
Appendix D

Exercise Solutions

Chapter 2
2.1.1. The reaction graph is:

A
B

C E

D

F
G

2.1.2. Adding three reactions, we can write:

A
B

C E

D

F
G

We can construct the following nextwork by adding two reactions to the original:

A
B

C E

D

F
G

2.1.3. The rate constant k0 has dimensions of concentration · time−1. The rate constant k1 has
dimensions of time−1. The ratio k0/k1 thus has dimensions of concentration.
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2.1.4. With z(t) = a(t)− ass = a(t)− k0
k1
, we have

d

dt
z(t) =

d

dt
(a(t)− ass) =

d

dt
a(t) + 0 =

d

dt
a(t) = k0 − k1a(t)

where the last equality follows from equation (2.5). Then, note that

k0 − k1a(t) = k1(k0/k1 − a(t)) = −k1(a(t)− k0/k1) = −k1z(t).

Thus we have

d

dt
z(t) = −k1z(t).

This has the same form as equation (2.2), and so has solution (compare with equation (2.4)):

z(t) = De−k1t

where D = z(0). Then, since z(t) = a(t)− k0/k1, we have

a(t)− k0/k1 = De−k1t

so that

a(t) = De−k1t + k0/k1.

2.1.5. From equation (2.6) we have a(t) = De−k1t + k0
k1
, so that, at time t = 0,

a(0) = De0 +
k0
k1

= D +
k0
k1

.

Then D = a(0) − k0
k1
, so equation (2.6) gives

a(t) =

(

A0 −
k0
k1

)

e−k1t +
k0
k1

.

2.1.6. a) With z(t) = a(t)− ass = a(t)− k−T
k++k−

, we have

d

dt
z(t) =

d

dt
(a(t)− ass) =

d

dt
a(t) + 0 =

d

dt
a(t) = k−T − (k+ + k−)a(t)

where the last equality is equation (2.12). Then, note that

k−T − (k+ + k−)a(t) = (k+ + k−)(
k−T

k+ + k−
− a(t)) = −(k+ + k−)(a(t) −

k−T

k+ + k−
) = −(k+ + k−)z(t).

Thus we have

d

dt
z(t) = −(k+ + k−)z(t).
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This has the same form as equation (2.2), and so has solution (compare with equation (2.4)):

z(t) = De−(k++k−)t

where D = z(0). Then, since z(t) = a(t)− k−T
k++k−

, we have

a(t)− k−T

k+ + k−
= De−(k++k−)t

so that

a(t) = De−(k++k−)t +
k−T

k+ + k−
.

b) From a(t) = De−(k++k−)t + k−T
k++k−

we have, at time t = 0,

A0 = a(0) = De0 +
k−T

k+ + k−
= D +

k−T

k+ + k−
.

Then D = a(0) − k−T
k++k−

, so, with the solution (2.14), we can write

a(t) =

(

A0 −
k−T

k+ + k−

)

e−(k++k−)t +
k−T

k+ + k−
.

2.1.7. Species A and C are not involved in any conservation: they can be exchanged directly with
the external environment. Species B and D, however, only cycle back and forth: when a molecule of
D is produced, a molecule of B is consumed, and vice-versa. Consequently, the total concentration
[B] + [D] is fixed.

2.1.8. Each time the a reaction occurs, a pair of C and D molecules are either produced or
consumed. Thus all changes in the number of C and D molecules are coordinated. For example,
if the numbers of C and D molecules are initially equal, they will always be equal. Likewise, if
there is initially a difference between the number of C molecules and the number of D molecules,
(e.g. 5 more C than D molecules), then that difference will be maintained even if the numbers of
molecules changes.

2.1.9. Given a(t) = 1/(2kt + 1/A0)) we begin by observing that

a(0) =
1

0 + 1/A0
= A0

as required. We next calculate

d

dt
a(t) = − 1

(2kt+ 1/A0)2
·2k =

−2k
(2kt+ 1/A0)2

,

while

−2k(a(t))2 =
−2k

(2kt+ 1/A0)2
,
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confirming that this is a solution of the differential equation.

2.1.10. The steady state concentrations satisfy the algebraic equations:

0 = 3− 2ass − 2.5assbss

0 = 2ass − 2.5assbss

0 = 2.5assbss − 3css

0 = 2.5assbss − 4dss.

To solve this system of equation, we note that the second equation can be factored as

0 = ass(2− 2.5bss).

Then, since ass cannot be zero (from the first equation), we have

0 = 2− 2.5bss so bss = 4/5.

Substituting this into the first equation gives

0 = 3− 2ass − 2.5ass(4/5) so 3 = (2 + 2)ass

giving ass = 3/4. Then 2.5assbss = (5/2)(3/4)(4/5) = 3/2, we can solve the last two equations:
css = 1/2, dss = 3/8. (Concentrations are in units of mM.)

2.2.1. The conversion reaction (A ↔ B) can be assumed in rapid equilibrium, because its time-
scale is shorter than either decay reaction. Using ã, b̃ for the concentrations in the reduced model,
we have the equilibrium condition

b̃(t)

ã(t)
=

k1
k−1

,

from which we can write

b̃(t) = ã(t)
k1
k−1

.

With this condition in hand, we now turn to the dynamics of the decay processes. The rapid
equilibrium assumption leads to A and B forming an equilibrated pool. The decay processes are
best described by addressing the dynamics of this mixed pool. The reaction network (2.23) thus
reduces to:

D GGG (pool of A and B) GGGA

Let c̃(t) be the total concentration in the pool of A and B (that is, c̃(t) = ã(t)+ b̃(t)). The relative
fractions of A and B in the pool are fixed by the equilibrium ratio. This allows us to write

c̃(t) = ã(t) + b̃(t)

= ã(t) + ã(t)
k1
k−1

=
k−1 + k1

k−1
ã(t).

332



Thus

ã(t) =
k−1

k−1 + k1
c̃(t)

while

b̃(t) = c̃(t)− ã(t) =
k1

k−1 + k1
c̃(t).

The species pool decays at rate k0ã(t) + k2b̃(t). Thus, the pooled concentration satisfies

d

dt
c̃(t) = −(k0ã(t) + k2b̃(t))

= −
(

k0
k−1

k−1 + k1
c̃(t) + k2

k1
k−1 + k1

c̃(t)

)

= −k0k−1 + k2k1
k−1 + k1

c̃(t)

Schematically, we have reduced the model to a single degradation reaction:

C

k0k−1+k2k1
k−1+k1

GGGGGGGGGGGGGGGA .

2.2.2. The model is

d

dt
a(t) = k0 + k−1b(t)− k1a(t)

d

dt
b(t) = k1a(t)− (k−1 + k2)b(t)

To determine steady state, we solve

0 = k0 + k−1b
ss − k1a

ss

0 = k1a
ss − (k−1 + k2)b

ss

Adding these equation together, we have

0 = k0 − k2b
ss so bss =

k0
k2

.

Then, substituting, we have

0 = k1a
ss − (k−1 + k2)

k0
k2

so ass =
k0(k−1 + k2)

k1k2
.

In steady state, the ratio b/a is then

bss

ass
=

k1
k−1 + k2
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which is different from the equilibrium constant k1/k−1 if k2 6= 0. When k−1 is large compared to
k2 (so that the time-scale separation is extreme), this concentration ratio is close to the equilibrium
constant, since in that case k−1 + k2 ≈ k−1.

2.2.3. From Exercise 2.2.2 we have the steady-state concentration of A in the original model as

ass =
k0(k−1 + k2)

k1k2

From the reduced model (2.25), we have

c̃ss =
k0(k−1 + k1)

k2k1

so in this reduced model

ãss =
k−1

k−1 + k1
c̃ss =

k−1k0
k2k1

Comparing these two descriptions of the steady-state concentration of A, we have

ass − ãss =
k0(k−1 + k2)

k1k2
− k−1k0

k2k1
=

k0
k1k2

(k−1 + k2 − k−1) =
k0
k1

.

The relative error is then

ass − ãss

ass
=

k0
k1

k0(k−1+k2)
k1k2

=
k2

k−1 + k2

which is near zero when k−1 is much larger than k2.

2.2.4. With ã(t) = aqss(t) = (k0 + k−1b̃(t))/k1, we have, at the initial time t = 0:

ã(0) + b̃(0) =
k0 + k−1b̃(0)

k1
+ b̃(0) =

k0 + (k−1 + k1)b̃(0)

k1
.

To ensure that the total concentration in the reduced model agrees with the original model, we set:

a(0) + b(0) = ã(0) + b̃(0)

so that

b̃(0) =
k1(a(0) + b(0)) − k0

(k−1 + k1)
.

For the parameter values in Figure 2.14, we have

b̃(0) =
20(12) − 5

(12 + 20)
=

235

32
.

2.2.5. The original model is

d

dt
a(t) = k−1b(t)− (k0 + k1)a(t)

d

dt
b(t) = k1a(t)− (k−1 + k2)b(t).
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If k0 >> k2 and k1 + k−1 >> k2, then A is only involved in fast reactions, and we may put a(t) in
quasi-steady-state with respect to b(t). We set

0 = k−1b(t)− (k0 + k1)a
qss(t) so aqss(t) =

k−1b(t)

k0 + k1
.

To perform a model reduction, we set ã(t) = aqss(t) and substitute:

d

dt
b̃(t) = k1

k−1b̃(t)

k0 + k1
− (k−1 + k2)b̃(t) = −

(
k−1k0
k0 + k1

+ k2

)

b̃(t).

Together with ã(t) = k−1b(t)
k0+k1

, this is the reduced model.

Chapter 3
3.1.1. Applying a rapid-equilibrium assumption to the association/disocciation reaction gives

k1se(t) = forward rate of reaction = backward rate of reaction = k−1c(t)

Making use of the moiety conservation eT = e+ c, we have

k−1c(t) = k1s(t)(eT − c(t)).

Solving gives

c(t) =
k1eT s(t)

k−1 + k1s(t)

which can be written as

c(t) =
eT s(t)

k−1

k1
+ s(t)

.

The rate of formation of product p is then

dp

dt
= k2c(t) =

k2eT s(t)
k−1

k1
+ s(t)

.

Defining Vmax = k2eT and KM = k−1

k1
, this rate can be written in the standard form:

Vmaxs(t)

KM + s(t)
.

3.1.2. a) With v(s) = ksn, we find

s

v

dv

ds
=

s

ksn
d

ds
ksn =

s

ksn
· knsn−1 = n

So the substrate s has kinetic order n in this reaction.
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b) When s is near zero, we have KM + s ≈ KM so

Vmaxs

KM + s
≈ Vmax

KM
s

The first-order behaviour of the enzyme-catalysed reaction is thus characterized by rate constant
Vmax

KM
.

3.1.3. The equilibrium conditions for the two reactions in the reaction scheme (3.8) are:

sek1 = k−1c and ck2 = k−2pe

Solving for c, we have

c = sek1/k−1

Substituting gives

sek1k2/k−1 = k−2pe

Dividing out e and re-arranging gives

p

s
=

k1k2
k−1k−2

3.1.4. With c1 = [EA] and c2 = [EAB], we have

dc1
dt

= k1ea− k−1c1 − k2c1b+ k−2c2

dc2
dt

= k2c1b− k−2c2 − k3c2

At quasi-steady state,

0 = k1ea− k−1c1 − k2c1b+ k−2c2

0 = k2c1b− k−2c2 − k3c2

along with the conservation e = eT − c1(t) − c2(t). Solving this system, we find, from the second
equation

k2bc1 − (k−2 + k3)c2 = 0

so

c1 =
k−2 + k3

k2b
c2

From the first equation

k1(eT − c1 − c2)a− (k−1 + k2b)c1 + k−2c2 = 0
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so

k1eTa− (k1a+ k−1 + k2b)c1 + k−2c2 − k1ac2 = 0

Substituting for c1,

k1eTa− (k1a+ k−1 + k2b)
k−2 + k3

k2b
c2 + (k−2 − k1a)c2 = 0

so

k2bk1eTa− (k1a+ k−1 + k2b)(k−2 + k3)c2 + (k−2 − k1a)k2bc2 = 0

Solving for c2,

c2 =
k1k2eTab

(k1a+ k−1 + k2b)(k−2 + k3)− k−2k2b+ k1k2ab

=
k1k2eT ab

k1k−2a++k1k3a+ k−1k−2 + k−1k3 + k2k−2b+ k2k3b− k−2k2b+ k1k2ab

=
k1k2eTab

k−1(k−2 + k3) + k1(k−2 + k3)a+ k2k3b+ k1k2ab

=
eT ab

k−1(k−2+k3)
k1k2

+ k−2+k3
k2

a+ k3
k1
b+ ab

The rate of formation of product is

k3c2 =
k3eTab

k−1(k−2+k3)
k1k2

+ k−2+k3
k2

a+ k3
k1
b+ ab

as required.

3.1.5. a) When a is large, all terms that don’t involve a are negligible. In that case, rate law (3.12)
reduces to

v =
Vmaxab

KBa+ ab
=

Vmaxb

KB + b

To verify that this is consistent with the reaction scheme, consider the reduced network

EA+B
k2

GGGGGGBF GGGGGG

k−2

EAB

EAB
k3

GGGGGGA EA+ P +Q

Letting c denote the concentration of ternary complex EAB, and letting e be the concentration of
EA, we have

d

dt
c(t) = k2e(t)b(t) − k−2c(t)− k3c(t).
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With the conservation eT = e+ c, we have, in quasi-steady state:

0 = k2(eT − cqss(t))b(t)− (k−2 + k3)c
qss(t).

The rate of formation of P and Q is then

k3c
qss =

k3eT b
k−2+k3

k2
+ b

as required.
b) When b is large, all terms that don’t involve b are negligible. In that case, rate law (3.12) reduces
to

v =
Vmaxab

KAb+ ab
=

Vmaxa

KA + a

To verify that this is consistent with the reaction scheme, consider the reduced network

E +A
k1

GGGGGGA EAB

EAB
k3

GGGGGGA E + P +Q

Letting c denote the concentration of ternary complex EAB, and letting e be the concentration of
E, we have

d

dt
c(t) = k1e(t)a(t)− k3c(t).

With the conservation eT = e+ c, we have, in quasi-steady state:

0 = k1(eT − cqss(t))a(t) − k3c
qss(t).

The rate of formation of P and Q is then

k3c
qss =

k3eTa
k3
k1

+ a

as required.

3.2.1. The concentrations of the two complexes satisfy

d

dt
c(t) = k1s(t)e(t)− k−1c(t)− k2c(t)

d

dt
cI(t) = k3e(t)i− k−3cI(t),

along with the conservation e(t) = eT − c(t)− cI(t). In quasi-steady state:

0 = k1s(eT − c− cI)− (k−1 + k2)c

0 = k3i(eT − c− cI)− k−3cI .
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From the second equation, we have

cI =
k3i(eT − c)

k−3 + k3i

Substituting into the first equation gives

0 = k1seT − k1sc−
k1sk3ieT
k−3 + k3i

+
k1sk3ic

k−3 + k3i
− (k−1 + k2)c

which is

0 = k1seT (1−
k3i

k−3 + k3i
) + c

(

k1s

(

−1 + k3i

k−3 + k3i

)

− (k−1 + k2)

)

so

c =
k1seT (1− k3i

k−3+k3i
)

(k−1 + k2) + k1s(1− k3i
k−3+k3i

)

=
k1seT (

k−3

k−3+k3i
)

(k−1 + k2) + k1s
k−3

k−3+k3i

=
k1seT

(k−1 + k2)(k−3 + k3i)/k−3 + k1s

=
seT

(k−1 + k2)(k−3 + k3i)/(k1k−3) + s

=
seT

(
k−1+k2

k1

)(

1 + k3
k−3

i
)

+ s

The reaction rate is k2c.

3.2.2. In the case of uncompetitive inhibition, the reaction scheme is

E + S
k1

E GGGGGGGGGGGGC

k−1

ES
k2

GGGGGGA E + P

ES + I
k3

E GGGGGGGGGGGGC

k−3

ESI

With c = [ES] and cI = [ESI], we have

d

dt
c(t) = k1s(t)e(t)− (k−1 + k2)c(t)

d

dt
cI(t) = k3ic(t)− k−3cI(t).

With the conservation e = eT − c− cI , we have, in quasi-steady state

0 = k1s(eT − c− cI)− (k−1 + k2)c

0 = k3ic− k−3cI .
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This gives

cI =
k3i

k−3
c.

So that we arrive at

0 = k1s(eT − c− k3i

k−3
c)− (k−1 + k2)c,

giving

c =
k1seT

k1s(1 +
k3i
k−3

) + (k−1 + k2)

=
seT

s(1 + k3i
k−3

) + k−1+k2
k1

.

The reaction rate is k2c. Dividing through by (1 + k3i
k−3

) gives the required form.

3.3.1. We consider an enzyme E that has two binding sites for ligand X. We suppose that
the binding sites are identical, but the binding affinity may depend on state of the protein in a
cooperative manner. Take the reaction scheme as:

E +X
2k1

GGGGGGGBF GGGGGGG

k−1

EX

EX +X
k2

GGGGGGBF GGGGGG

2k−2

EX2

The fractional saturation is given by

Y =
2[EX2] + [EX]

2([EX2] + [EX] + [E])
.

We find in steady state

[EX] =
2k1
k−1

[E][X]

while

[EX2] =
k2

2k−2
[EX][X] =

k2
k−2

k1
k−1

[E][X]2.

Let K1 =
k−1

k1
and K2 =

k−2

k2
. Then

Y =
2[EX2] + [EX]

2([EX2] + [EX] + [E])

=
2[E][X]2/(K1K2) + 2[E][X]/K1

2([E][X]2/(K1K2) + 2[E][X]/K1 + [E])

=
[X]2/(K1K2) + [X]/K1

[X]2/(K1K2) + 2[X]/K1 + 1
,
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as required.

3.3.2. With

Y =
xn

Kn + xn

we note that the limiting value of Y is one, and that it reaches half this limiting value when x = K.
Taking the derivative of Y , we have

d

dx
Y (x) =

nxn−1(Kn + xn)− xn(nxn−1)

(Kn + xn)2

=
nxn−1Kn

(Kn + xn)2
.

When x = K, we have

d

dx
Y (x)

∣
∣
∣
∣
x=K

=
nKn−1Kn

(Kn +Kn)2
=

nK2n−1

(2Kn)2
=

nK2n−1

4K2n
=

n

4K

as required.

3.3.3. With binding scheme:

P + nX
k1

E GGGGGGGGGGGGC

k−1

PXn,

the equilibrium condition is

k1[P ][X]n = k−1[PXn] so [PXn] = [P ][X]n/K1

where K1 = k−1/k1. The fractional saturation is

Y =
n[PXn]

n([P ] + [PXn])
.

In steady state, we find

Y =
n[P ][X]n/K1

n([P ] + [P ][X]n/K1)
=

[X]n/K1

1 + [X]n/K1

Equation (3.19) is recovered by setting Kn = K1.

3.3.4. The concentration c of the complex satisfies

d

dt
c(t) = k1e(t)s

2(t)− (k−1 + k2)c(t)

where e is the enzyme concentration and s is the substrate concentration. With the conservation
e(t) = eT − c(t), we have, in quasi-steady-state:

0 = k1(eT − cqss(t))s2(t)− (k−1 + k2)c(t)
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so

cqss =
k1eT s

2

k1s2 + k−1 + k2

The rate of production of P is then

2k2c
qss =

2k2eT s
2

k−1+k2
k1

+ s2

as required.

3.4.1. A two-ligand symporter follows the overall scheme:

A1 +B1 + T GGGBF GGG TA1B1 GGGBF GGG TA2B2 GGGBF GGG T +A2 +B2

As in the discussion of two-substrate enzymes in Section 3.1.2, the initial reaction is unlikely to
be a three-molecule collision, but rather will follow a particular reaction scheme, e.g. a compulsory
order mechanism in which A binds first, or a random-order scheme. The rate of transport will be
equivalent to the rate law derived in Section 3.1.2, but will be reversible.

The analysis is identical for an antiporter: this is simply a matter of renaming the species in
the ‘reactant’ and ‘product’ roles, e.g.:

A1 +B2 + T GGGBF GGG TA1B2 GGGBF GGG TA2B1 GGGBF GGG T +A2 +B1

3.4.2. The scheme is

2C1 + T
k1

GGGGGGBF GGGGGG

k−1

TC2

k2
GGGA 2C2 + T,

where the the transport event has been put in rapid equilibrium. This is identical to the scheme
in Exercise 3.3.4; the rate law follows from putting the complex in quasi-steady state.

3.5.1. The S-system model is

d

dt
s1(t) = α0 − α1s

g1
1

d

dt
s2(t) = α1s

g1
1 − α2s

g2
2 .

At steady state, we have

α0 = α1s
g1
1

α1s
g1
1 = α2s

g2
2 .

Taking logarithms gives

log α0 = log α1 + g1 log s1

logα1 + g1 log s1 = log α2 + g2 log s2
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Solving, we have

log s1 =
logα0 − log α1

g1

log s2 =
logα0 − logα2

g2
.

Taking exponents gives the steady-state concentrations:

s1 = exp

(
log α0 − logα1

g1

)

s2 = exp

(
log α0 − logα2

g2

)

.

Chapter 4
4.1.1. Evaluating the right-hand side of the differential equations as a vector (dx/dt, dy/dt), we
have

(x, y) = (1, 0)⇒
(
dx

dt
,
dy

dt

)

= (−y, x) = (0, 1)

(x, y) = (1, 1) ⇒
(
dx

dt
,
dy

dt

)

= (−y, x) = (−1, 1)

(x, y) = (0, 1) ⇒
(
dx

dt
,
dy

dt

)

= (−y, x) = (−1, 0)

(x, y) = (−1, 1)⇒
(
dx

dt
,
dy

dt

)

= (−y, x) = (−1,−1)

(x, y) = (−1, 0)⇒
(
dx

dt
,
dy

dt

)

= (−y, x) = (0,−1)

(x, y) = (−1,−1)⇒
(
dx

dt
,
dy

dt

)

= (−y, x) = (1,−1)

(x, y) = (0,−1)⇒
(
dx

dt
,
dy

dt

)

= (−y, x) = (1, 0)

(x, y) = (1,−1)⇒
(
dx

dt
,
dy

dt

)

= (−y, x) = (1, 1)

The direction arrows, sketched in Figure D.1, show that the trajectories spiral around the origin in
a counter-clockwise direction.

4.1.2. If two trajectories were to cross, the intersection point would have to produce two distinct
direction arrows. Because each point generates a unique direction arrow, every point is on a unique
trajectory.

4.1.3. The model is

d

dt
s1(t) =

k1
1 + (s2(t)/K)n

− k3s1(t)− k5s1(t)

d

dt
s2(t) = k2 + k5s1(t)− k4s2(t)
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trajectory

Figure D.1: Direction field for Exercise 4.1.1.

The s1-nullcline is defined by

0 =
k1

1 + (s2/K)n
− k3s1 − k5s1,

which can be written as

s1 =
k1

(1 + (s2/K)n)(k3 + k5)

as required. The s2-nullcline is defined by

0 = k2 + k5s1 − k4s2

which we can write as

s2 =
k2 + k5s1

k4
.

4.2.1. a) With v1 = k1s and v2 = k2s
2, steady state occurs when

k1s = k2s
2.

This is satisfied when

s = 0 or s =
k1
k2

.

The rate of change of s is d
dts = k1s − k2s

2 = k1s(1 − k2s
k1

). When s is between 0 and k1/k2, we

find that d
dts > 0, so s will increase toward k1/k2. Alternatively, when s is greater than k1/k2, then

d
dts < 0, and so s decreases toward k1/k2. We conclude that s = k1/k2 is a stable steady state.

b) The rate of change is given by

d

dt
s(t) = 6/11 +

60
11s

2

11 + s2
− s

Substituting s = 1, s = 2 and s = 3 gives d
dts = 0 in each case. Testing points on either side of

each equilibrium, we find

s = 0.9⇒ d

dt
s = 0.0196 > 0
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s = 1.1⇒ d

dt
s = −0.014 < 0

s = 1.9⇒ d

dt
s = −0.007 < 0

s = 2.1⇒ d

dt
s = 0.0064 > 0

s = 2.9⇒ d

dt
s = 0.009 > 0

s = 3.1⇒ d

dt
s = −0.011 < 0

Thus trajectories are attracted to s = 1, repelled from s = 2, and attracted to s = 3. The points
s = 1 and s = 3 are thus stable steady states, while s = 2 is an unstable steady state.

4.2.2. a) With f(s) = Vmaxs
KM+s , we have

df

ds
=

Vmax(KM + s)− Vmaxs

(KM + s)2
=

VmaxKM

(KM + s)2
.

Then, the linearization at s = s̄ is

f(s̄) +
df

ds
(s̄)·(s − s̄) =

Vmaxs̄

KM + s̄
+

VmaxKM

(KM + s̄)2
·(s − s̄). (D.1)

b) Substituting s̄ = 0, into (D.1), we have

Vmax · 0
KM + s̄

+
VmaxKM

(KM )2
·s = Vmax

KM
s,

which is a first-order mass action rate law.
c) When s̄ is large, we have KM + s̄ ≈ s̄ so the approximation (D.1) becomes

Vmaxs̄

s̄
+

VmaxKM

(s̄)2
·(s − s̄) = Vmax +

VmaxKM

(s̄)2
·(s − s̄) ≈ Vmax,

where the last approximation result from the fact that KM/s̄ is near zero if s̄ is much larger than
KM .

4.2.3. The partial derivatives of f(s, i) are:

∂f

∂s
=

Vmax(KM (1 + i/Ki) + s)− Vmaxs

(KM (1 + i/Ki) + s)2
=

Vmax(KM (1 + i/Ki))

(KM (1 + i/Ki) + s)2

∂f

∂i
= − Vmaxs

(KM (1 + i/Ki) + s)2
KM

Ki

At (s, i) = (1, 0), we evaluate:

∂f

∂s
(1, 0) =

VmaxKM

(KM + 1)2

∂f

∂i
(1, 0) = − Vmax

(KM + 1)2
KM

Ki

345



Then, since f(1, 0) = Vmax

KM+1 , we can write the approximation (4.3) as

f(s, i) ≈ Vmax

KM + 1
+

VmaxKM

(KM + 1)2
(s− 1)− Vmax

(KM + 1)2
KM

Ki
i.

4.2.4. If at least one of b or c is zero, then the product bc = 0, so the formulas in (4.7) reduce to

λ1 =
(a+ d) +

√

(a+ d)2 − 4ad

2
, λ2 =

(a+ d)−
√

(a+ d)2 − 4ad

2
.

We then note that (a + d)2 − 4ad = a2 + 2ad + d2 − 4ad = a2 − 2ad + d2 = (a− d)2. Then, since
√

(a− d)2 = a− d, we have

λ1 =
(a+ d) + (a− d)

2
= a, λ2 =

(a+ d)− (a− d)

2
= d,

as required.

4.2.5. The Jacobian matrix has entries a = −5/3, b = 1/3, c = 2/3 and d = −4/3. Substituting
into the formula (4.7) for the eigenvalues, we find

λ1 =
−9/3 +

√

(−9/3)2 − 4(20/9 − 2/9)

2
=
−3 +

√

9− 4(18/9)

2
=
−3 +

√
1

2
= −1

and likewise

λ2 =
−3−

√
1

2
= −2.

Then, substituting these eigenvalues into the general solution formula (4.7), we know that the
solutions of the system of equations (4.8) take the form

x1(t) = c11e
−t + c12e

−2t

x2(t) = c21e
−t + c22e

−2t.

At time t = 0, the initial conditions gives

1/3 = c11 + c12

5/3 = c21 + c22.

Next, calculating the derivative, we find

d

dt
x1(t) = −c11e−t − 2c12e

−2t

d

dt
x2(t) = −c21e−t − 2c22e

−2t.

Substituting into the differential equation, we have

−5

3
x1(t) +

1

3
x2(t) = −c11e−t − 2c12e

−2t

2

3
x1(t)−

4

3
x2(t) = −c21e−t − 2c22e

−2t.
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At time t = 0, we have

−5

3
x1(0) +

1

3
x2(0) = −c11 − 2c12

2

3
x1(0) −

4

3
x2(0) = −c21 − 2c22

With the initial conditions (x1(0), x2(0)) = (13 ,
5
3 ) this gives

−5

3

(
1

3

)

+
1

3

(
5

3

)

= −5

9
+

5

9
= 0 = −c11 − 2c12

2

3

(
1

3

)

− 4

3

(
5

3

)

=
2

9
− 20

9
= −2 = −c21 − 2c22

All together, we have

1/3 = c11 + c12

5/3 = c21 + c22

0 = −c11 − 2c12

−2 = −c21 − 2c22

From the third equation

c11 = −2c12

so

1/3 = −2c12 + c12 = −c12.

giving c12 = −1/3, c11 = 2/3. Likewise, we find

c21 = 2− 2c22

so

5/3 = c21 + c22 = 2− 2c22 + c22 = 6/3− c22.

This gives c22 = 1/3, and c21 = 4/3. The required solution is then

x1(t) =
2

3
e−t − 1

3
e−2t

x2(t) =
4

3
e−t +

1

3
e−2t.

This solution can be confirmed by substituting t = 0 to recover the initial conditions, and then by
taking derivatives and substituting into the system of differential equations to verify that they are
satisfied, as follows. (This is not necessary—it is simply a double-check that the answer is correct.)
The initial condition is:

x1(0) =
2

3
− 1

3
=

1

3

x2(0) =
4

3
+

1

3
=

5

3
.
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as required. Taking derivatives, we find

d

dt
x1(t) = −2

3
e−t +

2

3
e−2t

d

dt
x2(t) = −4

3
e−t − 2

3
e−2t.

The differential equation is satisfied if

d

dt
x1(t) = −5

3
x1(t) +

1

3
x2(t)

d

dt
x2(t) =

2

3
x1(t)−

4

3
x2(t)

To verify that these are equal, we calculate:

−5

3
x1(t) +

1

3
x2(t) = −5

3
(
2

3
e−t − 1

3
e−2t) +

1

3
(
4

3
e−t +

1

3
e−2t)

= −10

9
e−t +

5

9
e−2t +

4

9
e−t +

1

9
e−2t

= −6

9
e−t +

6

9
e−2t

= −2

3
e−t +

2

3
e−2t

which agrees with our calculation for d
dtx1(t) above. Likewise, we find, for d

dtx2(t),

2

3
x1(t)−

4

3
x2(t) =

2

3
(
2

3
e−t − 1

3
e−2t)− 4

3
(
4

3
e−t +

1

3
e−2t)

=
4

9
e−t − 2

9
e−2t − 16

9
e−t − 4

9
e−2t

= −12

9
e−t − 6

9
e−2t

= −4

3
e−t − 2

3
e−2t

as we calculated above.

4.2.6. The model is

d

dt
s1(t) =

20

1 + s42(t)
− 5s1(t)

d

dt
s2(t) =

20

1 + s1(t)
− 5s2(t).

The Jacobian is

J(s1, s2) =

[

−5 − 20
(1+s42)

2 4s
3
2

− 20
(1+s1)2

−5

]

.

Substituting the steady state (s̄1, s̄2) = (0.0166, 3.94), we have

J(0.0166, 3.94) =

[
−5 −0.0836
−19.35 −5

]

.
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The eigenvalues of this matrix are λ1 = −6.27 and λ2 = −3.72. We thus confirm that the steady
state is stable.

4.2.7. The steady state equation is

0 = V0 − k1s
ss
1

0 = k1s
ss
1 −

V2s
ss
2

KM + sss2

from which we have

sss1 =
V0

k1
and V0 =

V2s
ss
2

KM + sss2

Solving gives

sss2 =
V0KM

V2 − V0
.

The system Jacobian is

J(s1, s2) =

[

−k1 0

k1 − V2KM

(KM+s2)2

]

.

Because one of the off-diagonal entries of this matrix is zero, the eigenvalues are simply the diagonal
entries. Regardless of the value of s2, these two entries are negative, so the steady state is stable.

4.3.1. a) The model follows from the network and the law of mass action. Note that the third
reaction proceeds at rate k3[X]2[Y ], and converts one molecule of Y to one molecule of X.
b) The steady-state equations are

0 = k1 − k2x
ss + k3(x

ss)2yss − k4x
ss

0 = k2x
ss − k3(x

ss)2yss.

On substituting, the first equation reads

0 = k1 − k4x
ss

so xss = k1
k4
. The second equation then gives

yss =
k2

xssk3
=

k2k4
k1k3

c) With k2 = 2 (time−1), k3 =
1
2 (time−1· concentration−1) and k4 = 1 (time−1), we have, in steady

state, x = k1 and y = 4
x = 4

k1
. The system Jacobian is

J(x, y) =

[
−k2 + 2k3xy − k4 k3x

2

k2 − 2k3xy −k3x2
]

,

so at the given parameter values

J(k1, 4/k1) =

[

1
k21
2

−2 −k21
2

]

.
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The eigenvalues of this matrix are

λi =
(1− k21

2 )±
√
(

1− k21
2

)2
− 4

(

−k21
2 + k21

)

2

=

(

1− k21
2

)

±
√
(

1− k21
2

)2
− 2k21

2

We note that 1− k21
2 > 0 when k1 <

√
2. If the expression under the root is negative, then the two

eigenvalues have the same sign as 1− k21
2 . If the expression is positive, it is less than (1− k21

2 )
2, so

the sign of the eigenvalues is the same as the sign of 1 − k21
2 . We conclude that both eigenvalues

have positive real part when k1 <
√
2. (As a rate constant, k1 necessarily satisfies k1 > 0.)

4.4.1. The steady state is x = 0. Consider first the case when a < −1. Then, for x < 0 we have
d
dtx > 0 and for x > 0 we have d

dtx < 0. The steady state at x = 0 is thus stable, as trajectories are

drawn to x = 0. Next, consider the case for which a > −1. Then, for x < 0 we have d
dtx < 0 and

for x > 0 we have d
dtx > 0. The steady state at x = 0 is thus unstable, as trajectories are repelled

from this point. (Equivalently, we note that the Jacobian is J = 1+ a, which is its own eigenvalue.
This eigenvalue is negative when a < −1, and positive when a > −1.)

4.5.1. From equation (4.11), we have

ds

dKM
=

V0

Vmax − V0

The relative sensitivity coefficient is then

KM

sss
ds

dKM
=

KM

V0KM/(Vmax − V0)

V0

Vmax − V0
= 1.

4.5.2. From equation (4.12) we have

Vmax = 4 ⇒ sss =
3

4− 2
= 1.5

Vmax = 4.2 ⇒ sss =
3

4.2 − 2
= 1.3636

Vmax = 4.04 ⇒ sss =
3

4.04 − 2
= 1.4706

Equation (4.15) then gives, with Vmax as the parameter, and values p1 = 4 and ∆p1 = 0.2,

dsss

dVmax

≈ sss(4.2) − sss(4)

∆p1
=

1.3636 − 1.5

0.2
= −0.682,

and, with p1 = 4 and ∆p1 = 0.04,

dsss

dVmax

≈ sss(4.04) − sss(4)

∆p1
=

1.4706 − 1.5

0.04
= −0.735.
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These are decent approximations to the true absolute sensitivity of −0.75. The approximation is
better for smaller ∆.

4.5.3. Treating s as a function of k1, i.e. s = s(k1), we differentiate the steady-state equation with
respect to k1 to find

0 =
1

1 + sn
− k1

(1 + sn)2
nsn−1 ds

dk1
− k2

ds

dk1

Solving, we find

ds

dk1
=

1
1+sn

k1
(1+sn)2ns

n−1 + k2
.

All terms are positive, so this sensitivity coefficient is positive, regardless of the parameter values.

4.6.1. (i) The sum of squared errors is

SSE = ([sss1 (k1, k2, k3) + sss2 (k1, k2, k3)]− 6)2 + ([sss1 (k1/10, k2, k3) + sss2 (k1/10, k2, k3)]− 0.6)2

=

(
k1
k2

+
k1
4
− 6

)2

+

(
k1
10k2

+
k1
40
− 0.6

)2

.

Both terms are zero if k1
k2

+ k1
4 = 6. This problem is thus underdetermined. The model wil fit the

data provided that k1 =
24k2
4+k2

regardless of the (positive) value of k2.
(ii) In this case, the error is

SSE = (sss1 (k1, k2, k3) + sss2 (k1, k2, k3)− 6)2 + (sss1 (k1, k2/10, k3) + sss2 (k1, k2/10, k3)− 0.6)2

=

(
k1
k2

+
k1
4
− 6

)2

+

(
10k1
k2

+
k1
4
− 18

)2

.

The error is minimized (at the value zero) when

k1
k2

+
k1
4

= 6 and
10k1
k2

+
k1
4

= 18.

These equations can be rewritten as

4k1 + k2k1 = 24k2 and 40k1 + k2k1 = 72k2

Substituting gives

40k1 + (24k2 − 4k1) = 72k2 so k1 =
4k2
3

.

Substituting again gives

16

3
k2 +

4

3
k22 = 24k2

Dividing through by k2 and solving gives

k2 = 14 so k1 =
56

3
.
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In the first case, the controlled parameter k1 affects s1 and s2 equivalently, so no new informa-
tion is obtained from the experimental condition. There is thus one data-point to constrain two
parameters—the problem is underdetermined. In case (ii), the controlled parameter affects only
one of the states, so new information is attained from the experimental measurement, resulting in
a fully-determined fitting problem.

Chapter 5
5.1.1. In steady state, we have

0 = e1([S0]− s1)− (e2 + e3)s1

0 = e2s1 + e4s3 − e5s2

0 = e3s1 − e4s3.

The first equation gives

s1 =
e1[S0]

e1 + e2 + e3

Substituting s1 into the third equation gives

e3e1[S0]

e1 + e2 + e3
= e4s3

so

s3 =
e3e1[S0]

e4(e1 + e2 + e3)

Substituting both s1 and s3 into the second equation, we have

e5s2 =
e2e1[S0]

e1 + e2 + e3
+

e4e3e1[S0]

e4(e1 + e2 + e3)
=

(e2 + e3)e1[S0]

e1 + e2 + e3
.

Thus

s2 =
(e2 + e3)e1[S0]

e5(e1 + e2 + e3)

as required.

5.1.2. From the network model, we have, in steady state:

0 = vss1 − vss2 − vss3

0 = vss2 + vss4 − vss5

0 = vss3 − vss4 .

Thus J = vss1 = vss2 + vss3 , and J = vss5 = vss2 + vss4 .

5.1.3. The pathway flux is equal to the rate of consumption of S0. This rate depends on [S0], e1,
and s1. The concentration s1 depends, in turn, on [S0], e1, e2 and e3. Because consumption of S1

is irreversible, the downstream activity has no effect on s1.
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5.1.4. a) Taking the derivative of equation (5.3) with respect to e1, and scaling, we find

CJ
e1 =

e1
J

dJ

de1
=

e1
(e2+e3)e1[S0]
(e1+e2+e3)

(e2 + e3)[S0](e1 + e2 + e3)− (e2 + e3)e1[S0]

(e1 + e2 + e3)2

=
e1 + e2 + e3
(e2 + e3)[S0]

(e2 + e3)
2[S0]

(e1 + e2 + e3)2

=
e2 + e3

e1 + e2 + e3

Taking the derivative of equation (5.3) with respect to e2, and scaling, we find

CJ
e2 =

e2
J

dJ

de2
=

e2
(e2+e3)e1[S0]
(e1+e2+e3)

e1[S0](e1 + e2 + e3)− (e2 + e3)e1[S0]

(e1 + e2 + e3)2

=
e2(e1 + e2 + e3)

(e2 + e3)e1[S0]

e21[S0]

(e1 + e2 + e3)2

=
e1e2

(e2 + e3)(e1 + e2 + e3)

Noting the symmetry in e2 and e3 in formula (5.3), we have immediately that

CJ
e3 =

e3
J

dJ

de3
=

e1e3
(e2 + e3)(e1 + e2 + e3)

.

b) The flux control coefficients for e4 and e5 are zero because the flux, given by equation (5.3),
does not depend on e4 or e5. This is a result of the assumptions of irreversibility on the reactions
consuming S1: the pathway flux is determined only by those parameters impacting the rate of
consumption of S0.
c) We find

CJ
e1 + CJ

e2 + CJ
e3 + CJ

e4 + CJ
e5 =

e2 + e3
e1 + e2 + e3

+
e1e2

(e2 + e3)(e1 + e2 + e3)

+
e1e3

(e2 + e3)(e1 + e2 + e3)
+ 0 + 0

=
(e2 + e3)

2 + e1e2 + e1e3
(e2 + e3)(e1 + e2 + e3)

=
e22 + 2e2e3 + e23 + e1e2 + e1e3

e1e2 + e22 + e2e3 + e3e1 + e2e3 + e23
= 1.

5.1.5. From equation (5.2) for sss1 , we find

Cs1
e1 =

e1
sss1

dsss1
de1

=
e1

e1[S0]
e1+e2+e3

[S0](e1 + e2 + e3)− e1[S0]

(e1 + e2 + e3)2

=
e1 + e2 + e3

[S0]

[S0](e2 + e3)

(e1 + e2 + e3)2

=
e2 + e3

e1 + e2 + e3
,
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and

Cs1
e2 =

e2
sss1

dsss1
de2

=
e2

e1[S0]
e1+e2+e3

−e1[S0]

(e1 + e2 + e3)2

=
e2(e1 + e2 + e3)

e1[S0]

−e1[S0]

(e1 + e2 + e3)2

= − e2
e1 + e2 + e3

.

Symmetry of e2 and e3 in the formula (5.2) for sss1 gives

Cs1
e3 = − e3

e1 + e2 + e3
.

Since sss1 does not depend on e4 or e5, we have Cs1
e4 = Cs1

e5 = 0.

5.2.1. Differentiating and scaling, we have

CJ
e1 =

e1
J

∂J

∂e1
= −e1

J

[S0]q1q2q3 − [P ]

( q1q2q3e1k1
+ q2q3

e2k2
+ q3

e3k3
)2

(−q1q2q3
(e1k1)2

)

k1

=
1

( q1q2q3e1k1
+ q2q3

e2k2
+ q3

e3k3
)

(
q1q2q3
e1k1

)

CJ
e2 =

e2
J

∂J

∂e2
= −e2

J

[S0]q1q2q3 − [P ]

( q1q2q3e1k1
+ q2q3

e2k2
+ q3

e3k3
)2

( −q2q3
(e2k2)2

)

k2

=
1

( q1q2q3e1k1
+ q2q3

e2k2
+ q3

e3k3
)

(
q2q3
e2k2

)

CJ
e3 =

e3
J

∂J

∂e3
= −e3

J

[S0]q1q2q3 − [P ]

( q1q2q3e1k1
+ q2q3

e2k2
+ q3

e3k3
)2

( −q3
(e3k3)2

)

k3

=
1

( q1q2q3e1k1
+ q2q3

e2k2
+ q3

e3k3
)

(
q3
e3k3

)

,

as required.

5.2.2. Take s = [S] and i = [I]. Taking the derivative and scaling, we find

εS =
s

v

∂v

∂s
=

(

s
Vmax

1+i/Ki

s
KM+s

)

∂

∂s

Vmax

1 + i/Ki

s

KM + s

=
(KM + s)(1 + i/Ki)

Vmax

Vmax

1 + i/Ki

KM

(KM + s)2

=
KM

(KM + s)

and

εI =
i

v

∂v

∂i
=

(

i
Vmax

1+i/Ki

s
KM+s

)

∂

∂i

Vmax

1 + i/Ki

s

KM + s
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=
i

Vmax

1+i/Ki

s
KM+s

(

− Vmax

(1 + i/Ki)2
1

Ki

s

KM + s

)

= − i/Ki

Ki + i

5.2.3. The signs of the elasticities are dictated by the influence of the species S1 and S2 on the
reactions. We note that ε1S1

≤ 0, since S1 is a product of the first reaction (so an increase in [S1]
causes a decrease in reaction rate v1. Likewise, ε2S2

≤ 0. Because S1 and S2 are substrates for
reactions two and three, respectively, we have ε2S1

> 0 and ε3S2
> 0. Finally, because S2 can inhibit

the first reaction, we have ε1S2
≤ 0. Then ε2S1

ε3S2
> 0, ε1S1

ε3S2
< 0, ε1S1

ε2S2
≥ 0 and ε2S1

ε1S2
≤ 0, as

required.

5.4.1. The transpose of the stoichiometry matrix is

NT =





−1 −1 1 0 0
0 0 −1 1 0
0 1 0 −1 1



 .

Multiplying, we confirm that





−1 −1 1 0 0
0 0 −1 1 0
0 1 0 −1 1













0
1
1
1
0









=









0
0
0
0
0









and





−1 −1 1 0 0
0 0 −1 1 0
0 1 0 −1 1













1
0
1
1
1









=









0
0
0
0
0









as required.

5.4.2. In this case, the stoichiometry matrix is

N =









N1

N2

N3

N4

N5









=









1 −1 0 0 0
0 −1 0 1 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1









← S
← E
← ES
← EP
← P

↑ ↑ ↑ ↑ ↑
v0 v1 v2 v3 v4

The rows corresponding to S and P cannot be involved in a sum that equals one. The remaining
rows still sum to zero: rows N2 +N3 +N4 = 0, so [E] + [ES] + [EP ] = constant.
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5.4.3. The stoichiometry matrix for this network is

N =









N1

N2

N3

N4

N5









=









1 0 0 −1
1 −1 0 0
0 −1 1 0
0 1 −1 0
0 1 0 −1









We note that N3+N4 = 0, so [S3]+ [S4] = constant, and N1−N2−N5 = 0, so [S1]− [S2]− [S5] =
constant. This latter conservation involves the difference between [S1] and [S2], so cannot be written
as a sum.

5.4.4. For w1, we confirm that

Nw1 =

[
1 −1 0 0
0 1 −1 −1

]







2
2
1
1






=

[
0
0

]

.

We note that

w1 =







2
2
1
1






= α1v1 + α2v2 = α1







1
1
1
0






+ α2







1
1
0
1







for α1 = 1, α2 = 1. The vector w1 corresponds to an equal split ratio at the branch point.

For w2, we confirm that

Nw2 =

[
1 −1 0 0
0 1 −1 −1

]







6
6
5
1






=

[
0
0

]

.

We note that

w1 =







6
6
5
1






= α1v1 + α2v2 = α1







1
1
1
0






+ α2







1
1
0
1







for α1 = 5, α2 = 1. The vector w2 corresponds to an uneven split ratio: five sixths of the incoming
flux passes through reaction 3.

For w3, we confirm that

Nw3 =

[
1 −1 0 0
0 1 −1 −1

]







0
0
−1
1






=

[
0
0

]

.
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We note that

w1 =







0
0
−1
1






= α1v1 + α2v2 = α1







1
1
1
0






+ α2







1
1
0
1







for α1 = −1, α2 = 1. For the in flux profile w3 there is no flux down the ‘main pathway’. Instead,
material flows backwards through reaction 3 and then forward through reaction 4.

5.4.5. We find that

w1 =







2
2
1
1






= α1v̂1 + α2v̂2 = α1







−2
−2
−2
0






+ α2







1
1
−1
2







for α1 = −3
4 , α2 =

1
2

w2 =







6
6
5
1






= α1v̂1 + α2v̂2 = α1







−2
−2
−2
0






+ α2







1
1
−1
2







for α1 = −11
4 , α2 =

1
2

w3 =







0
0
−1
1






= α1v̂1 + α2v̂2 = α1







−2
−2
−2
0






+ α2







1
1
−1
2







for α1 =
1
4 , α2 =

1
2 .

5.4.6. The given vector v satisfies the balance equation, as follows:

Nv =

[
1 −1 0 0
0 1 −1 −1

]







2
2
3
−1






=

[
0
0

]

.

However, we see that v cannot be written in the form α1v1 + α2v2:

v =







2
2
3
−1






= α1v1 + α2v2 = α1







1
1
1
0






+ α2







1
1
0
1







unless α2 = −1. (In which case α1 = 3.)

5.4.7. a) The flux profile v corresponds to flux of 1 through the chain consisting of reactions 1, 2,
and 3, and flux of one around the loop consisting of reactions 2, 4 and 5. This is a valid steady
state flux profile, and does not violate the irreversibility constraints on reactions 1 and 3. To verify
that the balance equation is satisfied, we can construct the stoichiometry matrix N and verify that

Nv =





1 −1 0 0 −1
0 1 −1 1 0
0 0 0 −1 1













1
2
1
−1
−1









=





0
0
0



 .
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This flux mode is not elementary because it can be written as the sum of two other flux modes:

w1 =









1
1
1
0
0









and w2 =









0
1
0
−1
−1









b) Along with w1 and w2, the third elementary flux mode is

w3 =









0
−1
0
1
1









which represents flow around the loop in the opposite direction.

5.4.8. a) When reaction 1 is reversible, the profile

v7 =



















−1
1
0
0
0
0
0
0
1
0



















is an elementary flux mode. Material can only flow into the network through reactions 1 and 2, so
this is the only additional mode.
b) When reaction 3 is reversible, the profile

v7 =



















0
0
−1
1
0
0
1
0
0
1



















is an elementary flux mode. This is the only new behaviour that is feasible: material that flows into
the system through reaction 3 (reversed), has to flow through reaction 10, and hence out through
reaction 4. Reaction 7 balances reaction 10.
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c) Reaction 5 could only achieve a negative steady-state flow if reaction 6 had a negative steady-
state flow. As long as reaction 6 is irreversible, no new steady-state behaviours result from relaxing
the irreversibility of reaction 5.

5.4.9. Referring to Figure 5.18, we note that the steady-state conditions for each species give:

S1 : v1 + v8 = v5 + v9

S2 : v2 + v7 = v6 + v8 + v10

S3 : v9 = v3 + v10

S4 : v10 = v4

S5 : v5 = v6

S6 : v6 + v10 = v7

Then if v1, v2, v3 and v4 are all known, we find

v10 = v4

v9 = v3 + v10 = v3 + v4

v8 = v2 + v7 − v6 − v10 = v2 + (v7 − v6 − v10) = v2

v5 = v1 + v8 − v9 = v1 + v2 − (v3 + v4)

v6 = v1 + v2 − (v3 + v4)

v7 = v6 + v10 = v1 + v2 − (v3 + v4) + v4 = v1 + v2 − v3.

5.4.10. The steady-state balance conditions are (as in Exercise 5.4.9):

S1 : v1 + v8 = v5 + v9

S2 : v2 + v7 = v6 + v8 + v10

S3 : v9 = v3 + v10

S4 : v10 = v4

S5 : v5 = v6

S6 : v6 + v10 = v7

If v3 and v4 are known, then we have v10 = v4 and v9 = v3 + v4. The other reaction rates are not
constrained to particular values.

5.4.11. a) Flux into the network is constrained to less than 2. Flux out (through v3 and v4) will
be likewise constrained. Flux v3 = 2 can be achieved with v1 = v2 = v8 = 1, v9 = v3 = 2. Flux
v4 = 2 can be achieved with v1 = v2 = v8 = 1, v9 = v10 = v4 = v7 = 2.
b) Flux v3 = 2 can be achieved as in part (a). With v7 ≤ 1, we have v10 ≤ (to maintain balance of
S6. Then, balance at S4 demands that v4 ≤ 1. The maximal flux through reaction 4 will then be
v4 = 1, achieved with v1 = v9 = v10 = v7 = v4 = 1.
c) With v8 = 0, flux through reaction 2 cannot feed flux through reactions 3 or 4. The maximal
flux through reactions 3 and 4 are then both equal to one (the upper limit on v1). These can be
achieved by v1 = v9 = v3 = 1 and v1 = v9 = v10 = v7 = v4 = 1, respectively.

Chapter 6
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6.1.1. Taking the ligand concentration [L] as a fixed input, the model is

d

dt
[R](t) = −kRL[R](t)·[L] + kRLm[RL](t)

d

dt
[RL](t) = kRL[R](t)·[L] − kRLm[RL](t)

d

dt
[G](t) = −kGa[G](t)·[RL](t) + kG1[Gd](t)·[Gbg](t)

d

dt
[Ga](t) = kGa[G](t)·[RL](t) − kGd0[Ga](t)

d

dt
[Gd](t) = kGd0[Ga](t) − kG1[Gd](t)·[Gbg](t)

d

dt
[Gbg](t) = kGa[G](t)·[RL](t) − kG1[Gd](t)·[Gbg](t)

There are three conservations: [R]+ [RL] = RT , [G]+ [Ga]+ [Gd] = GaT , and [G]+ [Gbg] = GbgT .
These conservations could be used to back-substitute for R, Gd and Gbg, leaving three differential
equations for RL, G and Ga.

6.2.1. With response

R =
V s

K + s
,

we note that the response is x% of full activation when R = xV/100. This occurs when

xV

100
=

V s

K + s
,

which gives

(K + s)x

100
= s.

Solving for s gives

s =
xK/100

1− x/100
=

xK

100 − x
.

Ten-percent activation and ninety-precent activation are thus achieved at

s10 =
10K

90
and s90 =

90K

10
.

The ratio of these two concentrations is

s90/s10 =
90K

10

90

10K
= 81,

as required.
Alternatively, with

R =
V s4

K + s4

360



we find x% activation when

xV

100
=

V s4

K + s4
,

which gives

(K + s4)x

100
= s4.

Solving for s gives

s = 4

√

Kx/100

1− x/100
= 4

√

Kx

100 − x
.

Then ten- and ninety-percent activation occur at

s10 =
4

√

10K

90
and s90 =

4

√

90K

10

The ratio of these two doses is

s90/s10 =
4

√

90K

10

90

10K
=

4
√
81 = 3,

as required.

6.2.2. Equation 6.2 reads:

k1E1T

k2E2T
=

w∗(w +K1)

w(w∗ +K2)
.

When the system is at 10% activation, we have w∗ = 0.1 and w = 0.9. The corresponding input
E10

1T thus satisfies

k1E
10
1T

k2E2T
=

0.1(0.9 +K1)

0.9(0.1 +K2)
.

Likewise, the input E90
1T that gives a 90% response satisfies

k1E
90
1T

k2E2T
=

0.9(0.1 +K1)

0.1(0.9 +K2)

The ratio is then

E90
1T

E10
1T

=
0.9(0.1 +K1)

0.1(0.9 +K2)

0.9(0.1 +K2)

0.1(0.9 +K1)
=

81(0.1 +K1)(0.1 +K2)

(0.9 +K1)(0.9 +K2)

as required. When K1 and K2 are large, this ratio tends to 81K1K2

K1K2
= 81. When K1 and K2 are

near zero, this ratio tends to 81(0.1)(0.1)
(0.9)(0.9) = 1.
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6.2.3. We can measure steepness by considering the slope given by the derivative. Applying the
chain rule, we find

d

dx
f3(f2(f1(x))) =

df3
dx

df2
dx

df1
dx

.

Thus the steepness (slope) of the pathway’s dose-response is the product of the steepness (slope)
of the dose-responses of the individual steps.

6.3.1. CheA induces tumbling (by activating CheY), so a CheA knockout will be constantly
running. CheB demethylates the receptor. In the absence of CheB activity, receptors will be fully
methylated. Methylation enhances CheA activity, so in this case, CheA activity will be high, so
active CheY levels will be high, and the cell will be constantly tumbling.

6.3.2. From the model, we have, if k2 = 0,

d

dt
([Am] + [AmL]) = (k−1 + k−2)[R]− k1[B-P ]·[Am](t)

kM1 + [Am](t)

Then, in steady state, we have

0 = (k−1 + k−2)[R]− k1[B-P ]·[Am]ss

kM1 + [Am]ss

This can be solved to yield an explicit formula for [Am]ss. Because [L] does not appear in this
equation, the steady state activity level [Am]ss is independent of [L], meaning that the model
exhibits perfect adaptation.

6.4.1. IAP binds active caspase-3, removing it from the pathway. By enhancing degradation of
IAP, active caspase-3 increases its own concentration. This enhances the self-sustaining positive
feedback that makes caspase activation irreversible.

6.6.1. With

f1(x1, x2, u) = u+ x1 − 2x21 and f2(x1, x2, u) = −x1 − 3x2

The Jacobian is

J(x1, x2) =

[
∂f1
x1

∂f1
x2

∂f2
x1

∂f2
x2

][
1− 4x1 0
−1 −3

]

,

which has the desired form for A at (x1, x2) = (0, 0), u = 0. We find

B =

[ ∂f1
u

∂f2
u

]

=

[
1
0

]

,

for any values of x1, x2, u. Taking derivatives of the output map y = h(x1, x2, u) = x2 we find

C =

[
∂h

∂x1

∂h

∂x2

]

= [0 1] and D =

[
∂h

∂u

]

= 0,

as required.
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6.6.2. With

d

dt
s(t) = V (t)− Vms(t)

K + s(t)
,

the steady state for V = V0 satisfies

0 = V0 −
Vmsss

K + sss
so sss =

V0K

Vm − V0
.

To determine the linearization, we take the derivative

∂

∂x

(

V (t)− Vms(t)

K + s(t)

)

=
∂

∂s

(

V (t)− Vms(t)

K + s(t)

)

= −Vm(K + s)− Vms

(K + s)2

= − VmK

(K + s)2
.

At the steady state, this evaluates to

A = − VmK

(K + sss)2
= − VmK

(

K + V0K
Vm−V0

)2 = − VmK
(

VmK
Vm−V0

)2 = −(Vm − V0)
2

VmK
.

Taking the derivative with respect to the input u, we find

B =
∂

∂u

(

V (t)− Vms(t)

K + s(t)

)

=
∂

∂V

(

V (t)− Vms(t)

K + s(t)

)

= 1.

Since the output is y = h(x, u) = x, we have C = ∂h
∂x = 1 and D = ∂h

∂u = 0.

6.6.3. a) Here we have B = C = 1 and D = 0. Because a is a scalar, the formula (6.6) gives

H(ω) =
1

iω − a
.

b) To determine the magnitude of H, we find

H(ω) =
1

iω − a

(
iω + a

iω + a

)

=
iω + a

−ω2 − a2
= − a

ω2 + a2
− i

ω

ω2 + a2
.

Then, the gain is

√
(

− a

ω2 + a2

)2

+

(

− ω

ω2 + a2

)2

=
1

ω2 + a2

√

a2 + ω2 =
1√

ω2 + a2
,

as required.
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7.1.1. In steady state, we find

[OA] = [O][A]/KA, [OB] = [O][B]/KB , [OAB] = [A][OB]/KA = [A][B][O]/(KAKB).

Then, the fraction of operators with both A and B bound is

[OAB]

[Ototal ]
=

[OAB]

[O] + [OA] + [OB] + [OAB]
=

[A][B]
KAKB

1 + [A]
KA

+ [B]
KB

+ [A][B]
KAKB

as required. Replacing [OAB] in the numerator with [O], [OA], and [OB] in the numerator gives
the remaining formulas in equations (7.6).

7.1.2. If B completely blocks the promoter, then no expression occurs from states OB or OAB.
Since no expression occurs when A is unbound, the only state that leads to expression is OA. The
transcription rate is then

α

[A]
KA

1 + [A]
KA

+ [B]
KB

+ [A][B]
KAKB

.

7.1.3. a) In steady state, we have

0 = α
p/K

1 + p/K
− δpp = α

p

K + p
− δpp

So

0 = αp− δpKp− δpp
2

Then, either p = 0, or we can divide by p and solve:

p =
α− δpK

δp
.

This expression is positive when α > δpK; otherwise this expression is negative, and so does not
represent a steady-state concentration.

To determine stability, we find the Jacobian as

J(p) = α
(K + p)− p

(K + p)2
− δp = α

K

(K + p)2
− δp.

For the zero steady state, we have

J(0) = α
K

(K)2
− δp =

α

K
− δp

which is positive when α > δpK, in which case the zero steady state is unstable. For the positive
steady state, we find

J

(
α− δpK

δp

)

= α
K

(

K +
α−δpK

δp

)2 − δp = α
K

(
δpK+α−δpK

δp

)2 − δp = α
Kδ2p
α2
− δp = δP

(
KδP
α
− 1

)
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which is negative when α > δpK, in which case this steady state is stable.

7.1.4. The steady-state condition is

0 = α
p2

K2 + p2
− δpp

which gives

0 = αp2 − δpp(K
2 + p2)

There is one steady state at p = 0. Dividing through by p, we find that any other steady states
must satisfy:

0 = αp− δp(K
2 + p2) = αp− δpK

2 − δpp
2.

Applying the quadratic formula gives

p =
α±

√

α2 − 4δ2pK
2

2δp

The discriminant α2 − 4δ2pK
2 is non-negative when α > 2δpK. In this case

√

α2 − 4δ2pK
2 < α, so

both roots are positive, and thus represent steady states of the system.

7.2.1. If dilution is negligible, in quasi-steady state, we have

0 =
kgb(t)L(t)

KMg + L(t)
− kgb(t)A

qss

KMg +Aqss
,

which has solution Aqss(t) = L(t) as required.

7.2.2. IPTG mimics allolactose in inducing expression, but does not undergo metabolism. With the
intracellular IPTG concentration fixed, we find that the fraction of unbound repressor monomers
(equation (7.16)) is given by

K2

K2 +A(t) + [IPTG]

The concentration of active repressor tetramers (equation (7.17)) is then

r(t) = RT

(
K2

K2 +A(t) + [IPTG]

)4

.

7.2.3. In steady state, each binding reaction is in equilibrium:

[O(cI2)2] = K1[O][cI2]
2

[O(cI2)3] = K2[O(cI2)2][cI2] = K2K1[O][cI2]
3

[O(cro2)] = K3[O][cro2]

[O(cro2)2+] = K4[O(cro2)][cro2] = K4K3[O][cro2]
2
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The fraction of operators in the unbound state is then

[O]

OT
=

[O]

[O] + [O(cI2)2] + [O(cI2)3] + [O(cro2)] + [O(cro2)2+]

=
[O]

[O] +K1[O][cI2]2 +K2K1[O][cI2]3 +K3[O][cro2] +K4K3[O][cro2]2

=
1

1 +K1[cI2]2 +K2K1[cI2]3 +K3[cro2] +K4K3[cro2]2

=
1

1 +K1(r/2)2 +K2K1(r/2)3 +K3(c/2) +K4K3(c/2)2

The fraction of operators in state O(cI2)2 is likewise

[O(cI2)2]

OT

K1(r/2)
2

1 +K1(r/2)2 +K2K1(r/2)3 +K3(c/2) +K4K3(c/2)2

while the fraction of operators in state O(cro2) is

[O(cro2)]

OT

K3(c/2)

1 +K1(r/2)2 +K2K1(r/2)3 +K3(c/2) +K4K3(c/2)2

Adding terms with coefficients as in the table gives the formulas in equation (7.19).

7.2.4. For concreteness suppose that the model

d

dt
p(t) =

α

K + p(t)
− δp(t).

is specified in terms of minutes (t) and nM (p). Then K has units of nM, and is equal to 1 in units
of K·nM. We then write the species concentration as p̃ = p/K, where p̃ is measured in units of
K· nM. Likewise, δ has units of 1/min and is equal to 1 in units of δ/min. We thus measure time
τ = t/δ in units of δ·min to arrive at a decay rate of p̃. The maximal expression rate α, which has
units of nM/min, must then be rescaled to α̃ = α/(Kδ), with units of Kδ nM/min.

7.2.5. When β = γ = 1, and α1 = α2 = α, steady-state condition is

α

1 + p2
− p1 = 0,

α

1 + p1
− p2 = 0.

These give

α = p2(1 + p1) = p2

(

1 +
α

1 + p2

)

= p2

(
1 + p2 + α

1 + p2

)

,

so

α+ αp2 = p2 + p22 + αp2.

This reduces to

p22 + p2 − α = 0,
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which is solved by

p2 =
−1±

√
1 + 4α

2
.

Only one of these roots is non-negative, so there is a single steady state.

7.3.1. The original formulation is valid if consumption of the metabolite Z is a first-order processes,
as opposed having a hyperbolic (Michaelis-Menten) dependence on [Z].
a) The interpretation: X is nuclear mRNA, Y is cytoplasmic mRNA, Z is protein product, is valid
if (i) mRNA export is irreversible and first order, (ii) b = α or b > α and the difference accounts
for degradation of X.
b) The interpretation: X is mRNA, Y is inactive protein product, Z is active protein product, is
valid if (i) the activation process is first order, and (ii) β = γ or β > γ and the difference accounts
for degradation of Y .
In every case, transport into the nucleus must be considered fast.

7.3.2. The repressor binds the unoccupied operator with strong cooperativity, so we can approxi-
mate the binding events as:

O + 4Y
k1

GGGGGGBF GGGGGG

k−1

OY4

So in steady state [OY4] = [O][Y ]4(k1/k−1). We choose units of concentration scale Y so that
k1/k−1 is scaled to 1. The activator als binds cooperatively. The binding events are

O + 2X
k2

GGGGGGBF GGGGGG

k−2

OX2 OX2 + 2X
k3

GGGGGGBF GGGGGG

k−3

OX4

OY4 + 2X
k2

GGGGGGBF GGGGGG

k−2

OY4X2 OY4X2 + 2X
k3

GGGGGGBF GGGGGG

k−3

OY4X4.

At steady state

[OX2] = [O][X]2(k2/k−2)

[OY4X2] = [OY4][X]2(k2/k−2) = [O][Y 4][X]2(k2/k−2)

[OX4] = [OX2][X]2(k3/k−3) = [O][X]4(k2/k−2)(k3/k−3)

[OY4X4] = [OY4X2][X]2(k3/k−3) = [O][Y ]4[X]4(k2/k−2)(k3/k−3)

We choose the concentration scale for X so that k2/k−2 is scaled to 1. We set k3/k−3 = σ. The
fraction of operators in the unbound state is then

[O]

OT
=

[O]

[O] + [OY4] + [OX2] + [OY4X2] + [OX4] + [OY4X4]

=
[O]

[O](1 + [Y ]4 + [X]2 + [Y ]4[X]2 + σ[X]4 + σ[Y ]4[X]4

=
1

(1 + [Y ]4)(1 + [X]2 + σ[X]4)
.
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Scaling time so that the rate of activator expression from the states O and OX2 is equal to one,
and letting α be the rate of expression from state OX4, we have the activator expression rate

1 + [X]2 + ασ[X]4

(1 + [Y ]4)(1 + [X]2 + σ[X]4)
.

The rest of the model follows by defining ay as the basal expression rate of repressor, and γx and
γy as the degradation/dilution rates of X and Y respectively.

7.4.1. The dependence of LuxR production on AHL introduces an additional positive feedback on
AHL production, and so will make the response even steeper than shown in Figure 7.25

7.4.2. The behaviour of the receiver cells in Figure 7.26 can be described by:

d

dt
A(t) = −n(A(t)−Aout)− 2k1(A(t))

2(RT − 2R∗(t))2 + 2k2R
∗(t)

d

dt
R∗(t) = k1(A(t))

2(RT − 2R∗(t))2 − k2R
∗(t)

d

dt
G(t) =

a0R
∗

KM +R∗(t)
− bG(t),

where A is the AHL concentration, R∗ is the concentration of active LuxR-AHl complexes, G is the
GFP concentration, and the extracellular AHL concentration Aout is taken as a constant parameter.

7.4.3. There are four operator sites: unbound (O), activator-bound (OR), repressor-bound (OC2)
and fully-bound (ORC2). Putting the binding events in steady state, we have

[OR] = [O][R]/KR [OC2] = [O][C]2/K2
C [ORC2] = [O][R][C]2/(KRK

2
C),

where KR and K2
C are dissociation constants. The fraction of operators in state OR is then

[OR]

OT
=

[O][R]/KR

[O] + [OR] + [OC2] + [ORC2]

=
[O][R]/KR

[O](1 + [R]/KR + [C]2/K2
C + [R][C]2/(KRK2

C))

=
[R]/KR

1 + [R]/KR + ([C]/KC)2 + ([R]/KR)([C]/KC )2

as in the model.

7.5.1. The NOR truth table is

NOR

inputs output

A B
0 0 1
1 0 0
0 1 0
1 1 0
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The output is the inverse of the OR gate output, so an OR gate followed by an inverter yields
a NOR logic.

The NAND truth table is

NAND

inputs output

A B
0 0 1
1 0 1
0 1 1
1 1 0

The output is the inverse of the AND gate output, so an AND gate followed by an inverter
yields a NAND logic.

7.5.2. For the lac operon, let A be the allolactose input and R the repressor input. The truth
table for operon activity is then

IMPLIES

inputs output

A R
0 0 1
1 0 1
0 1 0
1 1 1

where R = 0 means the repressor is absent. This same behavior results from inverting the repressor
signal and then applying an OR logic to this inverted signal and the allolactose signal: A OR (NOT
R).

7.6.1. When the system is in state N = (NA, NB), it can transition out of that state via (i)
reaction 1, with propensity k1; (ii) reaction 2, with propensity k2; or (iii) reaction 3, with propensity
k3NANB . Transitions into state N = (NA, NB) can occur (i) from state (NA− 1, NB), via reaction
1, with propensity k1; (ii) from state (NA, NB − 1), via reaction 2, with propensity k2; or (iii) from
state (NA + 1, NB + 1), via reaction 3, with propensity k3(NA + 1)(NB + 1). Constructing the
probability balance as in equation (7.27) gives

P ((NA, NB), t+ dt) = P ((NA, NB), t) [1− (k1 + k2 + k3NANB)dt]

+ P ((NA − 1, NB), t)·k1dt+ P ((NA, NB − 1), t)·k2dt
+ P ((NA + 1, NB + 1), t)·(NA + 1)(NB + 1)k3dt,

as required.

7.6.2. Considering the probability balance in Exercise 7.6.1, we have

d

dt
P ((NA, NB), t) = −P ((NA, NB), t) (k1 + k2 + k3NANB)

+ P ((NA − 1, NB), t) k1 + P ((NA, NB − 1), t) k2

+ P ((NA + 1, NB + 1), t) (NA + 1)NB + 1)k3.
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7.6.3. Let P0 = P ss(0, 2), P1 = P ss(1, 1) and P2 = P ss(2, 0). Then, we have

0 = −2k1P2 + k2P1

0 = −k2P1 − k1P1 + 2k1P2 + 2k2P0

0 = −2k2P0 + k1P1.

From the first equation,

P2 =
k2
2k1

P1

Conservation then gives P0 = 1 − P1 − P2 = 1 − (1 + k2
2k1

)P1. Substituting into the last equation
gives

0 = −2k2
(

1−
(

1 +
k2
2k1

)

P1

)

+ k1P1

= −2k2 +
(

k1 + 2k2 −
k22
k1

)

P1

so

P1 = P ss(1, 1) =
2k2

k1 + 2k2 + k22/k1
=

2k1k2
k21 + 2k1k2 + k22

=
2k1k2

(k1 + k2)2
.

Then

P2 = P ss(2, 0) =
k2
2k1

P1 =
k22

(k1 + k2)2
,

and, from the thrid equation,

P0 = P ss(0, 2) =
k1
2k2

P1 =
k21

(k1 + k2)2
.

In the case illustrated in Figure 7.40, when k1 = 3, k2 = 1, we have P ss(2, 0) = 1/16, P ss(1, 1) =
6/16, and P ss(0, 2) = 9/16, which correspond to the probabilities shown for t = 1, so steady state
has been reached.

7.6.4. The mass action-based model has steady state concentrations a and b characterized by

k1a = k2b,

where conservation gives a+ b = T . The steady state concentrations are then

a =
k2T

k1 + k2
and b =

k1T

k1 + k2
.

The expected (mean) abundance of A in the probability distribution (7.31) is

E(NA) = 2

(
k22

(k1 + k2)2

)

+ 1

(
2k1k2

(k1 + k2)2

)

+ 0

(
k21

(k1 + k2)2

)

=
2k22 + 2k1k2
(k1 + k2)2

=
2k2(k2 + k1)

(k1 + k2)2
=

2k2
(k1 + k2)

.
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Likewise

E(NB) = 0

(
k22

(k1 + k2)2

)

+ 1

(
2k1k2

(k1 + k2)2

)

+ 2

(
k21

(k1 + k2)2

)

=
2k1

(k1 + k2)
.

With molecule count T = 2, these expected values correspond to the deterministic description.

Chapter 8
8.1.1. Using the formula for the Nernst potential (equation (8.1)), we have, with RT

F = 26.7×10−3

J/C,

ENa =
26.7

1
ln

(
145

12

)

mV = 66.5 mV

EK =
26.7

1
ln

(
4

155

)

mV = −97.6 mV

ECa =
26.7

2
ln

(
1.5

0.0001

)

mV = 128.4 mV

8.1.2. The resting potential is the weighted average (equation (8.2)):

V ss =
ENagNa + EKgK + EClgCl

gNa + gK + gCl

.

Substituting the Nernst potentials, and writing gK = 25gNa and gCl = 12.5gNa, we have

V ss =
54gNa − 75(25gNa)− 59(12.5gNa)

gNa + 25gNa + 12.5gNa

mV =
54− 1875 − 737.5

1 + 25 + 12.5
mV = −66.5 mV.

8.1.3. With

V (t) = E − e−(g/C)t(E − V0),

we have V (0) = E − (E − V0) = V0 as required. Differentiating, we find

d

dt
V (t) =

g

C
e−(g/C)t(E − V0) =

g

C
(E − (E − e−(g/C)t(E − V0))) =

g

C
(E − V (t)),

as required to satisfy equation (8.5).

8.1.4. a) The steady state of equation (8.8) satisfies

0 =
1

C

(

gNa ·(ENa − V ss) + gK ·(EK − V ss) + gCl ·(ECl − V ss)
)

,

giving

V ss =
ENagNa + EKgK + EClgCl

gNa + gK + gCl

,
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which corresponds to equation (8.2).
b) Equation (8.8) can be written as

d

dt
V (t) =

1

C

(

gNa ·ENa + gK ·EK + gCl ·ECl − (gNa + gK + gCl)·V (t)
)

=
gT
C

(gNa ·ENa + gK ·EK + gCl ·ECl

gT
− V (t)

)

,

where gT = gNa + gK + gCl. This has the same form as equation (8.5), so, as in Exercise 8.1.3, the
solution relaxes exponentially to steady state, with rate e−(gT /C)t.

8.2.1. a) At steady state, wss = w∞, which lies between zero and one. The steady state for V
satisfies:

V ss =
ḡCam

ssECa + gleakEleak + ḡKw
ssEK + Iapplied

ḡleak + ḡKwss + gCamss
.

Provided that EK < 0, the contribution of EK reduces the steady-state voltage. With ECa > 0,
the contribution of ECa is maximized when all calcium channels are open. An upper bound is thus
reached when wss = 0 and mss = 1, i.e.

V ss <
ḡCaECa + gleakEleak + Iapplied

ḡleak + gCa

.

Alternatively, a lower bound is reached with potassium channels fully open and calcium channels
closed: wss = 1 and mss = 0,

V ss >
gleakEleak + ḡKEK + Iapplied

ḡleak + ḡK

.

b) A one-dimensional model can only display monotonic behaviour, since each point on the phase-
line has a specific direction. The voltage thus would not be able to rise and fall as needed for an
action potential.

Appendix B
B.1.1. a) i) Applying the addition rule and the power rule, we have

d

dx
(2x+ x5) =

d

dx
(2x) +

d

dx
(x5) = 2 + 5x4.

ii) The quotient rule gives

d

ds

(
2s

s+ 4

)

=
2(s + 4)− 2s(1)

(s+ 4)2
=

8

(s+ 4)2
.

iii) The product rule gives

d

dx
x3ex = 3x2ex + x3ex = (3x2 + x3)ex.

iv) Applying the quotient rule, we have

d

ds

(
3s2

0.5 + s4

)

=
6s(0.5 + s4)− 3s2(4s3)

(0.5 + s4)2
=

3s− 6s5

(0.5 + s4)2
.
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b) i) The derivative is

d

ds
(s2 + s3) = 2s+ 3s2.

At s = 2 the derivative evaluates to

2(2) + 3(2)2 = 16.

ii) The derivative is

d

dx

(
x

x+ 1

)

=
1(x+ 1)− x(1)

(x+ 1)2
=

1

(x+ 1)2
.

At x = 0, the derivative evaluates to

1

(0 + 1)2
= 1.

iii) The derivative is

d

ds

(
s2

1 + s2

)

=
2s(1 + s2)− s2(2s)

(1 + s2)2
=

2s

(1 + s2)2
.

At s = 1, the derivative evaluates to

2

(1 + 12)2
= 1/2.

iv) The derivative is

d

dx

(
ex

1 + x+ x2

)

=
ex(1 + x+ x2)− ex(1 + 2x)

(1 + x+ x2)2
=

ex(x2 − x)

(1 + x+ x2)2
.

At x = 2, the derivative evaluates to

e2(4− 2)

(1 + 2 + 4)2
=

2e2

49
= 0.302.

B.1.2. i) Differentiating both sides of the equation:

d

dx

(
x

y2(x) + 1

)

=
d

dx
x3,

gives

y2(x) + 1− x(2y(x)dydx )

(y2(x) + 1)2
= 3x2.

Solving for dy
dx we have

dy

dx
=
−3x2(y2(x) + 1)2 + (y2(x) + 1)

2xy(x)
=

(y2(x) + 1)(1− 3x2(y2(x) + 1))

2xy(x)
.
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B.1.3. i) The partial derivatives are:

∂

∂s1

(
3s1 − s2

1 + s1/2 + s2/4

)

=
3(1 + s1/2 + s2/4) − (3s1 − s2)

1
2

(1 + s1/2 + s2/4)2
=

3 + 5s2/4

(1 + s1/2 + s2/4)2
.

∂

∂s2

(
3s1 − s2

1 + s1/2 + s2/4

)

=
−(1 + s1/2 + s2/4)− (3s1 − s2)

1
4

(1 + s1/2 + s2/4)2
=

−1− 5s1/4

(1 + s1/2 + s2/4)2
.

ii) The partial derivatives are:

∂

∂s

(
2s2

i+ 3s2

)

=
4s(i+ 3s2)− 2s2(6s)

(i+ 3s2)2
=

4si

(i+ 3s2)2
.

∂

∂i

(
2s2

i+ 3s2

)

=
−2s2

(i+ 3s2)2
.

B.2.1. a) i)

[1 2 4] ·





3
2
−1



 = (1)(3) + (2)(2) + (4)(−1) = 3.

ii)

[1 1] ·
[
−2
2

]

= (1)(−2) + (1)(2) = 0.

b) i)





1 0 1
1 2 3
−1 −2 0



 ·





−2
−1
0



 =





(1)(−2) + (0)(−1) + (1)(0)
(1)(−2) + (2)(−1) + (3)(0)

(−1)(−2) + (−2)(−1) + (0)(0)



 =





−2
−1
4



 .

ii)

[
−1 0 −2 3
−2 2 3 3

]

·







1
−2
1
1






=

[
(−1)(1) + (0)(−2) + (−2)(1) + (3)(1)
(−2)(1) + (2)(−2) + (3)(1) + (3)(1)

]

=

[
0
0

]

.

c) i)

[
1 1 1 3
−2 0 1 −1

]

·







2 2
−1 −1
1 4
0 5







=

[
(1)(2) + (1)(−1) + (1)(1) + (3)(0) (1)(2) + (1)(−1) + (1)(4) + (3)(5)

(−2)(2) + (0)(−1) + (1)(1) + (−1)(0) (−2)(2) + (0)(−1) + (1)(4) + (−1)(5)

]

=

[
2 20
−3 −5

]

.
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ii)

M ·N =





1 0 1
2 2 3
2 −4 1



 ·





2 2 2
−1 −1 0
1 4 5





=





(1)(2) + (0)(−1) + (1)(1) (1)(2) + (0)(−1) + (1)(4) (1)(2) + (0)(0) + (1)(5)
(2)(2) + (2)(−1) + (3)(1) (2)(2) + (2)(−1) + (3)(4) (2)(2) + (2)(0) + (3)(5)

(2)(2) + (−4)(−1) + (1)(1) (2)(2) + (−4)(−1) + (1)(4) (2)(2) + (−4)(0) + (1)(5)





=





3 6 7
5 14 19
9 12 9



 .

d) We find

N ·M =





2 2 2
−1 −1 0
1 4 5



 ·





1 0 1
2 2 3
2 −4 1





=





(2)(1) + (2)(2) + (2)(2) (2)(0) + (2)(2) + (2)(−4) (2)(1) + (2)(3) + (2)(1)
(−1)(1) + (−1)(2) + (0)(2) (−1)(0) + (−1)(2) + (0)(−4) (−1)(1) + (−1)(3) + (0)(1)

(1)(1) + (4)(2) + (5)(2) (1)(0) + (4)(2) + (5)(−4) (1)(1) + (4)(3) + (5)(1)





=





10 −4 10
−3 −2 −4
19 −12 18



 .

B.2.2. We find

M·I3 =





2 −1 3
1 1 4
−1 −2 2



 ·





1 0 0
0 1 0
0 0 1





=





(2)(1) + (−1)(0) + (3)(0) (2)(0) + (−1)(1) + (3)(0) (2)(0) + (−1)(0) + (3)(1)
(1)(1) + (1)(0) + (4)(0) (1)(0) + (1)(1) + (4)(0) (1)(0) + (1)(0) + (4)(1)

(−1)(1) + (−2)(0) + (2)(0) (−1)(0) + (−2)(1) + (2)(0) (−1)(0) + (−2)(0) + (2)(1)





=





2 −1 3
1 1 4
−1 −2 2



 = M

Likewise

I3 ·M =





1 0 0
0 1 0
0 0 1



 ·





2 −1 3
1 1 4
−1 −2 2





=





(1)(2) + (0)(1) + (0)(−1) (1)(−1) + (0)(1) + (0)(2) (1)(3) + (0)(4) + (0)(2)
(0)(2) + (1)(1) + (0)(−1) (0)(−1) + (1)(1) + (0)(2) (0)(3) + (1)(4) + (0)(2)
(0)(2) + (0)(1) + (1)(−1) (0)(−1) + (0)(1) + (1)(2) (0)(3) + (0)(4) + (1)(2)





=





2 −1 3
1 1 4
−1 −2 2



 = M.
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B.2.3. a) We find

M·M−1 =

[
1 0
2 2

]

·
[

1 0
−1 1

2

]

=

[
(1)(1) + (0)(−1) (1)(0) + (0)(1/2)
(2)(1) + (2)(−1) (2)(0) + (2)(1/2)

]

=

[
1 0
0 1

]

= I2.

and

M−1 ·M =

[
1 0
−1 1

2

]

·
[
1 0
2 2

]

=

[
(1)(1) + (0)(2) (1)(0) + (0)(2)

(−1)(1) + (1/2)(2) (−1)(0) + (1/2)(2)

]

=

[
1 0
0 1

]

= I2.

b) i) We note that for any matrix N, the bottom row of the product M1·N will be zero, beacuse it
is a sum of products each involving a term in the bottom row of M1 (all of which are zero). Such
a product cannot be the identity matrix, so M1 has no inverse.
ii) We find the general product

M2 ·M =

[
2 2
−1 −1

]

·
[
m1 m2

m3 m4

]

=

[
(2)(m1) + (2)(m3) (2)(m2) + (2)(m4)

(−1)(m1) + (−1)(m3) (−1)(m2) + (−1)(m4)

]

=

[
2(m1 +m3) 2(m2 +m4)
−(m1 +m3) −(m2 +m4)

]

.

This product can never take the form of the identity matrix, since the second row is a multiple of
the first.

B.2.4. We find

M · v =

[
1 −1 0 0
0 −1 2 −1

]







2
2
1
0






=

[
(1)(2) + (−1)(2) + (0)(1) + (0)(0)
(0)(2) + (−1)(2) + (2)(1) + (−1)(0)

]

=

[
0
0

]

,

and

M ·w =

[
1 −1 0 0
0 −1 2 −1

]







1
1
0
−1






=

[
(1)(1) + (−1)(1) + (0)(0) + (0)(−1)
(0)(1) + (−1)(1) + (2)(0) + (−1)(−1)

]

=

[
0
0

]

.

B.3.1. The probability distribution is

P (X = 2) = P ((H,H)) =
1

9

P (X = 4) = P ((H,T )) + P ((T,H)) =
4

9

P (X = 6) = P ((T, T )) =
4

9

The cumulative distribution function is

F (b) = P (X ≤ b) =







0 for b < 2 (since X is never less than 2)
1/9 for 2 ≤ b < 4 (since X < 4 only for (H,H))
5/9 for 4 ≤ b < 6 (since X < 6 for (H,H), (H,T) or (T,H))
1 for 6 ≤ b (since X is always less than or equal to 6)
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The expected value is

E[X] =
∑

Xi=2,4,6

Xi · P (Xi) = 2 · 1
9
+ 4 · 4

9
+ 6 · 4

9
=

14

3
.
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