for which
1. πv (maximum weight strategy)
2. πv −

∑
w∈N(v)\N(S)

πw (maximum dynamic surplus strategy)

3. πv −
∑

w∈N(v)

πw (maximum static surplus strategy)

is maximum.
The result of the greedy algorithm is then improved by local search. First,

we perform (1, 2)-swaps, where a vertex v ∈ S is replaced by two neighbors
w1, w2 ∈ N(v) if πw1 +πw2 > πv. This is done until no more (1, 2)-swaps can be
found. Using efficient data structures developed in [1] it can be tested in linear
time whether (1, 2)-swaps exists. Then, we perform (2, k)-swaps, where two
vertices v1, v2 ∈ S are replaced by k ≥ 1 vertices w1, . . . , wk ∈ N(v) ∪ N(w)
with w1 ∈ N(v) ∩N(w) if

∑k
i=1 π(wi) > π(v1) + π(v2).

If the greedy algorithm followed by local search does not find a stable set
of weight greater than one, then we perform several additional searches using
the same strategy but a modified greedy order in which the first considered
vertex is skipped and appended to the tail of the list of vertices.

This method is similar to the tabu search in [14]; it differs in not starting
from random stable sets but greedy stable sets and by more general swaps
that allow the addition of k vertices instead of just one vertex in a swap.

Note that one could also try further heuristics, e.g. the merging of two
stable sets into a new one by a maximum-flow computation as described by
Balas and Niehaus for cliques [6], or by using the QUALEX-MS algorithm of
Busygin [8]. However, as we observed that on almost all instances having a
stable set heavier than one the above greedy procedure would find it, we did
not try to improve it further.
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2.1.3 Hybrid maximum-weight stable-set solver

The overall approach to solve the maximum-weight stable-set problem is sum-
marized in Algorithm 3. On sparse graphs most stable sets are found by the
greedy algorithms, although the solvability and overall running times depend
heavily on Algorithm 1.

Algorithm 3 MWSS-Wrapper
if ρ(G) < 0.8 then . sparse graphs

for i = 1→ 3 do
S ← Run greedy strategy i.
if π(S) > 1 then return S
end if

end for
Run Algorithm 1

else . dense graphs
Run CLIQUER

end if

Most DIMACS instances have either a density of 0.5 or less or a density of
approximately 0.9. Only on the latter does CLIQUER outperform Algorithm 1.
The threshold of 0.8 for separating sparse and dense graphs in Algorithm 3
was chosen arbitrarily between 0.5 and 0.9.

3 Numerically safe bounds

Up to this point we have assumed that all computations are performed in
exact arithmetic, but competitive LP codes for solving (CLP-r) use floating-
point representations for all numbers. This causes immediate difficulties in
the column-generation process. Indeed, let πfloat denote the vector of dual
variables in floating-point representation as returned by an LP-solver. Based
on these inexact values, απ(G) > 1 can hardly be decided and this can lead
to premature termination or to endless loops (if the same stable set is found
again and again).

One way to circumvent these problems would be to solve (CLP-r) exactly,
for example with a solver such as [2]. However, exact LP-solvers suffer signifi-
cantly higher running times, and in column generation, where thousands of re-
stricted problems must be solved, these solvers would be impractical. Thus, in-
stead of computing χf (G) exactly, we compute a numerically-safe lower bound
χf (G) in exact integer (fixed point) arithmetic, where the floating-point vari-
ables πfloat serve only as a guide.

Recall that any vector π ∈ [0, 1]n, with απ(G) ≤ 1 is a dual feasible solution
of (CLP) and defines a lower bound regardless whether it is optimum or not.
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Accordingly, given a scale factor K > 0, a vector πint ∈ NV (G)
0 proves the

lower bound K−1πint(V ) if and only απint(G) ≤ K.
Now, the goal is to conduct the maximum-weight stable-set computa-

tions with integers πintv := bKπfloatv c (v ∈ V ). Thus, achieving a lower n
K -

approximation of πfloatv (V ):

πfloatv (V )− n

K
≤ 1
K
πintv (V ) ≤ πfloatv (V ). (2)

The question is how to represent the integers πintv (v ∈ V ) and how to choose
K. For performance reasons, it is preferable to use integer types that are na-
tively supported by the computer hardware, for example 32- or 64-bit integers
in two’s complement for current x86 processors.

More generally, let us assume that all integers are restricted to an inter-
val [Imin, Imax] with Imin < 0 and Imax > 0. To avoid integer overflows, we
have to ensure that during the computations of maximum-weight stable sets
the intermediate results neither fall below Imin nor exceed Imax. The smallest
intermediate results occur while computing surpluses with the greedy strate-
gies 2 and 3. The largest intermediate results are either given by πint(X) for
some X ⊂ V or as the weight of the weighted clique covers in Algorithm 1.
As πfloatv ∈ [0, 1] (v ∈ V ), setting K := min{−Imin, Imax}/n guarantees that
any intermediate result will be representable within [Imin, Imax]. Note that the
dual variables returned as floating point numbers by the LP solver might ex-
ceed the interval [0, 1] slightly, although this would be dual infeasible (as all
vertices are covered by at least one stable set). Thus, they are shifted into
[0, 1] before scaling.

By (2) the deviation from the floating-point representation of the fractional
chromatic number is at most n2/min{−Imin, Imax}. Note that the denominator
grows exponentially in the number of bits that are spent to store numbers,
allowing a reduction in the error without much memory overhead.

Column generation creating a safe lower bound is summarized in Algo-
rithm 4. Initially, a coloring is determined with the greedy algorithm DSATUR
[7]. It provides the initial set S ′ and an upper bound for χ(G). The column-

Algorithm 4 Column Generation for Computing χf (G)
S ′ ← Compute initial coloring (DSATUR).
S ← ∅
repeat
S ′ ← S ′ ∪ S
πfloat ← Solve (CLP-r) in floating-point arithmetic
πint ← bKπfloatc
(S, απint(G))← Algorithm 3

until απint(G) ≤ K
χf (G)← K−1πint(V )
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generation process terminates when απint(G) ≤ K with a lower bound of
χf (G) := K−1πint(V ) ≤ χf (G).

Note that it is difficult to bound the difference χf (G) − χf (G) without
further assumptions on the LP solver. However, a close upper bound χf (G)
for χf (G) can be computed by solving the final restricted LP (CLP-r) once
in exact arithmetic [2]. Thereby, an interval [χf (G), χf (G)] containing χf (G)
can be determined, allowing us to obtain the precise value of dχf (G)e on most
test instances.

4 Improved computation of lower bounds

4.1 Decreasing dual weights for speed

If the weight of a maximum-weight stable set in Algorithm 4 is slightly larger
than the scale factor K from Section 3, it can potentially be reduced to K, or
less, by decreasing the integer variables πint. This way an earlier termination
of the column-generation approach might be possible, because K−1πint would
become dual feasible for (CLP). Of course, such reduced weights will impose
a lower fractional bound. However, the entries of πint can be reduced safely
by a total amount of

frac(πint,K) := max{k ∈ N0 : dK−1(πint(V )− k)e = dK−1πint(V )e}
= max

{
0,
(∑

v∈V π
int
v − 1

)}
mod K,

(3)

while generating the same lower bound of dK−1πint(V )e. The difficulty is to
decide how to decrease entries in πintv . Ideally, one would like to achieve a
largest possible ratio between the reduction of the value of the maximum-
weight stable set and the induced lower bound for the chromatic number.

Gualandi and Malucelli [10] proposed a uniform rounding style, rounding
down all values πintv (v ∈ V ) uniformly by frac

(
πint,K

)
/n. This way the

weight of a stable set S ∈ S decreases by |S|n frac(πint,K).
An alternative technique works as follows. Consider a v ∈ V with πv > 0,

then at least one vertex from V ′ := v ∪ {w ∈ N(v) : πw > 0} will be
contained in a maximum-weight stable set. Thus, to reduce the value of the
maximum-weight stable set, it is sufficient to reduce weights in V ′ only. In our
implementation, we always select a set V ′ of smallest cardinality. We refer to
this rounding style as neighborhood rounding.

Table 1 demonstrates the importance of rounding for some instances from
the DIMACS benchmark set, covering several instance classes. It reports the
number of calls of the exact maximum-weight stable-set solver (Algorithm 1)
needed to terminate column generation, in column 4 without any dual weight
reduction (beyond safe weights according to Section 3), in column 5 with
uniform rounding, and in column 6 with neighborhood rounding. However,
neither of the two dual variable reduction styles dominates the other.
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Table 1 Number of calls to Algorithm 1 depending on decreased dual weights

Instance |V | |E| # calls to Algorithm 1
None Uniform Neighborhood

latin_square_10 900 307350 1 1 1
queen16_16 256 12640 1 1 1
1-Insertions_6 607 6337 8354 147 211
DSJC250.1 250 3218 50 1 1
DSJC250.5 250 15668 34 10 17
DSJC500.5 500 62624 106 42 38
flat300_28_0 300 21695 32 6 3
myciel7 191 2360 186 111 19

For most instances the total running time of column generation is dom-
inated by the time spent to solve the maximum-weight stable-set problems
exactly.

4.2 Branch and price

The lower bound can be improved further by branch and bound, eventually
yielding an optimum coloring. As in [16] we pick two vertices v, w ∈ V with
{v, w} 6∈ E and create the two coloring problems

– GDIFF := (V,E ∪ {v, w}), enforcing different colors for v and w, and
– GSAME := G[{v, w}], enforcing the same color for v and w.

Mehrotra and Trick [16] choose v from a most fractional column S1 ∈ S, then
select a second column S2 ∈ S covering v and choose w from (S1\S2)∪(S2\S1).

In our computations we adopt an alternative choice of v and w. For each
pair v, w ∈ V , define

p(v, w) :=

∑
S∈S:v,w∈S

xS

1
2
(∑

S∈S:v∈S xS +
∑
S∈S:w∈S xS

) . (4)

Note that p(v, w) ∈ [0, 1] is well defined. By (CLP), both sums in the de-
nominator are greater than or equal to one. In our experimental runs, the
denominator is equal to one for almost all instances, as it would be the case if
x would define an integral coloring.

The rationale behind our branching rule is that if p(v, w) is close to 0,
then the current solution assigns quite different fractional colors to v and w. If
p(v, w) is close to one, then the two vertices are assigned nearly-equal fractional
colors. In both cases, one of the branches GDIFF and GSAME will likely give
a similar bound as their parent node. In contrast, if p(v, w) is more fractional,
that is, close to 0.5, it is not clear whether v and w should end up in a common
stable set. Empirically, by performing strong branching on all pairs on several
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instances, we found it slightly favorable to consider 0.55 as “most fractional”.
Our tests indicate that the new rule does not dominate the performance of
the original method of Mehrotra and Trick, suggesting further work is needed
in this direction.

As we are focusing on lower bounds, we use the best-first-search branching
strategy. That is we always branch on that open leave node in the branch and
price tree that determines the lowest fractional lower bound πint/K. Ties are
broken arbitrarily.

When running the column generation in a sub-node of the branch-and-
bound tree, we do not compute the restricted set of stable sets S ′ from the
scratch. Instead, we initialize S ′ with the basic stable sets at the parent node,
that is for which the primal variables are non-zero. Of course, they may not
be valid for the child nodes, but can easily be modified. In the GDIFF -branch
we remove w from S if both v and w occur in a common stable S, while
ensuring that w will occur in at least one stable set, adding one extra set {w}
if necessary. In the GSAME-branch, we remove occurrences of v and w from
each set, replacing them by the new contraction node if this results in a stable
set in GSAME . Again, if the new node remains uncovered we add one extra
singular set containing it.

5 Experimental results

The described algorithms were implemented in the C programming language;
our source code is available online [12]. The LP problems (CLP-r) are solved
with Gurobi 3.0.0 in double floating-point precision. Experiments were carried
out on the DIMACS graph-coloring instances [26], using a 2.268 GHz Intel
Xeon E5520 server, compiling with gcc -O3. For comparability with past and
future work see Table 5 row “Coloring” for how this machine performs on the
DFMAX benchmarks from http://mat.gsia.cmu.edu/COLOR04/BENCHMARK.
To compute χf (G) by solving (CLP-r) exactly we used the exact LP-solver
QSopt_ex [2].

5.1 Results of column generation

We were able to compute χf (G) and χf (G) for 119 out of 136 instances,
limiting the running time for computing χf (G) to three days per instance.
Solving (CLP-r) exactly can be quite time consuming, for example, on wap02a
it takes 34 hours, compared to 10 minutes using doubles (QSopt_ex first solves
the problem in floating-point arithmetic). This demonstrates that the use of
an exact LP-solver for every instance of (CLP-r) would be impractical. As we
compute χf (G) only for the academic purpose of estimating the differences
χf (G) − χf (G), we do not report its running times from here on, but only
those for computing χf (G).
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For the 119 solved DIMACS instances the distance to the upper bound
χf (G) was very small. In fact, it turned out that dχf (G)e = dχf (G)e for all
these instances. Thus, we obtained safe results for dχf (G)e. But there were
many instances where χf (G) < πfloat(V ), and the floating-point solutions
implied by the LP-solver would have been wrong. However, we did not find
previously reported results for dχf (G)e that were incorrect.

Here, we focus on those instances for which the chromatic number is or
was unknown. Table 2 shows the results on these instances.

Table 2 Computational results on open benchmarks

Instance |V | |E|dχf (G)e ω(G) old LB old UB Time
(seconds)

DSJC250.5 250 15668 26 12 26[10] 28[10] 18
DSJC250.9 250 27897 71 42 71[10] 72[10,15] 8
DSJC500.1 500 12458 * 5 5[19] 12[21] *
DSJC500.5 500 62624 43 13 16[14] 48[21] 439
DSJC500.9 500 224874 123 54 123[10,14] 126[21] 100
DSJC1000.1 1000 49629 * 6 6[19] 20[21] *
DSJC1000.5 1000 249826 73 14 15[19] 83[21] 142014
DSJC1000.9 1000 449449 215 63 215[10] 222[25] 5033
r1000.1c 1000 485090 96 89 96[10] 98[10] 2634
C2000.5 2000 999836 * 16 16 146[28] *
C4000.5 4000 4000268 * ≥ 17 17 260[28] *
latin_square_10 900 307350 90 90 90[19] 97[24] 76
abb313GPIA 1557 65390 8 8 8[19] 9[14] 3391
flat1000_50_0 1000 245000 50 14 14 50[10] 3331
flat1000_60_0 1000 245830 60 14 14 60[10] 29996
flat1000_76_0 1000 246708 72 14 14 82[10] 190608
wap01a 2368 110871 41 41 41[19] 43[14] 20643
wap02a 2464 111742 40 40 40[19] 42[14] 236408
wap03a 4730 286722 * 40 40[19] 47[14] *
wap04a 5231 294902 * 40 40[19] 44[14] *
wap07a 1809 103368 40 40 40[19] 42[14] 25911
wap08a 1870 104176 40 40 40[19] 42[14] 18015
1-Insertions_6 607 6337 4 2 4[19] 7[19] 1167
3-Insertions_5 1406 9695 3 2 3[19] 6[19] 6959

(The column Time reports the running times for computing dχf (G)e)

Columns 2 and 3 give the number of vertices and edges, column 4 shows
dχf (G)e from our computations, where bold numbers are those where we could
improve best-known lower bounds. Column 5 shows the clique numbers from
the literature or computed with CLIQUER, columns 6 and 7 summarize the
best lower and upper bounds that can be found in the literature [10,15,14,
19,20,21,25,24,28]. The last column shows the running time for computing
χf (G).

For the instances
DSJC500.5, DSJC1000.5, flat1000_50_0, flat1000_60_0,
flat1000_76_0, wap01a, wap02a, wap07a, wap08a, 1-Insertions_6,
and 3-Insertions_5
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Table 3 Improvements by Branch and Price

Instance LB UB B&B nodes Time (seconds)
DSJC250.9 72 72 3225 11094
DSJC1000.9 216 222 29 12489

we could compute dχf (G)e for the first time and, thereby, improve known
lower bounds on DSJC500.5, DSJC1000.5, flat1000_50_0, flat1000_60_0,
and flat1000_76_0 significantly.

On flat1000_50_0 and flat1000_60_0, dχf (G)e proves the optimality
of known upper bounds. For latin_square_10, abb313GPIA, and all wap*a
instances except for wap03a and wap04a, which did not finish, the fractional
chromatic number did not improve lower bounds imposed by the clique num-
ber, that is ω(G) = χf (G). Here cliques of size ω(G) can be computed within
seconds by heuristics from Section 2.1.2 on the complement graphs. [30]

On most instances that are not listed χf (G) is computed much faster than
within three days. The geometric mean of the running times of the 119 solved
instances is 6.5 seconds. 17 DIMACS instances were not finished within three
days. These are

– the Leighton graph instances le450_5a, le450_5b, le450_5c, le450_5d,
le450_15a, le450_15b, le450_15c, le450_15d, le450_25c, and
le450_25d. On these instances column generation stalls, generating more
and more columns without changing the value of (CLP-r). However, the
clique number ω(G) can be computed within seconds with CLIQUER [30]
matching upper bounds of the instances [9] and, thus, ω(G) = χf (G) =
χ(G) for these instances.

– the large instances DSJC500.1, DSJC1000.1, C2000.5, and C4000.5. On
these instances the maximum-weight stable-set problems that need to be
solved exactly become too numerous and too difficult.

– the very large instances wap03a, wap04a, and qg.order100. Here, the
LP problems (CLP-r) become very large and dense. With state-of-the-
art LP-solvers column generation would take months to terminate. On
qg.order100, the 100× 100 latin square , ω(G) = 100 can be computed in
seconds and provides a tight lower bound.

5.2 Results of branch and price

For the twenty-four open benchmark instances listed in Table 2, we attempted
to improve the lower bounds by branch and price as described in Section 4.2,
allowing a time limit of three days. Table 3 shows two instances for which the
lower bound could be lifted by one, proving optimality of the known upper
bound for DSJC250.9.

We also did more extensive runs on up to 60 parallel processors for several
days, but for most of the instances branch and price did not help much. A
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Table 4 Lower bounds dχf (G[X])e from induced subgraphs

Instance |X| |E(G[X])| dχf (G[X])e old LB UB Time
DSJC500.1 300 5436 9 5 12 16 days

DSJC1000.1 350 8077 10 6 20 < 36 days
C2000.5 1000 261748 77 16 148 < 1 days
C2000.5 1250 403289 91 16 148 < 11 days
C2000.5 1400 502370 99 16 148 < 24 days
C4000.5 1000 268033 80 17 271 < 1 days
C4000.5 1500 589939 107 17 271 < 26 days
wap03a 2500 164008 40 40 47 < 3 days
wap04a 2500 159935 40 40 44 < 1 days

major problem is that the fractional lower bounds increase by smaller and
smaller amounts. For the promising instance DSJC250.5 (with gap 2), no child
could be pruned after evaluating 916,877 branch-and-bound nodes. Also the
integral lower bound did not improve.

5.3 Results on dense subgraphs

As already noted in Section 5.1, for 17 very large DIMACS instances we were
not able to compute dχf (G)e. For 11 of these instances, ω(G) is easy to com-
pute and yields a tight lower bound. For each of the remaining six instances
DSJC500.1, DSJC1000.1, C2000.5, C4000.5, wap03a, and wap04a the gap be-
tween the published lower and upper bounds is particularly large.

However, on these instances column generation can still be applied if re-
stricted to tractable subgraphs. It is easy to see that for any subgraph G[X] in-
duced by X ⊂ V (see Section 2.1.1), χf (G[X]) ≤ χf (G) and, thus, dχf (G[X])e
imposes a lower bound for χ(G).

The setX should be chosen such that dχf (G[X])e is large, but still solvable.
For the first goal a dense subgraph G[X] would be favorable. We use a simple
greedy strategy that starts with X = V and iteratively deletes a vertex of
minimum degree until |X| has a given size.

Table 4 shows the lower bounds, we could obtain this way. Columns 2 and
3 give the sizes of the induced subgraph. Column 4 reports the lower bounds
obtained from the subgraphs, while column 5 reports previously published
lower bounds, corresponding to the respective maximum clique numbers.

From the unfinished column generation runs on the full instances, the
expected lower bounds are at most 10 (DSJC500.1), 17 (DSJC1000.1), 128
(C2000.5), 253 (C4000.5), 47 (wap03a), and 45 (wap04a). This gives an indi-
cation of the loss incurred when using subgraphs.
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Table 5 DFMAX benchmark results for the calibration of running times

Machine r100.5 r200.5 r300.5 r400.5 r500.5
Coloring 0.00 0.04 0.36 2.21 8.43
MWSS 0.00 0.01 0.16 1.02 3.89

(see DIMACS challenge: http://mat.gsia.cmu.edu/COLOR04/BENCHMARK)

5.4 Maximum-weight stable set results

Finally, we demonstrate the efficiency of Algorithm 1 for solving maximum-
weight stable set problems in Table 6. We compared the new algorithm with
the branch and cut solvers Gurobi 3.0.0 and CPLEX 12.2, as well as CLI-
QUER 1.21 [31], which solved the maximum-weight clique problems in the
complement graphs. Gurobi and CPLEX are among the fastest branch and
cut solvers for integer programming. These experiments were carried out on
a different machine than the coloring experiments, namely a 3.33 GHz Intel
Xeon W5590 server. See Table 5 row “MWSS” for calibration results.

As test instances we used maximum-weight stable set instances as they oc-
curred on the DIMACS coloring benchmarks during the course of Algorithm 4,
when the greedy algorithm failed to provide a stable set of weight greater than
one. Where possible, we picked the final instance where the exact solution ter-
minated the column generation and, thus, determined dχf (G)e. These are the
instances where the name matches that of the coloring instance in the table.

For large instances, where dχf (G)e could not be computed, we took some
instance that occurred after at least several hundred rounds of column genera-
tion, and where the Greedy Algorithm was unable to find an improving stable
set. The complete set of instances can be obtained at

http://code.google.com/p/exactcolors/wiki/MWISInstances.

We performed two experiments per instance and solver. First, we com-
puted the maximum-weight stable set as is. These runs are represented by the
columns labeled STD. Second, in the columns labeled LB, we used the solvers
in the same setting as in Algorithm 4. Here, the maximum-weight stable set
solvers were called with an initial lower bound of LB = 1 (respectively, the
corresponding scaled integer K defined in Section 3) to enable more efficient
pruning of branches in the branch and bound trees. Furthermore, we did stop
the computation once a solution greater than LB was found. However, the sec-
ond stopping criterion applies only to the four large instances C2000.5.1029,
DSJC1000.1.3915, and DSJC500.1.117.

Table 6 shows the instance names, edge densities ρ(G) (see Section 2.1),
and the respective running times in seconds on those instances where the
maximum running time of at least one solver was more than one minute. So
all instances that could be solved within a minute by all solvers are omitted. If
an entry in Table 6 consists of three stars (***), this means that the instance
could not be solved within ten hours of running time, a hard limit we set for
all runs.
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With only three unsolved instances in the STD runs and two unsolved
instances in the LB runs, Algorithm 1 could solve significantly more instances
than any other solver, which left nine or ten unsolved instances each.

Some interesting results become apparent when characterizing the graphs
by edge density ρ(G). CLIQUER is most efficient for dense graphs with edge
densities of 50% and higher, with the exception of C2000.5.1029 where Algo-
rithm 1 found a solution greater than one (K respectively) more quickly. On
the other hand, the branch and cut solvers are the most efficient for sparse in-
stances with edge densities of less than 3%. Both fail in the opposite extreme.
Algorithm 1 is the best performing for instances in between, but in contrast
to the other solvers it shows a stable competitive performance throughout all
edge densities.

Furthermore, it gets the most benefit if a lower bound is specified from
the very beginning. This turns it into a solver comparable to branch and cut
on sparse instances. Generally, the benefit from the lower bound is the higher
the sparser the instance is. The reason is probably that the upper bounds
computed for subproblems are tighter for sparse instances.

Note that Gurobi and CPLEX provide unsafe results as they rely on float-
ing point arithmetic. Additional computational time would be needed to verify
the optimality of a solution in safe arithmetic.

Finally, we remark that we have chosen a density threshold of 80% and
not 50% for using CLIQUER during column generation in Algorithm 3, be-
cause our own implementation of CLIQUER that we are using in Algorithm 3
is not as elaborately tuned as the original code ([31]) that was used here.
Furthermore, we observed that if an instance contains stable sets of weight
greater than one (K respectively), such as C2000.5.1029, Algorithm 1 would
usually find such sets more quickly than CLIQUER, yielding an overall better
performance in the context of fractional coloring.

Acknowledgements We thank Andrew King for discussions on techniques to obtain dense
subgraphs in large test instances.
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