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Preface

Systems techniques are integral to current research in molecular cell biology. These systems ap-
proaches stand in contrast to the historically reductionist paradigm of molecular biology. The shift
toward a systems perspective was gradual; it passed a turning point at the end of the 20th cen-
tury, when newly developed experimental techniques provided system-level observations of cellular
networks. These observations revealed the full complexity of these networks, and made it clear
that traditional (largely qualitative) molecular biology techniques are ill-equipped for the investi-
gation of these systems, which often exhibit non-intuitive behaviour. This point was illustrated in a
thought experiment proposed by Yuri Lazebnik (Lazebnik, 2002). He described a (failed) attempt
to reverse-engineer a transistor radio using qualitative methods analogous to those used in tradi-
tional molecular biology. Lazebnik’s exercise demonstrates that without a quantitative framework
to describe large networks of interacting components, the functioning of cellular networks cannot
be resolved. A quantitative approach to molecular biology allows traditional interaction diagrams
to be extended to mechanistic mathematical models. These models serve as working hypotheses:
they help us to understand and predict the behaviour of complex systems.

The application of mathematical modelling to molecular cell biology is not a new endeavour;
there is a long history of mathematical descriptions of biochemical and genetic networks. Successful
applications include Alan Turing’s description of patterning in development (discussed by Murray,
2003), the models of neuronal signalling developed by Alan Hodgkin and Andrew Huxley (reviewed
by Rinzel, 1990), and Denis Noble’s mechanistic modelling of the heart (Noble, 2004). Despite these
successes, this sort of mathematical work has not been considered central to (most of) molecular
cell biology. That attitude is changing; system-level investigations are now frequently accompanied
by mathematical models, and such models may soon become requisites for describing the behaviour
of cellular networks.

What this book aims to achieve

Mathematical modelling is becoming an increasingly valuable tool for molecular cell biology. Con-
sequently, it is important for life scientists to have a background in the relevant mathematical tech-
niques, so that they can participate in the construction, analysis, and critique of published models.
On the other hand, those with mathematical training—mathematicians, engineers and physicists—
now have increased opportunity to participate in molecular cell biology research. This book aims
to provide both of these groups—readers with backgrounds in cell biology or mathematics—with
an introduction to the key concepts that are needed for the construction and investigation of math-
ematical models in molecular systems biology.

I hope that, after studying this book, the reader will be prepared to engage with published
models of cellular networks. By ‘engage’, I mean not only to understand these models, but also to



analyse them critically (both their construction and their interpretation). Readers should also be
in a position to construct and analyse their own models, given appropriate experimental data.

Who this book was written for

This book evolved from a course I teach to upper-level (junior/senior) undergraduate students.
In my experience, the material is accessible to students in any science or engineering program,
provided they have some background in calculus and are comfortable with mathematics. I also
teach this material as a half-semester graduate course to students in math and engineering. The
text could easily be adapted to a graduate course for life science students. Additionally, I hope
that interested researchers at all levels will find the book useful for self-study.

The mathematical prerequisite for this text is a working knowledge of the derivative; this is
usually reached after a first course in calculus, which should also bring a level of comfort with
mathematical concepts and manipulations. A brief review of some fundamental mathematical
notions is included as Appendix B. The models in this text are based on differential equations, but
traditional solution techniques are not covered. Models are developed directly from chemical and
genetic principles, and most of the model analysis is carried out via computational software. To
encourage interaction with the mathematical techniques, exercises are included throughout the text.
The reader is urged to take the time to complete these exercises as they appear; they will confirm
that the concepts and techniques have been properly understood. (All of the in-text exercises
can be completed with pen-and-paper calculations; none are especially time-consuming. Complete
solutions to these exercises are posted at the book’s website.*) More involved problems—mostly
involving computational software—are included in the end-of-chapter problem sets.

An introduction to computational software is included as Appendix C. Two packages are
described: XPPAUT, a freely available program that that was written specifically for dynamic
modelling; and MATLAB, which is a more comprehensive computational tool. Readers with no
background in computation will find XPPAUT more accessible.

I have found that most students can grasp the necessary cell and molecular biology without
a prior university-level course. The required background is briefly reviewed in Appendix A; more
specialized topics are introduced throughout the text. The starting point for this material is a basic
knowledge of (high-school) chemistry, which is needed for a discussion of molecular phenomena,
such as chemical bonds.

How this book is organized

The first four chapters cover the basics of mathematical modelling in molecular systems biology.
These should be read sequentially. The last four chapters address specific biological domains. The
material in these latter chapters is not cumulative; they can be studied in any order. After Chapter
2, each chapter ends with an optional section, marked with an asterisk (*). These optional sections
address specialized modelling topics, some of which demand additional mathematical background
(reviewed in Appendix B).

Chapter 1 introduces molecular systems biology and describes some basic notions of mathemati-
cal modelling, concluding with four short case-studies. Chapter 2 introduces dynamic mathematical
models of chemical reaction networks. These are differential equation models based on mass-action
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rate laws. Some basic methods for analysis and simulation are described. Chapter 3 covers bio-
chemical kinetics, providing rate laws for biochemical processes (i.e. enzyme-catalysed reactions
and cooperative binding). An optional section treats common approximation methods. Chapter 4
introduces techniques for analysis of differential equation models, including phase plane analysis,
stability, bifurcations, and sensitivity analysis. The presentation in this chapter emphasizes the use
of these techniques in model investigation; very little theory is covered. A final optional section
briefly introduces the calibration of models to experimental data.

Chapter 5 covers modelling of metabolic networks. Sensitivity analysis plays a central role in
the investigation of these models. The optional section introduces stoichiometric modelling, which
is often applied to large-scale metabolic networks.

Chapter 6 addresses modelling of signal transduction pathways. The examples taken up in this
chapter survey a range of information-processing tasks performed by these pathways. An optional
section introduces the use of frequency-response analysis for studying cellular input-output systems.

Chapter 7 introduces modelling of gene regulatory networks. The chapter starts with a treat-
ment of gene expression, then presents examples illustrating a range of gene-circuit functions. The
final optional section introduces stochastic modelling in molecular systems biology.

Chapter 8 covers modelling of electrophysiology and neuronal action potentials. An optional
section contains a brief introduction to spatial modelling using partial differential equations.

The book closes with three Appendices. The first reviews basic concepts from molecular cell
biology. The second reviews mathematical concepts. The last contains tutorials for two compu-
tational software packages—XPPAUT and MATLAB-—that can be used for model simulation and
analysis.

The website www.math.uwaterloo.ca/~bingalls/MMSB contains solutions to the in-text ex-
ercises, along with XPPAUT and MATLAB code for the models presented in the text and the
end-of-chapter problem sets.
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Chapter 1

Introduction

...the probability of any one of us being here is so small that you’d think the mere
fact of existing would keep us all in a contented dazzlement of surprise... The normal,
predictable state of matter throughout the universe is randomness, a relaxed sort of
equilibrium, with atoms and their particles scattered around in an amorphous muddle.
We, in brilliant contrast, are completely organized structures, squirming with informa-
tion at every covalent bond... You’d think we’d never stop dancing.

—Lewis Thomas, The Lives of a Cell

1.1 Systems Biology and Synthetic Biology

Life is the most potent technology on the planet. It is also the most complex. This staggering
complexity presents a fantastic puzzle to those studying its mysteries; more importantly, it offers
a wealth of opportunities to those seeking to use our knowledge of biology to improve the quality
of life for humanity.

Biology—the study of life—has a long and distinguished history dating back millennia, but
our understanding of the mechanisms by which living things operate is fairly recent, and is still
developing. We are, of course, intimately familiar with the behaviour of multi-cellular organisms
(such as ourselves!), but the mechanisms by which living organisms function remained obscure
until the 1950s. At that time the nascent field of molecular biology began to reveal the networks
of interacting molecules that drive all cellular behaviour (and hence all life). These discoveries
were made possible by experimental advances that allowed researchers to make observations on
the tiny spatial scales of biomolecular processes. Over the last half-century, the molecular biology
community has continued to uncover the details of this molecular domain. The painstaking effort
involved in these nano-scale experiments necessitated a so-called ‘reductionist’ approach, in which
research projects often addressed individual molecules or molecular interactions.

At the turn of the 215t century, further breakthroughs in experimental techniques set the stage
for a shift in focus. The advent of so-called ‘high-throughput’ approaches allowed researchers to
simultaneously observe the behaviour of large numbers of distinct molecular species. A cornerstone
for these developments was the sequencing of the human genome (the first draft of which appeared
in the year 2000). As a result, current molecular biology efforts have been dubbed ‘post-genomic.’
This ‘modern’ activity is characterized by experiments that reveal the behaviour of entire molecular
systems, and so came to be called systems biology.



A key feature of present-day biological studies is a reliance on computation. The human genome
project could not have been completed without advances in bioinformatics that allowed the pro-
cessing and interpretation of vast amounts of sequencing data. In this book, we will take up a
complementary use of computers in the study of molecular biology: the investigation of intracellu-
lar processes as dynamic systems. We will carry out these investigations by analysing mathematical
models that mimic the behaviour of intracellular networks. Such modelling efforts have facilitated
tremendous advances in other scientific disciplines. The use of such models in molecular biology
has been, in the past, hampered by the absence of experimental observations of system behaviour;
that is no longer the case.

In addition to their use in scientific investigation, dynamic mathematical models are used in
engineering, where they play a central role in the design and analysis of engineered constructs.
Biology shares several features with engineering science—defined as the application of the scientific
method to the ‘made world’ of engineered artifacts. Because engineered objects have express reasons
for existing, engineering scientists are able to use performance measures to assess the efficiency and
robustness of their function. Although biological systems are part of the natural world, they
exist (that is, they have been selected) because they carry out specific functions. Consequently,
performance measures can be used to assess their behaviour, and biological ‘design principles’

can be identified. There are limits to this analogy between biology and engineering; natural
selection is nothing like rational engineering design. Nevertheless, there are instances in which we
can be reasonably confident of a biomolecular network’s primary function. In these cases, biol-
ogy straddles the line between natural science and engineering science, and can be described as
reverse engineering—the unraveling (and ultimately reconstruction) of the products of an unfamil-
iar technology. (Historical examples of reverse engineering are primarily from wartime, e.g. the
reconstruction of enemy aircraft.)

The construction, or forward-engineering, of biomolecular networks is an aspect of synthetic
biology. This field is focused, in part, on the construction of designed genetic networks. The first
engineered gene circuits were announced in the year 2000. Since then, the field of synthetic biology
has grown rapidly. One of its most prominent activities is the international Genetically Engineered
Machine (iGEM) competition, in which undergraduate student teams design, construct, and test
genetic networks of their own imagining.*

Systems and synthetic biology represent unprecedented opportunities. In health and disease,
agriculture, manufacturing, energy production, and environmental remediation, the use of biological
technologies is leading to rapid progress in a wide range of human endeavours.

1.2 What is a Dynamic Mathematical Model?

This book addresses dynamic mathematical models of biochemical and genetic networks. These
models, like all models, are abstractions of reality. Models are designed to focus on certain aspects
of the object of study; other aspects are abstracted away. For instance, the familiar ball-and-
stick model of chemical structure focuses on a molecule’s chemical bonds. It does not capture, for
example, the resulting polarity in the molecule’s atoms.

Biologists regularly make use of tangible ‘real-world’ models. These can be simple, such as the
molecular ball-and-stick, or complex, such as model organisms, or animal disease models. Biologists
also use conceptual models. These typically take the form of verbal descriptions of systems, and

*The competition’s website is www.igem.org



Figure 1.1: An interaction diagram, or ‘cartoon’ model. Molecular species A and B bind reversibly to form
a molecular complex. This complex inhibits the rate at which molecules of species C are converted to species
D. (The blunt-ended arrow signifies inhibition. A dashed line is used to indicate that this is a regulatory
interaction in which the complex is not consumed.)

are communicated by diagrams that illustrate a set of components and the ways in which they
interact (e.g. Figure 1.1). These interaction diagrams, or ‘cartoon’ models, play a central role in
representing our knowledge of cellular processes.

A drawback of these cartoon models is that they can leave significant ambiguity regarding system
behaviour, especially when the interaction network involves feedback. By using a mathematical
description of the system, we can eliminate uncertainty in model behaviour, at the cost of demanding
a quantitative representation of each of the interactions in the cartoon model.

As an example, suppose that, as in Figure 1.1, molecular species A and B bind to form a complex.
In order to quantify that interaction, a numerical description of the process must be provided. In
some instances, it may be sufficient to provide the equilibrium constant for the reaction. In other
cases, separate rates of binding (association) and unbinding (dissociation) are needed. For a great
many cellular processes, our current level of knowledge cannot support a quantitative description:
we have only a qualitative understanding of the relevant molecular interactions. However, for a
growing number of well-studied mechanisms, sufficient data has been collected to allow this sort of
quantitative characterization.

When the relevant quantitative data is known, the interaction diagram can be used to formulate
a dynamic mathematical model. The model-development process will be presented in Chapter 2.
The resulting model consists of a set of equations that describe how the system changes over
time—the system’s dynamic behaviour.

Quantitative descriptions of molecular interactions typically invoke the laws of physics and
chemistry. The resulting models are thus mechanistic—they describe the mechanisms that drive
the observed behaviour. Each component of a mechanistic model represents some aspect of the
system being studied; modifications to model components thus mimic modifications to the real
system. (Mechanistic models can be contrasted with so-called descriptive models that seek only to
summarize given data sets. Descriptive models provide limited insight into system behaviour.)

Investigation of mechanistic models follows two complementary paths. The more direct ap-
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proach is model simulation, in which the model is used to predict system behaviour (under given
conditions). Simulations are sometimes referred to as in silico experiments, because they use com-
puters to mimic the behaviour of biological systems. Simulations are carried out by numerical
software packages, and will be used heavily in this book.

Alternatively, models can be investigated directly, yielding general insight into their potential
behaviours. These model analysis approaches sometimes involve sophisticated mathematical
techniques. The pay-off for mastering these techniques is an insight into system behaviour that
cannot be reached through simulation. Whereas simulations indicate how a system behaves, model
analysis reveals why a system behaves as it does. This analysis can reveal non-intuitive connections
between the structure of a system and its consequent behaviour. Chapter 4 presents model analysis
techniques that are useful in molecular systems biology.

1.3 Why are Dynamic Mathematical Models Needed?

As mentioned above, interaction diagrams typically leave ambiguities with respect to system be-
haviour, especially when feedback is involved. Moreover, as the number of components and interac-
tions in a network grows, it becomes increasingly difficult to maintain an intuitive understanding of
the overall behaviour. This is the challenge of systems biology, and is often summarized by saying
that “cells are complex systems.” We can unpack this statement by providing some definitions.

The term system is often used without formal definition (as in the previous section!). Its mean-
ing is somewhat context-dependent, but it typically refers to a collection of interacting components.
In his book Out of Control (Kelly, 1995), Kevin Kelly defines a system as “anything that talks to
itself.” For example, an isolated stone is not considered a system, but an avalanche of stones is;
the stones in the avalanche “talk” by pushing one another around.

Besides multiple interacting components, the other defining feature of a system is a boundary.
A system consists of a set of components; anything that is not one of these components is not part
of the system, and so is part of the ‘external environment.” For example, a cell’s membrane defines
a boundary between the cell as a system and the extracellular environment. In certain contexts, a
system is defined exclusively in terms of its interaction with this ‘outside world,” and is then called
an input-output system.

The term complexity also means different things to different people. Most would agree that a
system qualifies as complex if the overall behaviour of the system cannot be intuitively understood
in terms of the individual components or interactions. A defining feature of complex systems is that
the qualitative nature of their behaviour can depend on quantitative differences in their structure.
That is, behaviour can be drastically altered by seemingly insignificant changes in system features.
Analytical methods for the investigation of complex behaviour will be presented in Chapter 4.

Two essential features of complex systems are nonlinear interactions and feedback loops. Feed-
back can be classified as negative or positive:

Negative feedback is exhibited when system components inhibit their own activity. (A familiar
example is a household thermostat that corrects for deviation of temperature from a set-point.)
These feedback loops generally stabilize system behaviour; they are the key feature of self-regulation
and homeostasis. We will see, however, that instability and oscillations can arise when there is a
lag in the action of a negative feedback loop.

Positive feedback is typically associated with unstable divergent behaviour. (Think of the run-
away screech that occurs when a microphone and amplifier are connected in a positive feedback
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loop.) However, when constrained by saturation effects, positive feedback can serve as a mechanism
to ‘lock in’ a system’s long-term behaviour—thus providing a memory of past conditions.

1.4 How are Dynamic Mathematical Models Used?

Dynamic mathematical models serve as aids to biological investigation in a number of ways. The
act of constructing a model demands a critical consideration of the mechanisms that underlie
a biological process. This rigorous, reflective process can reveal inconsistencies in a ‘cartoon’
model and highlight previously unnoticed gaps in knowledge. Once a mathematical model has
been constructed, it serves as a transparent description of the system, and can be unequivocally
communicated. Moreover, a model recapitulates system behaviour; it concisely summarizes all of
the data it was constructed to replicate.

Both a cartoon model and a mathematical model are manifestations of a hypothesis: they cor-
respond to putative descriptions of a system and its behaviour. The advantage of a mathematical
model is that it is a ‘working hypothesis,” in the sense that its dynamic behaviour can be unam-
biguously investigated. Although model simulations will never replace laboratory experiments, a
model can be used to probe system behaviour in ways that would not be possible in the lab. Model
simulations can be carried out quickly (often in seconds) and incur no real cost. Model behaviour
can be explored in conditions that could never be achieved in a laboratory. Every aspect of model
behaviour can be observed at all time-points. Furthermore, model analysis yields insights into why
a system behaves the way it does, thus providing links between network structure and behaviour.

Because a model is a hypothesis, the results of model investigation are themselves hypotheses.
Simulations cannot definitively predict cellular behaviour, but they can serve as valuable guides to
experimental design, by indicating promising avenues for investigation, or by revealing inconsisten-
cies between our understanding of a system (embodied in the model) and laboratory observations.
In fact, the identification of such inconsistencies is a key benefit of modelling. Because a model can
be exhaustively investigated, it follows that a negative result—the inability of a model to replicate
experimental observations—can be taken as a falsification of the hypotheses on which the model
was built. This can lead to a refinement of the biological hypotheses, and subsequently a refined
model, which can then be tested against additional experiments. This iterative process leads to a
continually improving understanding of the system in what has been called a ‘virtuous cycle.’

The end goal of most modelling efforts is a fully predictive description; simulations are then
guaranteed to be accurate representations of real behaviour. Today’s models of intracellular net-
works fall short of this goal, but examples abound in other sciences, and in engineering. Engineers
make use of accurate predictive models for model-based design, resulting in faster and more efficient
development of engineered constructs. The Boeing 777 jet provides a compelling example; it was
designed and tested extensively in computer simulations before any physical construction began.

Model-based design is also being used in synthetic biology. Although models of cellular networks
have only limited predictive power, they are useful for guiding the choice of components and
suggesting the most effective experiments for testing system performance. The use of model-based
design in the construction of engineered genetic networks will be illustrated briefly in Section 1.6.3
and discussed in more detail in Chapter 7.



1.5 Basic Features of Dynamic Mathematical Models

This section introduces some fundamental concepts in dynamic mathematical modelling.

State variables and model parameters

The primary components of a dynamic mathematical model correspond to the molecular species
involved in the system (which are represented in the corresponding interaction diagram). The
abundance of each species is assigned to a state variable within the model. The collection of all
of these state variables is called the state of the system. It provides a complete description of the
system’s condition at any given time. The model’s dynamic behaviour is the time-course for the
collection of state variables.

Besides variables of state, models also include parameters, whose values are fixed. Model pa-
rameters characterize environmental effects and interactions among system components. Examples
of model parameters are: association constants, maximal expression rates, degradation rates, and
buffered molecular concentrations. A change in the value of a model parameter corresponds to
a change in an environmental condition or in the system itself. Consequently, model parameters
are typically held at constant values during simulation; these values can be varied to explore sys-
tem behaviour under perturbations or in altered environments (e.g. under different experimental
conditions).

For any given model, the distinction between state variables and model parameters is clear-
cut. However, this distinction depends on the model’s context and on the time-scale over which
simulations run. For instance, in Chapter 5, we will focus on models of metabolism, in which
enzyme catalysts provide a fixed ‘background.” In that context—and on the relevant time-scale of
seconds to minutes—we will treat enzyme abundances as fixed model parameters. In contrast, the
models in Chapter 7 describe gene regulatory networks, which are responsible for the regulation
of enzyme abundance (on a slower time-scale). In those models, enzyme concentrations will be
time-varying state variables.

Steady-State Behaviour and Transient Behaviour

Simulations of dynamic models describe time-varying system behaviour. Models of biological pro-
cesses almost always arrive, in the long run, at steady behaviours. Most commonly, models exhibit
a persistent operating state, called a steady state; in contrast, some systems display sustained
oscillations. The time-course that leads from the initial state to the long-time (or asymptotic)
behaviour is referred to as the transient. In some cases, we will focus on transient behaviour, as
it reflects the immediate response of a system to perturbation. In other cases, our analysis will
concern only the steady-state behaviour, as it reflects the prevailing condition of the system over
significant stretches of time.

Linearity and nonlinearity

A relationship is called linear if it is a direct proportionality. For example, the variables x and
y are linearly related by the equation x = ky, where k is a fixed constant. Linearity allows for
effortless extrapolation: a doubling of x leads to a doubling of y, regardless of their values. Linear
relationships involving more than two variables are similarly transparent, e.g. = = kiy + koz. A
dynamic mathematical model is called linear if all interactions among its components are linear
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Figure 1.2: Common nonlinear relationships in cell biological processes. A. Hyperbolic saturation. As
T increases, y also increases, but at an ever-diminishing rate. The value of y approaches a limiting, or
asymptotic, value. B. Sigmoidal nonlinearity. The values of y show a slow rate of increase for small values
of x, followed by a rapid ‘switch-like’ rise toward the limiting value.

relationships. This is a highly restrictive condition, and consequently linear models display only a
limited range of behaviours.

Any relationship that is not linear is referred to (unsurprisingly) as nonlinear. Nonlinear
relations need not follow any specific pattern, and so are difficult to address with any generality.
The nonlinearities that appear most often in biochemical and genetic interactions are saturations,
in which one variable increases with another at a diminishing rate, so that the dependent variable
tends to a limiting, or asymptotic value. Two kinds of saturating relationships that we will encounter
repeatedly in this text are shown in Figure 1.2. Panel A shows a hyperbolic saturation, in which the
rate of increase of y declines continuously as the value of x increases. Panel B shows a sigmoidal
saturation, in which y initially grows very slowly with z, then passes through a phase of rapid
growth before saturating as the rate of growth drops.

Global and local behaviour

Nonlinear dynamic models exhibit a wide range of behaviours. In most cases, a detailed analysis
of the overall, global, behaviour of such models would be overwhelming. Instead, attention can
be focused on specific aspects of system behaviour. In particular, by limiting our attention to
the behaviour near particular operating points, we can take advantage of the fact that, over small
domains, nonlinearities can always be approximated by linear relationships (e.g. a tangent line
approximation to a curve). This local approximation allows one to apply linear analysis tools
in this limited purview. Intuition might suggest that this approach is too handicapped to be of
much use. However, the global behaviour of systems is often tightly constrained by their behaviour
around a handful of nominal operating points; local analysis at these points can then provide
comprehensive insight into global behaviour. Local approximations are of particular use in biological
modelling because self-regulating (e.g. homeostatic) systems spend much of their time operating
around specific nominal conditions.



Deterministic models and stochastic models

The notion of determinism—reproducibility of behaviour—is a foundation for much of scientific in-
vestigation. A mathematical model is called deterministic if its behaviour is exactly reproducible.
Although the behaviour of a deterministic model is dependent on a specified set of conditions, no
other factors have any influence, so that repeated simulations under the same conditions are always
in perfect agreement. (To make an experimental analogy, they are perfect replicates.)

In contrast, stochastic models allow for randomness in their behaviour. The behaviour of
a stochastic model is influenced both by specified conditions and by unpredictable effects. Each
repetition of a stochastic simulation thus yields a distinct sample of system behaviour.

Deterministic models are far more tractable than stochastic models, for both simulation and
model analysis. In this text, our focus will be on deterministic models. However, stochastic models
are often called for, particularly in studies of gene regulatory networks, where thermal agitation
of individual molecules is a significant source of randomness. A stochastic modelling framework is
introduced in Section 7.6.

1.6 Dynamic Mathematical Models in Molecular Cell Biology

A great many mathematical models of cellular phenomena have been published in the scientific
literature. These are routinely archived in model repositories, such as the Biomodels database, the
CellML model repository, and the JWS online repository.

Before beginning our discussion of model construction in Chapter 2, we briefly present four
examples of modelling projects. These short case-studies illustrate the range of biological domains
that will be explored in this text and demonstrate a number of uses for dynamic mathematical
modelling in systems biology. Readers unfamiliar with molecular biology may find it useful to
consult Appendix A before continuing.

1.6.1 Drug target prediction in Trypanosoma brucei metabolism

The single-cell parasite Trypanosoma brucei infects the bloodstream, causing sleeping sickness. It
is a single-celled eukaryote, so is not susceptible to bacterial antibiotics. The search for efficient
treatments is ongoing. In 1999, Barbara Bakker and her colleagues published a study of glycolysis
in Trypanosoma brucei (Bakker et al., 1999). Glycolysis, an energy-producing metabolic pathway,
is crucial to both the parasite’s and the host’s metabolism. Fortunately, the mammalian enzymes
responsible for catalysing the reactions in the host pathway are significantly different from those
of Trypanosoma. Thus the enzymes of the parasite can be inhibited by drugs that have little
effect on the host. Bakker and her colleagues sought to identify which enzymes control the rate
of glycolysis in Trypanosoma, with the aim of predicting ideal targets for growth-inhibiting drugs.
The interaction diagram for their model, reproduced as Figure 1.3, shows the metabolic reactions
in the network.

Using data from previously published studies of Trypanosoma and from their own experiments,
Bakker and her colleagues formulated a dynamic mathematical model of the pathway. Their focus
was on the steady-state behaviour of the system, and particularly on the rate of energy production.
In order to predict the effects of enzyme-inhibiting drugs on the energy-production rate, they
applied a sensitivity analysis to the model. This technique determines how sensitive the model

fThese and other repositories can be accessed from systems-biology.org/resources/model-repositories.
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Figure 1.3: The glycolytic pathway of Trypanosoma brucei. The reactions occur primarily in the
glycosome—a specialized organelle. The analysis performed by Bakker and her colleagues indicated that
the best targets for inhibition are those steps marked by an asterisk (*). The three steps marked with
a dagger(f) were commonly believed to have significant influence over the pathway. However, Bakker
and colleagues found that these are poor targets—their model predicted that inhibition of these reaction
steps has little effect on the overall pathway flux. Abbreviations: Glc-6-P, glucose 6-phosphate; Fru-6-P,
fructose 6-phosphate; Fru-1,6-BP, fructose 1,6-bisphosphate; DHAP, dihydroxyacetone phosphate; GA-3-
P, glyceraldehyde 3-phosphate; Gly-3-P, glycerol 3-phosphate; 1,3-BPGA, 1,3-bisphosphoglycerate; 3-PGA,
3-phosphoglyceric acid; PEP, phosphoenolpyruvate; ATP, adenosine triphosphate; ADP, adenosine diphos-
phate; NAD+, NADH, nicotinamide adenine dinucleotide. Adapted from Figure 1 of (Bakker et al., 1999).
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Figure 1.4: A. The main components of the NF-xB signalling pathway. (Blunt-ended arrows indicate
repression). Extracellular events trigger degradation of the inhibitor IxB. Once free of this inhibitor, NF-xB
proteins trigger an appropriate cellular response. At the same time, NF-xB stimulates production of IxB
proteins, leading to restored inhibition of NF-xB. B. A more detailed diagram, showing a family of IxB
proteins. All three forms act as inhibitors of NF-xB. IkBS and 1kBe are unaffected by NF-xB; only the
IkBa form is stimulated by NF-xB activity.

behaviour is to perturbations in the model parameters. Bakker and her colleagues identified five
enzymes whose inhibition would have a significant impact on pathway activity. Moreover, they
demonstrated that three other enzymes that had previously been proposed as effective drug targets
are in fact poor targets; inhibition of these enzymes has little impact on pathway flux.

Later, Bakker and colleagues provided experimental confirmation of several of their model pre-
dictions (Albert et al., 2005). Their experiments also provided evidence for regulatory interactions
that were not included in the original model, thus opening an avenue for further model development.

We will address modeling of metabolic networks in Chapter 5. Sensitivity analysis, to be
introduced in Section 4.5, plays a key role in the investigation of metabolism.

1.6.2 Identifying the source of oscillatory behaviour in NF-«<B signalling

The protein NF-xB is involved in a number of animal cell responses, including the regulation
of cell division, inflammation, and programmed cell death. The NF-xB pathway plays a role in
inflammatory diseases and has been implicated in the development of cancer.

In the absence of stimuli, NF-xB is inhibited by proteins called IxB (Inhibitors of KB), as shown
in Figure 1.4A. Extracellular stimuli (such as hormones) trigger protein activity in the cell that
leads to a decrease in 1kB levels. This frees NF-xB from the action of its inhibitor, allowing it to
stimulate a cellular response (through changes in gene expression). In addition, NF-kB activity
causes kB levels to rise, resulting in renewed inhibition of NF-xB itself. Thus the pathway response
is self-limiting. This sort of negative feedback loop typically leads to robust steady-state behaviour,
but it can also lead to persistent oscillations.

Indeed, NF-xB pathways exhibit a range of behaviours upon stimulation, including both damped
and persistent oscillations, as sketched in Figure 1.5. In 2002, Alexander Hoffmann and his col-
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Figure 1.5: Oscillatory behaviour in the NF-xB pathway. A. The normal (wild-type) response to persistent
signalling. The oscillations are quickly damped, resulting in a steady active response. B. The behaviour of
a cell in which IkBS and IxBe are absent. The oscillations persist. Adapted from Figure 1 of (Cheong et
al., 2008).

leagues presented a mathematical model of NF-xB signalling that sheds light on the system’s dy-
namic response (Hoffmann et al., 2002). The model focuses on the roles of three distinct forms of
the inhibitory IkB proteins, called IxBa, IxBS, and IkBe. When all three of these forms are present
in the cell, the pathway exhibits damped oscillations in response to stimulation (Figure 1.5A). How-
ever, when cells are modified so that certain IkB proteins are absent, the response changes. When
IxBa is absent, cells show pathologically high activity. Alternatively, when both IxkBS and IxBe
are absent, cells respond to stimuli with sustained oscillations in NF-xB activity (Figure 1.5B).
This difference in behaviour is a consequence of the fact that, of the three IxB forms, only IxBa
production is enhanced by NF-xB activity (Figure 1.4B).

From a design perspective, an ideal response would be a quick rise to a steady activated level.
This ideal response is closely approximated by the damped oscillations normally displayed by the
cells (Figure 1.5A). Hoffmann and his colleagues used their model to determine that this response is
generated by the combined behaviour of the IxB proteins. IxkBa provides a negative feedback that
quenches the quick initial rise, resulting in an appropriate steady level. However, a fast response
demands a quenching signal so strong that oscillations would arise unless there were a secondary
persistent quenching signal to damp the response. This secondary quenching is provided by the
steady activity of kB and IxBe.

Hoffmann and colleagues generated model simulations that describe the response of the pathway
to stimuli of varying strengths and durations. These model predictions, verified by experiments,
show that the complementary roles of the IxB proteins generate qualitatively different responses
to stimuli of different durations, and that these differences in signalling activity lead to distinct
cellular responses. (The paper (Cheong et al., 2008) describes the results of additional NF-xB
modelling efforts.)

Chapter 6 is devoted to intracellular signalling pathways. Tools to address oscillatory behaviour
are presented in Section 4.3. A model of NF-kB activation is explored in Problem 7.8.15.

11



Inducer 1

Gene 1 l—_> : Gene

\
\
AY

/’\\\\
Inducer 2

Figure 1.6: Engineered genetic toggle switch. (Dashed blunt-ended arrows indicate repression.) Each gene’s
protein product represses production of the other, resulting in two modes of persistent operation: one protein
is abundant while the other is repressed. The proteins are chosen so that intervention by the experimenter
can deactivate the abundant protein, inducing a switch in the protein levels.

1.6.3 Model-based design of an engineered genetic toggle switch

In the year 2000, the emerging field of synthetic biology was heralded by the simultaneous an-
nouncement of two engineered genetic networks. Both of these devices will be covered in depth in
Chapter 7. For now, we will briefly introduce one of these devices—a genetic toggle switch—and
describe how modelling played a key role in its design.

A toggle switch is a device that transitions between two states in a user-controlled manner.
Such a system is called bistable, meaning that the two states are persistent—the transition occurs
only under intervention by the user.

The first engineered genetic toggle switch was constructed by Timothy Gardner, Charles Cantor
and Jim Collins, and is commonly known as the Collins toggle switch (Gardner et al., 2000). An
interaction diagram for the gene network is shown in Figure 1.6. Two genes are involved. Each
gene’s protein product represses production of the other. This mutual antagonism results in a
bistable system: in one stable condition, protein 1 is abundant and production of protein 2 is
repressed; the roles are reversed in the other steady state. Gardner and his colleagues chose
to employ two proteins whose activity could be specifically inhibited by laboratory interventions.
Inactivation of the abundant protein induces an increase in the concentration of the other, resulting
in a transition between the two stable states.

If the two genes and their products have symmetric properties, intuition suggests that the
switch will operate as described above. However, if it is asymmetric, the network may fail to
exhibit bistability—the ‘stronger’ protein might always dominate in their competition of mutual
repression. This fact posed a challenge to Gardner and his colleagues. They could only select
genetic components from the small collection of suitable genes that had been characterized in
existing organisms. Whichever components they chose, there would be asymmetry in the network,
and so bistability could not be assured.

Instead of carrying out an exhaustive experimental search for combinations of components that
would function properly, Gardner and his colleagues developed a dynamic mathematical model to
guide their design choices. Rather than fit the model to a particular instance of the design, they
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Figure 1.7: Simulation of the toggle switch model. At time zero, the system is in steady state, with protein 2
abundant and protein 1 at a low concentration. At time ¢t = 10, inducer 2 is introduced, repressing protein 2
and allowing protein 1 to be expressed. Protein 1 then rises to dominance and inhibits production of protein
2. When the inducer is removed (at t = 20) the system remains in the high-protein-1, low-protein-2 state.
At time ¢t = 30, inducer 1 is introduced, causing a return to the original stable state. Units are arbitrary.

constructed a simple generic model and used it to investigate the behaviour of a wide variety of
potential designs. Figure 1.7 shows a simulation of their model displaying the desired behaviour.

Their analysis led to two useful conclusions. Firstly, the model demonstrated that bistability
cannot be achieved (even in the symmetric case) if the rates of gene expression are too low. Sec-
ondly, the model indicated that nonlinearity in the protein-DNA interactions could compensate for
asymmetry in the genes and proteins. Some degree of nonlinearity is critical in a functioning switch;
the more significant the nonlinearity, the more forgiving the constraints on symmetry. Guided by
these insights, Gardner and his colleagues were able to construct a number of successful instances
of the genetic toggle switch.

Since the year 2000, a wide range of synthetic biological devices have been constructed. (See
(Khalil and Collins, 2010) for a review.) Model-based design is a common feature of these projects.
This analysis often begins with a simple generic model that plays an exploratory role in addressing
possible designs. Such ‘toy’ models are often used for the same purpose in scientific exploration—
they provide ‘proof of principle’ hypotheses that can then be improved as further experimental
evidence becomes available.

The Collins toggle switch will be covered in more depth in Section 7.2.3. Tools for analysing
bistable systems will be introduced in Section 4.2. The nonlinearities in the toggle switch design
are a result of cooperative binding effects, discussed in Section 3.3.

1.6.4 Establishing the mechanism for neuronal action potential generation

Neurons, the primary cells in the animal nervous system, encode information in the electrical
potential (i.e. voltage difference) across the cell membrane. This information is communicated by
action potentials—sweeping changes in membrane potential that propagate along the length of the
cell.

In a series of papers published in 1952, Alan Hodgkin and Andrew Huxley, along with Bernard
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Figure 1.8: Electrical activity at the neuronal membrane. The difference in ionic charge across the membrane
results in a voltage difference. The membrane contains ion-specific channels, each allowing only one type
of ion to pass. These channels are voltage-sensitive—they open or close depending on the transmembrane
voltage. This voltage-sensitivity sets up a feedback loop: changes in voltage lead to changes in ion-transfer
rates, which lead to subsequent changes in voltage, and so on. The interplay of these feedback loops can
generate action potentials.

Katz, described a biophysical mechanism for the generation of action potentials. They confirmed
the behaviour of their proposed mechanism with a dynamic mathematical model (reviewed in
(Rinzel, 1990)).

Prior to their work, it had been established that individual ions, such as Na™ and Cl~, are the
primary carriers of electrical charge at the cell membrane, and that cells maintain very different
concentrations of these ions in the intracellular and extracellular spaces. Moreover, it had been
hypothesized that changes in the transmembrane voltage cause changes in the permeability of the
membrane to these ions. These changes in permeability can result in significant ion flux across the
membrane and thus produce further changes in transmembrane potential. Hodgkin and Huxley,
using newly developed laboratory techniques, carried out a series of experiments showing that
membrane permeability is ion-specific. They (correctly) hypothesized that this specificity is a
result of ion-specific channels that are lodged in the membrane (as illustrated in Figure 1.8) and
that these channels are sensitive to membrane potential.

To verify that their hypothetical mechanism was capable of generating action potentials, Hodgkin
and Huxley developed a dynamic model of membrane voltage and ion transport. Simulations of
their model replicated neuronal behaviour in a range of conditions, providing significant support
for their hypothetical mechanism.

The generation of action potentials is referred to as excitable behaviour, and depends on a
specific voltage threshold, as shown in Figure 1.9. Small electrical perturbations cause no signifi-
cant response—voltage quickly relaxes to the pre-stimulus level. However, for perturbations that
exceed a certain threshold, the response is a dramatic pulse in transmembrane voltage: an action
potential. Excitability is caused by coupled positive and negative feedback loops that act between
the transmembrane voltage and the voltage-gated channels in the membrane. Complex dynamic
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Figure 1.9: Simulation of the Hodgkin-Huxley model. The membrane voltage, originally at rest, is perturbed
at time 20 milliseconds. The disturbance lasts one millisecond. Once removed, its effects are quickly washed
away as the voltage relaxes to its pre-disturbance level. A second disturbance, of the same form, occurs 40
milliseconds later, and again lasts for one millisecond. This disturbance, which is only 3% stronger than the
first, elicits a dramatically different response; this wide excursion in voltage is characteristic of an action
potential.

behaviours such as this can only be rigorously studied through mathematical modelling.
The Hodgkin-Huxley framework for modelling neuronal behaviour is introduced in Chapter 8.
The original Hodgkin-Huxley model is presented in Problem 8.6.4.

1.7 Suggestions for Further Reading

e Computational Systems Biology: This book focuses on a few fundamental modelling
approaches in systems biology. Wider surveys of the tools used in computational systems
biology can be found in Systems Biology: A Textbook (Klipp et al., 2009), System Modelling in
Cellular Biology (Szallasi et al., 2006), An Introduction to Systems Biology: Design Principles
of Biological Circuits (Alon, 2007), and A First Course in Systems Biology (Voit, 2012).

e Dynamic Modelling in Molecular Cell Biology: Several texts focus on modelling of
particular biological domains. The books The Regulation of Cellular Systems (Heinrich and
Schuster, 1996), and Kinetic Modelling in Systems Biology (Demin and Goryanin, 2009) focus
on modelling in metabolism. Computational Modeling of Gene Regulatory Networks (Bolouri,
2008) addresses modelling formalisms used to study genetic networks. The use of modelling
in synthetic biology is addressed in Engineering Genetic Circuits (Myers, 2010). Modelling
of neuronal systems is surveyed in Mathematical Foundations of Neuroscience (Ermentrout
and Terman, 2010).

e Mathematical Modelling: Modeling the Dynamics of Life (Adler, 2004) is an introductory
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calculus text with an emphasis on dynamic modelling in biology. A more advanced treatment
of differential equations in this context is provided in Differential Equations and Mathematical
Biology (Jones et al., 2009). Nonlinear dynamics is introduced in the text Nonlinear Dynamics
and Chaos: with applications to physics, biology, chemistry, and engineering (Strogatz, 2001).

Mathematical Biology: Texts in Mathematical Biology often cover intracellular processes,
and typically introduce a range of modelling tools used in the field. These include Compu-
tational Cell Biology (Fall et al., 2002), Mathematical Models in Biology (Edelstein-Keshet,
2005), and Mathematical Physiology (Keener and Sneyd, 1998).
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Chapter 2

Modelling Chemical Reaction
Networks

It behoves us always to remember that in physics it has taken great [minds] to discover
simple things. They are very great names indeed which we couple with the explanation
of the path of a stone, the droop of a chain, the tints of a bubble, the shadows in a
cup. It is but the slightest adumbration of a dynamical morphology that we can hope
to have until the physicist and the mathematician shall have made these problems of
ours their own...

-D’Arcy Thompson, On Growth and Form

Models of cellular phenomena often take the form of schematic interaction diagrams, as in Fig-
ure 1.1. For biochemical and genetic networks, the components in these diagrams are molecular
species, which could be ions, small molecules, macromolecules, or molecular complexes. An interac-
tion diagram depicts the species in a system and indicates how they interact with one another. The
interactions (arrows) in the diagram can represent a range of processes, such as chemical binding
or unbinding, reaction catalysis, or regulation of activity. In each case, the rate of the process
depends on the abundance of certain molecular species within the network. These processes, in
turn, result in the production, interconversion, transport, or consumption of the species within the
network. Over time, the abundance of each species changes, leading to corresponding changes in
the rates of the processes. For simple systems, we can understand the resulting behaviour intu-
itively. However, for more complex networks—especially those involving feedback—the interaction
diagram leaves ambiguity with respect to time-varying behaviours. In these cases, an accurate
description of system behaviour is only possible if we describe the interactions more precisely—in
quantitative terms.

These quantitative descriptions can be used to construct dynamic mathematical models. In
this chapter we will address the construction of models that describe chemical reaction networks.
The next chapter will introduce quantitative descriptions of biochemical processes. Together, these
chapters lay a foundation for dynamic modelling of cellular behaviour.
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Figure 2.1: Closed reaction network.

2.1 Chemical Reaction Networks

Consider a group of chemical species (i.e. chemically distinct molecules) that can undergo the
following reactions:

A+B — C+D
D — B
C — E+F

These reactions are assumed to be irreversible—they only proceed in the direction indicated. (The
assumption of irreversibility is necessarily an approximation. The laws of thermodynamics dictate
that all chemical reactions are reversible. Nevertheless, it is often reasonable to describe a reaction
as irreversible under conditions in which the reverse reaction proceeds at a negligible rate.)

A set of reactions constitutes a chemical reaction network. The manner in which the species
interact is referred to as the network topology (or architecture). The organization of the network
is apparent if we re-arrange the reactions in the form of an interaction graph.* This network’s
interaction graph is shown in Figure 2.1.

Exercise 2.1.1 Draw the interaction graph for the following reaction network:

A — B+C

B — D

C — F

C — F
F+F — G

2.1.1 Closed and open networks

The reaction network considered above is closed, meaning that there are no reactions whose
products or reactants lie outside of the network. The steady-state behaviour of such networks is
thermal equilibrium, a state in which all net reaction rates are zero.

*The use of the term ‘graph’ here is, unfortunately, different from its use in the visualization of a function or a
data set. In mathematical graph theory, a graph consists of a set of objects (called nodes) that are connected to one
another by links (called edges). Here, the nodes are the chemical species; the edges are the reactions.
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Figure 2.2: Open reaction network.

In contrast, most biochemical networks are open systems—they exchange material with the
outside environment and reach a steady state that involves a steady flow through the network. Such
a state is called a dynamic equilibrium. (A familiar example of a dynamic equilibrium is a steady
jet of water flowing from a waterfall or faucet. Although this might appear to be an unmoving
object, it is a steadily active process.) The network above could be made into an open network by
adding the reactions

QA
EF —

F —

resulting in the network in Figure 2.2. These additional reactions indicate that material is being
exchanged with the ‘world outside the network,” and are referred to as exchange reactions.

Exercise 2.1.2 Add three exchange reactions to the reaction network in Exercise 2.1.1 so that the
system can support steady flow through all of the species in the network. Can this be achieved by
adding just two exchange reactions? O

2.1.2 Dynamic behaviour of reaction networks

Imagine an experiment in which the reactions in a network proceed in a fixed volume; suppose
the species are initially present at specified concentrations. To predict the time-varying changes
in species concentrations, we need to know the rates at which the reactions occur. The rate of
a reaction depends on the concentrations of the reactants and the physico-chemical conditions
(e.g. temperature, pH). We will presume that the physico-chemical environment is fixed, so rate
laws can be described solely in terms of reactant concentrations.

Reaction rates are usually described under two assumptions:

Assumption 1: The reaction volume is well-stirred. This means that the reactants are equally
distributed throughout the volume. Consequently, the rate of each reaction is independent of
position in space. This allows us to refer unambiguously to the reaction rate in the volume (rather
than having to specify different rates at different locations).

Assumption 2: There are a great many molecules of each species present, so we can describe
molecular abundance by a concentration that varies continuously (as opposed to an integer-valued
molecule count).
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The first of these assumptions—referred to as spatial homogeneity—typically holds in stirred
laboratory reaction vessels. It can be a good approximation in the cell, as diffusion acts quickly
to mix the molecular components of this tiny ‘reaction vessel’. However, there is a great deal of
spatial structure within the cell, so that in many cases the assumption of spatial homogeneity does
not hold.

The second assumption—that there are a great many reactant molecules—is referred to as
the continuum hypothesis; it allows discrete changes in molecule number to be approximated by
continuous changes in concentration: individual reaction events cause infinitesimal changes in abun-
dance. This assumption is perfectly valid when Molar quantities of reactants are involved (recall,
Avogadro’s number is 6.02 x 10?%), and is appropriate for cellular species with molecule counts
of thousands or more. However, some cellular processes are governed by populations of molecules
numbering dozens or less. In those cases, changes in molecule abundance should be treated as
discrete steps in population size.

We will build our modelling framework under the assumptions of spatial homogeneity and
continuously-varying concentrations. The resulting models yield accurate descriptions of a wide
range of biological phenomena. Modelling frameworks for addressing spatial variation and small
molecule counts will be introduced in Sections 8.4 and 7.6, respectively.

The law of mass action

In a fixed volume, under the well-stirred assumption and the continuum hypothesis, a simple
description of reaction rates is provided by the law of mass action: the rate of a chemical
reaction is proportional to the product of the concentrations of the reactants. Using [ - ] to denote
concentration, the rate of the reaction

X —P

is k1[X] (because there is a single reactant), while the rate of

A+B—C

is ko[A][B] (two reactants), and the rate of

D+D—F

is k3[D]? (two identical reactants). Here ki, k2, and k3 are constants of proportionality.
Some notes on mass action

1) The law of mass action has an intuitive basis: it states that the probability of a reaction occurring
is proportional to the probability of the reactants colliding with one another.

2) The exponent to which each reactant appears in the rate law is called the kinetic order of the
reactant in the reaction. For example, reactant A has kinetic order 1 in the second reaction listed
above, while D has order 2 in the third reaction. If a reaction describes uptake from the outside
environment, it can be written with no explicit reactant (e.g. —> A). The rate of such a reaction
is constant. Because these reactions satisfy a rate law with a reactant concentration raised to the
power zero (k[S]° = k), they are called zero-order reactions.
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3) The constant of proportionality in a mass action rate law is called the (mass action) rate
constant and can be indicated in the reaction formula:

ko
A+B—C.

The dimensions of the rate constant depend on the number of reactants. The rate constant for a
single-reactant reaction has dimensions of time™!. If a reaction has two reactants, the rate constant
has dimensions of concentration™! - time™'. For a zero-order reaction, the reaction rate is equal to
the rate constant, which has dimensions of concentration - time™!.

4) In cases where the environment is not constant, the rate constant can be replaced by an effective
rate constant that depends on factors that affect the reaction rate. In a biochemical context,

effective rate constants may depend on the concentration of enzyme catalysts.

In the following sections we will use the law of mass action to construct dynamic mathematical
models of chemical reaction networks. These models will take the form of ordinary differential
equations (ODEs).T We will make use of this differential equation-based framework throughout the
rest of the book.

In the chapters to follow, models investigations will be carried out via computational software.
However, in the remainder of this chapter, we will address elementary networks for which pen-and-
paper calculations yield explicit formulas describing the time-varying species concentrations. Such
formulas are called analytic solutions of the differential equation. The analysis of these simple cases
will provide valuable insight into the more complex models to follow.

2.1.3 Simple network examples

Some readers may find it useful to review the brief summary of calculus in Appendix B before
proceeding.

Example I: decay

As a first example, consider a trivial open reaction system consisting of a single species decaying
at a steady rate:

k

A—s

The rate of the reaction is k[A]. To understand how the concentration of A behaves in time, we
need to consider the rate of change of the concentration. Since the reaction consumes A, we have

rate of change of [A] = —(rate of reaction) (2.1)
Let

a(t) = concentration [A] at time ¢

fThe modifier ordinary is used to distinguish these from partial differential equations (PDEs). PDE-based mod-
elling, which addresses spatially varying behaviour, is introduced briefly in Section 8.4.
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Figure 2.3: Model behaviour. The points represent a hypothetical experimental time series. The curve
is the corresponding model-based prediction. Discrepancies between model prediction and data may be
attributed to experimental error or to inaccuracy in the model formulation.

Then, recalling that the derivative of a function describes its rate of change, we can rewrite state-
ment (2.1) as

—af(t) = — kal(t) (2.2)
——

rate of change of [A] at time ¢ rate of reaction at time ¢

This is a differential equation whose solution is the function a(t).

Imagine this reaction has been set up in a laboratory test-tube. As the reaction proceeds,
the concentration of A will decrease over time. Experimentally, we might observe a time-series of
concentrations as in Figure 2.3. If our mathematical model is accurate, then the solution a(t) of
the differential equation should describe the behaviour of the system over time. That is, it should
agree with the experimental measurements (Figure 2.3).

To use the model to make a prediction about a particular experiment, we need to supplement
the differential equation with knowledge of the concentration [A] at some time. We typically know
the concentration at the beginning of the experiment, at time ¢ = 0. This known concentration,
a(0), is referred to as the initial condition.

There are standard solution methods for simple classes of differential equations. Because the
models of biological phenomena addressed in this text are not amenable to such solution tech-
niques, they will not be addressed here. Nevertheless, it will prove insightful to derive an explicit
solution formula for this simple differential equation. To do so, we will take a direct (and rather
unsatisfactory) route to the solution: we guess.

Well, it’s not quite guessing. We’ll begin by considering a special case of the differential equation
in which £k = —1. We do not have a chemical interpretation of the equation in this case, since rate
constants are never negative. However, it will be useful to momentarily consider the resulting
differential equation:

d
Ea(t) = a(t) (2.3)

A solution a(t) of this differential equation has the property that its derivative has the same value
as the function itself at each time point ¢. That is, the function a(t) is its own derivative. You
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Figure 2.4: Exponentially decaying concentration profiles (equation (2.4)). Parameter values are k = 1,
D=1,D=2D=3.

may recall that the exponential function a(t) = e! has this property, as does any constant multiple
of this function. Thus any function of the form a(t) = De!, for a given constant D, satisfies the
differential equation (2.3).

A more relevant case occurs if we take k = 1, which leads to:

d
%a(t) = —af(t).

Invoking the chain rule leads to the correct guess in this case: a(t) = De~'. (By the chain rule:
%e‘t =et (%(—t)) =el(—1)=—e7t)
Finally, consider the general case:
%a(t) = —ka(t)

Appealing to the chain rule again, we arrive at the solution a(t) = De~*. How should the constant
D be chosen so that this function will agree with experimental observations? Recall that we are
presuming we know the initial concentration: a(0). Let’s call that Ay, so a(0) = Ap. Substituting
time ¢t = 0 into the solution a(t) = De™* we find

a(0) = De "% = De® = D.

Since we have a(0) = Ap, we conclude that D = Ay. That is, the constant D is equal to the initial
concentration of A. The species concentration can then be written as a function of time:

a(t) = Age™*. (2.4)

This behaviour is referred to as exponential decay.
The time-varying behaviour of this family of solutions is shown in Figure 2.4. The curves all
approach zero as time passes. We say they decay to zero, or they relax to zero, or that their
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asymptotic value is zero. Moreover, the curves in the figure all decay at the same characteristic
rate. This decay rate is characterized by the time constant of the process, defined, in this case,
as T = % (The half-life 1, /5 is closely related to the time constant: 75 = h“TQ =7ln2.)

The time constant provides a useful scale for addressing the dynamics of the reaction. For
example, if 7 = 1 second, then it is appropriate to plot system behaviour on a scale of seconds.
Alternatively, if 7 = 100 seconds, then a time-scale of minutes is more appropriate. The time-scale
of a process determines the time interval over which model simulations should be run, and is also
used in the design of time-series experiments. For example, if the time-scale of the dynamics is
minutes, then useful data will be collected on that time-scale. Data separated by longer periods
(e.g. hours) may miss crucial aspects of the behaviour; conversely, a strategy of observation at a
greater frequency (say, every second) will be wasteful, as the data will be highly redundant.

Example II: production and decay

We next consider an open network involving two reactions, production and decay:

The first reaction is zero-order; the reaction rate is equal to kg. (Zero-order reactions are used
when the concentration of the reactant is considered constant. This occurs when the reactant pool
is large—so that depletion of the reactant is negligible—or when the concentration of the reactant
pool is buffered by some unmodelled process. These reactions are written with the reactant absent
(as above), or with a reactant whose concentration is a fixed model parameter (e.g. X — A, [X]
fixed). )

Again letting a(t) denote the concentration of A at time ¢, the reaction dynamics are described
by

rate of change of [A] = rate of production of A — rate of decay of A

which leads to the model

d
%a(t) = \k;g/ - kia(t) (2.5)

rate of change of [A] at time ¢ rate of production  rate of decay

Before addressing the time-varying behaviour of a(t), we first consider the concentration that A will
reach in steady state. We note that the concentration of A will remain fixed when the rate of decay
is equal to the rate of production. Mathematically, this means that the steady state concentration
a®® satisfies

rate of change of [A] = ko — k1a* = 0.
This yields
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Figure 2.5: Transient and steady-state behaviour. The transient occurs while the concentration relaxes to
its steady-state value.

Exercise 2.1.3 Verify that the ratio ],z—‘l) has dimensions of concentration. O

We will regularly use this procedure to find steady states without solving the corresponding
differential equation. Note that in steady state there is a non-zero flux through this network; the
steady-state rate of both reactions is k.

Turning now to the time-varying behaviour of [A], we expect to observe the concentration
transitioning from its initial value to the steady-state concentration, as in Figure 2.5. The time-
course leading to the steady state is called the transient.

To derive an explicit description of the time-varying concentration, we will solve the differential
equation (2.5) by employing another ‘guess’: we expect the solution a(t) to approach the steady
state value exponentially. If this is the case, the displacement from steady state (a(t) — a®*®) will
decay exponentially to zero, and so it will satisfy a differential equation similar to our earlier model
of exponential decay in equation (2.2). This insight leads to a solution of the form (details in
Exercise 2.1.4):

k
a(t) = De ft 4 22, (2.6)
k1
As before, the constant D depends on the initial concentration.
The concentration of A relaxes exponentially to the steady state value of a® = . The

k1
relaxation rate k; is independent of the production rate kg. This illustrates a general principle: the

time-scale on which the concentration of a species varies is typically determined by its decay rate
rather than by its production rate.

Exercise 2.1.4 Determine the solution to equation (2.5) as follows. Let z denote the displacement
of the concentration a from its steady state: z(t) = a(t) — a*® = a(t) — Z—‘l) Next use equation (2.5)
to verify that z(¢) satisfies the differential equation

%z(t) = —ky2(t). (2.7)
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Hint: Verify that £2(t) = £a(t) = ko — kia(t) and that ko — kya(t) = —k;2(t). Finally, recall that
the solution of equation (2.7) is

2(t) = De™M1,
so that from the definition of z(¢), we have equation (2.6). O

Exercise 2.1.5 Verify from equation (2.6) that D = Ag — I,z—‘l), where Ag = a(0). Confirm that the
concentration of A can be written as

o k() —k‘lt k()
a(t) = <A() k1> e + kl.

Example III: irreversible conversion

Next we consider a closed system involving a single reaction:

k
A —— B.

This reaction is irreversible; molecules of B cannot be converted back to A. Because no material
is exchanged with the external environment, the system is closed.

The rate of the reaction is k[A]. (Species B has no influence on the reaction rate.) Each reaction
event consumes a molecule of A and produces a molecule of B, so we have

rate of change of [A] = —(rate of reaction)

rate of change of [B] = rate of reaction.
Let

a(t) = concentration [A] at time ¢

b(t) = concentration [B] at time t.

The reaction system can then be modelled by

d
S

rate of change of [A] at time ¢ rate of reaction at time ¢

d
N 0

rate of change of [B] at time ¢ rate of reaction at time ¢

This is a system of differential equations: two equations involve the two unknowns a(¢) and
b(t). Typically, it is much more difficult to solve systems of differential equations than to solve
individual differential equations. However, in this case the system can be reduced to a single
equation, as follows.
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Since the behaviour of a(t) is identical to the decay reaction of Example I, we know that
a(t) = Age ", where Ay = a(0) is the initial concentration of A. To determine the concentration
b(t), we observe that the total concentration of A and B is conserved—every time a molecule of B
is produced, a molecule of A is consumed.

Conservation is a general feature of closed systems. In this case it says that a(t) + b(t) = T
(constant) for all time ¢. If a(0) = Ag and b(0) = By, then T'= Ay + By, and we can write

b(t) = By + Ap — a(t).

As time passes, [A] decays to zero, and [B] tends to By + Ap; eventually all of the molecules of
species A are converted to B.

We derived this conservation from inspection of the reaction system. Conservations can also be
derived from differential equation models; they appear as balances in the rates of change. In this
case, the conservation a(t) + b(t) = T follows from the symmetry in the rates of change for A and
B. We can write

d d d
%(a(t) +b(t) = Ea(t) + %b(t)

= —ka(t) + ka(t)
= 0,

confirming that the total concentration a(t) + b(t) does not change with time.

Example IV: reversible conversion

Our final example is a closed system consisting of a single reversible reaction:

ky k_
A——>B and B——> A
or more concisely
ky
A B.
k_

Applying the law of mass action we find that

The rate of A — B is k4 [A].
The rate of B — A is k_[B].

Letting, as before, a and b denote the concentrations of A and B, we have

rate of change of [A] = (rate of production of A) — (rate of consumption of A)
= (rate of B>A) — (rate of A>B).

This can be written as

Lot - kbt — kya(t) (2.8)
dt —— ———

rate of change of [A] at time ¢ rate of production rate of consumption
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Likewise

dib(t) = kial(t) - k_b(t) (2.9)
Ht’_J N—— N——

rate of change of [B] at time ¢ rate of production rate of consumption

To begin our analysis, consider the steady-state condition, in which the rates of change of both
[A] and [B] are zero. (This does not mean that both reactions have zero rates, but rather that the
net flux between A and B is zero.) A steady state concentration profile [A] = a**, [B] = b*® must
satisfy

0 = kb —kpa®™
= kya® — k_b®.

Solving these equations (they are equivalent) we find

bss k.
The number K., = Z—f is called the equilibrium constant for the reaction. It is the ratio of the
concentrations of the two reactants at steady state ([B]/[A]).

The concentrations can be derived by writing (from the conservation),

b(t) = T — a(t) (2.11)

where T' = a(0) + b(0) = Ao + By is the total concentration. Equation (2.8) can then be re-written
as:

k_b(t) — kta(t)
= k_(T —a(t)) — kya(t)
= k_T — (ks +k_)a(t). (2.12)

%a(t)

The steady-state concentration satisfies
0 = k_T— (ks +Ek_)a*.
Solving gives

b1 and so b% = Ry oo _FaT

"y ot ke k- ky Atk

Ss

(2.13)

This system relaxes exponentially to its steady state. We can verify this by solving the differ-
ential equations (2.8-2.9) to yield (Exercise 2.1.6):

k_T
a(t) = De”kethit 222 2.14
(t) - (2.14)
for constant D.
The time constant for this reversible reaction, 7 = ﬁ, involves two rate constants, in

contrast with Example II (in which decay and production were uncoupled).
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B D
Figure 2.6: Open reaction network for Exercise 2.1.7.

Exercise 2.1.6 a) Verify that the solution (2.14) can be derived from equation (2.12) following
the procedure outlined in Exercise 2.1.4.

b) Verify that the constant D in solution (2.14) is given by D = Ag — IﬁTﬂ’ where Ay = a(0), so
we can write

k_T k_T
_ Ay — —(kptk-)t "= 7 2.1
alt) ( 0 k++/<;_>e Tk (2.15)

a

A remark on conservations. In Examples IIT and IV the total concentration of A and B was
conserved throughout the reaction dynamics. This is a conservation of concentration (equivalently,
of molecule count); it may or may not reflect a conservation of mass. The term moiety is used to
describe a group of atoms that form part of a molecule, and so chemical conservation is often referred
to as moiety conservation. More generally, chemical conservations are referred to as structural
conservations.

Exercise 2.1.7 Identify the moiety conservation in the open system in Figure 2.6. O

Exercise 2.1.8 The system
k.
k_

A C+D

satisfies the structural conservation that the difference between the concentrations of C' and D is
constant for all time. Explain why. O

Exercise 2.1.9 The examples in this section may have given the reader the mistaken impression
that all chemical systems relax exponentially to steady state. As an example of non-exponential
dynamics, consider the bimolecular decay reaction:

k
A+ A—

The rate of the reaction is k[A]?. The differential equation model is

d
aa(t) = —2k(a(t))%
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(The stoichiometric factor 2 appears because each reaction event consumes two molecules of A.)
Verify, by substituting into both sides of the differential equation, that

1
a(t) = —
2kt + 4
is the solution of the differential equation that satisfies the initial condition a(0) = Ap. O

2.1.4 Numerical simulation of differential equations

The exponential relaxation exhibited by the examples in the previous section is characteristic of
linear systems. Nonlinear models exhibit a wide range of behaviours, and do not typically admit
explicit solutions such as the concentration formulas derived above. Differential equation models of
biochemical and genetic systems are invariably nonlinear. We will resort to numerical simulation
to investigate the behaviour of these system.

Constructing Simulations

We will use computational software packages to simulate differential equation models. In this
section, we give a brief introduction to the algorithms used by that software.

Numerical simulations do not generate continuous curves. They produce approximate values
of the solution at a specified collection of time-points (analogous to an experimental time-series).
The first step in constructing a numerical simulation is to select this mesh of time-points. The
solution will be constructed by stepping from one time-point to the next using an update formula.
The simplest procedure for generating solutions in this manner is Euler’s method, which is based
on the following approximation. Given a differential equation of the form

d
alt) = falt),

the derivative %a(t) can be approximated by a difference quotient:

d _a(t+h)—a(t)
%a( ) ~ — for h small.

(Recall, the derivative is defined as the limit of this quotient as h shrinks to zero.) Substituting
this approximation into the differential equation gives

a(t+h)—a(t) _
A 0]

Treating this as an equality yields an update formula that can be used to determine the (approxi-
mate) value of a(t + h) given the value a(t):

a(t + h) = a(t) + hf(a(t)). (2.16)

Euler’s method consists of applying this update formula repeatedly.
To implement Euler’s method, we choose a step-size h. This yields a mesh of time-points
t =0, h, 2h, 3h, ..., nh, for some fixed number of steps n. Given the initial value of a(0), we
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Figure 2.7: Numerical simulation of the model %£a(t) = —a(t). The initial condition is a(0) = 1. For
h = 2/3, the algorithm provides approximations of a(2/3), a(4/3) and a(2) (open circles). The points are
connected by straight lines for illustration. For h = 1/3, twice as many points are calculated (open squares),
giving an improved approximation of the true solution.

then use formula (2.16) to approximate the value of a(h). Repeated application of (2.16) provides
approximate values at the other points on the grid:

a(0) = a(0) (given)
a(h) = a(0) + hf(a(0))
a(2h) = a(h) + hf(a(h))

) (

a(nh) = a((n —1h) + hf(a((n —1)h))

Because a computer can carry out these repeated calculations rapidly, the step-size h is often chosen
so small that the set of points generated by this algorithm appears as a continuous curve. Figure 2.7
illustrates a case where the step-size was deliberately chosen to be large so that the discrete steps in
the simulation are identifiable. The figure shows simulations generated for two different step-sizes.
The simulation is more accurate—closer to the true solution—when the step-size h is chosen to be
smaller (at the cost of more iterations to cover the same time interval).

Computational software packages that implement numerical simulation make use of sophisti-
cated algorithms that improve on Euler’s method. These details are hidden from the user, who
simply passes the model to the simulation function and receives the output data. Appendix C
introduces numerical simulation in the computational software packages MATLAB and XPPAUT.?

fMATLAB: www.nathworks.com/products/matlab, XPPAUT: www.math.pitt.edu/~bard/xpp/xpp.html.
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Figure 2.8: Open reaction network. The reaction rates are labelled v; as indicated. (The v; are not mass
action rate constants.)

Numerical simulations of differential equation models are not as useful as analytic solution
formulas, for two reasons. Firstly, an analytic formula is valid for all initial conditions. In contrast,
each numerical simulation must be generated from a particular initial condition. Secondly, the
dependence on the model parameters can be easily discovered from an analytic solution formula
(e.g. the time constants discussed above). No such insights are granted by the numerical simulation,
in which the parameter values must be fixed. (Computational exploration of different parameter
values demands running multiple simulations.)

Nevertheless, in what follows we will rarely encounter differential equation models for which
analytic solutions can be derived, and so numerical simulation will be an invaluable tool for model
investigation.

Network example

To illustrate simulations of reaction network models, consider the reaction scheme in Figure 2.8.
The rate of each reaction is labelled v;. (Reaction rates are commonly referred to as wvelocities.)
We will follow the convention of using v; to label reaction rates in network graphs.

Suppose the reaction rates are given by mass action, as follows:

v = ]{71 Vo = k‘Q [A] V3 = kg[A] [B] Vg4 = k‘4[0] Vs = ]{75[D]
Let a, b, ¢, and d denote the concentrations of the corresponding species. Taking rate constants

of k1 = 3 mM/sec, ky = 2/sec, ks = 2.5/mM/sec, ky = 3/sec and ks = 4/sec, the species
concentrations satisfy the following set of differential equations, expressed in mM/sec:

—a(t) = 3—2a(t) —2.5a(t)b(t)
—b(t) = 2a(t) —2.5a(t)b(t) (2.17)
—c(t) = 2.5a(t)b(t) — 3c(t)
—d(t) = 2.5a(t)b(t) —4d(t).

Note, because rate vs depends on the product a(t)b(t), this system of equations is nonlinear.
Once an initial concentration profile has been specified, numerical simulation can be used to generate

the resulting concentration time-courses. One such in silico experiment is shown in Figure 2.9. In
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Figure 2.9: Numerical simulation of the network in Figure 2.8. All species start with initial concentration
of zero at time t = 0.

this case the initial concentrations of all species were zero. The curves show the concentrations
growing as the species pools ‘fill up’ to their steady-state values. The concentration of A overshoots
its steady state because the formation of C' and D proceeds slowly until a pool of B has accumulated.

Exercise 2.1.10 Determine the steady-state concentrations for the species in model (2.17). O

2.2 Separation of Time-Scales and Model Reduction

When constructing a dynamic model, one must decide which time-scale to address. This choice is
typically dictated by the time-scale of the relevant reactions and processes. For the simple examples
considered above, the time-scales (time constants) could be deduced from the reaction system. For
nonlinear processes, characteristic time-scales are not so neatly defined.

Biological processes take place over a wide range of time-scales. Consider, for example, a genetic
network that generates a circadian rhythm. (Such networks will be taken up in Section 7.3.2.) A
model of this network will describe oscillatory behaviour with a period of roughly 24 hours, and
so will incorporate processes acting on the time-scale of hours. However, the network is based on
gene expression, which involves the binding of proteins to DNA—these chemical processes happen
on the scale of seconds. Moreover, the circadian oscillator is entrained to seasonal changes in the
light-dark cycle—changes that occur on the order of months. It would not be possible to resolve
all of these time-scales in a single model.

The same issue is faced in plotting the time-trace of a process that varies on multiple time scales.
Consider Figure 2.10, which shows behaviour on three distinct time-scales. On the short time scale,
a fast rise occurs. This leads to the steady oscillatory behaviour that dominates the middle time
scale. On the long time scale, a slower process leads to a decreasing trend. If the differences in
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time-scales were more extreme, a graph that focuses on the middle time scale would not reflect the
other two: the fast behaviour would not be properly resolved, and the slow behaviour would not
be captured.

H .
fast (short) time-scale time

middle time—scalé

slow (long) time—scale

Figure 2.10: Behaviour on multiple time-scales. On the fast time scale, the process shows a rapid rise. This
leads to an oscillatory behaviour on a middle time scale. The height of the oscillations declines slowly over
a longer time-scale.

To model a system that involves processes acting on different time-scales, a primary time-scale
must be chosen. Other time-scales are then treated as follows:

e processes occurring on slower time-scales are approximated as frozen in time;
e processes occurring on faster time-scales are presumed to occur instantaneously.

In most cases, these time-scale separations are made during model construction; they often
motivate the decisions as to which species and processes should be included in the model and
which will be neglected. In other cases, existing models that incorporate distinct time-scales can be
simplified. This model reduction process approximates the original model by a model of reduced
complexity.

Recall that for each of the closed reaction systems analysed in the previous section, we used
conservation to replace the differential equation for the concentration of B (i.e. the equation for
%b(t)) with a much simpler algebraic description (b(t) = T — a(t)). We thus reduced a model
involving two differential equations to a model involving one differential equation and one algebraic
equation.

Model reduction by time-scale separation leads to a similar result—a differential equation de-
scribing a state variable is replaced by an algebraic equation. However, while reduction via con-
servation does not change the model, time-scale separation leads to an approximate version of the
original model. Consequently, model reduction by time-scale separation should only be carried out
in cases where the approximation will be accurate. A useful rule of thumb is that a difference in
time scales of at least an order of magnitude (i.e. at least a factor of ten) can be used for model
reduction.

We next present techniques for model reduction by separation of time-scales. Elimination of
slow variables is straightforward—we simply assign a constant value to each slow variable and treat
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it as fixed parameter, rather than as a state variable. The treatment of fast variables requires more
care. We will consider two approaches that allow processes to be treated as instantaneous: the
rapid equilibrium assumption and the quasi-steady state assumption.

2.2.1 Separation of time-scales: the rapid equilibrium assumption

Consider the open network

k‘l k2
A——B— (2.18)
k_q

With mass action rate constants as indicated, the concentrations a(t) and b(t) satisfy

Salt) = —kalt) +kab(t)
%b(t) —  kra(t) — k_1b(t) — kab(?). (2.19)

There are two processes acting here: the reversible conversion A <> B and the decay B — . As
derived in Section 2.1.3, the time constants of these two processes are k1+—1k,1 and %, respectively.
If the conversion has a much smaller time constant than the decay (that is, k1 + k_1 >> ko),
then the conversion reaches equilibrium quickly, compared to the time-scale of the decay process.
This case is illustrated by Figure 2.11, in which the separation of time-scales reveals itself in the
concentration time-courses. On a short time-scale, A and B molecules interconvert until they
quickly reach an equilibrium ratio; little decay occurs over this time-period. On the longer time-
scale, the equilibrated pool of A and B molecules slowly decays.

Once the equilibrium ratio of A and B is reached, this ratio is maintained throughout the decay
process. This observation suggests a strategy for model reduction: if we choose to neglect the
fast time-scale, we can make use of the fact that the equilibrium is maintained to relate the two
concentrations. This is the rapid equilibrium assumption. By assuming that the conversion
reaction is in equilibrium at all times, we simplify our dynamic description of the network because
one concentration is now easily described in terms of the other, via the equilibrium condition.
To emphasize that the model reduction leads to an approximate model that is different from the
original, we introduce the notation a(t) and b(t) for the concentrations in the reduced model. For
network (2.18), the equilibrium condition states that

bt) _ b
alt) ki’
from which we have
- 5 kl
b(t) = a(t)—.
(0 = ()

With this condition in hand, we now turn to the dynamics of the decay process, which is best
described by addressing the dynamics of the equilibrated pool. The reaction network (2.18) thus
reduces to:

(pool of A and B) —
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Figure 2.11: Simulation of network (2.18) with parameter values (in time™!) k; = 9, k_1 = 12, and ko = 2.
The time constant for the conversion is 1/21; the decay process has a time constant of 1/2. On the short
time-scale, the conversion comes rapidly to equilibrium (in which [B]/[A] ~ 3/4). On the longer time-scale,
the equilibrated pool of A and B molecules decays. The initial conditions are a(0) = 0, b(0) = 10.

Let &(t) be the total concentration in the pool of A and B (that is, &(t) = a(t) + b(t)). The relative
fractions of A and B in the pool are fixed by the equilibrium ratio. This allows us to write

&t) = a(t)+b(t)
_ aw+a@£%

k_q1+ k1.
—al(t).
o a(t)

Thus
k_q

while

b(t) = aw—an:E:%Ef@y

The pool decays at rate kgg(t). Thus, the pooled concentration satisfies

%6(15) = —kob(t)
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—a (original model)
9:, - = =b (original model)
) '='="a (reduced model)
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b
1

Concentration (arbitrary units)
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Figure 2.12: Rapid equilibrium approximation for network (2.18). The original model (2.19) was simulated
with parameter values (in time™!) k; = 9, k_; = 12 and ks = 2 (as in Figure 2.11). The approximate
model (2.22) was simulated from initial value ¢(0) = a(0) 4 b(0); the corresponding approximate concentra-
tions a(t) and b(t) were calculated from equations (2.20) and (2.21). Initial conditions are a(0) = 0, b(0) = 10
for the original model.

Schematically, we have reduced the model to a single decay reaction:

kok1
k_1+k1
C— >

which is the rapid equilibrium approximation of the original model. To predict the concen-
tration time-courses, we simulate the dynamics of the pooled concentration &(¢) in equation (2.22)
and then use equations (2.20) and (2.21) to determine the corresponding concentrations a(t) and
b(t) at each time point.

Figure 2.12 shows the behaviour of the reduced model in comparison with the original model.
Except for the initial fast dynamics, the reduced model provides a good approximation.

Exercise 2.2.1 Use the rapid equilibrium approximation to construct a reduced model for the
network

ko k1 ko
A<~—= B—> (2.23)
k_4
under the conditions that ki + k_1 >> kg and k1 + k_1 > k. O
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To further explore the rapid equilibrium approximation, consider the network

ko ky ko
s A ——s B> (2.24)
k_q

This network is similar to (2.18). The zero-order reaction (— A) does not affect the time-scale on
which the concentrations of A and B relax to their steady-state values, so, as in the previous case,
a rapid equilibrium assumption is valid if k1 + k_1 >> ks. In that case, the pool concentration
&(t) = a(t) + b(t) can be used to describe a reduced network

kok
ko Ttk
C
with dynamics
d _ koky
—c(t) = ko— ———¢(t 2.2
G0 = k- E () (2.25)

This approximation is illustrated in Figure 2.13. The approximation is good, but exhibits a
persistent error in the concentration of A. This is a consequence of the fact that the original model
comes to a dynamic steady state in which the conversion reaction (A <+ B) is not in equilibrium.

In the next section, we will consider a model-reduction method that is guaranteed to be accurate
at steady state.

Exercise 2.2.2 Develop a model for network (2.24) and determine the steady-state concentrations.
Compare the steady state ratio [B]/[A] to the equilibrium constant for the conversion reaction
(which was used for model reduction). Verify that the steady-state concentration ratio is not equal
to the equilibrium constant k_; /k1, but the difference is small when k_; is much larger than ky. O

Exercise 2.2.3 The accuracy of the rapid equilibrium approximation improves as the separation
of time-scales becomes more significant. Derive a formula for the steady state concentration of A in
both model (2.25) and the full model for network (2.24). Consider the relative steady-state error,
defined as

I:A:I?lfll B [A]fcsduccd
[AJR5
Verify that the relative steady-state error in [A] is small when k_; is much larger than k,. O

2.2.2 Separation of time-scales: the quasi-steady-state assumption

The rapid equilibrium approximation is reached by treating individual reaction processes as in-
stantaneous. We now consider an alternative model-reduction method that focuses on individual
species. Consider again the network

ko k1 ko
sAe—s B> (2.26)
k_q
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Figure 2.13: Rapid equilibrium approximation for network (2.24). Model (2.25) is used to approximate the
full model for network (2.24). Parameter values (in time™!) are ko = 5, k; = 20, k_1 = 12, and ky = 2.
There is a persistent error in the approximation for [A], caused by the fact that the conversion reaction does
not settle to equilibrium in steady state. Initial conditions are a(0) = 8, b(0) = 4 (and so &(0) = 12).

and again suppose k1 + k_1 >> ko. Instead of focusing on the conversion reaction, we observe that
all dynamic reactions involving species A occur on the fast time-scale, so that, compared to the
dynamics of B, species A comes rapidly to its steady-state concentration.

Following this idea, we replace our original differential equation-based description of the be-
haviour of [A] (that is, %a(t) = ko + k_1b(t) — k1a(t)) with an algebraic description indicating
that concentration a(t) is in steady state with respect to the other variables in the model (in this
case, b(t)). We introduce a quasi-steady state for [A] in our approximate model: a(t) = a?%°(t), and
specify that a?%® ‘keeps up’ with the transitions in any slower variables. For each time instant ¢,
the quasi-steady state a9%%(t) satisfies

0=kFko+ k’_lb(t) — k‘laqss(t)

or equivalently

4955 (1) = %1—“)“) (2.27)

This procedure is sometimes summarized as “set %aqss(t) to zero”. However, this is a problematic
statement because it suggests that we are setting a?°*(¢) to a constant value, which is not the case.
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Instead, we are replacing the differential description of a(¢) with an algebraic description that says
[A] instantaneously reaches the steady state it would attain if all other variables were constant.
Because it equilibrates rapidly, the other variables are essentially constant ‘from A’s point of view,’
i.e. on its fast time-scale. (A mathematically rigorous treatment of this procedure consists of a
singular perturbation of the original model. A careful treatment of this technique provides explicit
bounds on the error made in the approximation. See (Segel and Slemrod, 1989) for details.)

The reduced model, called the quasi-steady-state approximation (QSSA), follows by re-
placing a(t) with a?°%(¢) in the original model. Again, using the alternative notation b for the
reduced model:

D50 = kya®s () — (hy + ko)b(2)

dt )
ko + k_1b(t ~
IOTI() — (k-1 + ko2)b(2)

= ko +k_1b(t) — (k1 + k2)b(?)
= ko — kob(t) (2.28)

= k

The quasi-steady state approximation is illustrated in Figure 2.14. A significant error occurs
during the transient, but diminishes as the steady state is approached (in contrast with the rapid
equilibrium approximation in Figure 2.13). This is a general feature of the QSSA: when the system
is at steady state, the quasi-steady-state description a?**(t) is equal to the true value of a(t) (because
the quasi-steady-state condition is satisfied).

In the subsequent chapters, we will use both the rapid equilibrium and the quasi-steady-state
approximations for model reduction. The rapid equilibrium approximation can be easier to apply,
because it addresses individual reaction processes; the quasi-steady-state approximation is some-
times more difficult to justify, because it typically involves multiple processes. However, the QSSA
is simpler to implement mathematically, and leads to better approximations over long times; for
those reasons, it is often favored over the rapid equilibrium approximation.

Exercise 2.2.4 In applying the reduced model (2.28) to approximate the behaviour of network (2.26),
the initial condition must be chosen carefully. Suppose a simulation involves initial concentrations

a(0) and b(0). The reduced model cannot retain the same initial concentration of B (i.e. l;(p) =
b(0)), because, together with the corresponding quasi-steady state for A (i.e. a(0) = %’llb(o)),
the total initial concentration would not be in agreement with the original simulation. An im-
proved approach maintains the total concentration (a(0)+b(0) = a(0) 4 b(0)), while respecting the
concentration ratio dictated by the quasi-steady-state condition.

Given initial conditions a(0) and b(0), determine an appropriate initial condition b(0) in the
reduced model (2.28). You can check your answer by confirming the initial condition 5(0) used in
Figure 2.14.

|

Exercise 2.2.5 Consider a model for network (2.23). Suppose that kg >> ko and ki + k_1 >> ko.
Apply an appropriate quasi-steady-state approximation to reduce the model by eliminating one of
the differential equations. O
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Figure 2.14: Quasi-steady-state approximation. Network (2.26) is approximated by model (2.28) and
equation (2.27). Parameter values are (in time™!) kg = 5, k; = 20, k_1 = 12, and ko = 2 (as in Figure 2.13).
The approximation exhibits an error over the transient, but converges to the original model in steady state.
Initial conditions are a(0) = 8, b(0) = 4, and b(0) = 235/32 (see Exercise 2.2.4).

2.3 Suggestions for Further Reading

e Calculus: There are many introductory texts covering differential calculus, some of which
focus specifically on life science applications. The book Modeling the Dynamics of Life:
Calculus and Probability for Life Scientists (Adler, 2004) is especially well-suited to the study
of dynamic biological models.

e Differential Equations: A general introduction to differential equations, including treat-
ment of numerical simulation, can be found in Elementary Differential Fquations and Bound-
ary Value Problems (Boyce and DiPrima, 2008). An introduction to the theory in the con-
text of biological applications is presented in Differential Equations and Mathematical Biology
(Jones et al., 2009).

e Chemical Reaction Network Theory: There is a rich literature on the dynamic behaviour
of chemical reaction networks. An introduction is provided by Mathematical Models of Chem-
ical Reactions: Theory and Applications of Deterministic and Stochastic Models (Erdi and
Té6th, 1989).
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Figure 2.15: Closed reaction network for Problem 2.4.3.
2.4 Problem Set

2.4.1 Open reaction network. Suppose a reaction network is composed of the following reac-
tions

k‘l k2 k3
— A A——> B+C B——
]{74 k5 k6
C ——>2D 2D —— C D———

with mass-action rate constants as indicated.
a) Construct a differential equation model of the network.
b) Determine the steady-state concentrations of all species as functions of the mass-action constants.

2.4.2 Open reaction network: buffered species. Consider the reaction network:

]{71 ]{72 k3
A——> X X ——Y X+Y —— B.

where the concentrations of A and B are buffered (i.e. [A] and [B] are fixed model parameters).
a) Construct a differential equation model for the dynamics of [X] and [Y]. (The rate of the first
reaction is constant: ki[A].)

b) Determine the steady-state concentrations of X and Y as functions of [A] and the rate con-
stants. Verify that the steady-state concentration of Y is independent of [A]. Can you explain this
independence intuitively?

2.4.3 Moiety Conservations. Consider the reaction scheme in Figure 2.15.

a) Identify two moiety conservations in the network.

b) Consider an experiment in which the initial concentrations are (in mM) s1(0) = 3.5, s2(0) = 1,
e(0) = 3 and ¢(0) = 0. Suppose that the steady-state concentrations of S; and Sz have been
measured as s{° = 2 mM and s5° = 1.5 mM. Determine the steady-state concentrations of E' and
C. (Note: there is no need to consider the reaction rates or network dynamics. The conclusion
follows directly from the moiety conservations.)
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2.4.4 Steady-state production rate. Consider the reaction network

k1 ko
A+S— B B——> A+ P

Suppose that the species S and P are held at fixed concentrations (i.e. [S] and [P] are fixed
model parameters). Suppose that the reaction rates are given by mass action, with reaction rates
as indicated. If the initial concentrations of [A] and [B] are both 1 mM, determine the rate of
production of P at steady state (as a function of ki, ko, and [5]).

2.4.5 Linear system of differential equations. Consider the coupled system of differential
equations

%x(t) = 2(t) + 2y(t) %y(t) = x(t).

a) Verify that for any choice of constants ¢; and c¢g, the functions

z(t) = cre™t + 2cpe? y(t) = —cre™t + cpe?

are solutions to these equations. (This can be verified by differentiating z(¢) and y(¢) and comparing
the two sides of the differential equations.)

b) The constants ¢; and ¢ in part (a) are determined by the initial conditions for z and y. Determine
the values of ¢; and ¢y that correspond to the initial conditions z(0) = 0, y(0) = 1. What is the
asymptotic (long-term) behaviour of the resulting solutions z(t) and y(t)?

c¢) Find a set of (non-zero) initial conditions x(0), y(0) for which the solution (x(t),y(t)) converges
to (0,0).

2.4.6 Numerical simulation. Use a software package (e.g. XPPAUT or MATLAB—introduced
in Appendix C) to simulate solutions to the equation

d
Ec(t) =—c(t)+1

with initial conditions ¢(0) = 0, ¢(0) = 1, and ¢(0) = 3. Repeat for the system

d
—elt) = 5(—c(t) + 1.

Explain the difference in behaviour between the two systems.

2.4.7 Network Modelling.

a) Consider the closed reaction network in Figure 2.16 with reaction rates v; as indicated. Suppose
that the reaction rates are given by mass action as vy = ki[A][B], va = ka2[D] and vs = k3[C].

i) Construct a differential equation model for the network. Use moiety conservations to reduce your
model to three differential equations and three algebraic equations.

ii) Solve for the steady-state concentrations as functions of the rate constants and the initial con-
centrations. (Note, because the system is closed, some of the steady-state concentrations are zero.)
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Figure 2.16: Closed reaction network for Problem 2.4.7(a).

V.
Vo vy _<
A ~ C v,

B D
N4
Vo

Figure 2.17: Open reaction network for Problem 2.4.7(b).

iii) Verify your result in part (ii) by running a simulation of the system from initial conditions
(in mM) of ([A], [B], [C], [D], [E], [F]) = (1,1,4,0,0,0). Take rate constants k; = 3/mM/sec,
ko = 1/sec, kg = 4/sec.

b) Next consider the open system in Figure 2.17 with reaction rates v; as indicated. Suppose that
the reaction rates are given by mass action as vg = ko, v1 = k1[A][B], v2 = kao[D], vs = k3[C],
v4 = ky4[E], and vs = k5[F].

i) Construct a differential equation model for the network. Identify any moiety conservations in
the network.

ii) Solve for the steady state as a function of the rate constants and the initial concentrations.

iii) Verify your result in (ii) by running a simulation of the system from initial conditions (in mM) of
([A], B, [C], [D], [E], [F]) = (1,1, 3,0,0,0). Take rate constants kg = 0.5 mM/sec, k1 = 3/mM/sec,
ko = 1/sec, ks = 4/sec, ky = 1/sec, ks = 5/sec.

iv) Given the initial conditions and rate constants in part (iii), why would there be no steady state
if we take kg = 5 mM /sec?

2.4.8 Rapid equilibrium approximation. Consider the closed system:
k1 ko

A - B el
k., ks

with mass-action rate constants as shown. Suppose the rate constants are (in min~!) k; = 0.05,
ko = 0.7, k_1 = 0.005, and k_o = 0.4.

a) Construct a differential equation model of the system. Simulate your model with initial conditions
(in mM) of A(0) = 1.5, B(0) = 3, C'(0) = 2. Plot the transient and steady-state behaviour of the
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system. You may need to make two plots to capture all of the dynamics (i.e. two different window
sizes).

b) It should be clear from your simulation in part (a) that the system dynamics occur on two
different time-scales. This is also apparent in the widely separated rate constants. Use a rapid
equilibrium assumption to reduce your description of the system to two differential equations (de-
scribing one of the original species and one combined species pool) and two algebraic equations
(describing the contents of the combined pool).

¢) Run a simulation of your reduced model in part (b) to compare with the simulation in part (a).
Verify that the simulation of the reduced system is in good agreement with the original, except for
a short initial transient. (Note, you will have to select initial conditions for the reduced system
so that the initial total concentration is in agreement with part (a), and the rapid equilibrium
condition is satisfied at time t = 0.)

2.4.9 Quasi-steady-state approximation. Consider the reaction network:
ko ko Ky

> A > A —— B.
k_1

Suppose the mass-action rate constants are (in min=!) kg =1, ky = 11, k_; = 8, and ky = 0.2.

a) Construct a differential equation model of the system. Simulate your model with initial conditions
A(0) = 6 mM, B(0) = 0 mM. Plot the transient and steady-state behaviour of the system. You
may need to make two plots to capture all of the dynamics (i.e. two different window sizes).

b) It should be clear from your simulation in part (a) that the system dynamics occur on two
different time-scales. This is also apparent in the widely separated rate constants. Use a quasi-
steady-state assumption to reduce your description of the system by replacing a differential equation
with an algebraic equation.

¢) Run a simulation of your reduced model in part (b) to compare with the simulation in part (a).
Verify that the simulation of the reduced system is a good approximation to the original at steady
state, but not over the initial transient. (Note, you will have to select initial conditions for the
reduced system so that the total concentration is in agreement with part (a), and the quasi-steady
state condition is satisfied at time ¢t = 0, as in Exercise 2.2.4.)
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Chapter 3

Biochemical Kinetics

...I began to lose interest in some of the things [in mathematics] that to me seemed
rather remote from reality and hankered after something more practical. I realize now
that I was much better fitted to engineering than to mathematics, but physiology proved
in the end to be much like engineering, being based on the same ideas of function and
design.

—A. V. Hill, The Third Bayliss-Starling Memorial Lecture

The study of the rates of chemical reactions is called chemical kinetics. In the previous chapter,
we used the law of mass action to establish chemical reaction rates. In this chapter we will develop
rate laws that are applicable to biochemical processes.

Individual chemical reaction events (binding, unbinding, and conversion) are called elementary
reactions. As in the previous chapter, we will continue to use mass action to describe the rates
of elementary reactions. In contrast, individual biochemical reactions involve small networks of
elementary reactions. To develop rate laws for biochemical reactions, we will collapse these networks
into single reaction events, using separation of time-scale methods. The rate laws that describe
these ‘lumped’ reaction events are referred to as biochemical kinetics.

3.1 Enzyme Kinetics

The overwhelming majority of reactions that occur within a cell are catalysed by enzymes (which
are proteins). Enzymes catalyse reactions by binding the reactants (called the enzyme substrates)
and facilitating their conversion to the reaction products. Enzyme catalysis reduces the energy bar-
rier associated with the reaction event (Figure 3.1A). Consequently, while enzyme catalysis increases
the rate at which equilibrium is attained, it has no effect on the equilibrium itself (Figure 3.1B).
The standard ‘lock-and-key’ model of enzyme activity is illustrated in Figure 3.2A. As shown
for this reversible reaction, the enzyme catalyses the reaction in both directions and is unaltered
by the reaction event. The part of the enzyme that binds the substrate is called the active (or
catalytic) site. The active site has a shape and chemical structure that is complementary to the
substrate, resulting in strong binding affinity and a highly specific interaction. Most enzymes
catalyse only a single reaction. This specificity of action allows each enzyme to function with
remarkable efficiency—increasing reaction rates by as much as 107 times. The activity of enzymes
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Figure 3.1: A. Effect of catalysis on reaction energy profile. Species P occupies a lower energy state than
species S, so the equilibrium favors formation of P. For the reaction to occur, the reactants must collide with
sufficient force to overcome the energy barrier (corresponding to formation of a high-energy transition state).
Enzyme catalysis reduces the energy barrier between reactant and product. The enzyme does not affect the
energy levels of the species themselves, and so has no effect on the equilibrium. B. Effect of catalysis on
reaction dynamics. The ratio of concentrations at equilibrium depends only on the reactants S and P. The
rate at which this equilibrium is attained is increased in the presence of an enzyme catalyst.

within cells is highly regulated, through both genetic control of enzyme abundance and biochemical
modification of individual enzyme molecules.

Experimental observations of enzyme-catalysed reactions show that they do not obey mass-
action rate laws. As sketched in Figure 3.2B, the rate of an enzyme-catalysed reaction approaches
a limiting value as the substrate abundance grows. This saturating behaviour is caused by the fact
that there is a limited amount of enzyme present: at high substrate concentrations, most of the
enzyme molecules are actively catalysing reactions, and so the addition of substrate has little effect
on the reaction rate. The limiting reaction rate is reached when the entire enzyme pool is working
at full capacity.

3.1.1 Michaelis-Menten kinetics

We will use model-reduction by time-scale separation to formulate a rate law that describes enzyme-
catalyzed reactions. The first such derivation was made in 1913 by Leonor Michaelis and Maud
Menten. The resulting rate law is called Michaelis-Menten kinetics.

The individual chemical events involved in a single-substrate enzyme-catalyzed reaction (Fig-
ure 3.2A) can be written as:

S 4+ B = C — C — P + E (3.1)
~— 1 ~— 2 ~— .
substrate free enzyme enzyme-substrate complex enzyme-product complex product free enzyme

In our initial analysis, we will make two simplifications. Firstly, we will lump the two complexes
(4 and (5 together, assuming that the time-scale of the conversion C7 <> Cs is fast compared to the
time-scale of the association and disassociation events. (This is a rapid equilibrium assumption.)
Secondly, we will suppose that the product P never binds free enzyme. This makes the analysis

48



A

elementary reaction

free enzyme + substrate free enzyme + produc

o

enzyme-—catalysed react

L
(§— (¥ >

enzyme-substrate complex enzyme-product complex reactant concentration

reaction rate

Figure 3.2: A. Lock-and-key model of the enzyme catalysis cycle. The substrate binds a specific site on the
enzyme, called the active (or catalytic) site. Once bound, the enzyme facilities formation of the product. The
product dissociates from the enzyme, which is then free to catalyse another reaction event. B. Rate laws for
an enzyme-catalysed reaction and an elementary reaction. The mass action rate of the elementary reaction
increases linearly with reactant concentration. In contrast, the rate of the enzyme-catalysed reaction tends
to a limiting value as the reactant concentration grows.

simpler and is motivated by the fact that laboratory measurements of reaction rates are typically

carried out in the absence of product. The resulting rate law describes irreversible enzyme-catalysed

reactions; the analogous rate law for reversible reactions will be presented later (equation (3.9)).
These two assumptions lead to the simplified network

kl k2
C — P+ FE (3.2)
k_q

S+ FE

The reaction rate ks is called the enzyme’s catalytic constant (often denoted k.., ).
Applying the law of mass action, and denoting concentrations by s (substrate), e (free enzyme),
¢ (complex), and p (product), we have the following differential equation model:

d

5 = —kis()e(t) + korc(t)

%e(t) = hye(t) — kys(t)e(t) + kac(t)
%c(t) = —k_1e(t) + kas(t)e(t) — kaclt)
d

=) = kac(t).

Let er denote the total enzyme concentration: ey = e 4 c. Because the enzyme is not consumed in
the reaction, ep is constant—the enzyme is a conserved moiety. Writing e(t) = ep — ¢(t), we can
use this conservation to eliminate the differential equation for e(t), giving

%s(t) = —his(t)(er — e(t)) + k-re(?)
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Figure 3.3: A. Simulation of enzyme catalysis. Model (3.3) is simulated with parameter values ki =
30 (concentration™! - time™!), k_; = 1 (time™!), ko = 10 (time™!) and er = 1 (concentration). Initial
concentrations are s(0) = 5, ¢(0) = 0, p(0) = 0. (Units are arbitrary.) A separation of time-scales is evident.
On the fast time-scale, the complex C' reaches a quasi-steady-state. The reaction S — P proceeds on the
slower time-scale. B. Michaelis-Menten approximation of an enzyme-catalysed reaction S — P. Model (3.3)
(full model) is simulated as in panel A. The reduced model (3.4) provides a good approximation. The error
in the approximation for S is caused by the sequestration of S into the complex C. In the cell, the ratio of
substrate to enzyme molecules is typically much higher than in this simulation, so the sequestration effect
is negligible.

%c(t) = —k_1c(t) + k1s(t)(er — c(t)) — kac(t) (3.3)
% ) = koclt).

(Although we won’t need to, we could also use the conservation s 4 ¢ + p to further simplify the
model formulation.)

A simulation of this model is shown in Figure 3.3A. The time-courses reveal a separation of
time-scales. On the fast time-scale, substrate S and free enzyme E associate to form the complex
C. On the slower timescale, S is converted to P. We will use this separation of time-scales
for model reduction. Michaelis and Menten applied a rapid equilibrium approximation to the
association/dissociation reaction (S+ E <+ C'). We will present an alternative derivation developed
by G. E. Briggs and J. B. S. Haldane* in 1925. (The rapid equilibrium derivation is treated in
Exercise 3.1.1.)

The separation of time-scales evident in Figure 3.3A has two sources. The first is a difference in
time constants for the reaction events (kl+—1k,1 for the association/dissociation S + F <> C, and k—lz
for product formation C' — P). The second is a distinction in concentrations. For many reactions
in the cell, the substrate is far more abundant than the enzyme (s > er). Consequently, the
enzyme complexes quickly come to equilibrium with respect to the more abundant substrate. (See

*Haldane (1892-1964) made significant contributions to biology, and was one of the founders of the field of popu-
lation genetics. His published essays are full of insight and wit. An accomplished naturalist, he was once asked what
could be inferred about the mind of the Creator from the works of Creation. His response: “An inordinate fondness
for beetles.” (Beetles represent about 25% of all known animal species.)
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problem 3.7.2 for details.) The complex C' can thus be considered in quasi-steady state.
Recall that in its quasi-steady state, c(t) = ¢?°%(t) is no longer an independent dynamic variable,
but instead ‘tracks’ the other variables in the system according to

0= —k_1cT%(t) + kys(t)[er — c?°(t)] — kac?®*(2).
Solving for ¢#%%(t), we find

kyers(t)
qss _
¢ (t) k_q1+ ko + k:ls(t) '

Substituting this quasi-steady-state expression into the model (3.3), we are left with:

is(t) _ k‘Qk’leTS(t)

dt B k_1+ ko —I—krls(t)

d k’gk‘leTS(t)

—p(t) = . 4
el k1 + ko + k1s(t) (34)

This reduced model describes S — P as a single (non-elementary) reaction. The reaction rate is
called a Michaelis-Menten rate law. Figure 3.3B shows the behaviour of this reduced model in
comparison to the original model (3.3).

Next, we define V,,.. = keer as the limiting (or maximal) rate and Ky = k*}ﬂ—j’l@ as the
Michaelis (or half-saturating) constant, and write the rate law as
kokieTs V onaxS
rate of S—> P = 20T = (3.5)

k_q1+ ko + ks KM—FS'

This rate law, sketched in Figure 3.4, is called hyperbolic (because the curve forms part of a
hyperbola).

Exercise 3.1.1 Michaelis and Menten derived rate law (3.5) using a rapid equilibrium approxima-
tion applied to the association/disassociation of substrate and enzyme. Starting with scheme (3.2),
follow this approach and re-derive the Michaelis-Menten rate law V,,,.s/(Kys + s). You will end up
with a different formula for the Michaelis constant. Experimental characterizations of Michaelis-
Menten rate laws involve direct measurement of Kj; and V., so the relation between Kj; and
the individual kinetic constants (k1, k_1, k2) is not significant. O

Kinetic order

Recall that, as introduced in Section 2.1.2, when a reaction rate is given by mass action, the kinetic
order of a reactant is the power to which that reactant’s concentration is raised in the rate law.
The notion of kinetic order can be generalized as follows. If s is the concentration of a substrate
for a reaction with rate v(s), then the kinetic order of s is

s\ dv

—. 3.6

> ds (36)
Using this definition, the kinetic order of the substrate s in the Michaelis-Menten rate law is

S i VmaxS _ S(KM + S) Vmax(KM + s) - Vmaxs _ KM (3 7)
s | ds \ Ky + s B Viaxs (Kar + 5)2 Ky +s ‘

kinetic order = (—
v
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reaction rate

substrate concentration

Figure 3.4: Michaelis-Menten rate law for a single-substrate enzyme-catalyzed reaction. The reaction rate
approaches the limiting rate V.. as the substrate concentration increases. The Michaelis constant, Kpyj is
the substrate concentration at which the rate is equal to half of the limiting rate.

In contrast with mass action, this kinetic order changes as the substrate concentration varies. In
particular, when the concentration s is small compared to K}, the kinetic order is roughly one
(because K + s ~ Kjs). Conversely, when s is large, the kinetic order is roughly zero. This
is consistent with Figure 3.4. When s is near zero the curve grows linearly; when s is high, the
curve is roughly horizontal (constant-valued). For small s, the enzyme is said to be operating in
the first-order (or linear) regime, while for large s, the enzyme is saturated and is said to be acting
in the zero-order regime.

Exercise 3.1.2 a) Apply the definition of kinetic order in equation (3.6) to the mass-action rate
law v(s) = ks™, and confirm that the result is consistent with the definition of kinetic order in
Section 2.1.2.

b) When s is small, the Michaelis-Menten rate law is approximately linear. What is the slope of
the corresponding linear relationship? That is, given that

‘/;nax S

= =~k
Ky +s s

for s small, what is the corresponding constant k7 O

Reversible reactions

When both substrate and product are present, the enzyme-catalysed reaction scheme is

by ks
S+E —— C < » P+ E (3.8)
k1 ko
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Assuming the complex C is in quasi-steady-state with respect to S and P, the reaction rate (which
can now take negative values) is given by the reversible Michaelis-Menten rate law:

Vits —Viris

net rate of S—> P = ,
1+ 2 + 45

(3.9)

where Vy and V,. are the maximal rates of the forward and reverse reactions, and Kg and Kp are the
Michaelis constants for S and P respectively (details in Problem 3.7.3). In some cases, the product
re-binds to the free enzyme, but the rate of the reverse reaction is negligible. This is referred to as
product inhibition (Problem 3.7.4).

Exercise 3.1.3 Verify the Haldane relation, which states that when the enzyme-catalysed reaction
S < P is in equilibrium,
P kiko

Ky="== :
a S k’_lk‘_g

(Hint: When S <> P is in equilibrium, both of the reversible reactions in scheme (3.8) must be in
equilibrium.) O

3.1.2 Two-substrate reactions

Most enzyme-catalysed reactions involve more than one substrate. To describe enzyme-catalysis of
these reactions, we must expand our description of Michaelis-Menten kinetics.
Catalysis of the irreversible two-substrate reaction

A+B = P+Q

involves two distinct association events: each substrate must bind the catalysing enzyme. (Tri-
molecular collisions in which both substrates bind the enzyme simultaneously are exceedingly rare
events and so can be neglected.) The catalytic process can follow a number of different routes,
including: '

e a compulsory order mechanism, in which substrate A binds to the free enzyme, thus forming a
complex EA. Substrate B then binds, forming a ternary (i.e. three-molecule) complex EAB.
This complex is then converted to EP(Q, from which the products are released.

e a random order mechanism, in which either substrate can bind first. The products are released
from the ternary complex EPQ.

e a double-displacement (or ping-pong) mechanism, in which substrate A first forms a complex
E A with the enzyme. The enzyme is then modified in some manner (for example, by gaining
a functional group from A), and product P is released. The modified enzyme E* then binds
B, forming complex E*B. The enzyme recovers its original state by converting B to Q.
Finally, product @ is released.

tHere we use concatenation of species names to denote molecular complexes. This is standard practise in bio-
chemistry and is a useful notation, but unfortunately can be confused with the multiplicative product when these
symbols are also used to represent concentrations. We will avoid such confusion by using distinct notation for chem-
ical species and concentrations, e.g. a = [A], b = [B], so that AB is a molecular complex, while ab is the product of
two concentrations.
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To develop a two-substrate Michaelis-Menten rate law, consider the compulsory order reaction
scheme

E+A —— EA
EA+B —— EAB (3.10)

EAB — > E+P+Q.

As in the single-substrate case, a rate law can be derived by assuming that the complexes come to
quasi-steady state. (This is justified if the substrates are abundant compared to the enzyme.)

Letting Cy = E A, with concentration ¢;, and Cy = FAB, with concentration co, we can model
the complexes by

d

Ecl (t) = kla(t)e(t) - k_lcl (t) - kgcl (t)b(t) + k_QCQ (t)

d

ECQ(i) = kgcl (t)b(t) - k_QCQ(t) - kgCg(t)

Using conservation of enzyme to substitute for the free enzyme concentration (e(t) = er — ¢1(t) —

c2(t)) and applying a quasi-steady-state approximation to both complexes gives a reaction rate of:

k:geTa(t)b(t)
k_o+k: k_2+k '
kg TR 4 R (t) + (1) + a(t)b(t)

rate of A+ B>P+Q = kscd™(t) = (3.11)

Exercise 3.1.4 Verify Equation (3.11). O
This rate law for the compulsory-order enzyme-catalysed reaction A+B — P+(Q can be written

more concisely as

Vmaxab
v =
Kap + Kpa+ Kb+ ab

(3.12)

When the same QSSA approach is applied to the other reaction mechanisms described above
(random order and double-displacement), similar reaction rates can be derived (Problem 3.7.6).

Note that if the concentration of either A or B is held constant, then this rate law reduces to
a single-substrate Michaelis-Menten expression. This simplification is commonly used when one
substrate is present at a near-fixed concentration, for example when it is a common co-reactant
(called a cofactor), such as water or ATP. In those cases, a single-substrate Michaelis-Menten rate
law is used, because the reaction is effectively dependent on a single reactant concentration.

Exercise 3.1.5 Consider rate law (3.12).

a) Verify that when the concentration of A is very high, the rate law reduces to a single-substrate
Michaelis-Menten rate law for B, with maximal rate V,,,, and Michaelis constant K»; = Kpg. Verify
that this is consistent with the limiting behaviour of the reaction network (3.10) (which in this case
takes the form FA+ B <+ FAB — FEA+ P+ @Q, because all enzyme will be continually bound to
A.)

54



(Po— (P —(Pv

free enzyme + substrate ~ €nzyme-substrate complex free enzyme + produc
( 7 S
@
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Figure 3.5: Competitive inhibition of enzyme catalysis. The inhibitor—a chemical mimic of the substrate—
binds the enzyme’s active site. Inhibitor-bound enzymes are not available to catalyse reactions.

b) Verify that when the concentration of B is very high, the rate law reduces to a single-substrate
Michaelis-Menten rate law for A, with maximal rate V,,,, and Michaelis constant K; = K 4. Verify
that this is consistent with the limiting behaviour of the reaction network (3.10) (which in this case
takes the form F + A - FAB — E + P + @, because complex EA will bind B immediately after
forming.) O

3.2 Regulation of Enzyme Activity

Enzyme activity can be regulated through a number of mechanisms. Genetic effects can cause
changes in the abundance of enzymes (e in our models). These changes occur on the slow time-scale
of genetic processes—minutes to hours. A much faster means of control is provided by biochemical
modification of individual enzyme molecules. We will consider two distinct mechanisms by which
enzyme activity can be altered biochemically: competitive inhibition and allosteric regulation.

3.2.1 Competitive inhibition

A competitive inhibitor is a molecule that mimics an enzyme’s substrate, but does not undergo a
reaction, as shown in Figure 3.5. This impostor molecule binds to the active site and clogs the
enzyme so it is not available for catalysis. (A familiar example is the drug ibuprofen; it binds the
active site of the enzyme cyclooxygenase and thus inhibits the production of prostaglandins, which
are involved in pain pathways, blood clotting, and production of stomach mucus.)

To derive a rate law for a competitively inhibited enzyme, we construct a reaction scheme
consisting of both the catalytic process and the formation of an enzyme-inhibitor complex.

]{71 ]{72
S+ F —— (C > E+ P
k1

k3
k_3
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where [ is the inhibitor and C7 is the inactive enzyme-inhibitor complex. We will apply a quasi-
steady-state approximation to the two complexes. With ¢ and ¢; denoting concentrations, we
have

%C(t) = Fis(t)e(t) — k_ie(t) — kac(t)

%cl(t) = kse(t)i — k_scr(t).

We treat the inhibitor concentration i as a fixed quantity. (This is justified by presuming that
the inhibitor is far more abundant than the enzyme, so that formation of C; does not change i
significantly.) Applying the quasi-steady-state assumption to the two complexes and employing the
conservation e(t) = ep — ¢(t) — ¢ (t) yields

ers
c= " —— 3.13
Loy (319
where Ky = % and Kj; is the dissociation constant for inhibitor binding: K; = %3 The rate

law can then be written as

‘/;naxs
Ky(1+i/K) +s

rate of S—> P = koc =

with V.. = keerp.

This rate law is sketched in Figure 3.6 for various levels of inhibitor. Competitive inhibition does
not influence the limiting reaction rate V... When the substrate is much more abundant than the
inhibitor, the inhibition has only a negligible effect. However, the competition for enzymes affects
the concentration of substrate needed to achieve a given reaction rate: the effective Michaelis
constant of the inhibited reaction, Kj;(1 + i/Kj;), increases with inhibitor abundance.

Exercise 3.2.1 Verify equation (3.13). O

Competitive inhibition depends on the conformation of the enzyme’s active site; inhibitors must
be chemically similar to reactants. We next consider a more versatile form of regulation that does
not suffer from this restriction and instead employs components of the regulated enzyme besides
the active site.

3.2.2 Allosteric regulation

The catalytic efficiency of an enzyme depends on the conformation of its active site. This confor-
mation depends, in turn, on the overall configuration of the protein (its tertiary structure). This
configuration, and hence the nature of the active site, can be altered by modifications to the chem-
ical energy landscape of the protein, e.g. the position and strength of charges. Such modifications
can be made by molecules that bind the protein. This mode of enzyme regulation, called allosteric
control, was proposed by Frangois Jacob and Jacques Monod in 1961. The term ‘allostery’ (from
Greek, allo: other, steros: solid, or shape) emphasizes the distinction from competitive inhibition—
the regulating molecule need not bear any chemical resemblance to the substrate. Likewise, the
site on the enzyme where the regulator binds (called the allosteric site) can be distinct from the
active site in both position and chemical structure.
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Figure 3.6: Reaction rates for competitively inhibited enzyme catalysis. The limiting reaction rate, Vi, ax,
is unaffected by the presence of the inhibitor. Instead, the inhibitor increases the substrate concentration
required to reach the half-maximal rate.

Typically, the binding of an allosteric regulator to a protein invokes a transition between a
functional state and a non-functional state. For enzymes, this is typically a transition between a
catalytically active form and an inactive form.

Allostery offers a range of strategies for the regulation of enzyme activity. For instances, con-
formational changes could affect substrate binding or reaction catalysis. Moreover, an enzyme
molecule might simultaneously bind multiple allosteric regulators whose effects can be integrated
in a variety of ways. In this section, we will consider a simple case that highlights the functional
differences between allosteric inhibition and competitive inhibition.

Consider an enzyme that binds a single allosteric regulator. Suppose the regulator inhibits
enzyme catalysis by blocking product formation, as shown in Figure 3.7. For simplicity, we will
assume that the inhibitor has no effect on substrate binding. The reaction scheme is

kl k2
S+FEF —— ES —— E+P
I+E —=— EI (3.14)
I+ES —— ESI

S+ FEl —— ESI

We have assumed that the binding of substrate and inhibitor are independent. This scheme is
called non-competitive inhibition.
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Figure 3.7: Allosteric inhibition of enzyme activity. The enzyme has two binding sites: the active site
where the substrate binds, and the allosteric site where the allosteric regulator binds. In this example, the
inhibited enzyme can bind substrate, but cannot catalyse formation of the reaction product.

To derive a rate law, the quasi-steady-state approximation can be applied to the complexes
ES, EI and ESI. Together with the conservation er = [E] + [ES] 4 [EI| + [ESI], this gives the
reaction rate as:

Vinax s

te of S— P = ko|ES] = 3.15
e ot e 2| 5] T+i/K; Ky +s (3.15)
where V.. = koer, Ky = k*}f—jb and K; = kk—j This rate law is sketched in Figure 3.8 for

various levels of inhibitor. In contrast with competitive inhibition, this allosteric inhibitor reduces
the limiting rate V..., but does not affect the half-saturating concentration Kj;. More generally,
other allosteric inhibition schemes impact both V.. and Kj;.

Exercise 3.2.2 An alternative to the non-competitive inhibition scheme of Figure 3.7 is uncom-
petitive inhibition, in which the inhibitor only binds the enzyme-substrate complex (so complex
EI does not occur). Apply a quasi-steady-state analysis to verify that uncompetitive inhibition
reduces Kj; and V,,,, by the same factor. O

3.3 Cooperativity

The term cooperativity is used to describe potentially independent binding events that have a
significant influence on one another, leading to nonlinear behaviours. The most commonly cited
example (and the first to be recognized, at the turn of the 20th century) is oxygen-binding to
the protein hemoglobin. Hemoglobin is the main transporter of oxygen in blood (in vertebrates).
Hemoglobin is a tetrameric protein (i.e. composed of four polypeptide chains); each monomer binds
one oxygen molecule.

Hemoglobin’s efficiency as an oxygen carrier can be assessed by a curve showing the fraction of
protein in the oxygen-bound form as a function of the abundance of oxygen. When such plots were
first generated from experimental data, the binding curve for hemoglobin was found to have an
S-shaped, or sigmoidal character, as sketched in Figure 3.9. This came as somewhat of a surprise,
as most binding curves are hyperbolic, not sigmoidal.
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Figure 3.8: Rate laws for allosterically inhibited enzyme catalysis (non-competitive inhibition). The limiting
reaction rate is reduced by the inhibitor. The binding affinity, reflected in the half-maximal substrate
concentration Ky, is unaffected.

Further insight into the oxygen-binding behaviour of hemoglobin came from studies of the closely
related protein myoglobin, which is used to store oxygen in vertebrate muscle cells. Structurally,
myoglobin is very similar to the individual monomers that form a hemoglobin tetramer. As shown
in Figure 3.9, the binding curve for myoglobin is hyperbolic. This suggests that hemoglobin’s
sigmoidal binding curve does not result from the nature of the individual binding sites. Rather,
this nonlinearity results from cooperative interactions among the four monomers.

To address cooperativity, consider the binding of a molecule X to a protein P. The generic
name for a binding molecule is ligand (from Latin, ligare: to bind). The reaction scheme is

k1
P+X —— PX (3.16)
k_1
The fractional saturation of the pool of protein, denoted Y, is defined as the fraction of binding
sites that are occupied by ligand:

number of occupied binding sites [PX]

total number of binding sites ~ [P] + [PX]

Letting K = % (the dissociation constant for the binding event), we find, at steady state,
[PX] = [P][X]/K. Then we have
[PIIX]/K X)/K [X]

VP T PR T AR T BTN (8.17)

(This functional form was seen earlier in the Michaelis-Menten rate law; the rate of an enzyme-
catalysed reaction is proportional to the fractional occupancy of the enzyme.)

The binding curve associated with equation (3.17) is hyperbolic—consistent with the oxygen-
binding behaviour of myoglobin. To describe the binding of oxygen to hemoglobin, we will next
consider a protein P with four ligand-binding sites.
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Figure 3.9: Binding curves for hemoglobin and myoglobin. Myoglobin shows a commonly observed hyper-
bolic behaviour. The binding curve for hemoglobin is sigmoidal (S-shaped). This nonlinear behaviour is
characteristic of cooperative binding mechanisms.

If the binding sites are identical and the binding events are independent of one another, then
the binding behaviour is no different from equation (3.17). (In this case, the tetrameric structure
simply increases the number of independent binding sites per protein.) Likewise, if the binding
events are independent and the binding sites have different affinities, then the binding curve is

again hyperbolic (Problem 3.7.9).
To address the case in which the binding sites are identical but cooperative effects occur between

them, consider the following scheme:
4k

k_q
3ko

2k_o
2ks

3k_3

k4
PX3 + X — PX47
4k_4

P+ X PX;

PXi+X PX,

PX2+X PX3

where complex PX; has i ligand molecules bound. The rate constants depend on the number of
bound ligand molecules, as follows. The first association reaction has rate ki, the second has rate
ko, and so on. These rate constants are scaled by stoichiometric pre-factors that account for the
number of binding sites involved in each reaction. (For instance, there are four sites available for
the first ligand to bind, so the overall reaction rate is 4k1. There are only three sites available for
the second ligand to bind, so the rate is 3ks.)

Because there are four binding sites on each protein molecule, the fractional saturation is given
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_ number of occupied binding sites [PX1] + 2[PX5] + 3[PX3] + 4[PX4]

total number of binding sites ~ 4([P] + [PX1] + [PX2] + [PX3] + [PX4))

When the binding events are in equilibrium, the fractional saturation can be written as

[X]/ K1 + 3[X]?/ (K1 K») 4 3[X]* /(K1 K2 K3) + [X]*/ (K1 Ko K3 K4)
1+ 4[X]/K1 + 6[X]2/(K1Ks) + 4[X]3 /(K1 Ko K3) + [X]4/ (K1 Ky K3Ky)

Y = (3.18)

where the parameters K; are the dissociation constants (K; = kk , for i =1, 2,3,4). This is
known as the Adair equation for four sites. It exhibits a sigmoidal character when the affinities of
the later binding events are significantly greater than those of the earlier events. This is positive
cooperativity: the binding of the first ligand molecules enhance the binding of the remaining ligands.

If the final binding event has a much higher affinity than the earlier binding events (i.e. Ky <
K1, Ky, K3), then the fractional saturation can be approximated by

[X]* /(K1 Ko K3Ky)

Y ~ .
L+ [X] /(K1 K2 K3Ky)

This approximation is formalized in the Hill function

(5 oL S L o
+(X)/E) ~ K X

(3.19)

which is used to describe processes that involve cooperative binding events. The constant K is
the half-saturating concentration of ligand, and so can be interpreted as an averaged dissociation
constant. (Note that when n = 1 the Hill function reduces to a hyperbolic function.)

In 1910 the English physiologist A. V. Hill proposed the function (3.19) as a convenient curve for
fitting the sigmoidal binding behavior observed for hemoglobin. Hill did not attach any significance
to the particular form of this function—he used it as an empirical fit to the data.

As shown in Figure 3.10, the exponent n, called the Hill coefficient, reflects the steepness of
the sigmoid, and is commonly used as a measure of the switch-like character of a process. The
Hill coefficient is often chosen to coincide with the number of events in a multiple-binding-event
process, as in our derivation above. However, Hill functions constructed in this manner must be
interpreted carefully, since empirical observations often correspond to Hill coefficients well below
the number of binding events. For example, Hill himself found that the hemoglobin binding data
was best fit with values of n ranging from 1 to 3.2. (When fit to empirical data, non-integer Hill
coefficients are commonly used.)

Having justified the difference in binding behaviour between myoglobin and hemoglobin, we
can now interpret their respective biological functions. Myoglobin serves to store oxygen in muscle
tissue, and so is saturated with oxygen at all but the lowest oxygen concentrations. Hemoglobin
shuttles oxygen and so must bind and release oxygen in the appropriate conditions. A sigmoidal
binding curve has the property that a relatively small change in ligand concentration can lead to
a large change in binding saturation. This allows hemoglobin to fulfill its transport task without
demanding a wide difference in oxygen concentrations at its ‘pick up’ and ‘drop off’ points. For
example, the difference in oxygen concentration between the alveoli of the lungs and the capillaries
of active muscle is only five-fold. A hyperbolic binding curve cannot exhibit a wide change in

61



1 +
n=1
=2
Y : x N
Y = n n
K+ X
n=4
e

X

Figure 3.10: Hill functions. As the Hill coefficient n increases, the sigmoidal curve becomes more switch-like.
When the Hill coefficient is 1, the curve is hyperbolic.

ligand binding over such a narrow range in ligand availability. (Indeed, an 81-fold change in
ligand concentration is needed to take a hyperbolic binding curve from 10% to 90% saturation.)
Cooperative binding provides hemoglobin with a narrow, switch-like response to oxygen availability,
resulting in efficient shuttling. In subsequent chapters we will see a range of biological uses for such
switch-like behaviour.

Exercise 3.3.1 Consider a protein that binds ligand at two identical sites and derive the corre-
sponding Adair equation:

[X]/K1 + [X]? /(K1 K>)

Y = TR + (X (KK

where K1 and K5 are the dissociation constants for the first and second binding events. O

Exercise 3.3.2 Verify that the Hill function (3.19) has slope 7} at its half saturation point ([X] =
K). O

Exercise 3.3.3 The Hill function description of cooperative binding can be equivalently derived
in the limiting case where n ligand molecules bind protein P simultaneously. Confirm this fact by
deriving the fractional saturation when the binding event is

P+nX PX,.

k_1
The Hill function (3.19) can be recovered by setting K = {/k_1/k;. O
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Figure 3.11: A multi-compartment model. Each compartment is presumed well-mixed. Transport between
compartments is restricted to the connections shown. When multiple copies of a compartment are present
(e.g. mitochondria), they can be treated as a single ‘averaged’ compartment.

Exercise 3.3.4 Consider an enzyme that has two identical catalytic sites, and suppose that the
substrates exhibit cooperative binding. To simplify your analysis, presume that the cooperativity
is strong, so that the substrates can be assumed to bind simultaneously (as in Exercise 3.3.3).
Furthermore, presume that catalysis only occurs when two substrate molecules are bound. The
reaction scheme is then

ko
C — 2P+ FE.

2S+ F

k1
Verify that, in the absence of product, the reaction rate takes the form

2
Vinax$s
V=,
Ky +s

3.4 Compartmental Modelling and Transport

As described in Chapter 2, ordinary differential equation models rely on the assumption that
the reaction network occurs in a well-stirred volume. The cell is, of course, not a homogeneous
mixture, but this well-stirred assumption can often be justified when applied to individual cellular
compartments. Prokaryotic cells typically consist of a single compartment, but eukaryotic cells are
composed of a collection of membrane-bound compartments, e.g. mitochondria, the nucleus, the
endoplasmic reticulum, and the cytosol.

Multi-compartment models can be used to describe systems that involve activity in more than
one cellular compartment (Figure 3.11). In such models, species concentrations in each well-mixed
compartment are described separately. Transport of molecules between connected compartments
is described explicitly. In this section, we will consider some common models of cross-membrane
transport.
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3.4.1 Diffusion

Some molecules, such as oxygen, readily diffuse across bilipid membranes. The transport of such
species can be described by Fick’s Law, which states that the rate of diffusion is proportional to
the difference in concentration.

To illustrate, suppose species S is present in two neighbouring compartments, and diffuses
freely across the membrane that separates them. If [S]; and [S]s are the concentrations of S in
compartments 1 and 2, then the rate of flow of molecules from compartment 1 to compartment 2
is given by

rate of flow = D([S]; — [S]2) (3.20)

where the constant D quantifies how readily S diffuses across the membrane. To describe the
resulting changes in concentration, compartment volumes must be taken into account. If V; and V5
are the volumes of compartments 1 and 2 respectively, the concentrations in the two compartments
can be described by

dt
The constant D thus has units of volume - time™!.

In the long-term, diffusion leads to equal concentrations in both compartments. The con-
centration in the smaller volume will approach steady state more quickly. In particular, if one
compartment has a much larger volume than the other, the change in concentration in the larger
compartment may be negligible, so it could be treated as a fixed pool (Problem 3.7.12).

Many molecular species, such as charged ions and macromolecules, cannot diffuse through bilipid
membranes. Transport of these molecules is facilitated by specialized transporter proteins. In some
cases, these proteins simply provide small holes in the membrane that allow particular molecular
species to pass; these are called channels, or pores. For example, nuclear pores allow free diffusion
of some species between the nucleus and cytosol of eukaryotic cells. Another example, ion-specific
channels, will be taken up in Chapter 8. Transport through a channel or pore is driven by diffusion;
the rate of transport is described by equation (3.20). (In this case, the coefficient D is proportional
to the number of channels or pores that appear in the membrane.)

We next consider more specialized transporter proteins.

3.4.2 Facilitated transport

Many molecular species are transported across membranes in a species-specific fashion. Transmem-
brane carrier proteins bind specific molecules and facilitate their transport across the membrane,
as in Figure 3.12.

Passive Transport

In some cases, the transport mechanism is reversible; the direction of transport is then determined
by the concentration of ligand on either side of the membrane. This is called facilitated diffusion or
passive transport, and results, in the long term, in equal concentrations in the two compartments.

Passive transport is similar to enzyme catalysis—instead of changing a molecule’s chemical
identity, a transporter “catalyses” a change in its location. A reaction scheme showing the steps in
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Figure 3.12: Transmembrane carrier protein. The ligand binds the protein on one side of the membrane.
Through a conformational shift, the protein passes the ligand across the membrane and then releases it.

passive transport is identical to the scheme for a reversible enzyme-catalysed reaction:

S1+T =TS, ="T5 =T+ 59

where T is the transporter and \5; is the transported species in compartment 1.

If we make the simplifying assumption that the transport step (7'S7 <> T'S3) is in rapid equi-
librium and then apply a quasi-steady-state approximation to the transporter-ligand complex, the
rate of transport is given as:

a1 [S1]/ K1 — ag[S]/ Ko

transport rate = ,
b L+ [S11/Eq + (52K

where the parameters a; are the maximal transport rates in each direction and the K; reflect the
binding affinities of the ligand on either side of the membrane. (Compare with equation (3.9).)
This transport rate reduces to a linear expression (z+[S1] — #2[S2]) when the transporter pool is
far from saturation (i.e. [S1] < K7 and [S3] < K.)

This model describes a uniporter—a transporter that carries a single ligand molecule across a
membrane. Other proteins transport multiple ligands simultaneously. Proteins that facilitate the
transport of multiple ligands in the same direction are called symporters; simultaneous transport
of ligands in opposite directions is facilitated by antiporters.

Exercise 3.4.1 Prepare a reaction scheme that corresponds to a two-ligand symporter. How
does this mechanism compare with our treatment of two-substrate enzyme-catalysed reactions in
Section 3.1.27 Does the analysis have to be modified to address a two-ligand antiporter? O

Active Transport

Passive diffusion acts to eliminate differences in concentration. In some cases, cellular processes
maintain concentration gradients across membranes. In order to achieve these persistent gradi-
ents, cells expend energy to transport molecules against diffusion—from low concentration to high
concentration—by active transport. Many active transporters, or pumps, consume ATP; others are
co-transporters that couple the diffusion-driven transport of one ligand to the transport of another
ligand against its concentration gradient.

Because intracellular ATP levels are tightly regulated, models often treat the concentration of
ATP as fixed. In these cases, the dependence of a transporter on ATP can be incorporated into an
effective kinetic constant. Some pumps couple the consumption of a single ATP molecule to the
transport of multiple ligand molecules. For example, the sodium-potassium pump, found in animal

65



cells, couples the consumption of a single ATP molecule to the transport of three Na™ ions into
the cell and two K™ ions out of the cell, both against their respective concentration gradients.

Another example is provided by the Ca?" pumps in the membrane of the endoplasmic reticulum
of eukaryotic cells. Some of these pumps transport two Ca* ions out of the cytosol each time they
consume an ATP molecule. Assuming that the two calcium ions bind with strong cooperativity and
that the rate of transport is proportional to the fractional occupancy of the pumps, the transport
rate is then

a[Ca2+]2

K+ G2 (3.21)

transport rate =

where the maximal rate « is implicitly dependent on both the cytosolic ATP level and the abundance
of pump proteins.

Exercise 3.4.2 Derive formula (3.21). (Compare with Exercise 3.3.4.) O

3.5 *Generalized Mass Action and S-System Modelling

The law of mass action provides an excellent description of reaction rates in ideal conditions: dilute
molecular solutions at high molecule counts in a well-stirred reaction vessel. The rates of chemical
processes occurring within the cell—a highly concentrated and inhomogeneous environment—often
differ from mass action. These differences can sometimes be accounted for by describing reaction
rates as functions of chemical activities, rather than concentrations. Chemical activities correspond
to effective concentrations; they are dependent on the composition of the solution in which the
reaction occurs. In some cases, the activity, a, is related to the concentration by a power-law:
e.g. ax = [X]7, for some exponent . Applying the law of mass action to activities (instead of
concentrations) can give rate laws with non-integer powers of concentrations, e.g.

k1
X—Y reaction rate : kijax = ki[X]?
ko
X+X——7 reaction rate : ko(ax)? = ka([X]7)? = ko[ X]%.

These are referred to as Generalized Mass Action (GMA) rate laws.

Generalizing mass action in this way allows simple approximations of complex rate laws. As
an example, Figure 3.13 compares the generalized mass action rate law v = s°4 to the Michaelis-
Menten rate law v = lz—fs The two curves agree quite well over the range shown, although they
diverge for larger values of the substrate concentration. (The GMA rate law does not saturate.)
In this simple case, we generally prefer the Michaelis-Menten formulation since it was derived from
the reaction mechanism, while the GMA rate law can only be used as an empirical fit. However,
when more complex rate laws are considered—especially those involving multiple substrates and
regulators—the GMA approximation becomes more attractive. The number of parameters in a
Michaelis-Menten rate law increases rapidly as more substrates or regulators are included in the
reaction mechanism. In contrast, a GMA formulation involves about one parameter per species,

and so provides a formulation that is much more tractable in terms of fitting to experimental data.
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Figure 3.13: Comparison of generalized mass action and Michaelis-Menten rate laws. The GMA rate law
(v = 8%4) provides a good approximation to the Michaelis-Menten rate law (v = 12+SS) over the range shown,
but diverges as the substrate concentration increases.

S-system modelling

In the late 1960’s Michael Savageau proposed a novel modelling framework that takes the sim-
plification inherent in a GMA formulation one step further. Savageau’s approach condenses each
differential equation in a model by lumping all production terms into a single GMA expression,
and all consumption terms into another. The result is a simple model that contains relatively few
parameters and yet is able to describe a wide range of nonlinear behaviours. Models of this type
have come to be called S-system models. (The “S” stands for synergism and saturation. S-system
modelling provides a simple framework for approximating these nonlinear effects.)

One significant advantage of the S-system framework is that the steady-state species concen-
trations can always be determined analytically—after a transformation, the steady-state solution
can be found by solving a linear system of equations. In contrast, Michaelis-Menten formulations
rarely give rise to systems for which the steady state can be described explicitly.

To illustrate the S-system modelling framework, consider the reaction scheme shown in Fig-
ure 3.14, in which species Sy allosterically inhibits its own production. The concentrations s; and
so of species S7 and Sy satisfy

d
—s1(t) = v —w 3.22
o 1(t) 1— V2 (3.22)
—S9(t) = wvg —v3 — 4.
7 2(1) 2 — U3 — U4
To construct an S-system model, we make the following power-law approximations:
V1 = og vy = sy 5’ v3 4 V4 = agsy’ (3.23)

The parameters «; are rate constants; the g; are kinetic orders. Because S5 acts as an allosteric
inhibitor, go will be negative.
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Figure 3.14: Reaction scheme for S-system model analysis. The labels v; indicate the rates of the corre-
sponding reactions. (They are not mass-action rate constants.) The blunted dashed arrow indicates that
species Sy allosterically inhibits its own production.

The steady-state species concentrations satisfy

ar — ags{ sy
= asi'sy — azsP.

These equations can be rewritten as

ar = agsy'sy
agsi'sy = azs).

The terms in these equations are all positive, allowing us to take logarithms. The logarithm of the
first equation gives

loga; = log(ags]'sy?) = logas + log s7" + log s3° = log aia + g1 log s1 + g2 log sa.

The second equation yields
log az + g1 log s1 + g2 log s3 = log a3 + g3 log sa.
This is a pair of linear equations in log s; and log so; it can be solved to yield

log oy — log g — Z(log a1 — log avg
logs; = 9913 ( ) (3.24)

log a; — log a3
93 '

logse =

Taking exponentials on both sides gives the steady-state concentrations. This example will be
revisited in Problem 4.8.15, which illustrates how further insight can be drawn directly from these
explicit descriptions.

Exercise 3.5.1 Consider the irreversible three-step reaction chain — S7 — S —. Formulate an
S-system description of the system, presuming a constant input rate g and GMA reaction rates

a1[S1]9* and ae[S2]92. Derive explicit formulas for the steady-state concentrations of s; and sg. O
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3.6 Suggestions for Further Reading

e Enzyme Kinetics: A concise introduction to enzyme kinetics can be found in FEnzyme
Kinetics (Cornish-Bowden and Wharton, 1988). A more complete description is provided
in Fundamentals of Enzyme Kinetics (Cornish-Bowden, 1979). More recent treatments are
Enzyme Kinetics and Mechanism (Cook and Cleland, 2007), and Enzyme Kinetics for Systems
Biology (Sauro, 2011).

e Compartmental Modelling: An extensive treatment of compartmental modelling is pro-
vided in Compartmental Analysis in Biology and Medicine (Jacquez, 1985).

o S-system Modelling: S-system modelling is introduced by Michael Savageau in his book
Biochemical Systems Analysis: a study of function and design in molecular biology (Savageau,
1976). An updated treatment is given in Computational Analysis of Biochemical Systems: a
practical guide for biochemists and molecular biologists (Voit, 2000).

3.7 Problem Set

3.7.1 Michaelis-Menten kinetics: estimation of parameters.

a) How would you estimate the Michaelis-Menten parameters V,,,, and K from a Lineweaver-Burk
plot: a linear plot of 1/v against 1/s (where v is the reaction rate, or velocity).
b) An alternative formulation, suggested by Hanes and Woolf, is to rearrange the kinetic description
to yield a linear equation for 7 as a function of s. Derive this formula.

3.7.2 Michaelis-Menten kinetics: separation of time-scales. The separation of time-scales
that was used to derive the Michaelis-Menten rate law (3.5) from reaction scheme (3.2) depends on
the substrate being much more abundant than the catalysing enzyme. This separation of timescales
can be formalized as follows.

a) Rescale the variables in system (3.3) by defining C' = ¢/ep and S = s/s(0), where e is the total
enzyme concentration and s(0) is the initial concentration of substrate. These new variables are
dimensionless ratios. Show that these scaled concentrations S and C' satisfy

0) d
M—S(t) = —k1S(t)s(0)(1 = C(t)) + k_1C(t)
er dt
d
S0M) = kSO0 - 1) ~ (k1 +k)C().
b) Explain why this set of equations exhibits a difference in time-scales when @ is large. Hint: the

terms describing the dynamics on the right-hand-side of these equations are of roughly the same
size (they are virtually the same, except for the sign). How, then, will the size of % compare to
the size of % ?

3.7.3 Reversible Michaelis-Menten kinetics.
a) Derive the reversible Michaelis-Menten rate law (equation (3.9)) as follows. Apply a quasi-
steady-state assumption to the complex C' in reaction scheme (3.8) to arrive at a description of its
concentration:
(455 — kleTs + k_geTp '
kis+k_op+k_1+ ko
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Next, confirm that the reaction rate is

v d () = kiksers — k_1k_serp
T # T kst kapt k1 + ke

b) Express the parameters in equation (3.9) (i.e. V¢, V;., Kg, Kp) in terms of the rate constants
k‘l, k‘g, ]{7_1 and ]{7_2.
c¢) Confirm that when k_s is zero, the irreversible Michaelis-Menten rate law is recovered.

3.7.4 Product inhibition. Many enzymatic reactions that are irreversible are nevertheless sub-
ject to product inhibition, meaning that the product readily re-binds the free enzyme. To describe
product inhibition, consider the scheme:

S+F ~ (4 > (Y ~P+ F,
k_q k_o

which is equivalent to scheme (3.1), except the conversion step is irreversible. From this reaction
scheme, derive the rate law

ip(t) _ U _ ‘/;naxs
di s+ Ku (1 + K%)

3.7.5 Michaelis-Menten kinetics: first-order approximation. Consider the reaction chain

Vo U1 V2 U3
S > So S3

in which the v; are labels for the reaction rates (not mass-action constants). Take the rate vy as
fixed and presume the other reactions follow Michaelis-Menten kinetics, with

VinasSi
v = ,
Y K+ s
where s; = [S;]. Take parameter values (in mM/min) vo =2, VL =9 V2 =12, V3 =15; (in

mM) KMl = 1, KM2 = 0.4, KMg =3.

a) Simulate the system from initial conditions (in mM) (si,s2,s3) = (0.3,0.2,0.1). Repeat with
initial condition (si, s2,s3) = (6,4,4).

b) Generate an approximate model in which the rates of reactions 1, 2, and 3 follow first-order
mass-action kinetics (i.e. v; = k;s;, for i = 1, 2, 3). Choose values for the rate constants k;
that give a good approximation to the original nonlinear model. Explain your reasoning. (Hint:
Exercise 3.1.2(b) provides one viable approach.)

¢) Simulate your simpler (mass-action based) model from the sets of initial conditions in part (a).
Comment on the fit. If the approximation is better in one case than the other, explain why.
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3.7.6 Michaelis-Menten kinetics: double-displacement reactions. Recall the double-
displacement (ping-pong) mechanism for an irreversible enzyme-catalysed two-substrate reaction
as described in Section 3.1.2. Suppose the reaction scheme is

kl k2
01 E— P—I—E*

A+ FE

k_q

k’g k4
B+E——0Cy—> Q+E
k_3

Derive a rate law as in equation (3.12) by using the conservation ep = [E] 4 [C1] + [E*] + [C2] and
applying a quasi-steady-state assumption to the substrate-enzyme complexes (C; and C9) and to
the modified enzyme E*. You should find that the constant term K 4p in the denominator is zero.

3.7.7 Specificity constants. Some enzymes catalyse multiple reactions. When distinct sub-
strates compete for an enzyme’s catalytic site, they act as competitive inhibitors of one another. In
this context, we can define the specificity constant for each substrate as the ratio of the enzyme’s
corresponding catalytic constant, k., (ko in scheme (3.2)), to the substrate’s Michaelis constant,
Ky

k:cat
Ky

specificity constant: ks =

Suppose two species, S and S’ are both substrates for an enzyme E. Verify that the ratio of the
reaction rates for S and S’ is the product of the ratio of their concentrations and the ratio of their
specificity constants:

rate of reaction of S [S] ks

rate of reaction of S’  [9] ks

Hint: There is no need to construct a reaction scheme. Take the rate of reaction of S to be

KM(liT[g,Cf/‘I[f;]w) 5] and likewise for S’. (That is, the Michaelis constant for S’ is equal to its

inhibition constant with respect to S, and vice-versa).

3.7.8 Allosteric activation. Consider an allosteric activation scheme in which an allosteric
activator must be bound before an enzyme can bind substrate. This is called compulsory activation.
The reaction scheme resembles a two-substrate reaction, but the enzyme-activator complex stays
intact after the product dissociates:

k1
R+F —— FER
k_1

k’g k3
FR+S =—— FRS ——> P+ ER,
k_o

where R is the allosteric activator (regulator).
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a) Apply a quasi-steady-state assumption to the two complexes FR and ERS (and use enzyme
conservation) to verify that the rate law takes the form

srkser Vinax ST
v = —
k_otks | k_i1(k_2+ks) Kir+ Ko+rs
e e Torks + sr 1 2

where r is the regulator concentration and s is the substrate concentration.

b) Next, consider the case in which catalysis can only occur after n regulator molecules have bound.
Assuming the the binding involves strong cooperativity, we can approximate the regulator-binding
events by:

k1
nR+F —— ER,
k_4
Verify that in this case the rate law takes the form

Vmaxsrn

v Klr”—l—Kg—l—r”s

c¢) Confirm that when regulator and substrate are at very low concentration, the the rate law in
part (b) can be approximated as

3.7.9 Non-cooperative multi-site binding. A protein with multiple binding sites that are
independent (no cooperativity) cannot exhibit a sigmoidal binding curve, even when the binding
sites have distinct affinities. Consider a protein with two ligand binding sites of different affinities.
Show that in this case the fractional saturation is simply the sum of two hyperbolic relations:

[X]/ K1 [X]/ K

Y= xRy T a0 T X))

where K7 and K5 are the dissociation constants for the two sites. Plot this relation for various
values of K7 and K> to confirm that it describes a hyperbolic binding curve.

3.7.10 Negative cooperativity. The discussion of cooperative binding in Section 3.3 focused
on positive cooperativity, in which the substrate binding affinity increases as substrates bind.
Some proteins, such as the enzyme glyceraldehyde-3-phosphate dehydrogenase, exhibit negative
cooperativity—substrate affinity drops as substrates bind.

a) Consider the Adair equation for two sites in Exercise 3.3.1. Plot the curve for a negative
cooperative case (e.g. for Ky > K;.) Is the curve sigmoidal?

b) An extreme case of negative cooperativity is known as half-of-the-sites reactivity,

3.7.11 The concerted model of cooperativity. In 1965 Jacques Monod, Jeffries Wyman and
Jean-Pierre Changeux proposed a mechanistic model of cooperativity (Monod et al., 1965). Their
model addresses a multimeric protein composed of identical subunits, each with one ligand binding
site. They supposed that each subunit could transition between two conformations: a tensed state
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Figure 3.15: Binding scheme for concerted model of cooperativity (Problem 3.7.11).

T, and a relaxed state R. For each protein molecule, all of the subunits are presumed to have
the same conformation at any given time: transitions between the relaxed and tense states are
concerted.

In the absence of ligand, the tensed state is more stable than the relaxed state. The relaxed
state, however, has a higher affinity for ligand. Thus, at a sufficiently high ligand concentration,
ligand binding causes the protein to adopt the relaxed state. This increases the protein’s affinity
for ligand, triggering a positive feedback, and resulting in a sigmoidal binding curve.

This mechanism is called the MWC model, or the concerted model. The ligand-binding scheme

for a dimer is shown in Figure 3.15, where Ry is the dimer of two relaxed monomers and 75 is the
dimer of two tensed monomers.
a) Let K be the equilibrium constant for the Ry <+ Ty conversion (i.e. K = [T3]/[Rs] at steady
state). Suppose that the dissociation constant for ligand binding to Ry is K, while the dissociation
constant for ligand binding to T, is K7. (The dissociation constants for the first and second binding
events are the same, but the association/dissociation rates will depend on stoichiometric factors
that reflect the number of sites.)

Confirm that in steady state, the concentrations satisfy

[R2] = % [RQXl] = %E%Rz] [R2X2] _ %2}5(1]
TX] = %}FB] [T2X5] = %2;(1]

(The stoichiometric pre-factors reflect the availability of binding sites.) Use these equilibrium
conditions to verify that in steady state the fractional saturation is given by
[X] [X] [X] [X]
kBB R (R

T

T K<1+%)2+<1+%>2 ’ (3.25)
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Plot the corresponding binding curves for Kr = 1000, Kg = 1, and K = 500, 1000, and 2000.
Verify that although this is not a Hill function, the curves are nevertheless sigmoidal.

b) Consider the special case of the concerted mechanism in which K = 0. Interpret the resulting
binding mechanism and use formula (3.25) to verify that the resulting binding curve is hyperbolic.
Repeat for the case when K = Krp.

c¢) Verify that when the concerted model is applied to a tetramer (such as hemoglobin), the resulting
fractional saturation is

KL (14 Y B (g Y

- K(1+%)4+(1+%>4

3.7.12 Compartmental modelling: diffusion. Consider a system composed of three compart-
ments: Compartment 1, the nucleus, with volume V;; Compartment 2, the cytosol, with volume
Va; and Compartment 3, the surrounding extracellular space, with volume V3.

a) Suppose that a molecular species S can diffuse across the nuclear membrane and across the
cellular membrane. Confirm that the species concentrations s; in compartment ¢ satisfy

%sl(t) - %(32(t)—81(t))
Soalt) = Thsi(0) = 52(0) + T (sal0) — s2(0)
%83@) = %(52@)—33(7&)),

where D1 and D characterize diffusion across the nuclear and cell membrane, respectively.
b) Suppose that the initial concentrations are s, s5, and s3. Verify that at steady state:
§55 — 55 — ¢55 — S%’Vl + ngé + S%‘/?)
1 2 3 Vi+ Vo + Vs

c¢) Suppose now that the concentration of S in the extracellular space is buffered, so that s3 = 3
(constant). Verify that in this case the steady state is given by

51° = 85" =53

d) Continuing with the buffered concentration assumption in part (c), suppose that species S is
produced in the nucleus at rate k, i.e.

d Dy

—s1(t) = =—=(s2(t) —s1(t)) + k

Zoat) = Pha(t) = s1(t)
Determine the steady-state concentrations of s{® and s3° in this case. How does the difference
57° — s5° depend on the model parameters? Interpret your results.

3.7.13 *S-system modelling. Consider the reaction network in Figure 3.16. Formulate an
S-system model of the network, using reaction rates v; = a1[S1]9, va = a9, v3 = ag[S1]92[52]93,
vg = ay[S3]9%. Derive explicit formulas for the steady-state concentrations in terms of the model
parameters.
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Figure 3.16: Reaction network for Problem 3.7.13. The blunted dashed arrow indicates that species
S1 allosterically inhibits its own production.
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Chapter 4

Analysis of Dynamic Mathematical
Models

A system is anything that talks to itself. All living systems and organisms ultimately
reduce to a bunch of regulators—chemical pathways and neuron circuits—having con-
versations as dumb as “I want, I want, I want; no, you can’t, you can’t, you can’t.”

—Kevin Kelly, Out of Control

In the preceding chapters we made the implicit assumption that, in the long-term, the concen-
trations of species in a chemical reaction network will settle to a (unique) steady state profile,
regardless of the initial conditions. This is almost always a safe assumption in dealing with closed
chemical reaction networks. However, when considering open networks, more interesting behaviours
can occur. In this chapter we introduce mathematical techniques that can be used to explore these
dynamic behaviours.

4.1 Phase Plane Analysis

In Chapter 2, we represented the dynamic behaviour of reaction networks by plotting the concen-
trations of the reactant species as functions of time (in analogy to experimental time-courses). An
alternative approach to visualization is to plot concentrations against one another.

To provide a concrete example of this technique, consider the biochemical network shown in
Figure 4.1, which involves two species, S1 and S3. To keep the analysis simple, we suppose that
all reaction rates follow mass action (or, equivalently, Michaelis-Menten kinetics with all enzymes
operating in their first-order regime). The allosteric inhibition of v; will be modelled by presuming
strong cooperative binding of n molecules of S3. We can then write

L+ (s2/ K

where s1 = [S;] and so = [S2], so that

U1 vg = ko, v3 = k3s1, v = k452, vs = kss1,

%81(7&) _ H@SCW sy (t) — ks (1)
%Sg(t) = ko+ k5$1(t) — k482(t). (4.1)
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Figure 4.1: Biochemical reaction network. The production of S; is allosterically inhibited by Sy (blunted
dashed arrow). The labels v; indicate the rates of the corresponding reactions. (They are not mass-action
rate constants.)
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Figure 4.2: Simulation of model (4.1). A. Concentrations plotted against time. Both [S;] and [S2] overshoot
their steady state values before coming to rest. B. Concentration [S1] plotted against concentration [Ss]
in the phase plane. Parameter values: (in concentration - time~!) k; = 20 and ko = 5; (in concentration)
K =1; (in time™!) k3 = 5, k4 = 5, and k5 = 2; and n = 4. Units are arbitrary.

Figure 4.2A shows a simulation of the system, starting at initial concentrations of zero. In panel
B, the same simulation is displayed by plotting the concentration so against the concentration s;
in what is called the system’s phase plane (i.e. the sj-so plane). The phase plane plot (also
called a phase portrait) shows the concentrations starting at the initial state (s, s2) = (0,0) and
converging to the steady state. This curve is called a trajectory. Comparing with Figure 4.2A, the
phase plot emphasizes the time-varying relationship between the two variables, but de-emphasizes
the relationship with time itself. Indeed, the direction of motion is not explicitly indicated by the
curve, and although each point (s;(t),s2(t)) corresponds to a particular time instant ¢, the only
time-points that can be easily identified are at ¢ = 0 (where the curve starts) and the long-time
behaviour (t — oo, where the curve ends).

The phase portrait allows multiple time-courses (trajectories) to be usefully described in a single
plot. This is illustrated in Figure 4.3A, which shows the time-course in Figure 4.2A along with a
number of other time-courses, each starting from a different initial condition. All of the trajectories
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Figure 4.3: Simulations of model (4.1). A. Multiple time-courses confirm the steady state concentrations,
but the transient behaviour cannot be usefully resolved. B. On the phase plane, the individual trajectories
provide a unified picture of the dynamic behaviour of the system. Parameters as in Figure 4.2.

reach the same steady state, but the transient behaviour is a meaningless jumble. These same
simulations are shown as trajectories on a phase plane in Figure 4.3B. Here the overall system
behaviour is clear: the trajectories follow a slow spiral as they approach the steady state.

Because phase portraits are two-dimensional, they cannot capture system behaviour when more
than two species are involved in the network. However, we will find that insights gained from
applying phase-plane analysis to these low-dimensional systems will be directly applicable to larger
and more complex models.

4.1.1 Direction fields

A phase portrait can become crowded as more and more trajectories are added. An alternative to
drawing all of these curves is to use short arrows to indicate the direction and speed of motion at
each point on the phase plane. The resulting plot is called a direction field.

Figure 4.4A shows the phase portrait from Figure 4.3B along with the corresponding direction
field. The trajectories lie parallel to (i.e. tangent to) the vector field at each point. Additional
trajectories can be sketched by simply following the arrows. An analogy can be made to fluid
flow, as follows. Imagine a two-dimensional flow (on, for instance, a water table). The vector
field describes, at each point, the direction of motion of a particle suspended in the fluid. The
trajectories are the paths such particles would traverse as they follow the flow.

A direction field is, in a sense, easier to construct than a phase portrait. To plot trajectories in
the phase portrait, simulations of the differential equation model must be carried out. In contrast,
the direction field can be determined directly from the differential equation model, as follows. For
a general system involving two species concentrations s; and sa:

%sl(t) = f(s1(t), 52(t))
d

52 ) = g(s1(t),s2(t)),
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Figure 4.4: Direction field for model (4.1). A. The field of arrows indicates the direction of motion at
each point. Trajectories are curves that lie tangent to the arrows; they follow the flow. B. Arrows in the
direction field can be generated directly from the model—mo simulation is needed. At each point (s1, $2),

the direction of the arrow is the slope of sy with respect to s; (g—:f). This slope can be determined from

the model dynamics, which specify the rates of change of so and s;. In Panel A, these vectors have been
normalized to display a field of arrows of equal length.

the motion in the phase plane at any given point (s1, s2) is given by the vector (f(s1,$2),g(s1,52)),
as indicated in Figure 4.4B. The direction field can be constructed by selecting a mesh of points
(s1, 82) in the phase plane and, at each point, drawing an arrow in the appropriate direction.

Exercise 4.1.1 Consider the system

%:ﬂ(t) = —y(t) %y(t) = z(t).

Sketch the direction field by drawing the direction vectors at the following points in the z-y phase
plane: (1,0), (1,1), (0,1), (—1,1), (—1,0), (—1,—1), (0,—1), (1,—1). (Place each vector as an arrow
with its tail at the corresponding point in the phase plane.) Can you infer the overall behaviour of
the system around its steady state at (0,0)7 You may want to draw a few more arrows to confirm
your conjecture. O

Exercise 4.1.2 Explain why trajectories in the phase portrait cannot cross one another. Hint:
consider the direction of motion at the intersection point. O

4.1.2 Nullclines

A key feature of a system’s phase portrait are points at which the trajectories ‘turn around’—that
is, points at which trajectories change their direction with respect to one of the axes. These are the
points at which one of the two variables s1(t) or sa(t) reaches a local maximum or local minimum.

On the phase plane, these turning points occur whenever a trajectory is directed either vertically
(the direction arrow points straight up or down) or horizontally (the arrow points directly left or
right). Rather than identify these points by examining the phase portrait, we can determine
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Figure 4.5: Nullclines for model (4.1). A. The trajectories intersect the nullclines at turning points. The
steady state occurs at the intersection of the nullclines. B. The nullclines divide the phase plane into four
regions. Since the direction arrows only ‘flip’ directions at the nullclines, each region is characterized by
motion in a particular direction (up/down, left/right), as indicated.

them directly from the model (because the direction of motion is specified by the model, as in
Figure 4.4B). These ‘turning points’ constitute the system nuliclines:

The set of points (s1, s2) where %sl(t) = f(s1,s2) = 0 is called the sj-nullcline.
Likewise, the set of points where %Sg(t) = g(s1,82) = 0 is called the sg-nullcline.

Referring to Figure 4.4B, we confirm that points on the sj-nullcline have direction arrows with
no horizontal component (so are oriented vertically), while points on the sy-nullcline have direction
arrows with no vertical component (so are oriented horizontally).

Figure 4.5A shows the phase portrait from Figure 4.3B along with the nullclines. The tra-
jectories cross the s; nullcline when they are oriented vertically and cross the ss nullcline when
they are oriented horizontally. The nullclines intersect at the steady state, because at that point
el = f(s1,59) = 0 and %2 = g(s1,5) = 0.

The nullclines are shown together with the direction field in Figure 4.5B. The nullclines separate
the phase plane into four regions; in each region the direction arrows all have the same up-or-down
and left-or-right orientation (since the arrows change these directions only when a nullcline is
crossed). Thus, as shown in the figure, a rough picture of system behaviour can be generated by
specifying the direction of motion in each of the regions.

The nullclines, like the direction field, can be determined directly from the model—without
running simulations. However, the equations f(s1,s2) = 0 and g(s1, s2) = 0 are typically nonlinear,
and so may not be solvable except via computational software.

Exercise 4.1.3 For model (4.1), the nullclines can be determined analytically. Verify that the
s1-nullcline is given by

k1
(k3 + ks5) (1 + (s2/K)")

S1 =

while the sg-nullcline is the line

_ ko + kssq

52
k4
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Figure 4.6: Symmetric biochemical network. Each species allosterically inhibits production of the other
(blunted dashed arrows).

4.2 Stability

The long time (i.e. asymptotic) behaviour of biochemical and genetic networks will be either
e convergence to a steady state; or
e convergence to a sustained periodic oscillation, referred to as limit cycle oscillation.

Other dynamic behaviours (divergence and chaos, for example) do not often occur in systems
biology models.

For the network studied in the previous section (model (4.1)), we saw that all trajectories
converge to a unique steady state. To explore an alternative asymptotic behaviour, we next consider
the network in Figure 4.6. This reaction scheme is symmetric—each species allosterically inhibits
production of the other, resulting in a mutual antagonism.

With cooperative inhibition and first-order consumption rates, the model is

d oy
at® = 1 + (s2(0)/ )™ a1 ()
%32@) = 1 (31(112) AL — kysa(t). (4.2)

We first consider an asymmetric model parametrization in which ny > no. In this case, the
inhibition by S5 is more effective than the inhibition by 5. If the other parameters are symmetric
(k1 = ko, K1 = Ky, ks = k4) we should expect the model to exhibit a steady state in which the
concentration of Sy is low and the concentration of S is high (the mutual antagonism ‘competition’
will be won by Sg). This intuition is confirmed by Figure 4.7. Panel A shows two time-courses
starting from different initial conditions. Regardless of whether Sy or Sy is initially more abundant,
the imbalance in inhibition strength leads to the same steady state (low [S1], high [S3]). The phase
portrait in Figure 4.7B confirms this finding. All trajectories converge to the steady state at the
intersection of the s1- and so-nullclines, at which S5 dominates.

We next consider the symmetric case. Changing the Hill coefficients so that n; = ng, the
two species S1 and Sy are perfectly balanced. Because neither species has an advantage over the
other, we should expect the system to exhibit symmetric behaviour: the two concentrations might
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Figure 4.7: Model (4.2) with imbalanced inhibition strength. A. Time-series plots show that regardless of
the initial condition, the system settles to a steady state with high S5 concentration and low .S; concentration.
B. This phase portrait confirms that all trajectories approach the high-[Ss], low-[S1] steady state at which
the nullclines (dashed lines) intersect. Parameter values: k; = ko = 20 (concentration-time™!), K3 = Ky =1
(concentration), k3 = ky = 5 (time™1), n; = 4, and ny = 1. Units are arbitrary.

converge to the same value (a ‘tie game’), or one species will maintain dominance over the other
(and emerge as the ‘winner’). The system’s steady-state behaviours are illustrated in Figure 4.8.
Panel A shows that the long-time behaviour depends on the initial conditions—whichever species is
initially more abundant maintains its dominance. The phase portrait in Panel B shows a symmetric
phase plane. Trajectories are attracted to whichever steady state is closer. The region of the phase
plane from which trajectories converge to each steady state is called the basin of attraction of that
steady state. Curves that separate basins of attraction are called separatrices. In this perfectly
symmetric case, the separatrix is the diagonal.

A system that exhibits two distinct steady states is called bistable. (In contrast, a system with
a single steady state is called monostable.) Bistability provides a system with a type of memory—
the system’s long-term behaviour reflects its past condition. Biological implications of bistability
will be discussed in later chapters.

There are two essential ingredients to bistability: positive feedback and nonlinearity. In the
model considered here, the positive feedback is implemented in a double negative feedback loop:
each species inhibits production of the other and thus inhibits the inhibition of itself. Thus each
species acts to enhance its own production—a positive feedback. (Double negative feedback is
sometimes called derepression.) Nonlinearity is provided by the cooperative inhibition mechanism.

These two ingredients are necessary for bistability, but they do not guarantee it: the model
structure and parameter values must also be properly aligned.

4.2.1 Stable and unstable steady states

The nullclines in Figure 4.8B intersect at the two steady states exhibited by the system, and they
also intersect at a third point, on the diagonal. This symmetric point is a steady state for the
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Figure 4.8: Model (4.2) with balanced inhibition strength. A. Time-series plots show that the steady
state behaviour depends on the initial conditions. Either species can dominate over the other if its initial
concentration is larger. B. The phase portrait confirms the presence of two steady states at which the
nullclines (dashed lines) intersect. Each trajectory converges to the closer steady state. The two basins of
attraction are separated by the diagonal (dotted line). Parameter values: k3 = ka = 20 (concentration -
time™1), K; = Ko = 1 (concentration), k3 = k4 = 5 (time™!), ny = ny = 4. Units are arbitrary.

system, but it will not be observed as a long-time state of the system. The behaviour of the
trajectories near this symmetric steady state is shown more clearly in Figure 4.9. Trajectories
near this state are repelled from it; they tend toward one of the other two steady states. We say
that this steady state is unstable because nearby trajectories diverge away from it. In contrast,
the other two steady states in Figure 4.8B—which attract nearby trajectories—are called stable.
This system thus has two stable steady states and one unstable steady state. The existence of an
intermediate unstable steady state is a defining feature of bistable systems.

In theory, the unstable steady state can be maintained by perfectly balanced initial conditions
(trajectories balanced on the diagonal will converge to this point). However, any deviation from
this balance causes the trajectory to tend toward a stable steady state. This behaviour is illustrated
by a standard metaphor for stability: a ball rolling on an undulating slope (Figure 4.10), in which
valley bottoms correspond to stable steady states while hilltops correspond to unstable steady
states. A ball within a valley is attracted to the valley bottom, and settles to rest. A ball balanced
on a hilltop will theoretically remain in that position, but the slightest nudge in any direction will
send it rolling toward a valley bottom.

By extending this analogy to three dimensions (Figure 4.11) we can illustrate the stability
behaviors of the phase plots in Figures 4.7B and 4.8B. The single valley in Figure 4.11A corresponds
to a monostable system. In Panel B, the unstable point attracts trajectories that are perfectly
balanced on the ridge, but any imbalance causes trajectories to fall to one of the valley bottoms.
Because of the shape of the surface, this unstable point is called a saddle. between them.

Exercise 4.2.1 Consider the simple reaction chain = S 3. Let s = [S]. If v; = k; (constant)
and vo = kos, then there is no feedback, and the system will be monostable, with steady state
S = k‘l / k‘g.
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Figure 4.9: Model (4.2) with balanced inhibition strength: unstable steady state. Figure 4.8B shows the
nullclines intersecting three times. This close-up of the middle intersection shows that trajectories are repelled
from this unstable steady state. The dashed lines are the nullclines. The dotted line (on the diagonal) is the
separatrix that forms the boundary between the two basins of attraction.

a) Alternatively, if v; = kjs, then S enhances its own production in a positive feedback. Take
the consumption rate to be nonlinear: vy = kos?. Verify that in this case the system exhibits two
steady states: one with s = 0 and one with s = kj /ko. In this one-dimensional case, the stability
of these steady states can be determined by evaluating the rate of change of s near each point. For
instance, when s is near zero, s> < s, so k;s? will be small compared to kos. The rate of change
%s(t) will then be positive, so s(t) increases away from the steady state at s = 0; this steady state
is unstable. Verify that the steady state s = kj/ko is stable by determining the sign of %s(t) for
s-values above and below ky/ks.

b) Next, consider the case in which v = kg + kl;f; and v = k3s; then the system exhibits positive

feedback and significant nonlinearity. In this case, the system is bistable for appropriate values of
the parameters. Take kg = 6/11, k; = 60/11, ko = 11 and k3 = 1 and verify that s =1, s = 2 and
s = 3 are all steady states. Evaluate the rate of change %s(t) around these points to verify that
s =1 and s = 3 are stable, while s = 2 is unstable.

a

So far, we have determined stability from system phase portraits. We next introduce a technique
for stability analysis that does not rely on graphical representations and is not restricted to two-
species networks.
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Figure 4.10: Stability and instability. In this analogy of a ball rolling on an undulating slope, the valley
bottoms correspond to stable steady states; balls in each valley are attracted to the valley bottom, where
they settle to rest. The hilltops correspond to unstable states; a ball perfectly balanced on a hilltop will
stay there, but any deviation will topple the ball toward one of the valley bottoms. The slope shown here
corresponds to a bistable system, with an unstable steady state separating the basins of attractions (the
valleys) of the two stable steady states.

4.2.2 Linearized stability analysis

The behaviour of trajectories near a steady state is called local behaviour. As we shall see in this
section, the local behaviour of any nonlinear system can be approximated by a linear system. This
approximation, called the linearization, can be used to test for stability of steady states.

Linearization

As reviewed in Appendix B, we can approximate any function f(s) near a particular point s = s
by the tangent line centered at s, as illustrated in Figure 4.12:

F6) = F6) + D (5)-(5  5).

The tangent line is called the linearization (or linear approzimation) of f(s) at s = 3.

Exercise 4.2.2 Consider the Michaelis-Menten rate law

Vrn ax S

M= R

a) Determine the linear approximation of f(s) at an arbitrary point §.

b) Verify that the linear approximation centered at § = 0 has the form of a (first-order) mass action
rate law.

c) Verify that when 5 is large compared to Kjs (so that Ky + § &~ §), the linearization is almost
horizontal (i.e. it approximates a zero-order rate law). O
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Figure 4.11: Monostability and bistability. A. For a monostable system, there is a single valley bottom,
representing a unique steady state to which all trajectories converge. B. A bistable system corresponds to a
pair of valleys, separated by a ridge. The low point of the ridge (white box) is the unstable steady state (a
saddle point). Most trajectories settle to one of the valley bottoms, but trajectories that remain perfectly
balanced on the ridge will settle to the unstable saddle point.

Linear approximations can also be constructed for functions of more than one variable. For a
function of two variables, f(s1,s2), the linearization centered at a point (s, s2) = (81, 52) is

f(s1,82) = f(51,52) + g—i(sl, 52)-(s1—51) + g—i(sla 52)-(s2 — 52). (4.3)

(Readers unfamiliar with partial derivatives may wish to consult appendix B.) This approximation
is valid for arguments (s1, s2) near the point (81, 52). This linearization corresponds to a tangent
plane approximating the surface z = f(s1, $2), as in Figure 4.13.

Exercise 4.2.3 Consider the rate law for a competitively inhibited enzyme:

Fo.0) = ot
T Ky(L+i/K) + s
Determine the linear approximation centered at (s,i) = (1,0). O

Now, consider the general two-species system introduced in Section 4.1.1:

d

Zo1t) = f(sa(t), s2(0))

d

52(t) = g(s1(t).52(1)).

We will construct linear approximations to f(si, s2) and g(s1, s2). By centering these linearizations
at a steady state (51, 52) we have (because f(51,52) = 0 and g(51, 52) = 0),

%81(15) = f(s1(t),52(t)) = g—i(gla§2)'(31(t) —351)+ %(51,52)'(82(?5) — 52) (4.4)
d dg

a82(t) = g(s1(t),52(t)) = a—81(§1,§2)'(81(t) —51) + %(51,52)'(82(15) — 32).
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Figure 4.12: Linear approximation of a function of a single variable. The tangent line centered at s = §
provides a good approximation to the function f(s) when the argument s is near 3.

Because we will be applying this linearization to address stability, we are particularly interested in
the behaviour of trajectories whose initial conditions are near a steady state. If the steady state is
stable, these trajectories will converge to the steady state; if it is unstable, they will diverge. We
can think of these trajectories as small displacements from the steady state that either shrink or
grow with time. To focus on these displacements, we introduce a change of variables that describes
these deviations explicitly:

wl(t) = Sl(t) — 851 1‘2(15) = Sg(t) — S9.

A small displacement from the steady state (S1,S2) thus corresponds to a value of (z1,2z2) near
(0,0). The dynamics of these displacement variables is easily determined. Observing that

d d d d
%xl(t) = %Sl(t) +0 and E@(t) = 532(15) +0,

we have the approximate dynamics (from equation (4.4)):

%xl(t) = 88—3{(81782)w1(t)+%(81782)x2(t)
%xg(t) = g—i(Sl,SQ)wl(t)—i-g—i(sl,SQ)wg(t),

which is valid for (x1, z2) near (0,0). This set of differential equations forms a linear system. The
steady state (x1,x2) = (0,0) of this linear system corresponds to the steady state (51, 352) of the
original nonlinear system. We next present a procedure for testing stability for this linear system;
this will determine stability for the nonlinear system as well.
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Figure 4.13: Linear approximation of a function of two variables. The tangent plane (black) centered at
(s1,82) = (81, 52) provides a good approximation to the function f(s1, s2) (gray surface) when the argument
(81, 82) is near (31, 52).

Stability analysis for linear systems
The general form for a two-state linear system is

d

Zai(t) = any(t) + baa(t) (4.5)
%@(t) = cx1(t) + dxo(t).

This system can be solved explicitly. Solutions take the form

z1(t) = eneMt + cppet (4.6)

xg(t) = CgleAlt—l-CQge)‘ﬁ.

The constants ¢;; depend on the initial conditions, but the values of A\ and A2 are inherent to the
system. They are the eigenvalues of the system’s Jacobian, which is constructed from system (4.5)
as the matrix

Jacobian : J:[a b]
c d

The eigenvalues of this matrix are the roots of the quadratic equation
M — (a+d)X + (ad — bc) = 0.
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Applying the quadratic formula gives

rdtVlardp-ded=b) , _(le+rd=Vle+d?-ded=b)

2 ’ 2

Al =

Depending on the sign of the discriminant (a + d)? — 4(ad — bc), these eigenvalues may be
real-valued or complex-valued.*

Exercise 4.2.4 Verify that if either of the off-diagonal terms b or c¢ is zero, then the eigenvalues
of the Jacobian are the diagonal entries of the matrix: Ay = a and Ay = d. O

Exercise 4.2.5 Consider the system

%xl(t) = —gm(t)-i'%iﬂz(t) (4.8)
Do) = Saa(t) 5ot

Find the eigenvalues of the system’s Jacobian matrix

[ 8

Next, use formula (4.7) to determine the solution of system (4.8) that satisfies initial conditions
z1(0) = %, x2(0) = g Hint: the initial conditions provide two constraints on the unknowns c;;.
Two more constraints can be determined by evaluating the time-derivative of the solutions (4.7) at

t = 0 and substituting those derivatives and the initial conditions into system (4.8). o

The general behaviour of the solutions (4.7) depends on the nature of the exponential functions

A A2t To classify the behaviour of these functions, we consider two cases.

eMt and e

Case I. The discriminant is non-negative, so that A\; and Ao are real numbers. We note that

i) If both eigenvalues are negative (e.g. \; = —3, A\ = —1), then both solutions z(t) and x2(t)
tend to zero (regardless of the values of the constants ¢;;). Because (x1,x2) is the displacement
of (s1,s2) from (51, 352), the steady state (51, 52) is stable. In this case, the steady state is
called a stable node.

ii) If either eigenvalue is positive (e.g. A\; = —3, A2 = 1), then most solutions diverge (because
one of the exponentials grows indefinitely). Thus the displacement of (s1, s2) from (51, S2)
grows; the steady state is unstable. If both eigenvalues are positive, then all trajectories
diverge, and the steady state is called an unstable node. If one eigenvalue is negative and the
other is positive, then the steady state is called a saddle point. (The unstable steady state in
Figure 4.8 is a saddle point. The negative eigenvalue causes perfectly balanced trajectories
to approach the saddle point along the diagonal, as in Figure 4.11B.)

*Complex numbers, e.g. 3 + 44, involve the square root of —1, denoted i. The generic complex number x + yi has
x as its real part and y as its imaginary part. For the complex number 3 + 44, the real part is 3 and the imaginary
part is 4 (not 41).
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Case II. The discriminant (a + d)? — 4(ad — be) is negative, so the eigenvalues are complex-valued.
In this case, referring back to equation (4.7), let

a:a;—d and 5= \/—((a+d)22—4(ad—bc)).

We can then write the eigenvalues asf

Al =a+ Fi and X =a— 31

A Aot

Because the solutions (4.7) involve the terms e*? and e*??, we will need to evaluate the exponential

of complex numbers. FEuler’s formula states that

Mt — platpBi)t e (cos(Bt) + isin(Bt))

et = (PNt — o (cog(—fBt) + i sin(—ft)) = e (cos(Bt) — i sin(Bt))

Substituting these expressions into the solution formulas (4.7), we find

z1(t) = cre®(cos(Bt) +isin(Bt)) + croe™ (cos(Bt) — isin(ft)) (4.9)
zo(t) = core™(cos(Bt) +isin(Bt)) + caoe™ (cos(Bt) — isin(ft)).

These expressions may raise some eyebrows. If z1(¢) and x5(t) describe the displacement of species
concentrations from steady state, how can they possibly take complex values? This issue is resolved
by a special property of these formulas: if the initial displacements z1(0) and x2(0) are specified as
real numbers, then the corresponding constants ¢;; guarantee that the formulas in (4.9) evaluate
to real numbers. (The imaginary parts of these expressions will cancel to zero. See Problem 4.8.2
for an example.)

Having resolved the unsettling appearance of the solution formulas (4.9), we next consider their
behaviour. In each formula the exponential e* is multiplied by terms involving cosines and sines.
These sines and cosines contribute an oscillatory component to the trajectories, but they have no
influence over whether the solutions diverge or converge. The long term behaviour is determined
solely by the exponential term e*. We note that:

i) If «, the real part of the eigenvalues, is negative, then the solutions converge to zero. In this
case the steady state is stable. It is called a stable spiral point, or focus. Solutions will exhibit
damped oscillations as they converge.

ii) If o, the real part of the eigenvalues, is positive, then the solutions diverge. The steady state
is unstable, and is called an unstable spiral point.

Fortunately, the conclusions about stability in the real-valued case and the complex-valued case
are consistent. Because the real part of a real number is simply the number itself, we arrive at the
following general statement.

Linearized Stability Criterion

i) If both eigenvalues of the Jacobian have negative real part then the steady state is stable.

"For a negative number y, we have /5 = (/=) (v/—1) = (v/=y)i.
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ii) if either eigenvalue has positive real part, then the steady state is unstable.

We have not addressed the case of eigenvalues with zero real part. This occurs only for systems
that exhibit certain symmetries, and is rarely encountered in models of biochemical and genetic
networks. (When both eigenvalues have zero real part the trajectories are periodic; they follow
circular arcs around the steady state, which is then called a center.)

We derived the linearized stability criterion for systems involving two species. It can be shown
that this eigenvalue-based criterion applies to systems of any size. (In particular, a steady state s*°
of a one-dimensional system %x(t) = f(z(t)) is stable if the Jacobian, which is simply % f(x), is
negative at x%. This Jacobian is a single number, which is also the eigenvalue.)

In summary, to apply the linearized stability criterion to a nonlinear model:

1. Identify a steady state of interest.

2. Construct the system Jacobian at that point (by taking the appropriate partial derivatives).
3. Evaluate the eigenvalues of the Jacobian.

4. Check the sign of their real parts.

To illustrate, consider model (4.2), with symmetric parameter values as in Figure 4.8, except
ny = ng = 2:

d 20 d 20

Zsi(t) = ——— —Bsy(t Zsa(t) = ——— — Bsy(2).

W=7 + s2(t) s1(t) a2 =1 + $2(t) s2(t)

Defining f(s1,s2) = 1_?_22 — 5s1 and g(s1,82) = 1i22 — Hsg, we construct the system Jacobian as
2 1
of of _ __ 20 _
Jsr,s) = | B Tm | = ° g7 2
) 88_9 Og _—T20 2281 -5

s1 Osa (1+s7)

To determine the steady state concentration profiles, we must solve the system of equations
20 B 20

2 2

1+ s35 I+ s7

—582 =0.

The three solutions (the system is bistable) can be found numerically as
(51,52) = (3.73,0.268), (1.38,1.38), (0.268,3.73).

Evaluating the Jacobian at each of these three points, and determining the corresponding eigenval-
ues, we have

-5 —9.33
—0.671 -5
-5 —6.54
—6.54 -5
-5 —0.671
-9.33 -5

J(3.73,0.268) = [ ] s A1 = —2.50, Ay = —7.50

J(1.38,1.38) = [ } A1 =—115, Ay = 1.55

J(0.268,3.73) = [ ] s A1 = —7.50, Ay = —2.50

We thus confirm that the balanced steady state (1.38,1.38) is a saddle point, while the other two
steady states are stable nodes.
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Figure 4.14: Autocatalytic biochemical reaction network. Species Sy activates its own production (dashed
arrow).

Exercise 4.2.6 Perform a linearized stability analysis for the model (4.2) with unbalanced inhibi-
tion as specified by the parameter values in Figure 4.7. The steady state is (51, 52) = (0.0166, 3.94).
O

Exercise 4.2.7 Solve for the steady state of the system

%Sl(t) = V() — klsl(t)
d t

ESQ(ZL/) = klsl(t) — ‘/2872()
Assume that V5 > V{). Use linearized stability analysis to verify that this steady state is stable for

all (non-negative) values of the model parameters. O

4.3 Limit Cycle Oscillations

So far, our analysis of long-term behaviour has been restricted to steady states. We next consider
systems whose long term behaviour is sustained oscillation.

We make a distinction between damped oscillations, which display ever-decreasing amplitude
and converge eventually to a steady state, and persistent (or sustained) oscillations, which are
periodic and continue indefinitely. These two behaviours look very different in the phase plane, but
they can look similar in time series unless simulations are run for sufficiently long time periods.

As an example of a system that displays persistent oscillatory behaviour, we consider the net-
work in Figure 4.14. In this scheme species Sy allosterically activates its own production. This sort
of positive feedback, called autocatalysis, is common in biology.

We model the network as

Sort) = ko~ kLt (s2()/K)")sa(0)
Loalt) = Rall 4 (s2(0)/K)sa(1) — ks, (4.10)

The allosteric activation is presumed to be strongly cooperative.

Intuition suggests that this system might be prone to oscillations: the positive feedback will
cause a continual increase in the rate of Sy production until the pool of S is depleted. The S5
concentration will then crash, and stay low until more Sy is available, at which point the cycle can
repeat.
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Concentration
S, Concentration

Figure 4.15: Model (4.10) with moderate nonlinearity. A. Time series. The species concentrations exhibit
damped oscillations as they converge to steady state. B. Phase plane. Damped oscillations correspond
to trajectories (solid curves) spiraling toward the steady state at the intersection of the nullclines (dashed
curves). Parameter values: kg = 8 (concentration - time™!), k1 =1 (time™!), K = 1 (concentration), ks =5
(time™!) and n = 2. Units are arbitrary.

Figure 4.15 shows the system’s behaviour when the Hill coefficient has value n = 2. The
model exhibits a single steady state—a stable spiral point. Damped oscillations of the species
concentrations are evident in both the times series (Panel A) and the phase portrait (Panel B).
These damped oscillations suggest that the system may be “close” to displaying persistent periodic
behaviour.

Next, consider the behaviour when the Hill coefficient is raised to n = 2.5, shown in Figure 4.16.
In the times series (Panel A), we see a short transient followed by sustained periodic behaviour.
The phase portrait (Panel B) shows a cyclic track, called a limit cycle, to which all trajectories
are attracted. Comparing with the phase portrait in Figure 4.15B, the nullcline structure has not
changed significantly; what has changed is the stability of the steady state. In Figure 4.15B, the
steady state is a stable spiral point. In contrast, Figure 4.16B reveals an unstable spiral point in
the center of the limit cycle. The close-up in Figure 4.17 shows how trajectories are repelled from
the unstable steady state and converge toward the limit cycle from the inside.

In the following chapters we will see a variety of oscillatory phenomenon. Sustained limit
cycle behaviours are generated from two necessary ingredients: negative feedback and nonlinearity.
Many biological oscillators can be classified as either delay oscillators or relazation oscillators. The
periodic behaviour of delay oscillators is caused by a lag in a negative feedback loop, which causes
repeated rounds of accumulated activity. Relaxation oscillators exhibit an interplay of positive
and negative feedback. Positive feedback causes these system to display near-bistable behaviour;
the negative feedback causes cyclic transfers between the two quasi-stable conditions. Relaxation
oscillators exhibit behaviour at different timescales, with slow negative feedback operating over
fast positive feedback. This results in sudden switches from one state to the other, leading to
sharp “pulse-like” oscillations. Delay oscillators, in contrast, tend to exhibit smoothly varying
time-courses.

Model (4.10) is best described as a relaxation oscillator. The allosteric activation introduces
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Figure 4.16: Model (4.10) with strong nonlinearity. A. This time series shows convergence to sustained
periodic behaviour. B. In this phase portrait all trajectories converge to a cyclic track called a limit cycle.
The steady state at the intersection of the nullclines is an unstable spiral point. Parameter values as in
Figure 4.15 except n = 2.5.

both positive feedback (increasing the rate of S production) and negative feedback (depleting the
pool of S1, and so eventually stifling Sy production). As the degree of cooperativity n is increased,
the pulse-like nature of the oscillations becomes more pronounced, with spike-like rise-and-crash
behaviours followed by longer intervals in the depleted state.

It is usually difficult to infer the existence of limit cycle oscillations directly from model struc-
ture. In the special case of two-species models, a result called the Poincaré-Bendixson Theorem can
be used. This theorem states that if all trajectories are bounded (i.e. do not escape by diverging
to infinity), and the system exhibits no stable steady states, then there must be a limit cycle. The
intuition is that the trajectories have to settle somewhere; since they cannot diverge, or settle to a
steady state, the only remaining option is convergence to a limit cycle.

Exercise 4.3.1 The Brusselator is a theoretical model of an oscillatory chemical reaction network
(developed at the Free University of Brussels). The network is

ky
- . X
ko
X —— Y
k3

2X+Y —— 3X

k4

X —
a) Verify that the model is
—x(t) = ki — kox(t) + ksz(t)?y(t) — kaw(t)
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Figure 4.17: Model (4.10) with strong nonlinearity: unstable steady state. Trajectories that start near the

unstable steady state spiral away from it, eventually converging to the limit cycle. Parameter values as in
Figure 4.16.

d

b) Find the steady state of the system.

c) Take ky = 2 (time™!), k3 = & (time™! - concentration™) and k4 = 1 (time™'). Use linearized
stability analysis to verify that the steady state is unstable when 0 < k; < /2. It can be shown
that trajectories do not diverge. The Poincaré-Bendixson Theorem thus indicates that the system
exhibits limit cycle oscillations for these k; values. O

In our discussions of bistability and limit cycle oscillations, we saw that a model’s qualitative
behaviour can change as parameter values vary. We will next introduce an analytic approach that
provides a deeper insight into these changes in model behaviour.

4.4 Bifurcation Analysis

In most cases, the position of a model’s steady state shifts if the model parameters are changed. For
instance, Figure 4.18 shows the steady state concentration of S; in model (4.1) as the parameter
k1 varies. In an experimental context, this plot would be called a dose-response curve; when it is
constructed from a model, it is called a continuation diagram.

As we have seen, variation in parameter values can cause qualitative changes in long-term system
behavior, e.g. changes in the number of steady states or in their stability properties. Parameter
values at which such changes occur are called bifurcation points; a continuation diagram on which
bifurcation points appear is called a bifurcation diagram.
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1.4

1.2r b

Steady state S1 concentration

Figure 4.18: Continuation diagram. The steady state of species S1, from model (4.1), is shown as a function
of the value of parameter k1. In an experimental context, this would be called a dose-response curve. Other
parameter values as in Figure 4.2.

Exercise 4.4.1 Consider the differential equation

d
ax(t) = (a — 1)x(t).

By determining the sign of the rate of change ‘fl—f for positive and negative values of x, verify that
the steady state at x = 0 is stable if a < 1, and unstable if @ > 1. The parameter value a = 1 is
thus a bifurcation point for this system. O

Figure 4.19, shows a bifurcation diagram for the symmetric reaction network modelled by (4.2).
The phase plots in Figure 4.19A show the nullclines at four different values of parameter k. As ky
varies, the sj-nullcline (gray curve) shifts, changing the number of points at which the nullclines
intersect. The bifurcation diagram in Figure 4.19B shows the steady-state behaviour of [S1] as k;
varies. The points corresponding to each subplot in Panel A are marked. This S-shaped bifurcation
curve is characteristic of bistable systems. The points where the bifurcations occur (at k; = 16.1
and k1 = 29.0) are called saddle-node bifurcations (because they occur when an unstable saddle
point and a stable node come together). Between these bifurcation points, three steady states
co-exist,.

Figure 4.19B reflects the ability of this bistable system to act as a switch: an input that pushes
parameter k1 back and forth past the saddle-node bifurcations will toggle the system between low-
and high-[S;] states. The intermediate bistable range introduces a lag into this switching action;
over this interval, the state is not uniquely determined by the value of ki, it also depends on the
previous condition. The sketch in Figure 4.20A illustrates this behaviour. If the bistable range
is entered from the high state, then the system remains in the high state over this interval. The
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Figure 4.19: Bifurcation diagram for model (4.2). A. Nullclines at various values of k;. As k; increases,
the sj-nullcline (gray curve) shifts: (i) at low kj there is a single steady state (low [S1], high [S3]); (ii)
at a higher value of k1, a new steady state appears when a new intersection appears; (iii) at still higher
values, three intersection points are exhibited—the system is bistable; (iv) finally, at high k; values, there
is again a single intersection point (high [S;], low [S2]). B. Bifurcation diagram showing the S; steady
state concentration as a function of the value of parameter k1. At low and high k; values, the system is
monostable and exhibits a single stable steady state (solid curves). Over a mid-range interval, the two stable
steady states co-exist, separated by an unstable steady state (dashed curve). The k; values at which steady
states appear or disappear are saddle-node bifurcations. The k; values represented in Panel A are indicated.
Parameter values: ks = 20 (concentration - time™!), K1 = Ky = 1 (concentration), k3 = ky = 5 (time™1),
n1 = ng = 2. Units are arbitrary.

opposite holds if the bistable region is entered from the low state. This ‘path-dependent’ property
is referred to as hysteresis. As the system cycles back and forth between the two states, it follows a
hysteresis loop, in which transitions between the two states occur at two separate threshold values
(i.e. at the two bifurcation points). Bistable switches can be irreversible. As shown in Figure 4.20B,
if one of the two saddle-node bifurcations is outside the range of relevant parameter values, then
the system executes a one-way transition between the two states.

Next, we turn to the oscillatory model (4.10). Recall that for this model, oscillatory behaviour
is dependent on the degree of cooperativity n. A bifurcation diagram for this system is shown in
Figure 4.21. For small values of n, a single stable steady state is shown. At n = 2.4 a change
occurs—the steady state becomes unstable, and a limit cycle appears. The bifurcation diagram
shows both the change in stability and the upper and lower bounds of the limit cycle oscillations.

The bifurcation in Figure 4.21 occurs when the stability of the steady state changes. From our
discussion of linearized stability analysis (Section 4.2.2), we know that this change occurs when
eigenvalues of the Jacobian at the steady state transition from having negative real part (stable)
to positive real part (unstable). The steady state in model (4.10) is a spiral point, and so the
eigenvalues are complex numbers. The bifurcation in Figure 4.21, in which a pair of complex-
valued eigenvalues transition between negative and positive real part, is called a Hopf bifurcation.

Bifurcation diagrams provide insight into the robustness of system behaviour. A behaviour
is called robust if it is not significantly affected by disturbances. Robustness is indicated by a
bifurcation diagram: if a system is operating far from any bifurcation points, then perturbations

98



>
oy,

c
S S
o Q
S <
- -
c c
(¢} ]
(8] 8]
g e
8 3]
[} [
S 2 ;
n 172 ;
=) s iy
o < K
o Q _///7
7] » [ =
input parameter input parameter

Figure 4.20: Switching in bistable systems. A. Hysteresis loop. Changes in the input parameter can push
the system from one steady state to the other (dashed lines). Over the intermediate bistable region, the state
depends on the recent past. Transitions between the two states occur abruptly at the bifurcation points. B.
Irreversible switching. If one of the two bifurcation points is inaccessible, the system can become trapped in
one of the steady states.

are unlikely to result in a qualitative change in system behaviour; alternatively, the behaviour of a
system operating near a bifurcation point may change dramatically in response to a disturbance.
In the next section we will address another tool for analysing robustness: parametric sensitivity
analysis.

4.5 Sensitivity Analysis

Continuation and bifurcation diagrams illustrate how model behaviour depends on parameter val-
ues. The general study of this dependence is called (parametric) sensitivity analysis. It can be
divided into global sensitivity analysis—which addresses wide variations in parameter values—and
local sensitivity analysis—which addresses small variations around a nominal operating condition.

Global sensitivity analysis typically involves sampling the space of parameter values and deter-
mining the corresponding system behaviour; statistical methods are usually employed to analyse
the results.

In this section we will address local sensitivity analysis, which employs linearized model ap-
proximations. There is a long tradition of applications of local sensitivity analysis to biochemical
networks (through Metabolic Control Analysis (MCA) and Biochemical Systems Theory (BST)).

4.5.1 Local sensitivity analysis

Consider the simple reaction scheme:
— S —

Suppose the rate of production is maintained at a constant rate V while the rate of consumption

is described by Michaelis-Menten kinetics as X‘;’;ﬁ , where s = [S]. The steady state concentration
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Figure 4.21: Bifurcation diagram for the autocatalytic model (4.10). For small n values, a stable steady
state is shown. At higher n values, this steady state is unstable. At the bifurcation point (n = 2.4) a stable
limit cycle is born; the two dotted curves show the maximal and minimal concentrations reached by the limit
cycle. The transition point is called a Hopf bifurcation. Parameter values as in Figure 4.15.

5% is characterized by

Vmaxsss

Vo= ——.
0 Ky + s%8

Solving for %, we find
ss . VoKu
N Vmax - ‘/(] .

Now, suppose that V.., is varied while V' and K, are held fixed. Equation (4.11) then defines the
steady state concentration as a function of V,,,,. For concreteness, we take V) = 2 mM/min and
Kj; = 1.5 mM. In that case, equation (4.11) becomes

3
ss __
s% = Vo2 (4.12)
This relationship is plotted in Figure 4.22 (a continuation diagram).

Because most models do not admit explicit steady-state formulas, construction of continuation
curves generally requires significant computational effort. As an alternative, parametric sensitivities
provide an easily calculated description of the continuation curve near a nominal parameter value.

The absolute local sensitivity of a steady state s°° with respect to a variable p is defined as
the rate of change of s% with respect to p, that is, as dfl;s. This is the slope of the tangent to the
continuation curve (Figure 4.22). This sensitivity coefficient can be used to predict the effect of

small perturbations Ap at the parameter value p = pg, through the linearization formula:

(4.11)

dSSS

dp

5% (po + Ap) = 5% (po) + Ap : (4.13)
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Figure 4.22: Local sensitivity. The solid continuation curve shows the steady state as a function of the
parameter V... The dashed line is the tangent at V.. = 4 mM/min. The slope of this tangent is the
absolute local sensitivity coefficient, which describes the effect of small changes in V., on the steady state.

Returning to our example, from the explicit formula for steady state in equation (4.12), the
absolute local sensitivity coefficient with respect to V., can be calculated directly:

ds®® d VoK pm -3
= = . 4.14
deax deax <Vmax - ‘/0> (Vmax - 2)2 ( )
Choosing a nominal value of V,,, = 4 mM/min, we find a sensitivity coefficient of 5 = —0.75

min (Figure 4.22). Thus an increase of, say, 0.1 mM /min in V,,, leads to a 0.75(0. 1) =°0.075 mM
decrease in %%, for V., near 4 mM/min (by applying equation (4.13) with pp = 4 mM/min and
Ap = 0.1 mM/min).

Although this sensitivity coefficient can be used to make predictions, it is not usually employed
directly. An improved sensitivity measure describes the relative effect of perturbations. We define
the relative sensitivity as

ds®*/s* _ p ds**

dp/p s dp’

The relative sensitivity relates the size of a relative perturbation in p to a relative change in s°°
Referring back to equation (4.12), we find that at V.. = 4 mM/min, the relative sensitivity
coefficient of s with respect to V.., is % d?}i; = (%)(—0.75) = —2. Thus a 1% increase in
Vinax Tesults in a 2% decrease in s°°

Relative sensitivity coefficients are frequently used to provide a concise description of model
behaviour. These coefficients provide insight into robustness: if the system shows a small sensitivity
coefficient with respect to a parameter, then behaviour is robust with respect to perturbations of
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that parameter. In contrast, large sensitivity coefficients (positive or negative) suggest ‘control
points’ at which interventions will have significant effects.

Exercise 4.5.1 Starting from equation (4.11), verify that the relative sensitivity coefficients of s**
with respect to K is equal to one, regardless of the parameter values. O

4.5.2 Determining local sensitivity coefficients
Numerical approximation

Local sensitivity coefficients are typically determined by simulation. The sensitivity coefficient at
a parameter value p = pg can be determined by simulating the model at p = py and at another
nearby value p = pg + Apgy, where Apg should normally be chosen less than a 5% deviation from

po. The derivative dj;S at p = pg can then be approximated by

dSSS SSS(pO + Apo) _ SSS(pO)
~ , 4.15
dp Apg (4.15)

This ratio can then be scaled by pg/s*® to arrive at the relative sensitivity. When using this approxi-
mation, care must be taken to avoid the significant round-off errors that can occur when calculating
the ratio of two small numbers. (To ensure accuracy, the approximation can be calculated for a
handful of Apg values, e.g. at 1%, 3% and 5% displacements from pg. If these approximations do
not agree, then a more accurate simulation procedure may be needed.)

Exercise 4.5.2 Verify the accuracy of the finite difference approach by using equation (4.15)
to approximate the absolute sensitivity coefficient in equation (4.14) (at the nominal value of
Vimax = 4 mM/min). Calculate approximations with Apg = 0.2 (5% deviation) and Apg = 0.04 (1%
deviation). O

Implicit differentiation

When an explicit formula for steady state is available (as in equation (4.12)), sensitivity coefficients
can be determined by direct differentiation. For most models, no such steady-state formula is
available. Nevertheless, sensitivity coefficients can be derived by implicit differentiation of the
differential equation model, as in the following exercise.

Exercise 4.5.3 Consider a species S that is consumed at rate k2[S] and inhibits its own production,
so that it is produced at rate k1 /(1 + [S]™). The steady state concentration s is then given by

0="Fki/(1+ ") — kas.
Use implicit differentiation (reviewed in Appendix B) to determine the absolute sensitivity coeffi-
cient stl and verify that it is positive for all values of ki, k3, and n. O
4.6 *Parameter Fitting

Chapters 2 and 3 addressed techniques for model construction, but gave no indication of how the
values of model parameters should be chosen. The task of finding appropriate parameter values is
called model calibration or parameter fitting.
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Some parameters can be measured directly. For instance, rates of degradation can be deter-
mined from observations of half-lives, and specialized enzymological assays have been developed to
determine the kinetic parameters of enzyme catalysis. However, in constructing models for systems
biology, most model parameters are not measured directly. Instead, parameter values are assigned
by fitting model behaviour to observations of system behavior. We will next outline the most
commonly used parameter calibration approach, called least-squares fitting.

Suppose observations of a biological system have been collected, and a model structure (i.e. a
network with reaction kinetics) has been chosen. To be concrete, suppose that the model involves
three species concentrations si, so, s3, and depends on two parameters p; and ps:

d

510 = filsa(t),2(t), 53(t),1,p2)
%82(15) = fo(s1(t), s2(t), s3(t), p1,p2)
%33(75) = f3(s1(t), s2(?), s3(t), p1, p2).

Depending on the experimental observations that have been made, corresponding simulations of the
model can be carried out. For instance, observations of the steady-state concentrations correspond
directly to the model’s steady state: s3°, s5°, s3°. Time-course data can be compared to time-points
along a model trajectory.

The goal of parameter fitting is to determine the parameter values for which model simulation
best matches experimental data. The accuracy of the model can be assessed by comparing the
model predictions to each of the experimental observations. This collection of comparisons can be
combined into a single measure of the quality of fit. For the model described above, if steady-state
observations of the concentrations are available (denoted s?%*) the sum of squared errors is defined
by

2 2 2
SSE(pr,p2) = (57°(p1,p2) — 1)+ (s5°(p1,p2) = 58°°) "+ (537 (1, p2) — 55

(The errors are squared to avoid cancellation between terms of opposite sign. A relative SSE can
also be used, in which the error terms are scaled by the observations.)

When replicate observations are available, the predictions are usually compared to the mean
of the replicates. The error terms can then be inversely weighted by the variance in the repli-
cates, so that observations with high variability (in which we have less confidence) make a reduced
contribution to the total error.

The least-squares fit corresponds to the parameter values that minimize the sum of squared
errors. This parameter set can be found by numerical function-minimization techniques. Although
fitting to data almost always demands numerical calculations, we can illustrate the general principles
with a simple example, as follows. Consider the reaction chain

Ky ko k3
> 51 > Sy > (4.16)

where the parameters k1, ko, and k3 are mass-action rate constants. The reaction rates are then ki,
k2[S1] and k3[Ss]. We will illustrate least-squares fitting of the model parameters in three separate
scenarios.
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Case 1. Suppose the consumption rate of So has been measured directly: k3 = 4 mM/min, and

that steady state measurements have been made: S‘fbs =5 mM, Sgbs = 2 mM. In this case, an exact
model fit can be found. We begin by solving for the model steady-state concentrations:
sis _ ﬁ SSS _ k28i8 — ﬁ
k‘z k«’s k3

The sum of squared errors is then

SSE

<s§8(k1, ko, k3) — s§b8)2 + <s§8(kzl, ko, k) — sgb8)2

Ky ™ 2
= (—=- =2
("62 5) +</‘~‘3 >

This error takes its minimum value (of zero) when

ﬁ =5 mM and ﬁ =2 mM. (4'17)
k’g k3

Because we know k3 = 4 mM /min, we can solve for k; = 8/min and kg = % /min.

Case II. Suppose now that the same steady state measurements have been made (s?bs =5 mM,
53" = 2 mM), but k3 is unknown. In this case we have the same error function:

SSE—<5‘5> +(k—3—2> ’

but we cannot determine a unique parameter set that minimizes this function. Solving equa-
tions (4.17) indicates that the error will be zero whenever
k1 k1
ko = — and ks = —,
75 7T

regardless of the value of k1. In this case, the fitting problem is called underdetermined, since there
are multiple equivalently good solutions. Unfortunately, parameter calibration of system biology
models is often underdetermined, because it is a challenge to collect the experimental data needed
to fit dynamic models. In such cases, model reduction techniques can sometimes be employed to
reduced the number of parameters in the model.

Case III. Suppose that the value k3 = 4 mM/min is known, and that steady state observations
have been made in two conditions: in the control condition, s = 5 mM, s$** = 2 mM, while
in the experimental condition, the (unknown) production rate k; has been reduced by 90% and
measurements have been made of s¢** = 0.5 mM, s$° = 0.3 mM.

In this case there are four terms in the sum of squared errors. The steady states in the experi-
mental condition are

ss _ k1/10 ss _ k1/10

e 2k 2 (ki /10 2 (k)10 2
SSE_<k—2—5> +<Z_2> +< m08) (= -03)

so we have




There are no choices of k1 and ko that will make this error equal to zero; this fitting problem is
overdetermined. Overdetermined fits are caused by inaccuracies in model formulation and errors in
experimental measurements. The ‘solution’ to an overdetermined fitting problem is a compromise
parameter set that minimizes the resulting error.

Exercise 4.6.1 Consider again the network (4.16). Suppose that the degradation rate ks = 4
mM /min has been measured directly, and that observations are made in two conditions, but only
the pooled concentration of S; and Ss can be measured. Consider two cases:

(i) Suppose that in the control condition ¢ + s5** = 6 mM, while in the experimental condition,
the production rate ki has been reduced by 90% and the resulting observation is s?bs + sgbs = 0.6
mM. Perform a least-squares fit.

(ii) Suppose that in the control condition 5% + s§** = 6 mM, while in the experimental condition,
the rate constant ko has been reduced by 90% and the resulting observation is s¢%¢ + s3%* = 18 mM.
Perform a least-squares fit.

How does your analysis in cases (i) and (ii) compare? Explain the difference.

4.7 Suggestions for Further Reading

e Nonlinear Dynamics: An accessible introduction to bistability, oscillations, and bifurca-
tions can be found in the book Nonlinear Dynamics and Chaos (Strogatz, 2001). More formal
treatments of nonlinear dynamics appear in many texts on differential equations, including
Elementary Differential Equations and Boundary Value Problems (Boyce and DiPrima, 2008).

e Sensitivity Analysis: Techniques for global sensitivity analysis are introduced in Global
Sensitivity Analysis: The Primer (Saltelli et al., 2008). Local sensitivity analysis for chemical
systems is addressed in Parametric Sensitivity in Chemical Systems (Varma et al., 2005).
Several applications of local sensitivity analysis to systems biology are reviewed in (Ingalls,
2008).

e Parameter Fitting: An introduction to parameter fitting in systems biology, including cov-
erage of a range of computational function-minimization techniques, can be found in Systems
Biology: a textbook (Klipp et al., 2009).

4.8 Problem Set

4.8.1 Phase-line analysis. Phase analysis can be applied to systems of a single dimension. The
phase portrait of a one-dimensional system lies on a phase line. For example, the phase portrait of
the system

= a?(t) — z(t) = 2(t)(x(t) - 1),

is shown in Figure 4.23, with the open circle indicating an unstable steady state, the closed circle
indicating a stable steady state, and the arrows indicating the direction of motion.
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0 1

Figure 4.23: Phase line for Problem 4.8.1.

a) Sketch the phase lines of the following one-dimensional systems.

i) %V(t) = V3t)-V(t)

i) %r(t) = r4(t) = 3r¥(t) + 2

i) %w(t) — sin(w(t)
d

iv) —p(t) = p(t) = 2p°(t) +p(t).

(Note, case (iv) involves a ‘semi-stable’ steady state.)

b) Use a phase line argument to confirm that a one-dimensional system can never display oscillatory
behaviour.

c¢) Consider the simple model

d Vinax$
Es(t)_k_ Ky +s

in which species s is produced at a fixed rate and consumed via Michaelis-Menten kinetics. Sketch
a phase line for this system. Verify that the steady state is stable for any non-negative parameter
values, provided V.. > k.

4.8.2 Linear system: complex eigenvalues. Consider the system

d

Ewl(t) = —xl(t)+x2(t)
%xg(t) = —xl(t)—xg(t)

Find the eigenvalues of the Jacobian matrix. Determine the solution (x1(t), z2(t)) satisfying initial
condition (x1(0),z2(0)) = (1,1) by substituting the general form of the solution (4.7) into the
system of equations and solving for the parameters c;;.

4.8.3 Linear system: dynamics. Consider the general linear system

d
EIIT
d
%y(t) = cx(t) + dy(t).

(t) = ax(t)+by(t)

Note that the steady state is (z,y) = (0,0). Choose 6 sets of parameter values (a, b, ¢, d) that yield
the following behaviours
i) stable node (real negative eigenvalues)
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Figure 4.24: Reaction network for Problem 4.8.5.

ii) stable spiral point (complex eigenvalues with negative real part)

iii) center (purely imaginary eigenvalues)

iv) unstable spiral point (complex eigenvalues with positive real part)

v) unstable node (real positive eigenvalues)

vi) saddle point (real eigenvalues of different sign)

In each case, prepare a phase portrait of the system, including the x and y nullclines, a direction
field, and a few representative trajectories. Hint: recall from Exercise 4.2.4 that if either of the
off-diagonal entries in the Jacobian matrix are zero, then the eigenvalues are simply the entries on
the diagonal.

4.8.4 Phase portrait. Consider the nonlinear system

Do) = patt) )
Sy = )

a) Take p = —1. Show that the system has a single steady state and characterize its stability by
finding the eigenvalues of the Jacobian matrix at this point. Confirm your results by producing a
phase portrait.

b) Repeat with g = 1. In this case there are three steady states.

4.8.5 Linearized Stability Analysis. Consider the chemical reaction network in Figure 4.24,
with reaction rates v; as labelled. Suppose the concentration of S is fixed at 1 mM, and that the
reaction rates are given by mass action as: v = k1[S], va = ka[A], v3 = k3[B] and vs = k4[A][B].
a) Write a pair of differential equations that describe the concentrations of A and B.

b) Presuming that k; = 1/min, ko = 2/min, k3 = 0.5/min and k4 = 1/mM/min, determine the
steady-state concentrations of A and B.

c) Evaluate the system Jacobian at the steady state found in (b) and verify that this steady state
is stable.

4.8.6 Global dynamics from local stability analysis.
a) Consider the chemical reaction network with mass-action kinetics:
k1
A+X —— 2X
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Figure 4.25: Reaction network for Problem 4.8.7. Species S; inhibits production of S2 (blunted dashed
arrow).

ko
X+X — Y

k3

Y —— B.

Assume that [A] and [B] are held constant.

i) Write a differential equation model describing the concentrations of X and Y.

ii) Verify that the system has two steady states.

iii) Determine the system Jacobian at the steady states and characterize the local behavior of the
system near these points.

iv) By referring to the network, provide an intuitive description of the system behaviour starting
from any initial condition for which [X] = 0.

v) Sketch a phase portrait for the system that is consistent with your conclusions from (iii) and
(iv).

b) Repeat for the system

ky
A+ X — 2X

ko
X+Y — 2V

k3

Y —— B.

In this case, you’ll find that the non-zero steady-state is a center: it is surrounded by concentric
periodic trajectories.

4.8.7 Nullcline analysis. Consider the network in Figure 4.25. Suppose the reaction rates are
given by
v =V vy = f(s1) vg = k3s1
vg = k489 vs = k552

Suppose that the parameters V', k3, k4, and k5 are positive constants, and that f(s1) takes positive
values and is a decreasing function of s; (i.e. as the values of s; increase, the values of f(s1)
decrease). By sketching the nullclines, demonstrate that this system cannot exhibit bistability.
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4.8.8 Linearization. Consider the simple reaction system — S —, where the reaction rates are

Vinax[S]

roduction: V; consumption: ——————.
P 0 P Ky + [S]

a) Write the differential equation that describes the dynamics in s = [S]. Find the steady state.
Next, approximate the original system by linearizing the dynamics around the steady state. This
approximation takes the form of a linear differential equation in the new variable z(t) = s(t) — s*°.
b) Take parameter values Vo = 2, V., = 3, and Kj; = 1 and run simulations of the nonlinear and
linearized systems starting at initial conditions [S] = 2.1, [S] = 3, and [S] = 12. Comment on the
discrepancy between the linear approximation and the original nonlinear model.

4.8.9 Saddle-Node bifurcation. Consider the system

%x(t) = — 22(t).

Draw phase lines (as in Problem 4.8.1) for u = —1, 0, 1. For this system, u = 0 is a bifurcation
value. Use your one-dimensional phase portraits to sketch a bifurcation diagram for the system
showing steady states of x against u. Be sure to indicate the stability of each branch of steady
states.

4.8.10 Pitchfork bifurcation. Recall from Problem 4.8.4 that the nonlinear system

@ alt) = pa(t) — (1) o) = =310

exhibits different steady-state profiles depending on the value of the parameter u. Sketch a bifur-
cation diagram showing steady states of x against u. Your diagram should make it clear why the
point u = 0 is referred to as a pitchfork bifurcation.

4.8.11 Bifurcation diagram: bistability. Consider model (4.2) with parameter values: k; =
ko = 20 (concentration - time™1), K1 = Ky = 1 (concentration), k3 = k4 = 5 (time™!), and ng = 2.
Use a software package to generate a bifurcation diagram showing the steady-state concentration
of S1 as a function of the parameter ny. The system is bistable when n; = 2. Does the system
become monostable at high ny, at low ny, or both?

4.8.12 Bifurcation diagram: limit-cycle oscillations. Consider the autocatalytic model (4.10),
with parameter values kg = 8, k1 = 1, K = 1, and n = 2.5. Use a software package to generate
a bifurcation diagram showing the steady-state concentration of S7 as a function of the parameter
ko. The system exhibits limit-cycle oscillations when ko = 5. Are the oscillations lost at high ks,
low ks, or both?

4.8.13 Sensitivity analysis: reversible reaction. Consider the reversible reaction
1
)
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Figure 4.26: Reaction network for Problem 4.8.14.

with mass-action rate constants as shown. Let T be the total concentration of A and A*.

a) Solve for the steady-state concentration of A* and verify that an increase in k; leads to an
increase in [A*]%°.

b) Use parametric sensitivity analysis to determine whether the steady state concentration of A* is
more sensitive to a 1% increase in T or a 1% increase in k. Does the answer depend on the values
of the parameters?

4.8.14 Sensitivity analysis: branched network. Consider the branched network in Fig-
ure 4.26. Suppose the reaction rates are:

vo="V, wvi=Fk[S], v =koS5],

with V', k1 and ko constant. Suppose that k1 > k9. Use sensitivity analysis to determine whether
the steady state of [S] is more sensitive to a 1% increase in ky or a 1% increase in ks.

4.8.15 *Sensitivity coefficients in S-system models. The relative sensitivity coefficients
defined in Section 4.5 can be formulated as ratios of changes in the logarithms of concentrations
and parameter values:

p ds®  dlog(s*®)
s dp — dlog(p) |
For this reason, sensitivity coefficients are sometimes called logarithmic gains. Because S-system
models (Section 3.5) involve linear relationships among logarithmic quantities, relative sensitivities
reveal themselves immediately in these model.
Refer to the S-system model (3.22-3.23). Verify that relative sensitivities with respect to the
rate constants «; appear as coefficients in equations (3.24).

4.8.16 *Model fitting: time-series data. Consider the network

k1 ko
> S >,

with mass-action rate constants, as shown. Suppose that the following time-series data is available
for model fitting (in mM): s(0) = 0, s(1) = 1, s(2) = 1.5. Determine the corresponding model
parameters. (The data can be fit exactly.) Recall from equation (2.6) the predicted time-course
takes the form

o) = (500) - £ ) e 4 11

Hint: You will need to solve an equation of the form ae=2*2 + be=*2 + ¢ = 0. This is a quadratic
equation in z = e ke,
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Chapter 5

Metabolic Networks

[[]t would be a delusion...to imagine that the detailed behaviour of systems as com-
plex as metabolic pathways can be predicted with the aid of a few qualitative, verbal
principles....

—David Fell, Understanding the Control of Metabolism

A cell’s metabolism is the network of enzyme-catalysed reactions in which sources of energy and
materials are broken down and cellular components (e.g. amino acids, lipids) are produced. The
reactants and products in metabolic reactions are referred to as metabolites; they are typically small
molecules.

A cell’s complete metabolic network is organized roughly in a ‘bow-tie’ structure, in which
a wide range of substrates are broken down into a much smaller number of intermediates, from
which a large number of distinct biomolecules are formed (Figure 5.1). The structure of metabolic
networks varies from species to species, but there are many aspects of ‘core’ metabolism that are
conserved across all organisms. Metabolic networks for a wide range of species are archived in
online databases such as KEGG and MetaCyc.*

Reactions that break down sources of energy and materials are called catabolic. Well-studied
catabolic pathways include glycolysis, which converts glucose to pyruvate (and produces ATP),
and the tricarbozylic acid (TCA) cycle (also called the citric acid cycle or the Krebs cycle), which
consumes pyruvate and produces substrates for biosynthetic and energy-producing pathways.

Metabolic reactions that build up cellular components are called anabolic. Standard examples
of anabolism include the branched pathways leading to amino acid production and the pathways
responsible for generating lipids and nucleic acids.

Visualizations of a cell’s complete metabolic network typically appear as unintelligible ‘spaghetti
diagrams,’ involving multiple branches, cycles, hubs, and pathways. However, careful study of
these networks reveals that they are organized into well-defined subnetworks, each responsible for
a particular function; these subnetworks are interconnected by the flow of material and energy.

The energy needs of the cell are met by a small number of universal co-factors. The most
important of these is ATP (adenosine triphosphate)—the primary energy carrier within the cell.
In modelling metabolism, co-factors such as ATP are often considered to be part of the cellular
‘background’ in which reactions take place (unless the model explicitly describes their dynamics).

*KEGG: www.genome. jp/kegg, MetaCyc: metacyc.org
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Figure 5.1: Bow-tie structure of metabolic networks. A wide variety of nutrients are funneled through a
network of enzyme-catalysed reactions into a smaller set of core metabolites. This set of metabolites is then
used to generate the wide range of end-products that are needed for growth and other cellular activities.

The concentration of each cofactor can be presumed constant; their influence on reaction rates is
then implicitly incorporated into the values of kinetic parameters.

In addition to catabolic and and anabolic reactions, metabolic networks also involve allosteric
regulatory interactions; these ensure that the metabolic needs of the cell are met under a range
of conditions. In this chapter we will explore models that provide insight into the function and
regulation of metabolic networks.

5.1 Modelling Metabolism

Metabolic networks are biochemical reaction networks. To construct differential-equation models
of these networks, we will follow the procedure developed in Chapter 2 and make use of the rate
laws described in Chapter 3.

5.1.1 Example: a pathway model

As a first example, consider the reaction network shown in Figure 5.2. Presuming that the con-
centrations of both the substrate Sy and product P are held fixed, the time-varying metabolite
concentrations are described by:

%sl(t) = v1(t) — va(t) — vs(?)
%32@) = va(t) +va(t) —vs(t)
%33@) = v3(t) — valt),

where s; = [S;]. We treat all but the first reaction as irreversible. Suppose that each reaction is
catalysed by an enzyme, F;, with concentration e;. To keep our analysis simple, we presume that
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Figure 5.2: Simple metabolic pathway. Except for the production of Sy, all reactions are presumed irre-
versible. The concentrations of the pathway substrate, Sy, and product, P, are held fixed. The reaction
labels v; indicate reaction rates. (They are not mass action rate constants.)

all enzymes are operating in their first order regimes. The reaction rates are then given by

vy = e1(ko[So] — k1s1) vy = eaka sy v3 = e3k3sy

Vg4 = €4k483 Vs = €5k582.

(Recall from Chapter 3 that reaction rates are proportional to enzyme concentration.) For simplic-
ity, we take the constants k; = 1. The model can then be written as

%sl(t) = e1([So] — s1(t)) — (e2 + e3)s1(t)
%82@) = e251(t) + eys3(t) — ess2(t) (5-1)
%33@) = e351(t) — eqs3(t).

The steady state concentrations of the metabolites can be found by setting the time rates of change
to zero, resulting in

ss 61[50]
577 = ————
el +ex+e3
S
s = (e2 + es)ex [So] (5.2)
es(e1 + ez + e3)
ss 6361[50]
557 =

es(er +ea + e3)
Exercise 5.1.1 Derive the steady-state concentrations in (5.2). O

The flux through the pathway is a measure of network activity. Flux—the flow-rate of material—is
a time-varying quantity. The steady-state rate of the reactions in an unbranched pathway is called
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the pathway flur. Because the network in Figure 5.2 has a single substrate and a single product,
we can define the pathway flux as the steady-state rate of production of P (which is equal to the
steady-state rate of consumption of Sy). We will use the notation Jj to indicate the steady-state
rate of reaction k, and simply use J for the pathway flux. For this example:

J:J5:UES,S:J1:U‘198.

From equation (5.2), we can write the pathway flux J in terms of the concentration of the
substrate Sy and the enzyme concentrations:

(62 + 63)61 [So]

J =05 =e585° =
5 592
(€1+€2+€3)

(5.3)

Exercise 5.1.2 Verify that for the network in Figure 5.2, the flux satisfies J = v5°+v5° = v3® +v3°.
g

Exercise 5.1.3 Why does the pathway flux J in equation (5.3) not depend on the enzyme con-
centrations e4 and e5? Provide an intuitive explanation in terms of the network structure. O

5.1.2 Sensitivity analysis of metabolic networks: Metabolic Control Analysis

Because experimental observations of metabolism are often carried out in steady state, modelling
efforts often focus on steady-state behaviour. Parametric sensitivity analysis (Section 4.5) plays a
key role in these studies. The variables of primary interest in metabolic systems are the steady-state
metabolite concentrations and the steady-state reaction fluxes. The parameters of primary interest
are the enzyme concentrations.

Researchers working in theoretical biochemistry use a sensitivity approach called Metabolic
Control Analysis (MCA). Within MCA, specialized terminology and notation are used to de-
scribe the effects of changes in enzyme activity on metabolite concentrations and reaction fluxes.
The relative sensitivities of metabolite concentrations are called concentration control coefficients,
defined by (as in Section 4.5):

s, €jdsi
& Si d€j7
where s; is the steady-state concentration of species ¢ and e; is the abundance of enzyme j. Likewise,
the flux control coefficients are given by

T 6_3%

= 4
€ Jk dej ’ (5 )

where Jj, is the flux through reaction k (i.e. the steady-state reaction rate vy).

The rate of a metabolic reaction is proportional to the abundance of the catalysing enzyme
(Section 3.1.1). Thus a relative change in enzyme concentration results in an equivalent relative
change in the corresponding reaction rate (i.e. a 2% increase in ey, leads to a 2% increase in rate vy.)
In the typical case that no enzyme in the network catalyses multiple reactions nor interacts directly
with another enzyme, each flux control coefficient indicates how changes in the rate of a particular
reaction affect the reaction fluxes throughout the network. In particular, these coefficients indicate
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how much control each reaction exerts over the overall pathway flux, and so can provide significant
insight into the behavior and regulation of metabolic activity.

Sensitivity analysis can be used to predict the response of a system to perturbations. Per-
turbations of particular interest in metabolism are those that result from the action of drugs or
from modification of the organism (by, e.g., genetic modification). In both cases, the perturbation
causes a change in the concentration e; of active enzyme. (Drugs typically cause such changes
biochemically; genetic modification usually leads to changes in enzyme abundance.)

For the model (5.1), we can calculate flux control coefficients for the pathway flux J from the
explicit description of flux in equation (5.3):

J_elﬂ_ €2 +e3

= — = 9.9
e J deq el +ex+e3 (5:5)

Thus, a 1% change in the concentration of enzyme e; leads to a %% change in the steady
state pathway flux. Further calculation yields

€9 dJ €1€2 J €3 dJ €1€3
cl = =" = and Cp =——= . 5.6
2 Jdey (ex+e3)(er+ex+es) “ Jdes (ex+e3)(er +ex+e3) (56)
Exercise 5.1.4 a) Verify equations (5.5) and (5.6).
b) The flux control coefficients for e4 and es in model (5.1) are zero. Why?
c¢) Verify that for this network
cl+cl+cl+cl +cl =1
This follows from the Summation Theorem of Metabolic Control Analysis (Section 5.2). O
Exercise 5.1.5 (i) Verify the following concentration control coefficients for model (5.1):
51 _ €2 + €3 s1_ () o5 — _ es Cst— o5t —
‘4 erterteg’ e2 e1 +ex+es’ es e1+ex+ ez’ e <
g

We next address the behaviour and regulation of metabolic pathways, starting with unbranched
reaction chains.

5.2 Metabolic Pathways

The simplest metabolic network is an unbranched (so-called ‘linear’) chain of reactions, as in Fig-
ure 5.3. Truly unbranched metabolic pathways are rare, and they typically consist of only a few
reactions. Nevertheless, by neglecting side reactions and reaction co-factors, models of metabolism
frequently make use of this unbranched structure—it is the simplest way to describe a path from
substrate to product.
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S<—>Sl<—>sz<—>P

Figure 5.3: Unbranched metabolic chain. The substrate Sy and the product P are held at fixed concentra-
tions.

5.2.1 Flux control of unbranched pathways

In an unbranched pathway, all reactions rates must be equal at steady state, and so the pathway
flux is the steady-state rate of every reaction.

Chains consisting of irreversible reactions display a simple behaviour: the first reaction has a
fixed rate and so dictates the pathway flux. In this case, all of the reactions except the first have
flux control coefficients of zero, while the first reaction—which exerts total control over the pathway
flux—has a coefficient of one.

To address reversible reaction chains we consider, for concreteness, the three-reaction chain
shown in Figure 5.3. Suppose that all enzymes are operating in their first order regimes. In that
case we can write, for ¢ = 1,2, 3:

v; = ej(kisi—1 — k—isi),

where e; are enzyme concentrations, s; = [S9;], and P = S3. To simplify the notation, we write
each reaction rate in terms of the corresponding equilibrium constant: ¢; = k;/k_;, so that

Ss
V; = eik:i <SZ’_1 — —Z> .
q;

The steady-state pathway flux can be written explicitly as

J_ [S0]q192q3 — [P] (5.7)
T 419293 4 9293 4 q3 :
e1k1 eako esks
Differentiation and scaling of equation (5.7) gives the flux control coefficients as

Q1q]2€q3 Q2z3 qz

J _ e1k1 J eako J esks
er 419293 + 9243 + q3 062 T 419243 + g293 + q3 063 T 419293 + q293 + q3 ° (5‘8)

erk1 eoko esks e1k1 eakso esks er1kq eako esks

In each case the flux control coefficient C’é]i varies inversely with the abundance e; of the corre-
sponding enzyme, so that as enzyme activity increases the control coefficient decreases—the reaction
loses ‘control’ over the pathway flux. This fact provides a lesson for anyone seeking to increase the
rate of pathway flux by increasing enzyme abundance (e.g. for metabolic engineering purposes). A
law of diminishing returns limits the effect that changes in individual enzyme concentrations will
have on pathway flux.

Exercise 5.2.1 Derive the flux control coefficients (5.8). O
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The Summation Theorem

Note that the flux control coefficients in (5.8) sum to one:
cl+cCl+Cl =1 (5.9)

This is a consequence of the Summation Theorem of Metabolic Control Analysis, which states that
the flux control coefficients in any reaction chain will sum to one, regardless of the form of the
kinetics (or any allosteric regulation). The Summation Theorem describes how the ‘control’ of flux
is shared among the steps in a pathway. The distribution of sensitivity dictated by this theorem
invalidates the misconception that pathway flux is routinely controlled by a single ‘rate-limiting
step’ (which would have flux control coefficient equal to one). The Summation Theorem reveals
that a rate-limiting step can only be present when all other reactions have virtually no influence
over the pathway flux, which is rarely the case.

5.2.2 Regulation of unbranched pathways

We can think of an unbranched pathway as an assembly-line that generates a product. In many
cases, cellular activities require a steady rate of production—the pathway flux should be robust to
perturbations. In other cases, pathways need to be responsive—to generate product when it is called
for, and otherwise keep the production rate low. Sensitivity analysis can be used to address these
aspects of pathway performance: robustness corresponds to insensitivity to perturbations, while
responsiveness is characterized by high sensitivity with respect to the appropriate input signals.

Reversibility of reactions provides an inherent robustness to pathway flux. Robustness can also
be introduced through allosteric regulation. The most common strategy for regulation of pathway
flux is end-product inhibition—a feedback mechanism whereby increases in product concentration
reduce the production rate.

Strategies for regulation

In an end-product inhibition scheme, the pathway’s product allosterically inhibits the enzyme that
catalyzes the first reaction in the pathway, as in Figure 5.4A. In a series of papers published in the
1970s, Michael Savageau used dynamic modelling to justify the prevalence of this inhibition scheme
(Savageau, 1976). He compared a range of feedback strategies, such as those shown in Panels
B and C of Figure 5.4. Savageau’s analysis indicated that end-product inhibition exhibits better
performance than alternative feedback architectures, where ‘performance’ includes (i) robustness
to disturbances in demand for product P, (ii) robustness to perturbations in enzyme activity
levels, and (iii) responsiveness to changes in the availability of substrate S. (See Problem 5.6.5 for
Savageau’s approach.)

Savageau also identified a defect in the end-product inhibition motif—the potential for insta-
bility. A strong negative feedback, coupled with the delay inherent in passing material through the
pathway, can lead to oscillatory behaviour. (This is a delay oscillation, as discussed in Section 4.3.)
Such unstable behaviour becomes more likely with increased time delay, and thus with increased
pathway length (Problem 5.6.2).

fAn intuitive proof of the Summation Theorem follows from considering a perturbation that simultaneously
increases all enzyme abundances by a factor a. The net effect of these changes on pathway flux is given by
ong]I + an]2 + ozC’,;IS. However, since all reaction rates increase by identical amounts, there is no impact on species
concentrations, so the pathway flux increases by the factor a.
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Figure 5.4: Strategies for regulation of unbranched metabolic chains. A. End-product inhibition is the most
commonly observed regulatory scheme. B. A nested feedback scheme. C. A sequential feedback scheme.
The end-product inhibition scheme regulates flux better than the alternatives, but is prone to instability.
Adapted from Figure 10-1 of (Savageau, 1976).

Metabolic control analysis of end-product inhibition

In the 1973 paper that set up the Metabolic Control Analysis framework, Heinrich Kascer and
Jim Burns addressed how end-product inhibition redistributes control of flux (Kascer et al., 1995).
Before summarizing their findings, we need to introduce an additional piece of MCA terminology.

The relative rate of change of the reaction rate v, with respect to metabolite S; is called the
elasticity of reaction k£ with respect to species j, and is denoted slqu:

k 3_] 8'Uk

Esj = (510)

vy, 085
The elasticities are fundamentally different from the control coefficients. As partial derivatives of
the rate laws, elasticities are properties of individual (isolated) reactions. Control coefficients, on
the other hand, reflect the role of the reaction within the network, since they describe the change
in reaction flux at the system steady state. If S; is a reactant in reaction k, then the elasticity of
S; coincides with its kinetic order (as defined in Section 3.1.1). Species that allosterically regulate
an enzyme’s activity will have non-zero elasticities with respect to the corresponding reaction.

Exercise 5.2.2 Find the elasticity of the allosterically inhibited rate law v = %%ﬁm with
respect to the substrate S and the inhibitor 1. O

Referring to the end-product inhibited chain in Figure 5.5, the control coefficients for the flux
J can be expressed in terms of the reaction elasticities as follows (Problem 5.6.4):

2 3
o) — 5,85,

e = 3 3 T3 T2 71
€5, €5, — €g,€5, T €5,€5, — €5,Es,
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Figure 5.5: End-product inhibited three-reaction chain.

1 .3

—el ¢
$1€5,
ol — . (5.11)
2 7 3 T3 1 2 71 .
€5, €5, — €g,€5, T €5,€5, — €5,Es,
1.2 2 1
CJ _ €5,€5, — €9,€5,
es3 2 1 -

= 3 T 3 T 2 )
€5,€5, —€5,€5, T €5,€5, —€5,€3,

The feedback effect (characterized by 6%2) appears in the numerator of C’gg and in the final term of
the (identical) denominators. Because Sy inhibits the first reaction, 5152 is negative. If the inhibition
were absent, E}% would be zero. Comparing the flux control coefficients in the presence or absence
of end-product inhibition, we note that the control coefficients for enzymes E; and Es are decreased
by the inhibitory feedback (the numerators are unchanged by the feedback, while the denominators
include the additional positive term —6%16}512). Thus the inhibitory feedback reduces the sensitivity
of the pathway flux J to changes in enzyme activities e; and es; the regulation insulates the flux
against these perturbations. Intuitively, if the activity of either of these enzymes is increased, there
will be an increase in the concentration so, which will partially counteract any increase in the rates
of the first two reactions.

We next consider the effect of end-product inhibition on the flux control coefficient for enzyme
FE5. Recall that, from the Summation Theorem, the control coefficients must sum to one—regardless
of the feedback structure. Consequently, the inhibitory feedback, which decreases Céjl and Célz, must
increase the value of ng by the same amount. The inhibition thus increases the sensitivity of the
flux to perturbations of enzyme E3 (which is outside the feedback loop). This result surprised some
members of the biochemistry community when it was published. Many had believed that the best
target for manipulation of the flux of this pathway would be enzyme E;—the regulated reaction.
Initially, there was some resistance to the notion that end-product inhibition draws sensitivity away
from enzymes within the feedback loop, but this theoretical prediction has since been confirmed
by experimental evidence showing the lack of effect when such regulated enzymes are perturbed.
Modern attempts at flux modification make use of the fact that a perturbation outside of a feedback
loop is more likely to yield a successful intervention.

Exercise 5.2.3 Verify that every term in the denominator of the control coefficients in (5.11):

2 3 1 .3 1 2 2 1
651652’ _651652’ 65’1632, and _65'1652

is non-negative. O
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Figure 5.6: A. Branched metabolic pathway: biosynthesis of lysine, threonine and methionine in E. coli.
Compound arrows indicate multi-step reaction chains. B. Pathway branch point.

5.2.3 Branched pathways

Models of unbranched metabolic pathways are typically simplifications; most networks are highly
branched, with metabolites being shared among multiple pathways. As an example, Figure 5.6A
shows the biosynthetic pathways that lead to production of the amino acids lysine, threonine, and
methionine in the bacterium FEscherichia coli. We next discuss branched pathways, focusing on the
flux control at a branch point (Figure 5.6B).

Control of flux at a branch point

The flux at the branch point in Figure 5.6B consists of three unequal flows, labeled Jy, Jo and Js.
These steady state fluxes satisfy J; = Jo + J3. The flux control coefficients depend on the split
ratio—the proportion of flux that passes through each branch. When the split is equal, control is
symmetric between the two balanced branches. To gain insight into the behaviour of imbalanced
split ratios, we will consider the extreme case in which the flow is carried almost exclusively by Ja,
so that Jy =~ Ji. As discussed by Herbert Sauro (Sauro, 2009), the effects of changes in enzyme
E3, which carries a negligible flux, are described by

Cg; ~0 and Cé];’ ~ 1.

Thus when the flux through J3 is minimal, changes in enzyme FE3 have very little effect on the
larger flux Jo, and have complete influence over the smaller flux J3. This makes intuitive sense: the
branch carrying .J3 has minimal impact on what is otherwise a linear pathway through reactions
1 and 2. Furthermore, because changes in E3 have almost no impact on [S], there is no systemic
response to these perturbations, so the resulting changes are felt directly in J3.

Recall that in the case of an unbranched chain, the Summation Theorem dictates that if one
reaction has flux control coefficient near one, the remaining control coefficients must have values
near zero. The Summation Theorem also holds for a branched pathway—the flux control coefficients
sum to one. However, in this case the control coefficients may take negative values. In the limiting
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Figure 5.7: Regulation of branched biosynthesis. A. Sequential feedback inhibition. B. Nested feedback
inhibition. Adapted from Figure 12-1 of (Savageau, 1976).

case that Jo ~ Ji, the Summation Theorem dictates that C’é]f + C’é]; ~ 0 (because C’é],a? ~ 1). That
is, these flux control coefficients, which dictate the effects of e; and e on the minimal flux J3, are
of equal magnitude and of opposite signs.

Regulation of Branch Point flux

Biosynthetic pathways generate a wide range of end products from a relatively small pool of pre-
cursors. This allows for an efficient use of materials, but the resulting branching structure poses a
challenge for regulation: what feedback strategies best allow the production rates to be continually
adjusted to meet cellular demand? A wide variety of regulatory architectures have been discovered
in branching pathways. These can be broadly classified as sequential feedback or nested feedback.

In a sequential feedback strategy (Figure 5.7A), the end product of each branch inhibits flux
through the respective branch, while consumption of the initial substrate is only inhibited by com-
mon intermediates. Michael Savageau analysed this feedback strategy, and found that it provides
for efficient independent regulation of the two end products (Savageau, 1976).

However, the more commonly occurring regulatory architecture is nested feedback (Figure 5.7B),
in which the end products directly inhibit one or more of the shared steps in the pathway. Savageau’s
analysis revealed that this nested feedback structure is susceptible to significant inefficiency. In
particular, if the shared pathway is inhibited too strongly, an increase in the availability of one end-
product can inappropriately suppress production of the other. This dysfunctional regulation has
been observed experimentally: some microbial strains, when provided with an abundant external
supply of a particular amino acid, fail to generate sufficient supplies of closely-related amino acids,
and thus exhibit stunted growth.

Inefficiency in nested feedback can be tempered by a number of mechanisms, such as enzyme
multiplicity, in which multiple enzymes catalyse a single reaction. Each enzyme can be inhibited
independently, thus allowing each end-product to have influence over a portion of the shared flux.
An example is provided by the production of the amino acids lysine, threonine and methionine in
E. coli (Figure 5.6A). In that branched pathway each end-product inhibits both the first dedicated
step in its own branch and one of three distinct enzymes (called aspartate kinase I, IT and III)
responsible for catalyzing the first step in the pathway (not shown in the Figure). (An example
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of a detailed study addressing regulation of amino acid production—including the roles of enzyme
multiplicity, is (Curien et al., 2009).)

5.3 Modelling Metabolic Networks

5.3.1 Model construction

As described in Section 5.1, the development of metabolic models is straightforward once the
kinetics of the enzyme-catalysed reactions have been characterized and the corresponding parameter
values have been determined.

Decades of effort have gone into the investigation of enzymatic mechanisms, and there is an
extensive literature on enzyme kinetics. These studies focus on reaction mechanisms; they rarely
address the in vivo role of enzymes. As a consequence, most metabolic pathways can only be
modelled after in vivo experimental data has been collected.

Constructing models from the literature

Without targeted laboratory experiments, the potential for building accurate models of metabolic
networks is limited, but in some cases there is sufficient data available in the literature to support
a plausible model. Knowledge of reaction networks is often readily available; the major metabolic
pathways of most organisms follow a common framework, and atlases of ‘standard’ metabolism
have been compiled. Species-specific reaction networks are archived in online databases (such as
KEGG and MetaCyc), which are continually updated with new information.

Much of the published enzymological data is available in online databases such as BRENDA
and SABIO-RKS. Unfortunately, construction of accurate metabolic models from this databased
information is not straightforward, for two reasons.

Firstly, in attempting to determine the specifics of kinetic mechanisms, enzymologists usually
study enzyme activity in simplified conditions. The enzymes are often purified, and reaction rates
are typically measured in the absence of reaction products, in the presence of only one regulator
at a time, and at convenient or revealing temperature and pH. These experiments successfully
demonstrate reaction mechanism, but do not always provide characterizations of the in vivo activity
of the enzyme. Secondly, enzymological studies focus on the role of enzymes as catalysts, not
as components of cellular networks. In particular, they do not usually address in vivo enzyme
abundance.

Enzymological databases typically list a Michaelis constant (Kjs) for each enzyme substrate
and an inhibition constant (K;) for each inhibitor. Rather than report a V,,,, value, these studies
measure the catalytic constant (or turnover number) of the enzyme. The catalytic constant, k., is
related to V. by Viax = keawrer, where er is the enzyme concentration. (Some studies report the
specific activity, which is a measure of catalytic activity per milligram of enzyme. This is related
to k... by the enzyme’s molecular mass.) In order to determine a V,,,, value for use in a metabolic
model, the in vivo enzyme abundance must be determined. This in vivo data is specific to cell-type
and condition, and is not yet well-archived online (although it appears in some databases, such as
the E. coli-focused GENOBASE). "

YKEGG: www.genome. jp/kegg, MetaCyc: metacyc.org
SBRENDA: www.brenda-enzymes.org, SABIO-RK: sabio.villa-bosch.de
YGENOBASE: http://ecoli.naist.jp/GB8
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Figure 5.8: The methionine cycle. Methionine combines with ATP to form S-adenosylmethionine (AdoMet).
When AdoMet donates a methyl group in any of a range of methylation reactions, it is converted to
S-adenosylhomocysteine (AdoHcy). AdoHcy releases the adenosine moiety of the previously-bound ATP
molecule to become homocysteine, which can be converted to methionine or cysteine. Adapted from Figure
1 of (Martinov et al., 2000).

5.3.2 Case study: modelling regulation of the methionine cycle

In the year 2000, Michael Martinov and his colleagues published a model describing aspects of
methionine metabolism in mammalian lever cells (Martinov et al., 2000). The network of interest,
shown in Figure 5.8, starts with methionine combining with ATP to form S-adenosylmethionine
(referred to as AdoMet). Cells use AdoMet as a methyl (CHg) donor in a wide range of reactions.
When donating a methyl group in one of these transmethylation reactions, AdoMet is converted
to S-adenosylhomocysteine (referred to as AdoHcy). AdoHcy is then converted, reversibly, to
homocysteine (Hcy), releasing the adenosine moiety of the previously-bound ATP molecule in the
process. Homocysteine can then follow one of two paths. It can be converted to methionine, hence
completing the methionine cycle, or it can be converted to cysteine.
Martinov and colleagues constructed their model to address the following issues:

e The enzyme that produces AdoMet from methionine is called Methionine Adenosyl Trans-
ferase (MAT). In liver cells there are two distinct forms of MAT, called MATT and MATTIII.
(Another form, MATII, occurs in non-liver cells.) AdoMet interacts with both MATI and

MATTIII, causing inhibition of MATI and activation of MATIII. Both MATI and MATIII were
included in the model in an attempt to determine their distinct roles in the pathway.

e In all cell types there are various methyltransferase enzymes whose action results in the
conversion of AdoMet to AdoHcy. In liver cells, there is an additional enzyme, Glycine
N-Methyltransferase (GNMT), that catalyses this conversion. The presence of GNMT is
somewhat puzzling. It methylates glycine (an amino acid) to form sarcosine, but sarcosine
has no apparent cellular function—it can be converted back to glycine, or is exported from
the cell.
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Figure 5.9: Martinov model of methionine metabolism in mammalian liver cells. The production of AdoMet
is catalysed by two distinct enzymes: MATI and MATIII. Except for the reaction catalysed by GNMT, all
other methylation processes are described by a single lumped reaction. Likewise, consumption of Hcy is
lumped into a single consumption reaction. The pool of AdoHcy and Hcy is presumed to be in rapid
equilibrium. Adapted from Figure 2 of (Martinov et al., 2000).

e Experimental evidence has shown that as dietary methionine levels rise ten-fold, the methio-
nine concentration in liver cells shows only a modest increase. The intracellular abundance of
AdoMet and AdoHcy, on the other hand, show a different behaviour. These concentrations
increase slowly over a low range of methionine levels and then jump abruptly (a four-fold
increase) at a threshold concentration of methionine.

Figure 5.9 shows the model network. In constructing the model, Martinov and colleagues
made the following simplifying assumptions: (i) the methionine concentration is held constant, as
are the concentrations of the reaction co-factors: ATP, adenosine, HyO, glycine and the methyl
acceptors (lumped into a single species A); and (ii) the interconversion of AdoHcy and Hcy is in
rapid equilibrium. The latter assumption is justified by the experimental observation that adenosyl
homocysteinase—the enzyme responsible for catalysing this reaction—has an activity level at least
ten times higher than the other enzymes in the model. This rapid equilibrium assumption leads to
the condition:

[Adenosine|[Hcy]

Ko —
AHC [AdoHcy]

(5.12)

where K ,yc is the equilibrium constant for the reaction.

The rates of the reactions in the model are labeled by the names of the corresponding enzymes:
Vaarr, Vamarin, Venmr- Except for the reaction catalysed by GNMT, all other methylation reactions
are lumped into a single process with rate Vygr. Likewise, the two reactions consuming homo-
cysteine are lumped into a single consumption reaction with rate V;,. The model describes the
concentration of AdoMet and the equilibrated pool of AdoHcy and Hcy by

d
%[Adol\/[et] = Vaar + Vaaror — Veswr — Vaer (5.13)

d
E[AdOHCY‘HCY pool] = Vanur + Vuer — Vo. (5.14)
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To reformulate the model in terms of the metabolite AdoHcy, we describe the concentration of
AdoHcy as a fraction of the combined pool. From equation (5.12):

1
[AdoHcy] = n e [AdoHcy-Hcy pool] (5.15)
T [Adenosine]
We can then use equation (5.14) to write
d 1
E[AdOHCY] - 1 - Kanc (VGNMT + VMET - VD) . (516)
+ [Adenosine]

The reaction rates are described below. They are specified in terms of Michaelis-Menten kinetics,
incorporating allosteric regulation and cooperative effects (as developed in Chapter 3).

Methionine Adenosyl Transferase I (MATI)
The substrate for this reaction is methionine (Met). MATI is inhibited by its product AdoMet:ll

V MATI

max

Viarr =
A | K [AdoMet]
+ [Met] KZMATI

Methionine Adenosyl Transferase IIT (MATIII)
This reaction shows a sigmoidal dependence on its substrate Met, suggesting a cooperative mode
of action. Furthermore, this enzyme is allosterically activated by its product AdoMet:

AT 20000
VI%ATIII = MIZ;);H MATIII ) Where K%?TIH - 2
L A N ot 1457 ( pndoMet]
[Met]”+[Met] kM2 "~ \ [AdoMet]+600

Glycine N-Methyltransferase (GNMT)
This reaction shows a sigmoidal dependence on its substrate, AdoMet, and is inhibited by its
product AdoHcy:

GNMT
V _ Vmax 1

GNMT — | KGNMT 2.3 14 [AdGONI;\IA(;Y]
+ [AdoMet] K;

Methylation reactions (MET)

Methylation reactions other than GNMT are described by a single lumped reaction. These reactions
are inhibited by AdoHcy. The rate law uses a single Michaelis constant for the methyl-accepting
substrates A:

MET A H
‘/MET = Vmax where Tl\r/[L]i:T =10 <1 + M)
kT (kupr) (KM e 1
U+ mdover T\ TA] AT [AdoMe]

INote that the standard Michaelis-Menten formula can be written as 1‘/"%
[S]
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Figure 5.10: Simulation of the Martinov methionine metabolism model. Initial concentrations are [AdoMet]
= 10 uM, AdoHcy = 10 uM. A separation of time-scales is apparent: the AdoHcy level drops rapidly to
its low steady value, while [AdoMet] climbs to steady state over a longer time interval. (Steady state is
reached after about 5 hours.) The methionine concentration is 48.5 uM. Other parameter values (in pM
hrt): UMATL — 561 VMATIL — 99870, VONMT — 10600, VMET = 4544; (in hr™'): oy = 1333; (in uM):

max max max max

Kanc = 0.1, [Adenosine] = 1, KMAT — 41 KMATI — 50 KMATII — 9] 1 KGNMT — 45((, KSNMT — 90
KMET /[A] = 10.

Homocysteine consumption (D)
A mass-action rate is used for the lumped reaction consuming homocysteine:

Kano
Vo = agl/Hey| = ayg[AdoHcy| ———————.
P alficy] al vl [Adenosine]
Martinov and his colleagues determined the values of the corresponding kinetic parameters
(maximal rates V.., Michaelis constants K, and inhibition constants K;) from previously reported
studies (Figure 5.10, caption).

Model behaviour

Figure 5.10 shows a simulation of the model at a low methionine level. There is a separation of
time-scales between the two state variables. The AdoHcy concentration drops within minutes and
remains steady while the AdoMet concentration relaxes over several hours.

This separation of time-scales is also apparent in the phase portraits in Figure 5.11. All tra-
jectories converge directly to the AdoHcy nullcline and then follow it to a steady state. Panel A
corresponds to the low methionine concentration in Figure 5.10. Trajectories converge to the single
steady state, at the intersection of the nullclines. Panel B shows the phase portrait at a higher me-
thionine concentration. The nullclines have shifted; they now intersect three times, indicating that
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Figure 5.11: Phase portraits of the Martinov methionine metabolism model. A separation of time-scales
is apparent. The trajectories (dashed lines) converge rapidly to the AdoHcy nullcline, and then follow it
to steady state. A. At a methionine concentration of 48.5 uM the nullclines intersect once: the system
is monostable. B. At a methionine concentration of 51 uM, the nullclines intersect three times, at two
stable steady states (filled boxes) and one unstable steady state (empty box). Other parameter values as in
Figure 5.10. Adapted from Figure 3 of (Martinov et al., 2000).

the system is bistable. One stable steady state exhibits a low AdoMet level; the other corresponds
to a much higher AdoMet concentration.

The system’s bistability is caused by the activity of MATIII and GNMT, both of which show
nonlinear dependence on AdoMet levels. The positive feedback on MATIII (whereby AdoMet
enhances its own production) generates the high-AdoMet steady state. The AdoMet concentration
that is attained in this elevated state is set by the GNMT-specific AdoMet consumption rate.

At the low-AdoMet state, the bulk of the pathway flux is through MATI and MET. This is the
standard operating behaviour for the cycle. In contrast, at the high-AdoMet state, the positive
feedback on MATIII increases the flux through MATIII while the negative feedback on MATI
decreases flux through that reaction. Thus MATIII carries the bulk of AdoMet production. This
high level of AdoMet induces a significant increase in GNMT flux.

The network employs bistability to keep the methionine level steady: when methionine levels
rise, the system switches to the high-AdoMet state in which the MATIII-GNMT “shunt” is active,
shuttling extra methionine directly to AdoHcy without impacting the activity of cellular methylases.
This is a valuable safety measure: methylation reactions are crucial to a wide range of cellular
processes and perturbations to the rates of these reactions might have wide-reaching consequences.
The presence of GNMT as a “safety valve” insulates methylation rates from changes in methionine
level.

Further insight into system behaviour comes from the bifurcation diagram in Figure 5.12, which
reveals the system’s response to changing methionine levels. As noted above, experimental observa-
tions show that increases in methionine over a low range cause only a small increase in the AdoMet
concentration. Then, at a threshold methionine concentration, the AdoMet level increases dramat-
ically. In the model, this threshold corresponds to the narrow region of bistability, above which
only the high-AdoMet state is present. (The model’s prediction of a sharp rise in both AdoMet
concentration and methionine consumption rate was later experimentally validated (Korendyaseva
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Figure 5.12: Bifurcation diagram for the Martinov methionine metabolism model. As the methionine
concentration rises, the system passes through a narrow region of bistability. At low methionine levels, the
AdoMet concentration is nearly constant. Beyond the region of bistability, [AdoMet] increases rapidly with
methionine concentration. Parameter values as in Figure 5.10. Adapted from Figure 6 of (Martinov et al.,
2000).

et al., 2008).)

This model cannot be used to explore the pathway’s ability to regulate methionine levels, be-
cause it treats the methionine concentration [Met] as a fixed input. A follow-up study appeared
in 2004, in which Michael Reed and colleagues presented an expanded model that takes methion-
ine production rate—rather than methionine concentration—as input (Reed et al., 2004; see also
Martinov et al., 2010).

5.4 *Stoichiometric Network Analysis

As we have seen, the construction of dynamic models begins with a description of reaction kinetics.
In this section, we address an approach that is used to study reaction networks for which the
kinetics are unknown: stoichiometric network analysis. Stoichiometric techniques focus on steady-
state behaviour; they rely primarily on network architecture. The material in this section makes
use of vectors and matrices (i.e. linear algebra). Readers unfamiliar with this material may wish
to consult Appendix B.

As mentioned in Section 5.3, there are a great many metabolic systems for which the reaction
network is known, but the associated kinetic mechanisms and parameters are yet to be determined.
This is especially true for large-scale networks that have been reconstructed from genomic data
(Palsson, 2006). These networks regularly contain thousands of species and reactions.
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Figure 5.13: Branched metabolic network. The reaction rates are denoted v;. The forward direction for
each reaction is rightward (downward for vy).

The stoichiometry matrix

For a reaction network composed of n species involved in m reactions, the stoichiometry matrix,
denoted N, is an n-by-m matrix whose 7j-th element is the net number of molecules of species 4
involved in reaction j. As an example consider the network shown in Figure 5.13. There are two
species, S1 and So, involved in four reactions, with rates vi, vg, vs, and vs. The stoichiometry
matrix is

1 -1 0 O — 5
0 1 -1 -1 — S

£

V1 V2 U3 U4

If the species concentrations and reaction rates are organized into vectors s and v (with s; =

[SZ]), i.e.
U1
-[a] )
S92 V3
vy

then the network dynamics are described by the vector differential equation

%s(t) = Nv, (5.17)
which, in expanded form, is
U1
i Sl(t) . 1 -1 0 0 (%) . V1 — V2
dt Sg(t) 1o 1 -1 -1 V3 o Vg — U3 — V4 |
V4

Structural Conservations

The stoichiometry matrix provides a description of all structural conservations (e.g. conserved
moieties) in the network, as follows.
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Figure 5.14: Closed enzyme-catalysis reaction network. The reaction rates are denoted v;.

Let the row vector N; denote the i-th row of N, so that
N,
N,
N = .
Ny,

Then we can expand the system dynamics in equation (5.17) as

d

ESl(t) = NlV
%82(75) = Nyv
%sn(t) = Npv.

The dynamic behaviour of combined quantities can be expressed in terms of the products IN;v. For

instance

& (s1(6) + 52(0)) = Niv + Nov = (N + No) .

It follows that conserved moieties—which are combinations of species whose time derivatives sum
to zero—correspond to combinations of species for which the corresponding rows N; sum to zero.
As an example, consider the enzyme-catalysis network shown in Figure 5.14. The stoichiometry

matrix is
N, -1 0 0 )
Ny -1 0 1 «— F
N=]| N3 | = 1 -1 0 «— ES
Ny 0 1 -1 ~— EP
Nj 0 0 1 ~— P
7

U1 V2 U3
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Figure 5.15: Reaction network for Exercise 5.4.3. The reaction rates are denoted v;.

In this case, there are two conservations: rows Ny, N3 and Ny sum to zero, so [E]+ [ES]+ [EP] =
constant, and rows Ny, N3, Ny and N5 sum to zero, so [S] + [ES] 4+ [EP] + [P] = constant.

For simple networks, it may seem unnecessary to identify conservations from the stoichiometry
matrix, because they can be readily determined by inspection of the network. However, for larger
networks—with hundreds or thousands of metabolites—a computational algorithm for identifying
conservations is required. Each structural conservation corresponds to an independent vector in
the left nullspace of N (i.e. the nullspace, or kernel, of the transpose of N.) The elements in this
nullspace can be determined by standard linear algebraic methods, e.g. Gaussian elimination.

Exercise 5.4.1 Verify that for the network in Figure 5.14, the vectors [0 11107 and [1 01 1 1)
(superscript T for transpose), which correspond to the two conservations, lie in the kernel of the
transpose of N. O

Exercise 5.4.2 Consider an open variant of the network of Figure 5.14, in which two additional
reactions have been included: production of S, with rate vg; and consumption of P, with rate vy.
Determine the stoichiometry matrix N for this expanded network. By addressing the rows of N,
verify that in this case the total enzyme is still conserved, but there is no conservation involving S
or P. O

Exercise 5.4.3 Consider the network shown in Figure 5.15. Determine the stoichiometry matrix
and, by analysing its rows, verify that the system exhibits two structural conservations, one of
which cannot be written as a conserved moiety (i.e. as a conserved sum of concentrations). O

5.4.1 Metabolic pathway analysis

If kinetic descriptions of the reaction rates were available, we could incorporate the kinetics into the
reaction-rate vector v = v(s) and write the differential equation (5.17) in terms of the concentration
vector s(t). When kinetic descriptions are not available, we abandon the goal of describing dynamics
and restrict our attention to steady state. Equation (5.17) gives a steady-state condition of:

0 = Nv. (5.18)



This is called the balance equation. Regardless of the kinetics, this equation must be satisfied by
the reaction rate profile v at steady state. We can thus explore possible steady-state flux profiles
by treating v as an unknown variable in the balance equation.

Equation (5.18) is a homogeneous system of linear equations. This is a standard object of study
in linear algebra (It can be solved by, for instance, Gaussian elimination.) The solutions are vectors
that lie in the nullspace of N. For metabolic networks, the balance equation does not typically have
a unique solution; instead, it admits a family of solutions. As we will see, each vector v in this
family describes a pathway within the network.

As an example, consider the network in Figure 5.13. The corresponding balance equation
0 = Nv is satisfied by the two flux profiles

(5.19)

Vo =

S ===
—_ O =

Vector vy corresponds to the steady-state behaviour in which there is equal flow through reactions
1, 2, and 3. Vector vy corresponds to equal flow through reactions 1, 2, and 4. These are the two
branches of the network. Vectors v and vg are not the only solutions to the balance equation.
By choosing any coeflicients oy, as, we can construct a new solution as the sum v = a1vy + asvs
(called a linear combination of vi and vq). In fact, for this network every steady-state flux profile
v takes this form. That is, given any vector v satisfying 0 = Nv, there is some pair of numbers
aq, ag, for which v = a3vy + agvy. (This is described technically by saying that vi and vy span
the family of solutions.) This family of linear combinations thus provides a concise description of
all steady-state flux profiles for the network.

Exercise 5.4.4 For the following three vectors, verify that the corresponding flux profile satisfies
the balance equation for the network in Figure 5.13, and then find numbers o; and as for which
the vector can be written as w; = a3vy + agve, for vi and vy as in equation (5.19).

2 6 0
w 2 w 6 w 0
1 — 1 bl 2 — 5 9 3 — _1
1 1 1
In each case, describe the corresponding flow pattern (with reference to Figure 5.13). O

Exercise 5.4.5 The choice of flux profiles vi and vs in (5.19) is not unique. Consider the pair

—2 1
P -2 oo — 1
7 -2 SR |
0 2
For each vector w; in Exercise 5.4.4, find numbers a1 and as so that w; = a1V + asgvy. O
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Figure 5.16: Branched metabolic network. Reactions 1, 2, and 3 are irreversible.

Irreversibility constraints

Some reactions within a metabolic reaction network can be readily identified as irreversible. (For
example, a reaction that involves ATP hydrolysis will not proceed in the opposite direction.) Irre-
versibility imposes constraints on the possible steady-state flux profiles. We say that a steady-state
flux profile v is feasible if it satisfies the balance equation (5.18) and does not violate any irre-
versibility conditions.

As an example, consider the network shown in Figure 5.16. This network has the same structure
as in Figure 5.13, but three of the four reactions are considered irreversible, so that the rates satisfy
v1 >0, v >0, and vg > 0.

In this case, the vectors

1 0
) 1 . 0
Vi=| 4 V2=

0 1

both satisfy the balance equation, but are not feasible because they violate the irreversibility
conditions.

To characterize the set of all feasible flux profiles, we need to determine the set of solutions of
the balance equation that satisfy v; > 0 for all irreversible reactions. Methods from linear algebra
are not sufficient for solving this problem; tools from convex analysis are needed. We will not delve
into this theory, but will briefly introduce the approaches that have become standard in dealing

with metabolic networks.

In order to describe the set of feasible flux profiles as linear combinations of the form a;vy +
QoVva + - -+ + ap v, we cannot allow the coefficients «; to take negative values, since that would
correspond to a reversal of flux. For the network in Figure 5.16, the flux profiles v; and vo from
equation (5.19) have the property that any flux of the form ;v + agvy is feasible provided that
a1 > 0 and as > 0. However, this set of linear combinations does not capture all feasible flux
profiles, as the following exercise demonstrates.
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Exercise 5.4.6 Verify that

=W NN

is a feasible steady-state flux profile for the network in Figure 5.16, but cannot be written in the
form ayvy + agve with vi and vy from equation (5.19) and «y > 0, ag > 0. O

We can describe all feasible flux profiles as linear combinations with non-negative coefficients
a; if we extend the set of vectors used in the sum. For the network in Figure 5.16, we can use

V] = Vo = V3 =

0
0
Ll (5.20)

~1

=

1
1
1
0
and then describe all steady-state feasible fluxes by:

V = a1V] + aVy + 3Vv3, a1 >0, ap >0, ag > 0.

The strategy of adding more flux profiles to the linear combination works in this case, but leads
to some questions. How are we to know that we have added enough profiles to completely describe
the set of feasible flux profiles? Conversely, is there some way we can tell if we have included more
profiles than necessary?

A number of methods have been developed to address these issues. One of the most commonly-
used approaches is based on the work of Stefan Schuster, who introduced the term flux mode to
refer to feasible steady-state flux profiles. If such a profile has the property that it cannot be
decomposed into a collection of simpler flux modes, then it is called an elementary fluz mode. The
vectors vi, va, and vs in equation (5.20) form a complete set of elementary flux modes for the
network in Figure 5.16, as can be verified by an algorithm for generating elementary flux modes
that Schuster published with Claus Hilgetag in 1994.*

Exercise 5.4.7 Consider the reaction network in Figure 5.17. Suppose reactions 1 and 3 are
assumed irreversible.
a) Verify that

is a flux mode, but is not elementary.
b) Find, by inspection, a complete set of elementary flux modes (there are three).
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— S| -— S, —»

Vi Vv, Vg

Figure 5.17: Reaction network for Exercise 5.4.7. Reactions 1 and 3 are irreversible. The forward direction
for all reactions is to the right.

Figure 5.18: Metabolic network with six species and ten reactions. Note, reaction 10 is So + S5 — Sy + Se.
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To further illustrate pathway analysis, consider the network in Figure 5.18, which involves six
species involved in ten reactions. The stoichiometry matrix is

10 0 O0O0-1 0 0 1 -1 0
01 0 0 0 -1 1 -1 0 -1
N — o0 -1 0 O O O 0 1 -1
o0 0-1 0 O O 0 0 1
o0 o o0 1 -1 0 0 0 O
o0 o o0 o 1 -1 0 0 1]

Suppose that all reactions are irreversible, as shown in the figure. A complete set of elementary
flux modes for the network is:

17 17 [ 17 [0 7] [0 7] [0 7]
0 0 0 1 1 1
0 1 0 0 1 0
0 0 1 0 0 1
vi = 1 vy = 0 vy = 0 v = 1 v = 0 v = 0
1 0 0 1 0 0
1 0 1 1 0 1
0 0 0 1 1 1
0 1 1 0 1 1
L 0 ] L 0 ] [ 1 ] L 0 ] | 0 L 1]

These flux modes are illustrated in Figure 5.19.

Exercise 5.4.8 Consider the network in Figure 5.18 and the flux modes v to vg listed above.

a) Consider the case in which reaction 1 is reversible. Identify the single additional elementary flux
mode exhibited by the system.

b) Consider the case in which reaction 3 is reversible. Identify the single additional elementary flux
mode exhibited by the system.

c¢) Consider the case in which reaction 5 is reversible. Explain why there are no additional elemen-
tary flux modes in this case. O

Elementary flux modes provide a valuable framework for investigating potential network be-
haviours. For instance, flux mode analysis allows the identification of all possible paths from a
given metabolite to a given product; this provides insight into which reactions are most important
for a given metabolic function.

The elementary mode concept suffers from some deficiencies. For instance, although the set of
elementary flux modes is unique (up to a scaling of the flux), the construction of flux modes from the
elementary modes is non-unique. Moreover, the number of elementary flux modes expands rapidly
with network size, so that for large networks the set of elementary modes may be unworkable.
There are alternative notions that better handle these issues: Bruce Clarke’s “extreme currents”
and Bernhard Palsson’s “extreme pathways” (Palsson, 2006). These alternative notions, however,
do not always lend themselves as easily to biological interpretation.

In the next section we extend our discussion of feasible steady-state flux profiles by imposing
additional constraints on the reaction rates.

*Reviewed in the book The Regulation of Cellular Systems (Heinrich and Schuster, 1996).
This algorithm is implemented in the software package METATOOL, which is freely available
(pinguin.biologie.uni-jena.de/bioinformatik/networks).

136



Figure 5.19: Elementary flux modes (heavy lines) for the network in Figure 5.18. Note, in modes vy and
v4, uptake is balanced by the loop composed of reactions 6 and 7, which consumes S5.

137



5.4.2 Constraint-based modelling: metabolic flux analysis

Metabolic Flux Analysis (MFA) offers techniques to address networks for which specific information
about the reaction rates is available. Most commonly, this information consists of measurements
of the rates of exchange reactions—reactions that involve transport of metabolites across the cell
membrane (i.e uptake or secretion). We will address two MFA techniques: metabolic balancing
and flux balance analysis.

Metabolic Balancing

Consider a network in which some of the steady-state reaction fluxes have been measured experi-
mentally. This data provides constraints on the feasible fluxes through the network, as follows.

To begin, we re-label the reactions so that the flux vector v can be partitioned into a vector of
known fluxes vk and a vector of unknown fluxes vy, as:

We then partition the stoichiometry matrix accordingly
N = [Ny N, (521)

so that we can write the balance condition as

Vk

0 = Nv = [Ny Nu]|:V :|:Nka+NuVu

u

or, equivalently,
NuVu = —Nka (5.22)

The unknown in this equation is v,. We next consider the three cases that can arise when using
this equation to characterize the unknown fluxes vy,.

Case I. Exactly determined systems
If Ny, is invertible, then we can determine vy, directly:
va = —Ny !Ny (5.23)

To illustrate, consider the network in Figure 5.20, which has stoichiometry matrix (note the num-
bering of the reactions):

0 01 -1
N_[—l—lo 1]'

Suppose reaction rates v; and v9 have been measured, so

Vk:|:vl:| and Vu:[v?’]
V2 V4
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Figure 5.20: Network for metabolic balancing analysis.

In this simple case, the relationship between vy and vy is clear from inspection of the pathway.
Nevertheless, to illustrate the general method, we partition the stoichiometry matrix as in equa-
tion (5.21) with

Nk:[—(l) _(1)} and Nu:[(l) _1}

In this case, Ny, is invertible:

_ 11
Nulz[o 1]

We can solve for the unknown reaction rates as
_ 1 1 0 0 (%1} 1 1 (%1} V1 + V2
— _N..” !N = _ = = .
T (RN | I Y | P e
Exercise 5.4.9 Returning to the network in Figure 5.18, suppose that the rate of reactions vy,
v, v3 and vy have all been measured. Verify that in this case the remaining fluxes are completely
determined, and solve for their values in terms of the measured rates. (Note, this system is simple

enough that this task can be carried out by inspection of the network—using the steady-state
condition for each species.) O

In practise, the matrix Ny, is almost never invertible, and so equation (5.22) cannot be solved
so easily. The more commonly occurring cases are addressed next.
Case II. Over-determined systems

To illustrate the case of an over-determined system, consider again the network in Figure 5.20 and
suppose that three fluxes have been measured:

U1
vk = | v9 and vy = [ V4 ] (5.24)
v3

From Figure 5.20, it is clear that in steady state vy = vg and vqy = vy + vo. If the measured values
satisfy vg = v1 4 vo, then the system is said to be consistent.
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However, measurements from a real system will typically be impacted by experimental error
or neglected side reactions, and so it is unlikely that the measured values will exactly satisfy
v3 = v1 + vo. The result is an inconsistent system:

Vg = V3 F V1 + U3 = V4.

What then, is the most appropriate estimate for the value of v4?7 Because there is no reason to
have more confidence in either measured value (i.e., vz or v; 4+ v3), a reasonable compromise is to
split the difference, and set v4 to be the average of the two estimates:

U3 + (7}1 +1)2)

5 (5.25)

For more complex networks, the appropriate compromise value of v, will not be so clear. The best
estimate can be calculated by replacing N, ™! in equation (5.23) with the pseudoinverse of Ny,
defined as

Nu# = (l\IuT]-\Iu)_1 NuTa
where N7 is the transpose of Ny. The unknown fluxes v, are then estimated as
Vu = —Nu#Nkvk

This equation generates a best compromise solution to equation (5.22), in the following sense: it
provides the value of v, for which the difference N,v, — Nyvy is as close to zero as possible.

To illustrate this technique, we apply it to the known and unknown vectors in equation (5.24).
The stoichiometry matrix is partitioned as

0 01 -1
Nk—[_1 1 0] and Nu—[ 1}

The pseudo-inverse of Ny, is then:

-1
-1 _
ne= (1] ]) 1 i)=@t e =1
and we can solve for the unknown flux as

U1
0 01 1
1
2}[—1 1 0} - =5 et
3

Vu:[v4]:—Nu#Nka:—[—

N~
|

as we had established intuitively in equation (5.25).

Case II1. Under-determined systems and flux balance analysis

In most applications of metabolic balancing, the constraints provided by measured fluxes are in-
sufficient to determine the values of the remaining fluxes, so equation (5.22) is under-determined.
In this case, pathway analysis can characterize the set of flux profiles that are consistent with the
measured flux values, as in the following exercise.
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Exercise 5.4.10 Returning to the network in Figure 5.18, suppose that the steady-state rates of
reactions vg and v4 have been measured. Which other steady-state flux values are determined as a
result? |

A unique prediction for the steady-state flux profile of an under-determined system can only be
reached by imposing additional constraints on the network. One approach for generating additional
constraints is to suppose that the flux profile has been optimized for production of some target
metabolites. This technique is called Flux Balance Analysis (FBA).

In applying Flux Balance Analysis, one typically presumes that the ‘goal’ of a cell is to produce
more cells: organisms are optimized (by natural selection) for self-reproduction. By identifying
a group of metabolic products that correspond to the building blocks of a new cell (collectively
called biomass), we may presume that the cell’s metabolic network is optimized to produce these
target products. (FBA is also employed with other optimality criteria. For example, a metabolic
engineer interested in improving yield of a specific metabolite might carry out a flux balance analysis
optimizing the production rate of the target metabolite. The resulting profile is unlikely to ever be
realized in the cell, but it provides an upper bound on achievable production rates.)

To apply FBA, upper bounds on some reaction rates must be provided (otherwise optimal
solutions could involve infinite reaction rates). These upper bounds, which correspond to V..
values in a kinetic model, are often provided only on exchange fluxes (i.e. uptake and secretion
reactions).

Flux balance analysis involves optimizing an objective of the form ajvy 4+ agvs + « -+ + amUm
(corresponding to production of, e.g., biomass) under the following constraints:

e Steady-state balance: 0 = Nv
e Upper or lower bounds on some reaction fluxes: [; < v; < u;.
e Constraints provided by any measured fluxes: Nyvy, = —Nyvy.

The resulting optimization problem can be efficiently solved by the technique of linear programming,
which is commonly featured in computational software packages.

To illustrate FBA, we consider again the network in Figure 5.20. Suppose that reaction rate vy
has been measured, and that upper and lower bounds I3 and ug have been provided for reaction
rate vs. Finally, suppose that the network is optimized for yield from reaction vy. In this case, the
analysis is straightforward: the maximal flux through v, is achieved when the substrate uptake v3
is maximal, i.e. v3 = ug. To satisfy balance, v4 = uz as well. This results in an optimal production
rate of vo = ug — v1. Another example is provided in the following exercise.

Exercise 5.4.11 a) Returning to the network in Figure 5.18, suppose all reactions are irreversible
(v; > 0 for ¢ = 1...10) and that the uptake rates are constrained by v; < 1 and ve < 1. What is the
maximal value of the steady-state rate vg under these conditions? What is the maximal value of
the steady-state rate v4?

b) Repeat part (a) under the additional constraint that vy < 1.

c) Repeat part (a) under the condition that the enzyme responsible for catalysing reaction vg has
been removed (knocked-out), so that vg = 0. O
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5.5 Suggestions for Further Reading

e Modelling of metabolic networks: Introductions to metabolic modelling and a range of
case studies can be found in the books Kinetic Modelling in Systems Biology (Demin and
Goryanin, 2009), and Systems Biology: a textbook (Klipp et al., 2009).

e Metabolic regulation: A biologically-motivated introduction to Metabolic Control Anal-
ysis can be found in Understanding the Control of Metabolism (Fell, 1997). The Regulation
of Cellular Systems (Heinrich and Schuster, 1996) contains a thorough description of the
mathematical theory of MCA, as well as a comprehensive treatment of stoichiometric net-
work analysis. Regulation of metabolic pathways is also addressed in Michael Savageau’s book

Biochemical Systems Analysis: a study of function and design in molecular biology (Savageau,
1976).

e Stoichiometric network analysis: An introduction to stoichiometric network analysis
is provided in “Stoichiometric and Constraint-based Modeling” (Klamt and Stelling, 2006).
The theory and applications of metabolic flux analysis are addressed in the book Metabolic
Engineering: principles and methodologies (Stephanopoulos, 1998). Methods for address-
ing large-scale metabolic networks, including flux balance analysis, are covered in Systems
Biology: properties of reconstructed networks (Palsson, 2006).

5.6 Problem Set

5.6.1 Flux control coefficients. Consider the metabolic chain Sy < S; &3 S5 3. Suppose that
the concentration of S is fixed, and take the reaction rates as

v — Vi[So] — Va[S1]

T TS/ K + [S1)/ K
y . V3[S1] — V4[S2]

? T4 [S1]/ Kz + [S2) /K
vy = V5[S2]

e —_—
1+ [S2]/ K s

a) Use numerical approximation (equation (4.15)) to determine the flux control coefficients of the
three reactions at nominal parameter values of (in units of concentration) eg =1, e; = 1.5, e = 2,
[So] =1, Karn = Ko = Kys = Ky = Kys = 1; (in concentration™ - time™!) V4 = Vo = 1,
V3 =Vy =2, and V5 = 0.5. You can check your calculations by confirming that the flux control
coefficients sum to one.

b) Recall that sensitivity coefficients are only valid near a given nominal parameter set. Confirm
this fact by repeating part (a) after changing the nominal value of parameter V; to 6.

5.6.2 Oscillatory behaviour from end-product inhibition. Consider the end-product in-
hibited metabolic chain of length n shown in Figure 5.21. Take the rate of the first reaction to
be

v

R ENEAT T
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Figure 5.21: Metabolic chain for Problem 5.6.2

and the others to be described by mass action:
vi:k‘i[Si], ’iZl,...,’l’L

a) Take nominal parameter values v = 10 (concentration - time™!), K = 1 (concentration), k; = 1
(time™!), i = 1,...,n. Explore the behaviour of the pathway by simulating models for different
values of the inhibition strength ¢ and different chain lengths n. From your simulations, determine
whether an increase in the length of the chain increases or decreases the range in ¢-values over
which the system exhibits sustained oscillations. (Be sure to run simulations sufficiently long
to distinguish sustained oscillations from slowly damped oscillations.) Provide evidence for your
conclusion by reporting the range of g-values over which steady oscillations occur.

b) Next consider an alternative nominal parameter set, for which k1 = 3 (time™!), k; = 1 (time™!),
i =2,...,n. Repeat the analysis in part (a). Has this inhomogeneity in reaction rates made the
system more or less likely to exhibit oscillations?

c¢) Explain your finding in part (b). Hint: consider the limiting case in which inhomogeneity in
reaction rates introduces a significant time-scale separation between one reaction and the others.
How would this impact the effective length of the chain?

5.6.3 Metabolic Control Analysis: supply and demand. Consider the two-step reaction
chain %% S %, where the reactions are catalysed by enzymes Ey and E; with concentrations ey and
e1. The Summation Theorem (Section 5.2.1) states that

J J
Ci, +Co, =1
A complementary result, the Connectivity Theorem (Heinrich and Schuster, 1996) states that
J .0 J 1
06055 + 06155 =0.
a) Use these two statements to determine the flux control coefficients of the two reactions as

J _ €8 g _ €S
I e

b) In addressing the control of flux through the pathway, we can think of vy as the ‘supply rate’
and v; as the ‘demand rate’. Given the result in part (a), under what conditions on the elasticities
6% and eé will a perturbation in the rate of supply affect pathway flux more than an equivalent
perturbation in the rate of demand?

¢) Suppose the rate laws are given as vy = eg(koX — k_1[S]) and vy = e1k1[S], where X is the

constant concentration of the pathway substrate. Verify that the elasticities are

k_1[S]

0
ST koX — k_1]S] o =3
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Figure 5.22: Reaction chain for Problem 5.6.5

Determine conditions on the parameters under which perturbation in the supply reaction vy will
have a more significant effect than perturbation in the demand reaction vy. Hint: at steady state
k()X — k_ls = elkls/eo.

5.6.4 Metabolic Control Analysis: end-product inhibition. The coefficients in equa-
tion (5.11) can be derived directly from the steady-state conditions for the network in Figure 5.5.
However, a simpler derivation makes use of the Summation Theorem (Equation 5.9) and the com-
plimentary Connectivity Theorem (Heinrich and Schuster, 1996). In this case, the Summation
Theorem states that

cl+cl+cl =1
The Connectivity statements are

J 1 J 2 _ J 1 J 2 J 3 _
061651 +062651 =0 and 0616512 + 062€S2 + 063652 =0.

(Note that 5%1 =0.) This is a system of three equations in the three unknowns C?, C7  and Cé.

e’ €’
Solve these equations to arrive at the formulas in equation (5.11).

5.6.5 S-system analysis of pathway regulation. As discussed in Section 5.2, Michael Sav-
ageau carried out a general analysis of metabolic feedback regulation schemes (Savageau, 1976). He
made use of an S-system model formulation (Section 3.5) to derive explicit descriptions of sensitiv-
ity coefficients (as in Problem 4.8.15). Here, we consider a simple example to illustrate Savageau’s
approach. Consider the two-step reaction chain in Figure 5.22.

We will compare the behaviour of the system in the presence or absence of the negative feedback.
An S-system formulation of the model (with z; = [X;]) is

d
a:nl(t) = g — axd? Eajg(t) = oz — azxd’

If the negative feedback is absent, the coefficient g; = 0, otherwise, g1 < 0.
a) Verify that at steady state
a1z = agad’
Take logarithms to verify that at steady state
log a1 — log a3
g3 — 41 '

b) Use the results of Problem 4.8.15 to confirm that the relative sensitivities of [X32] to the rate
constants a7 and ag are

log zo9 =

a1 0xo 1 a3 0o -1
— = = and ——— =
r2 001 g3 — g1 z2 0az g3 — g1
Conclude that the inhibition (which introduces g; < 0) reduces the sensitivity of [X32] to perturba-
tions in the rate constants.
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CGS

cystathionine threonine

Figure 5.23: Branch-point network for Problem 5.6.7. Adapted from Figure 1 of (Curien et al., 2003).

5.6.6 Methionine metabolism. Consider the Martinov model of the methionine cycle in Sec-
tion 5.3.2.

a) Define the pathway flux as the rate at which methionine is cycled through the pathway (flux
= Vuarr + Vaarmn = Venur + Vuer = Vp.) Simulate the model and determine (numerically,
equation (4.15)) the flux control coefficients for each of the enzymes in the pathway, using parameter
values as in Figure 5.10 (for which the system is monostable). Verify that control coefficients sum
to one. (Be sure to calculate a flux control coefficient for each of the five reactions in the network.)
Note: the relative sensitivity to enzyme abundance is equivalent to the relative sensitivity to V...,
because enzyme abundance is proportional to V..
b) The model’s bistability is caused by the activity of MATIII and GNMT, both of which show
nonlinear dependence on AdoMet levels. When methionine levels rise, flux through GNMT and
MATIII increases dramatically, while flux through the methylation reactions (lumped together in
reaction MET') shows only a modest increase. Verify this claim by comparing the reactions fluxes
(MATTI to MATIII, GNMT to MET) in the two steady states displayed in Figure 5.11B.

c) Bistability depends on a balance between the flux through MATI and MATIII. Verify that
bistability is lost when this balance is upset, as follows. Consider the case when [MET| = 51 uM,
as in Figure 5.11B. With the other parameter values as in Figure 5.10, verify that bistability is lost
when VMATI g herturbed more than 15% up or down from its nominal value.

max

5.6.7 Branch-point control. In a 2003 paper, Gilles Curien and colleagues presented a model of
a branch point in the amino acid biosynthesis pathways of the plant Arabidopsis thaliana (Curien et
al., 2003). They considered the network in Figure 5.23, in which phosphohomoserine is converted to
either cystathionine or threonine. The two enzymes of interest are cystathionine y-synthase (CGS),
which combines phosphohomoserine (Phser) with cysteine (Cys) to produce cystathionine; and
threonine synthase (T'S) which produces threonine from phosphohomoserine, and is allosterically
activated by S-adenosylmethionine (AdoMet). All three reactions in the network are irreversible.
The rate of phosphohomoserine production is taken as a fixed parameter, Jppge. The other reaction
rates are given by

keatcars [CGS]- [Phser]
UCGS = KCys KPh,se'r
14 —meaes | mCGS 4 [Phser]

[Cys] 1+K, 06 /[Cys]

vrs = [TS]-[Phser] <K1 n Ks[AdoMet]?* >

K29 4+ [AdoMet]>?
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Figure 5.24: Reaction network for Problem 5.6.8.

Note, CGS follows a ping-pong reaction mechanism (Problem 3.7.6); TS is described in its first-order
(linear) regime. Take parameter values Jppser = 0.3 uM 871, kearogs = 30 s71, Kﬁgsgs = 15000
pM, KE% .o =460 pM, Ky = 4.9 x 1076 uM~! 571, Ky = 5.6 x 1074, K3 = 32 M, [CGS] = 0.7
uM, [TS] =5 uM, [AdoMet]=20 uM, [Cys]=250 pM.

a) Simulate the model. Verify that phosphohomoserine relaxes to its steady state on a time-scale
of tens of minutes. For the given parameters, which branch carries more flux? What is the steady
state flux ratio?

b) Verify that for large AdoMet concentrations, the flux through TS is larger than the flux through
CGS. Find the AdoMet concentration for which the flux is split equally between the two branches.
c) AdoMet is produced from cystathionine. If AdoMet production were included in the network,
would the allosteric activation of TS by AdoMet act as a positive feedback or a negative feedback
on cystathionine levels? Explain your reasoning.

5.6.8 *Stoichiometric network analysis. Consider the reaction network in Figure 5.24.

a) Determine the stoichiometry matrix N. It has rank four.
b) Suppose all reactions are reversible. Describe all possible steady-state reaction profiles as linear
combinations of elements of the kernel of N.

c) Identify the kernel of the transpose of N and the corresponding mass conservation(s) in the
network.

d) Suppose now that reactions 1 and 2 are irreversible (i.e. v1 > 0 and vy > 0). Identify the four
elementary flux modes in the network.

5.6.9 *Stoichiometric network analysis: glycolysis Consider the reaction network in Fig-
ure 5.25 (a simplified model of the glycolytic pathway).

Denote the species as s1 = G6P, so = F6P, s3 = TP, s4 = F2,6P2, s5 = AMP, s¢ = ADP, and
s7 = ATP (where G6P is glucose-6-phosphate, F6P is fructose-6-phosphate, TP is the pool of triose
phosphates, F2,6P2 is fructose-2,6-bisphosphate, ATP is adenosine triphosphate, ADP is adenosine
diphosphate, and AMP is adenosine monophosphate). Determine the stoichiometry matrix N for
the system. In this case, the stoichiometry matrix has rank 6.

a) Determine the kernel of N. Suppose all reactions are reversible. Describe all possible steady-state
reaction profiles as linear combinations of elements of the kernel of IN.
b) Suppose now that reactions 2 and 4 are irreversible. Describe the set of elementary modes for
the network.

c¢) Determine the kernel of the transpose of N, and use it to identify the mass conservation(s) in
the system.
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Figure 5.25: Reaction network for Problem 5.6.9.

5.6.10 *Stoichiometric network analysis: amino acid production. Consider the network
in Figure 5.26, which is a simplified description of amino acid metabolism in Chinese Hamster
Ovary (CHO) cells (Naderi et al., 2011). There are eleven species involved in seventeen reactions.
Four reactions represent substrate uptake (v1, vo, v3, v4) and three represent export (vs, vg, v7).
a) Determine the stoichiometry matrix for the system, and verify that there are no structural
conservations.

b) Suppose all reactions are reversible. Determine the kernel of N. Describe all possible steady-state
reaction profiles as linear combinations of elements of the kernel of IN.

c¢) Suppose the steady-state rates of the exchange reactions (v; — v7) have been measured. Identify
any consistency conditions that these measurements would be expected to satisfy. Supposing the
measurements are consistent, what conditions do they impose on the remaining reaction rates?

d) Suppose the uptake reactions (v; — v4) satisfy upper bounds given by v; < u;, i = 1..4. Suppose
further that all reactions are irreversible. What is the optimal yield (i.e. rate of export) of Glu
under these conditions? What is the optimal yield of Ala?
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\:/8 SucCoa

KG /\4/10

Figure 5.26: Metabolic network for Problem 5.6.10. Abbreviations: Pyr, pyruvate; AcCoa, acetyl-CoA;
aKG, alpha-ketoglutarate; SucCoa, Succinyl-CoA; Fum, fumarate; OAA, oxaloacetate; Ala, alanine; Gln,

glutamine; Asn, asparagine; Asp, aspartic acid; Glu, Glutamic acid. Adapted from Figure 3 of (Naderi et
al., 2011).
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Chapter 6

Signal Transduction Pathways

“[T]he ordinary communication system of a mine may consist of a telephone central
with the attached wiring and pieces of apparatus. When we want to empty a mine in a
hurry, we do not trust to this, but break a tube of a mercaptan [a gas that smells like
rotten cabbage] in the air intake. Chemical messengers like this, or like the hormones,
are the simplest and most effective for a message not addressed to a specific recipient.

—Norbert Wiener, Cybernetics, or Control and Communication in the Animal and the
Machine

Cells have evolved to survive in a wide range of conditions. In order to function in an unpre-
dictable environment, they must be able to sense changes in their surroundings and respond ap-
propriately. Intracellular signal-transduction pathways sense extracellular conditions and trigger
cellular responses. Cells sense a myriad of stimuli, ranging from biological signals (e.g. hormones
and pheromones) to chemical conditions (e.g. nutrients and toxins) to physical features of the en-
vironment (e.g. heat and light). Responses to these signals involve adjustments in cell behaviour,
often implemented through changes in gene expression (discussed in Chapter 7).

Signal transduction pathways are—like metabolic pathways—biochemical reaction networks.
However, while metabolic pathways shuttle mass and energy through the cell, signal transduction
pathways are primarily concerned with propagating information. These two classes of networks
thus have distinct functional roles. They also have distinct implementations. Metabolic pathways
process material in the form of small molecules (metabolites). In contrast, signal transduction
pathways encode information in the configurations of proteins (via conformational shifts or covalent
modifications). Changes in protein state are passed through activation chains—cascades of enzymes
that activate one another in turn. Such reaction chains are made up solely of proteins, and are
examples of protein-protein interaction networks.

Protein-protein interactions are not usually well-described by Michaelis-Menten kinetics. Recall
that the Michaelis-Menten rate law was derived under the assumption that reaction substrates are
significantly more abundant than the catalysing enzyme (Section 3.1.1). In signal transduction
pathways, the substrates of enzymatic activity are proteins, and are not typically more abundant
than the catalysing enzymes. In this context, when enzyme-catalysed reactions are treated as single
events, the enzymes are typically presumed to act in the first-order regime. (So, for example, the
reaction S — P catalysed by enzyme E has rate k[E][S].)

The term signal transduction refers to the transfer of information across spatial domains,
e.g. from the extracellular space to the nucleus. In addition, signalling pathways perform informa-
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Figure 6.1: Transmembrane receptor protein. The signalling molecule, called a ligand, binds to a site in
the protein’s extracellular domain. This binding event causes a conformational shift in the protein, which
exposes a catalytic site in the cytosolic domain. The ligand’s presence is thus communicated to the cytosol
without the ligand entering the cell.

tion processing tasks, and are thus analogous to technological information-processing systems. In
this chapter we will survey pathways that illustrate a range of information-processing capabilities:
amplification and discretization of signals, adaptation to persistent signals, storage of memory, and
frequency encoding.

In this chapter, our focus will be on pathways that are triggered by molecular cues from the ex-
tracellular environment. Some of these molecular signals can diffuse freely across the cell membrane.
The corresponding sensors consist of a cytosolic protein that binds the signal and consequently elic-
its a cellular response (most commonly a change in gene expression). These simple sensing systems,
called one-component mechanisms, are common in prokaryotes. However, most signalling molecules
cannot diffuse across the cell’s bilipid membrane. In order to sense these molecules in the extra-
cellular environment, cells employ transmembrane receptor proteins. As shown in Figure 6.1, these
proteins span the membrane, exposing an extracellular protein-domain to the external environ-
ment and a cytosolic protein-domain to the cell’s interior. Signalling molecules (ligands) bind the
extracellular domain of the protein. This binding event causes a conformational change in the
receptor, activating an enzymatic site at the cytosolic domain. The receptor protein thus transfers
information across the membrane, while the ligand remains outside the cell.

In the remainder of this chapter we will address a number of signal transduction pathways,
each of which begins with activation of a transmembrane receptor. The receptor typically acts
as a kinase—an enzyme that catalyses the covalent addition of a phosphate group (POi_) to its
substrate. This event, called phosphorylation, typically activates the target protein, which then
carries the signal into the cell.
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Figure 6.2: Bacterial two-component signalling pathway. Ligand binding activates the kinase activity of
the transmembrane receptor’s cytosolic domain. The receptor then activates the response regulator protein,
which diffuses into the cytosol and elicits a cellular response. The response regulator protein is deactivated
by dephosphorylation.

6.1 Signal Amplification

6.1.1 Bacterial two-component signalling pathways

Transmembrane receptor proteins transmit information across the cell membrane and into the cell.
However, because these proteins are lodged in the membrane, they are unable to transmit signals
farther than the intracellular membrane surface. Cytosolic ‘messenger’ proteins are required if the
information is to be shuttled into the cell’s interior. Many bacterial signalling pathways consist of a
receptor and a single messenger protein. These are referred to as two-component signalling pathways
(Figure 6.2). The messenger protein, called a response requlator, is activated by phosphorylation.
Activated response regulators diffuse through the cytosol to perform their function, usually causing
a change in gene expression. The response regulator is deactivated by dephosphorylation, thus
turning the signal off. This can occur spontaneously (autodephosphorylation) or by the action of
a separate enzyme, called a phosphatase.

Two-component pathways have been identified in many bacterial species, and serve a range of
roles, including nitrogen fixation in Rhizobium, sporulation in Bacillus, uptake of carboxylic acids
in Salmonella, and porin synthesis in F. Coli.

A simple reaction scheme for the system in Figure 6.2 is the following:

ky

R+1L ——— RL
k4

ko
P+RL ——> P*+RL

k3

Pt — P
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where R is the receptor, L is the ligand, RL is the active receptor-ligand complex, and P, P* are
the inactive, and active, response regulator proteins, respectively. The second reaction P — P*
is catalysed by RL. (Writing the reaction as P + RL — P* + RL allows us to describe the first-
order catalytic event by a mass-action rate law.) We have made the simplifying assumptions that
(i) the conformational shift occurs concurrently with ligand binding, and (ii) phosphorylation and
dephosphorylation each occur as single reaction events. Taking the ligand level as a fixed input,
the model equations are

%[R](t) —  _k[R](t)-[L)(t) + k_1[RL](t)
%[RL](t) = ka[RI(t)- [L](t) — ka[RL)(1)
%[p]@ = —ky[P)(t)-[RL)(t) + ks[P*](¢)
d

HF71@) = k2[P](2)-[RL](t) — ks[P7](t)
This system involves two conserved quantities: the total concentration of receptor ([R] + [RL] =
Rr), and the total concentration of response regulator protein ([P] 4 [P*] = Pr).

Figure 6.3A illustrates the pathway’s behaviour. The simulation starts in an inactive steady
state with no ligand present. Activity is triggered by an abrupt addition of ligand, and the response
reaches steady-state. The system is then inactivated by removal of ligand. Panel B shows a dose-
response curve for the system, indicating the steady-state concentration of active regulator protein
and receptor-ligand complex over a range of ligand concentrations.

This two-component cascade achieves amplification of ligand signal through enzyme activation:
although the number of active receptor-ligand complexes is restricted by the number of ligand
molecules, each complex can activate many response regulator proteins, allowing for amplification
of the original molecular signal. (For the parameter values in Figure 6.3A, a ligand concentration
of three units gives rise to a response regulator concentration of seven units; larger output gains
can be achieved by other model parametrizations.)

6.1.2 G-protein signalling pathways

Eukaryotic signal transduction pathways are typically more complex than their bacterial counter-
parts. A common first step in eukaryotic pathways is the activation of GTP-binding regulatory
proteins, called G-proteins. The G-protein signalling mechanism, sketched in Figure 6.4, is similar
to the two-component system discussed above. The primary distinction is in the character of the
response protein—the G-protein itself. It consists of three different polypeptide chains: the a-,
B-, and ~-subunits. The a-subunit has a site that binds a molecule of GDP (guanosine diphos-
phate). When a G-protein-coupled transmembrane receptor is activated by ligand binding, the
receptor-ligand complex binds the a-subunit, causing a conformational change that leads to loss
of GDP and binding of GTP. This, in turn, leads to dissociation of the a- from the Sv-subunits,
exposing a catalytic site on the a-subunit that triggers a downstream response. Eventually, the
GTP-bound a-subunit converts the bound GTP to GDP, after which it rebinds the S+y-subunits
and so is returned to its original state, ready for another activation cycle.

In 2003, Tau-Mu Yi, Hiroaki Kitano, and Mel Simon published a model of G-protein activation
in the yeast Saccharomyces cerevisiae (Yi et al., 2003). A simplified version of their model describes
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Figure 6.3: Bacterial two-component signalling pathway response. A. Dynamic response. Ligand is absent
until time ¢ = 1. When ligand is introduced, the concentration of receptor-ligand complexes quickly comes
to equilibrium, as does the population of active response regulator proteins. The ligand is removed at time
t = 3, resulting in dissociation of receptor-ligand complexes and the decay of the active response regulator
pool. B. Dose-response. This continuation diagram shows the steady-state concentrations of active response
regulator protein and receptor-ligand complex as functions of ligand abundance. Parameter values are
k1 = 5 (concentration™! - time™!), k_; = 1 (time~!), ky = 6 (concentration™! time~!), k3 = 2 (time™1),
total receptor concentration Rr = 2 (concentration), and total response regulator protein concentration
Pr = 8 (concentration). Units are arbitrary.

seven species: ligand (L), receptor (R), bound receptor (RL), inactive G-protein (G), active Gg-
GTP (Ga), free fy-subunit (Gbg), and inactive Go-GDP (Gd). The reaction scheme is

krL

R+ L RL

kRLm

kGa
G+RL ———> Ga+Gbg+ RL

kGao
Ga —> Gd

ka1
Gd+ Gbg —> G.

The model’s behaviour is shown in Figure 6.5. Overall, the response is similar to that of the two-
component signalling mechanism (although for these parameter values there is no amplification
from the ligand to the response).

Compared with bacterial two-component signalling pathways, the increased complexity of the
G-protein pathway provides additional opportunities for interaction between distinct signalling
pathways (called crosstalk) and additional avenues for pathway regulation. G-protein pathways can
be regulated through a number of means, including genetic control of receptor abundance, covalent
modification of receptors, and spatial trafficking of receptors away from G-proteins (sequestration).
G-protein pathways can also be regulated by extrinsic sources. As an example, cholera infection
produces a toxin that modifies the a-subunit of a G-protein so that it is permanently ‘on’; with
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Figure 6.4: G-protein signalling mechanism. The G-protein coupled transmembrane receptor is activated
by ligand binding. It then causes the G-protein to release GDP and bind GTP. The GTP-bound a-subunit
dissociates from the Svy-subunits, and activates a downstream response. The GTP molecule is subsequently
converted to GDP, and the G-protein subunits re-associate, completing the cycle.

dangerous consequences for the affected host. Similar avenues for regulation are exploited for
medical purposes: G-protein signalling pathways are the target of about 40% of all prescription
drugs.

Exercise 6.1.1 Write out the differential equations for the G-protein pathway model. Treat the
ligand concentration as a fixed input. Describe how conservations can be used to reduce the model
to three differential equations. O

6.2 Ultrasensitivity

The dose-response curves in Figure 6.3B and 6.5B are hyperbolic. As we saw in Chapter 3, this
type of response curve is typical for protein-complex formation. Such graded responses are common
in signal transduction, but in some cases a more switch-like ‘all-or-nothing’ response is required.

A switch-like response can be achieved by a pathway that triggers activity only when an input
signal crosses a threshold. An example from technology is the conversion of continuously-valued
(analogue) signals into discretely valued (digital) signals, as in the conversion of voltage levels
into the binary (0/1) signals used in electronics. This discretization process converts the smoothly
varying values of a signal into a discrete (ON/OFF) response.

The term ultrasensitive is used to describe the behaviour of biochemical systems for which the
response is steeper than hyperbolic. In Section 3.3 we saw that cooperative binding can produce
ultrasensitive responses to ligand doses. Cooperative behaviour is typically described by Hill func-
tions, with the Hill coefficient reflecting the steepness of the dose-response curve. A more general
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Figure 6.5: G-protein signalling mechanism. A. Dynamic response. At time ¢ = 100 seconds, 1 nM of ligand
is introduced. This input signal is removed at time ¢ = 700 seconds, causing the response to decay. For these
parameter values there is no amplification of signal. B. Dose-response. The steady-state concentrations of
active response regulator protein and receptor-ligand complex are shown as functions of ligand availability.
Protein abundance is specified as molecules per cell. Parameter values are krr, = 2x10730M ™! s™1, krpm =
1072 571, kg = 1075 (molecules per cell) ' s, kgao = 0.11 s7%, kgy = 1 (molecules per cell) ' s™1. The
total G-protein population is 10000 molecules per cell, while the total receptor population is 4000 molecules
per cell.

measure of steepness is the relative difference in input levels between 10% and 90% of full activa-
tion. For a hyperbolic curve, an 81-fold increase in input strength is required to span this response
range. For ultrasensitive systems, the required increase in input strength is smaller, as verified by

the following exercise.

Exercise 6.2.1 Confirm that if response R is given by

s
- K+s

then an 81-fold increase in the concentration of s is required to transition from 10% to 90% of full
activation. (Note, full activation, R = 1, is achieved in the limit as s gets large.) Verify that the
corresponding increase in activity of the Hill function

4
5
R=——
K + st
demands only a 3-fold increase in activation. (Again, full activation corresponds to R = 1.) o

Some signalling pathways employ cooperative binding to generate sigmoidal responses. In this
section, we will introduce other biochemical mechanisms that can also generate ultrasensitive be-

haviour.

6.2.1 Zero-order ultrasensitivity

In a 1981 paper, Albert Goldbeter and Douglas Koshland showed that an ultrasensitive response
can be generated in the absence of cooperativity by an activation-inactivation cycle (Goldbeter
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Figure 6.6: Activation-inactivation cycle. The target protein cycles between its inactive (W) and active
(W*) states. Activation is catalysed by enzyme Ej, deactivation by enzyme F5. (The most commonly
occurring cycles involve phosphorylation and dephosphorylation; in this case E; is a kinase and F5 is a
phosphatase.) This network can be treated as a signalling pathway: the input is the abundance of Ey, the
output is the concentration of W*.

and Koshland, 1981). Such cycles typically involve activation by covalent modification, most com-
monly phosphorylation. We saw one such example in the previous section: the phosphorylation-
dephosphorylation cycle for the response regulator protein in a two-component signalling pathway.
In this section we consider activation-inactivation cycles as self-contained signalling systems: the
input is the abundance of the activating enzyme (e.g. the receptor-ligand complex); the output is
the concentration of the activated protein (e.g. the phosphorylated response regulator).

Goldbeter and Koshland used a simple model to explore the signalling properties of activation-
inactivation cycles. They found that if either the activating or the inactivating enzyme (e.g. the
kinase or the phosphatase) becomes saturated, then the cycle exhibits an ultrasensitive response to
changes in the abundance of the activating enzyme. Because saturation corresponds to the enzyme
acting in its zero-order regime, they called this mechanism zero-order ultrasensitivity.

Their analysis addresses the reaction network in Figure 6.6, where the target protein transitions
between its inactive state, W, and its active state, W*. Activation of W is catalysed by enzyme
Ey; inactivation of W* is catalysed by enzyme F5. The reactions in the cycle are described by:

aq k/’l
W + E; >~ W E; > W* 4 Ey (61)
d;
an k2
W* + Ey W*Ey — W + Es,
dz

where W E, and W*E5 are the enzyme-substrate complexes. Goldbeter and Koshland made the
simplifying assumption that the enzyme concentrations are negligible compared to the total protein
concentration, so the protein conservation need not take the complexes into account. (That is, they
assumed that Wp = [W] + [W*] 4+ [WEy] 4+ [W*Es] = [W] + [W*].) Under this assumption, they
derived an equation for the steady-state concentration of W*. Letting w* indicate the steady-state
fraction of protein in the active state (i.e. w* = [VI[;;&&, so the inactive fraction w = 1 — w*), they
arrived at the expression

klElT _ w*(w+K1) _ w*(l—w*+Kl) (6 2)
kQEQT w(w* +K2) (1 —w*)(w* —|-K'2)7 '
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Figure 6.7: Activation-inactivation cycle: dose-response. Plots of the implicit equation (6.2) show the
input-output behaviour of the activation-inactivation cycle in Figure 6.6. For small values of K; and K5 the
response is ultrasensitive. Parameter values: k; = 1 (time)™!, ko = 1 (time)™!, Fa27 = 1 (concentration).
Units are arbitrary. Adapted from Figure 1 of (Goldbeter and Koshland, 1981).

where E1pr and Fop are the total enzyme concentrations and

1 d1+k‘1 1 d2‘|‘k72
K =— Ky=—
! WT aq ’ 2 WT a9

(See Problem 6.8.6 for details.) This equation describes w* as an implicit function of the concen-
tration of activating enzyme, Fi7. Figure 6.7 shows the corresponding dose-responses for different
values of K and Ko (with Eor fixed). For small values of K and K3, the response is quite steep.

To interpret the dose-response, we begin by noting that K; and Ks are scaled versions of the
Michaelis constants for the two catalysed reactions. Recall from Section 3.1.1 that the Michaelis
constants for the activating and inactivating reactions take the form

Kyl = —— and Ko =

respectively. The values of K7 and K5 thus indicate how rapidly these reactions approach saturation
as their substrate concentrations increase. This saturating behaviour is illustrated in Figure 6.8.
In each panel, the solid curve shows the rate of the inactivating reaction as a function of w*. In
Panel A, Ky = 1, so the reaction cannot reach saturation. (When all of the protein is in state
W*, the reaction only reaches its half-saturating rate, since in that case w* = 1 = Ks.) The
rate curve in Panel A is thus rather shallow. In contrast, Panel B shows the case Ky = 0.1; the
half-saturating concentration is reached when just 10% of the protein is active (w* = 0.1). This
rate curve rises quickly to saturation. Next consider the dashed curves, which show the rate of the

activating reaction for different values of Eyp. (The fraction of inactive protein is w = 1 — w*, so
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Figure 6.8: Reaction rates in the activation-inactivation cycle. In each panel, the solid curve shows the rate
of the inactivating reaction as a function of the fraction w* of activated protein. The dashed curves show
the corresponding rate of the activating reaction. Steady state occurs where the curves intersect (i.e. where
the reaction rates are equal—dotted vertical lines). A. When K; and K are large, neither reaction reaches
saturation; increases in E17 cause a gradual rise in the steady-state value of w*. B. In contrast, when K; and
K, are small, saturation occurs at small concentrations, and so the steady-state value of w* rises abruptly
(from near zero to near one).

the rate of the activating reaction is plotted by ‘flipping’ the rate curve.) For each value of Ejp
(i.e. each dashed curve), the steady state occurs where the two reactions have equal rates—at the
intersection point (shown by the dotted vertical line).

As FEq7 increases, the activating rate law scales vertically. Panel A shows that when K7 and
K, are large, the steady state fraction of w* rises gradually as Fyr increases. In contrast, when
K, and Ky are small (Panel B), there is an abrupt transition in the w* steady state. This is the
zero-order ultrasensitive effect.

Exercise 6.2.2 Verify that for the activation mechanism described by equation (6.2) the ratio of
input (Fy7) values between 90% and 10% activation is given by

R o— 81(Ky +0.1)(K3 +0.1)
v (Kl + 0.9)(K2 + 0.9) '
Verify that (i) when K; and Ky are both large, R, tends to 81 (which is the same value observed

for a Michaelis-Menten mechanism); and (ii) as K; and Ky shrink to zero, R, tends to one (infinite
sensitivity). O

6.2.2 Ultrasensitive activation cascades

Besides the saturation effect that causes zero-order ultrasensitivity, there are other non-cooperative

mechanisms that can exhibit similarly steep dose-response curves (discussed in (Ferrell, 1996)).
One such mechanism is a cascade of activation-inactivation cycles, in which the target protein

in each cycle acts as the activating enzyme in the next. The canonical example of this type of
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Figure 6.9: Mitogen activated protein kinase (MAPK) cascade. This three-tier activation cascade is initiated
by phosphorylation of MAPKKK. (Phosphoryl groups are indicated by ‘-P’.) MAPKKK-P phosphorylates
MAPKK at two sites, and MAPKK-PP phosphorylates MAPK at two sites. The pathway output, MAPK-
PP, triggers a cellular response. At each level, phosphatases lead to deactivation.

pathway is the mitogen-activated protein kinase (MAPK) cascade, which is composed of a sequence
of phosphorylation-dephosphorylation cycles.

MAPK cascades operate in a wide range of eukaryotic species and act in a variety of signalling
contexts, including pheromone response in yeast and growth-factor signaling in mammalian cells.
The MAPK pathway, shown in Figure 6.9, consists of three kinases in series, each activated by
phosphorylation; phosphatases catalyse the inactivation reactions. The final kinase in the chain is
called mitogen-activated protein kinase (MAPK); active MAPK triggers the cellular response. The
upstream components are named for their function: MAPK kinase (MAPKK) and MAPK kinase
kinase (MAPKKK).

As discussed in section 6.1, a cascade of this form can lead to significant amplification of signal,
because each activated enzyme can activate many enzymes in the downstream tier. This cascade
structure can also result in a sharp sigmoidal response, because ultrasensitivity accumulates from
one tier to the next (Exercise 6.2.3).

The MAPK cascade exhibits another mechanism for generating sigmoidal responses: multistep
ultrasensitivity. This phenomenon can occur in cycles where the activation step involves more than
one catalytic event (as in the double-phosphorylation of MAPKK and MAPK). In such cases, the
rate of the activation step will depend nonlinearly on the availability of the activating enzyme
(details in Problem 6.8.7).

Exercise 6.2.3 Consider a three-tiered signalling cascade as in Figure 6.9. For simplicity, suppose
that the dose-response of tier ¢ is given in functional form as: output; = f;(input;). Verify that
the dose-response of the entire pathway is then: outputs = f3(f2(f1(input;))). Demonstrate the
cumulative effect of ultrasensitivity in this cascade by comparing the steepness (i.e. slope) of this
composite function with the slope of the individual dose-response fuctionss f;(-). (Hint: use the
chain rule to relate the derivative of f3(f2(f1(+))) to the derivatives of the individual functions
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6.3 Adaptation

So far, we have focused on the steady-state response of signalling pathways, summarized by dose-
response curves. We next turn to a dynamic response, in which a cell initially responds to an input
signal but then shuts that response down, even while the signal persists. This behaviour is known
as adaptation, because the signalling mechanism adapts to the signal’s continued presence.

A familiar example of adaptation comes from our own sense of vision. Our eyes ‘tune’ themselves
to detect changes in light intensity around the ambient level, whatever that level may be. We can
observe this tuning process by leaving a dark building on a bright sunny day—this increases the
ambient light level abruptly, and our visual field is briefly saturated. However, the system quickly
adapts, by tuning itself to detect changes about the new higher nominal light level.

6.3.1 Bacterial chemotaxis

Bacterial chemotaxis provides another example of adaptation. Chemotaxis refers to motion in-
duced by the presence of chemical species in the environment. Bacteria swim towards higher con-
centrations of nutrients—chemoattractants—and away from toxins and other noxious substances—
chemorepellents.

We will consider the FE. coli chemotaxis network. These cells are attracted to amino acids
(e.g. aspartate) and sugars (e.g. maltose, galactose), and are repelled by heavy metals (e.g. Co?™
and N12+) and bacterial waste products (e.g. indole*). E. coli cells swim by means of flagella—
bacterial ‘tails’ (about a half dozen on each cell) that are rotated by a protein-complex called the
flagellar motor.

E. coli cells have a rather crude method of steering. The action of the motors is coordinated,
so there are only two modes of operation:

1) When the motors all rotate counterclockwise, the flagella coil into a bundle which propels the
bacterium in a straight line (Figure 6.10A). This is referred to as running.
2) When the motors all rotate clockwise, the flagella separate and flail about (Figure 6.10B). This
behaviour, called tumbling, results in a random reorientation of direction.

When E. coli cells are in a homogeneous environment (with no preferred direction of motion),
each cell alternates between periods of running and periods of tumbling. (Runs last about about
1 second; tumbles about 0.1 second.) The resulting motion is a random walk that samples the
local environment (Figure 6.11A). In contrast, when exposed to a gradient of chemoattractant (or
chemorepellent) these cells bias their random walk by tumbling less frequently when moving in the
‘good’ direction and more frequently when moving in the ‘bad’ direction (Figure 6.11B). Should
a bacterium find itself once again in a uniform environment, it will return to the original tum-
bling frequency, even if the homogeneous level of attractant (or repellent) is significantly different
from before—the sensory mechanism adapts to the new nominal environment (on a time-scale of
minutes). The cell is then tuned to respond to changes centered at this new nominal level.

E. coli cells employ transmembrane receptor proteins to determine the level of chemoattractants
and chemorepellents in their immediate surroundings. These bacterial cells are so small that mea-
surements of chemical gradients across their length are not useful—thermal fluctuations corrupt

*Indole is a primary odorant in feces, and so is a potent chemorepellent for humans as well!
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Figure 6.10: The two modes of operation of the E. coli flagella. A. When the flagellar motors turn
counterclockwise, the flagella coil together and propel the cell forward in a run. B. When the flagellar
motors turn clockwise, the flagella flail apart and randomly re-orient the cell in a tumble.

spatial measurements on that scale. Instead these cells use a temporal sampling approach; the
sensory system compares the current conditions with the past conditions to infer spatial gradients.

Adaptation to changes in the environment can be measured in the laboratory, as follows. Begin-
ning with a colony growing in a uniform environment, attractant is added so that the environment
is again uniform, but richer than before. Because the bacteria measure the environment temporally,
they are not immediately aware that their new environment is uniform; they wrongly assume they
are moving in a ‘good’ direction. The length of time it takes for them to ‘catch on’ and return to
the nominal behaviour is a called the adaptation time.

E. coli cells use a signalling pathway to convert measurements of their environment into an
exploration strategy. This pathway, shown in Figure 6.12, transduces a signal from the trans-
membrane receptors (which bind attractant or repellent) to the flagellar motor. The receptors are
complexed with a kinase called CheA (‘Che’ for chemotaxis). CheA phosphorylates the cytosolic
protein CheY, which, when activated, binds to the flagellar motor and induces tumbling. Binding
of chemoattractant to the receptor inhibits CheA activity; this reduces levels of active CheY, and
thus inhibits tumbling. Binding of repellent activates CheA and so has the opposite effect.

The pathway’s ability to adapt to new environments is conferred by an added layer of complexity.
On each receptor there are several sites that can bind methyl groups. Methylation is catalysed by an
enzyme called CheR. Another enzyme, CheB, demethylates the receptors. Receptor methylation
enhances CheA activity, so methylation induces tumbling. A feedback loop is provided by an
additional catalytic function of CheA—it activates CheB (again by phosphorylation). This is a
negative feedback on CheA activity. (When CheA is, for example, inhibited, CheB activity is
reduced, which leads to more receptor methylation and hence increased CheA activity.) This
feedback acts on a slower time-scale than the primary response, and causes the system to return to
its nominal level of CheA activity (and thus motor behaviour) after a change in ligand concentration.
This is the mechanism of adaptation.
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Figure 6.11: Motion of E. coli cells. A. In a homogeneous environment, the cell follows a random walk. B.
In a gradient of attractant, the cell biases the random walk in the direction of increased attractant.

Exercise 6.3.1 Knockout strains of E. coli lack the ability to produce the functional form of
specific proteins. Knockouts of chemotaxis proteins often exhibit one of two behaviours (or pheno-
types): constant running or constant tumbling. Which of these two behaviours would be observed
in a CheA knockout? What about a CheB knockout? O

A simple model of the chemotaxis network is shown in Figure 6.13 where it is assumed that
each receptor has only a single methylation site. In this scheme, A is the CheA-receptor complex,
m indicates methylation, L is chemoattractant ligand, B is inactive CheB, and B-P is active
(phosphorylated) CheB. For simplicity, it is assumed that CheA is only active when associated
with methylated, ligand-free receptors (species Am).

The methylation of receptors by CheR occurs in saturation, so the rate of this reaction is
independent of receptor concentration. In contrast, demethylation by CheB follows a Michaelis-
Menten rate law. Assuming mass-action kinetics for ligand binding/unbinding, and first-order
kinetics for the activation and deactivation of CheB, the model equations are:

d _ ka[B-PJ(t)-[Am](t)

%[Am](t) = k.1[R] Tear + [Am](2)

Dot — ki F2BPIO-AmL)

— k3[Am](t)-[L] + k—3[AmL](t)

+ k3[Am](t)-[L] — k—3[AmL](t)

di ka2 + [AmL](t)
G0 = —kalr+ EHOLRD ) (24 ket
GO = —kealr 4 IR o)1) - ealari)
LBt = —kslAm](e)-[BI() + k_[B-P))
LB-PIt) = ksl dm](t)-(B)() ~ k_s[B-PI(t

We take the unbound ligand level [L] as a specified input.
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Figure 6.12: The chemotaxis signal-transduction network of E. coli. The receptor-bound kinase CheA
activates the cytosolic protein CheY by phosphorylation. Active CheY binds the flagellar motor, inducing
tumbling. Binding of chemoattractant inhibits CheA activity, thereby reducing the level of active CheY, and
thus inhibiting tumbling. Repellent binding has the opposite effect (not shown). Receptors are methylated
(‘-m’) by CheR and demethylated by active CheB. CheA activates CheB, by phosphorylation. Methylation
enhances CheA activity, so activation of CheB provides a negative feedback on CheA activity. This feedback
causes the system to adapt to its pre-stimulus level after a change in ligand concentration. Adapted from
Figure 7.6 of (Alon, 2007).
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Figure 6.13: A simplified reaction scheme describing the chemotaxis signal-transduction network. Species
A is the CheA-receptor complex, m indicates methylation, L is chemoattractant ligand, R is CheR, B is
inactive CheB, and B-P is active (phosphorylated) CheB. To simplify the interpretation, only methylated
receptor complexes that are not bound to attractant (i.e. species Am) are considered active.

163



0.04

0.035

0.03

0.025

Concentration of active CheA [Am] (arbitrary units)

0.021 [L] =80 )

A

o018t . [Uza0 i :
L [4=20

0'010 16 2‘0 Sb 4‘0 50

Time (arbitrary units)

Figure 6.14: Behavior of the chemotaxis signal transduction pathway. Starting at a low level of chemoat-
tractant ligand ([L] = 20), the system responds to a doubling of ligand at time ¢ = 10 with an immediate
drop in CheA activity (corresponding to a reduction in tumbling) followed by a return to almost the original
nominal activity level. A second doubling of ligand concentration at time ¢ = 30 produces a similar effect.
Parameter values are, (in time™1): k; =200, ko =1, k3 =1, ks =1, k5 =005, k1 =1,k o =1,k 3=1,
k_4 =1, k_5 = 0.005; (in concentration): ky;1 = 1, kpre = 1, [R] = 1. Units are arbitrary.

Figure 6.14 shows the system’s response to variations in the input level. Beginning at steady
state with a low level of chemoattractant ([L] = 20, arbitrary units), the system responds at time
t = 10 to a doubling of ligand concentration. The initial response is a sharp drop in CheA activity
(corresponding to less tumbling). Over time, the negative feedback acts to return the system to its
pre-stimulus activity level. The next perturbation occurs at time ¢ = 30, when the ligand level is
doubled again. Again, the activity rate recovers to near the pre-stimulus level. If the pre-stimulus
level were exactly recovered, the system would be exhibiting perfect adaptation, as explored in the
following exercise.

Exercise 6.3.2 As shown by Naama Barkai and Stanislas Leibler (Barkai and Leibler, 1997), this
chemotaxis model will exhibit perfect adaptation if we make the assumption that CheB demethy-
lates only active receptors (i.e. ko = 0). Verify this observation in the case that the level of B-P is
held constant. (That is, consider only the equations for Am, AmL, A, and AL.) Hint: show that
the steady state concentration of Am is independent of the ligand level by considering the time
derivative of [Am| + [AmL] and solving for the steady state of [Am]. O

6.4 Memory and irreversible decision-making
Adaptive systems are able to eventually ignore, or ‘forget,” a persistent signal. In contrast, the
opposite behaviour can also be useful—some systems remember the effect of a transient signal.

This memory effect can be achieved by a bistable system (Section 4.2). An input that pushes the
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state from one basin of attraction to the other causes a change that persists even after the input is
removed.

The steady-state response of a bistable system is even more switch-like than the ultrasensitive
behaviours addressed in Section 6.2—it really is all-or-nothing. Either the state is perturbed a
little and then relaxes back to its starting point, or it gets pushed into a new basin of attraction
and so relaxes to the other steady state. This sort of decision-making mechanism is particularly
suited to pathways in which a permanent yes/no decision must be made. For example, when
cells commit to developmental pathways, there is no meaningful ‘intermediate’ response—these are
discrete (yes/no) decisions whose consequences persist for the lifetime of the cell. In this section
we will consider a decision that is critical to a cell’s fate: the decision to commit suicide.

6.4.1 Apoptosis

The process of programmed cell death—cellular suicide—is called apoptosis (from the Greek for “a
falling off”).  Apoptosis is a necessary part of the development of many multicellular organisms.
Some cells play only a transient role during development; when they are no longer needed, they
receive signals that induce apoptosis. (A commonly cited example is the tail of a tadpole, which is
not needed by the adult frog.) Compared with death caused by stress or injury, apoptosis is a tidy
process; rather than spill their contents into the environment, apoptotic cells quietly implode—
ensuring there are no detrimental effects on the surrounding tissue.

Apoptosis is invoked by caspase proteins, which are always present in the cell, but lie dormant
until activated. The family of caspase proteins is split into two categories:

Initiator caspases respond to apoptosis-inducing stimuli. They can be triggered externally (via
transmembrane receptors) or internally, by stress signals from the mitochondria (e.g., starvation
signals).

Ezecutioner caspases are activated by initiator caspases. They carry out the task of cellular de-
struction by cleaving a number of key proteins and activating DNases that degrade the cell’s DNA.

We will consider a model published in 2004 by Thomas Eissing and colleagues (Eissing et al.,
2004). The model focuses on caspase-8, an initiator, and caspase-3, an executioner. Caspase-8 is
triggered by external stimuli. When active, it activates caspase-3. Caspase proteins are activated
by the removal of a masking domain, revealing a catalytic site. This cleavage is irreversible; the
protein can only be inactivated by degradation. Consequently, to describe steady-state behaviour,
the model includes both production and degradation processes for each protein.

To guarantee that the decision to undergo apoptosis is irreversible, a feedback mechanism is in
place: active caspase-3 activates caspase-8. This positive feedback ensures that caspase activity is
self-perpetuating. The feedback scheme is indicated in Figure 6.15, which shows the core reaction
network for the Eissing model. In addition to the caspases, the model incorporates two proteins,
IAP and BAR, which inhibit apoptosis by binding active caspases, forming inert complexes.

Treating all enzyme-catalysed reactions as first-order, we can write the model as

%[08] (t) = ki —koC8](t) — k3([C37](t) + [Imput](t))-[C8](¢)

1[08*](15) = k3([C3"](¢) + [Input]())-[C8](t) — ka[C87](¢)

dt
— ks[C8"](t)-[BAR](t) + k6[CS*BAR|(t)
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Figure 6.15: Eissing apoptosis model. An extracellular signal triggers activation of caspase-8 (C8*) from
its inactive form (C8). Once active, caspase-8 activates caspase-3 (C3 to C3*). Active caspase-3 activates
caspase-8, forming a positive feedback loop. Because activation of caspases is irreversible, protein degradation
and production are included in the model. Two apoptotic inhibitors are included: BAR and IAP. These
proteins bind active caspase-8 and -3, respectively, thus inhibiting the progression to apoptosis. (Dots
indicate degraded proteins.) Adapted from Figure 1 of (Eissing et al., 2004).

D031 = ks — kslO8(1) — ko[O8)(0)-[C3)()

%[03*]@) = ko[C87](t)-[C3](t) — k10[C37]() — k1a[C37](2)- [TAP](¢) 4 k12[C3"IAP]()

GIBARI() = iy — Ks[C8](1)- [BAR](1) + ko[OS BAR](t) — kia[BAR] (1)
%[IAP} (t) = kis — kn[C37](t)-[IAP](t) + k12[C3"IAP(t) — (k16 + k17[C3%](t))- [IAP](2)
%[C8*BAR] (£) = ks[C8"](t)-[BAR](£) — ks[CS"BAR])t) — kus[CS*BAR](£)

%[C’Z&*IAP} (t) = kn[C3¥](t)-[IAP](t) — ki2[C3"IAP](t) — k19[C3*IAP](t)

This system is bistable. At low levels of activated caspase, the system is at rest in a ‘life’ state.
Once caspase activity rises above a threshold, the positive feedback commits the system to reaching
a steady state with high levels of active caspase—a ‘death’ state. (Of course, the death state is
transient—the cell is being dismantled. We are justified in calling it a steady state on the timescale
of the signalling pathway.)

The simulation of the model in Figure 6.16 A shows the response of the system to an input signal.
The system begins at rest with zero input and low caspase activity. At time ¢ = 100 minutes an
input is introduced, causing a slow increase in the activity level of caspase-8. This slow activation
leads to a rapid rise in caspase activity at about ¢ = 300 minutes. The system then settles into
the ‘death’ state with high caspase activity. When the input signal is removed (at time ¢t = 1200
minutes), this self-perpetuating state persists, confirming that the system is bistable. Because
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Figure 6.16: Behavior of the Eissing apoptotic pathway model. This simulation begins in the low caspase-
activity ‘life’ state. At time ¢ = 100 minutes, an input signal (Input=200) is introduced, causing an increase
in caspase-8 activity. This triggers a positive feedback loop that results in a rapid increase in activated
caspase-8 and caspase-3 abundance at about ¢ = 300. The system then settles to the high caspase-activity
‘death’ state. The input stimulus is removed at time ¢ = 1200 minutes, but there is no effect: the apoptotic
switch is irreversible. Parameter values: (in mpc min_l) k1 = 507, k7 = 81.9, k13 = 40, k15 = 464; (in
min=!) ko = 3.9 x 1073, k4 = 5.8 x 1073, k¢ = 0.21, kg = 3.9 x 1073, kyg = 5.8 x 1073, k2 = 0.21,
kig =1x 1073, kig = 1.16 x 1072, kig = 1.16 x 1072, k19 = 1.73 x 1072, (1n IIlpCi1 minfl) ks =1x 1075,
ks =5x 1074 kg =58 x 1075, k11 = 5 x 1074, ky7 = 3 x 10~* (mpc = molecules per cell).

complete removal of the input signal does not cause a return to the initial state, this life-to-death
transition is irreversible (recall Figure 4.20B).

Exercise 6.4.1 In the model, active caspase-3 promotes degradation of IAP. Does this interaction
enhance or inhibit the positive feedback that leads to self-sustained caspase activity? O

6.5 Frequency Encoding

We next consider a signalling system that generates persistent oscillations in response to steady
input signals; the strength of the input is encoded in the frequency of the oscillations. Downstream
processes then respond to the oscillations in a frequency-dependent manner, and elicit an appropri-
ate cellular response. (This principle of frequency encoding is the basis for Frequency Modulation
(FM) broadcast radio.)

6.5.1 Calcium oscillations

Many types of animal cells use calcium ions, Ca?*, as part of signal transduction cascades. Calcium
is used to trigger, for example, the initiation of embryonic development in fertilized egg cells, the
contraction of muscle cells, and the secretion of neurotransmitters from neurons.
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Calcium signals are sent by rapid spikes in cytosolic Ca?* concentration. Cells that employ
these signals normally have low levels of cytosolic calcium (about 10-100 nM). These low levels
are maintained by ATP-dependent pumps that export cytosolic Ca?* both out of the cell and into
the endoplasmic reticulum (ER). The concentration of Ca?* in the ER can reach as high as 1
mM (10° nM). Signalling pathways open calcium channels in the ER membrane, leading to rapid
(diffusion-driven) surges in cytosolic calcium levels.

However, because calcium is involved in many cellular processes, persistent high concentrations
can be detrimental. (For example, failure to remove calcium from muscle cells keeps them in a state
of constant tension. This is what causes rigor mortis.) Some cells that use calcium as an intracellular
signalling molecule avoid persistently high Ca?* concentrations by generating oscillations in calcium
levels. The frequency of the oscillations is dependent on the intensity of the signal, while the
amplitude is roughly constant. The downstream cellular response is dependent on the oscillation
frequency (Problem 6.8.14).

We will consider an instance of this frequency-encoding mechanism in mammalian liver cells.
These cells respond to certain hormones with the activation of G-protein-coupled receptors (Sec-
tion 6.1.2). The G-protein triggers a signalling pathway that results in production of inositol
1,4,5-triphosphate (IP3). These IP3 molecules bind a receptor that is complexed with a calcium
channel in the membrane of the ER.

The IP3 binding event exposes two receptor sites at which Ca?" ions can bind (Figure 6.17).
These two sites have different affinities for Ca?*. At low concentration only one site is occupied,
while at higher concentrations both sites are bound. The calcium binding events have opposing
effects on the receptor-channel complex. Binding of the first calcium ion causes the channel to
open, allowing Ca?* to flow into the cytosol. Binding of the second ion causes the channel to
close. This interplay of positive and negative feedback generates oscillations in the cytosolic Ca?*
concentration, as follows. When cytosolic calcium levels are low, the channels are primarily in the
open state, and so Ca?*t rushes into the cytosol from the ER. When high calcium levels are reached,
the channels begin to shut. Once most of the channels are closed, the continual action of the Ca*
pumps eventually causes a return to low cytosolic [Ca**], from which the cycle repeats.

In 1993 Hans Othmer and Yuanhua Tang developed a model of this pathway that focuses on
the behaviour of the channel (described in (Othmer, 1997)). Taking I = [IP3] as the system input,
the receptor binding events are described by

k1

I+ R —— RI
k_4

RI+C == RICT

RICT+C —= RICTC",
k_3

where R is the receptor-channel complex, C is cytosolic calcium, RI is the IP3-bound receptor-
channel complex, RIC™ is the open (one Ca?T-bound) channel, and RICTC~ is the closed (two
Ca?"-bound) channel.

The rate of diffusion of calcium into the cytosol depends on the concentration of calcium in
the ER (denoted [Cggr], and held fixed) and the abundance of open channels. Recall from Sec-
tion 3.4 that the rate of diffusion is proportional to the difference in concentration between the two

168



hormone
signal ~--

~

+

cytosol (low [C& ])
(

7224
000000000 22
high [C&" ])

g
;
ER

Figure 6.17: Calcium-induced calcium release. A G-protein pathway (not shown) responds to a hormone
signal by inducing production of IP3, which activates calcium channels in the ER membrane. These channels
bind Ca2* ions at two sites. The first binding event causes the channel to open; the second causes it to
close. Calcium pumps continually pump Ca?* ions from the cytosol to the ER.

compartments. This transport rate is modelled as
rate of Ca?* diffusion into the cytosol = v,(vo + y1[RICT])([Cer] — [C]),

where v, is the ratio of the ER and cytosolic volumes, and - characterizes a channel-independent
‘leak.’

Calcium is continually pumped from the cytosol to the ER. Presuming strong cooperativity of
calcium uptake, the pumping rate is modelled as

. o]
rate of Ca?t pumping out of the cytosol = 1%7
for parameters p; and po.
The complete model is then:
%[R] (t) = —k[I(2)-[R]() + k-1 [RI](?)
%[Rl] (t) = —(k-1+k2[C](2))-[RI)() + k[T (t)- [R(2) + k—2[RICT](2)
%[RICW@) = —(k—g + k3[C](t))-[RICT]() + k2[C](t)- [RI|(t) + k_3[RICTCT](¢)
%[RIC+C_](75) = ks[C](t)-[RICT](t) — k_3[RICTC7](t)
d [C()]*

G0 = w0+ nRICTO)-(Corl =~ [C10) — o T

The simulation in Figure 6.18A illustrates the system’s oscillatory behavior. When the calcium
level is low, the concentration of open channels increases, followed by a rapid increase in [Ca®*].
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Figure 6.18: Calcium oscillations. A. This simulation shows the oscillatory behaviour of the system. When
calcium levels are low, channels open, letting more CaT into the cytosol. As calcium levels rise, channels
begin to close, leading to a drop in cytosolic Ca?* levels. The IP3 concentration is fixed at 2 uM. B. In this
simulation the input level of IP3 changes, demonstrating the frequency-encoding ability of the system. As
the IPj level (in uM) increases, the frequency of the oscillations increases considerably, while the amplitude
is roughly constant. Parameter values: (in uM~™! s71) ky = 12, ko = 15, k3 = 1.8; (in s7!) k_; = 8,
k_o=1.65k_3=0.21,v = 0.1, v = 20.5; [Crgr] = 8.37 uM, p; = 8.5 uM s™1, po = 0.065 uM, v, = 0.185.
Initial conditions (both panels) all zero except unbound receptor concentration equal to one ([R] = 1).

Once the calcium concentration rises, the channels close, and the calcium level falls, setting up a
new cycle. Panel B demonstrates the system’s frequency-encoding ability. As the input is increased
(in steps), the frequency of oscillations increases while the amplitude changes very little.

6.6 *Frequency Response Analysis

A key feature of any signal transduction pathway is its dynamic response. Although model simu-
lation allows us to predict individual time-varying responses, simulation offers limited insight into
the general nature of a system’s input-output behaviour. In this section, we introduce an analytical
tool, the frequency response, that provides a succinct characterization of a network’s dynamic re-
sponse to arbitrary inputs, and allows direct insights into that behaviour. A significant limitation
of this analysis is that it applies only to linear systems. To use this approach in the investigation of
nonlinear biological systems, we will restrict our attention to behaviour near a nominal operating
point. Recall that, as discussed in Section 4.2.2, a nonlinear system will exhibit near-linear be-
haviour when responding to small deviations around a nominal condition. In this case, the response
can be described by a linear model.

Frequency response analysis is based on a concise description of the response of linear systems
to sine wave inputs (over a range of frequencies). The character of these responses reveals how the
system responds to inputs over a wide range of time-scales. In particular, it indicates the system’s
bandwidth—the fastest time-scale on which the system is able to respond dynamically.

A system’s frequency response can be measured directly from time-series experiments. (This
process, called system identification, was reviewed in (Ang et al., 2011); that paper that also reviews
applications of frequency response methods to cellular signalling networks.) In this section, our
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Figure 6.19: G-protein pathway response to an oscillating input. The model from Section 6.1.2 is simulated
with a sine wave input of frequency 1/200 s~!, centered at a nominal level of 1 nM, with amplitude 0.4 nM.
The system response settles to a sine wave with the same frequency (1/200 s~!), and an amplitude of 60
molecules per cell, as shown. The difference in phase (i.e. the time that elapses between the peak in one
curve and the peak in the other) is about 50 seconds. Adapted from Figure 10.3 of (Ang et al., 2011).

focus will be on the interpretation of the frequency response and its derivation from differential
equation models. We will begin by defining the frequency response and introducing the notion of
frequency filtering.

6.6.1 Definition of the frequency response

The long-term response of a linear system to a persistent sine-wave input can be easily described,
as follows. Such a response is illustrated in Figure 6.19, which shows a simulation of the G-protein
indexsignal transduction!G-protein pathwaypathway model of Section 6.1.2. The system input is a
steady sine-wave oscillation in ligand abundance, centered about a nominal concentration of 1 nM.
The response—abundance of active G,-GTP—shows a transient rise from the initial state, followed
by a steady oscillation at the same frequency as the input. Provided the oscillations in the input
do not stray too far from the nominal level, the oscillatory form of the response is guaranteed—the
system output will always settle into a steady sine-wave behaviour with the same frequency as the
forcing input. Thus the only differences between the long term input and response signals, besides
the fact that they are centered at different values, are the amplitude of the oscillations and their
relative phase—the timing of the peaks and troughs. These two differences are measured by the
system gain and phase shift, respectively.

From the simulation shown in Figure 6.19, we see that the gain, defined as the ratio of the
amplitude of the input to the amplitude of the response, is 0.4/60 nM/molecule per cell. The time
that elapses between peaks is about 50 seconds. The phase shift is defined as ratio of this time
difference to the period of the oscillations, expressed in degrees (i.e. multiplied by 360°). In this
case, the period is 200 seconds, so the phase shift is 90° (= % x 360°).

The gain and phase shift depend on the frequency of the input signal, but they are independent
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Figure 6.20: Responses of the G-protein model to sine-wave inputs. The inputs (dashed curves) all have
amplitude 0.4 nM. The inputs oscillate at frequencies of (A) 2.5 x 107°s~1; (B) 1072 s7%; and (C) 4 x 1072
s~1. (Note the difference in scales on the vertical axis.) The responses (solid curves, all shown on the same
scale) exhibit different amplitudes and phase shifts. Adapted from Figure 10.4 of (Ang et al., 2011).

of its amplitude, provided the system remains in the linear regime (as explored in Problem 6.8.17).
The frequency-dependence of the gain and phase for the G-protein model are demonstrated in
Figure 6.20, which shows the long-term response of the model for three different input frequen-
cies. The sine wave-inputs are all centered at the same nominal level and have equal amplitudes,
but they oscillate at different frequencies. Each response oscillates at the same frequency as the
corresponding input, but the responses exhibit a range of amplitude and phase behaviour.

Figure 6.20 demonstrates the system gain and phase shift at three distinct frequencies. In
Section 6.6.3 we will address a technique for determining—directly from the model equations—the
gain and phase shift at all frequencies. The functional dependence of gain and phase shift on
frequency is called the frequency response of the system.

The frequency response is typically displayed as a pair of plots. The dependence of gain on
frequency, in Hz' is called the gain Bode plot; this is normally displayed on a log-log scale. The
phase Bode plot shows the phase shift as a function of frequency, on a semilog scale. Figure 6.21
shows the Bode plots for the G-protein system (for inputs near a nominal ligand level of 1 nM).
The gain and phase behaviours illustrated in Figure 6.20 are labeled.

6.6.2 Interpretation of the frequency response

Keeping in mind that frequency-response analysis applies only to the system’s behaviour in the
neighbourhood of a specified operating point, a great deal of information about this local behaviour
can be gleaned directly from the Bode plots.

The phase plot can be used to predict the results of interconnecting multiple systems (in cascade
or in feedback). We will restrict our attention to systems in isolation, and so we will not consider
the phase plot further.

The gain plot indicates the strength of the system’s response to sine-wave inputs at different
frequencies. Because the frequency of oscillations corresponds to the time-scale of the signal—low
frequency waves oscillate on long time-scales, high-frequency oscillations act on short time-scales—
the gain plot provides a picture of how the system responds to inputs at different time-scales.

Crucially, frequency response analysis does not just apply to sine-wave inputs. The behaviour
described in the Bode plots can be extended to arbitrary inputs via Fourier decomposition, which

"Hertz (Hz), equal to 1/second, is a unit of frequency.
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Figure 6.21: Frequency response of the G-protein pathway model. Frequencies corresponding to the sim-
ulations shown in Panels A, B, and C of Figure 6.20 are labelled. Gain Bode plot (left), Phase Bode plot
(right). The system behaves as a low-pass filter; the low-frequency gain is about 700 molecules per cell/nM,
the bandwidth is 0.002 Hz, and the roll-off is 2. (The gain plot does not follow the standard engineering
convention of displaying gain on a decibel (dB) scale; this would involve multiplying the logarithm of the
gain by a factor of 20.) Adapted from Figure 10.5 of (Ang et al., 2011).

allows us to express any time-varying input as a collection of sine wave signals.! In the remain-
der of this subsection we will use the notion of frequency filtering to illustrate both the Fourier
decomposition and the frequency-domain description of system behaviour.

Fourier analysis decomposes an arbitrary input signal into sine-wave components; the signal
can then be characterized by the size of the contribution at each frequency—called the frequency
content. For example, signals that change rapidly are dominated by content at high frequencies,
while signals that act slowly have most of their content at low frequencies. A system’s frequency
filtering properties describe how an input’s frequency components are amplified or attenuated in
the system response.

As a first example of frequency filtering, consider a resonant system—one that amplifies at a
specific frequency and attenuates at all others. The input-output behavior of a resonant system
is illustrated in Figure 6.22. Panel A shows an input signal that has roughly equal content over
all frequencies (a so-called white noise signal). Panel B shows the Bode gain plot for a resonant
system. The plot has a peak at 0.5 Hz. Input content at that frequency will be amplified by the
system. At other frequencies, the gain is less than one, and so input content at those frequencies
will be attenuated—it will be absent from the system response. Panel C shows the response of this
resonant system to the input in Panel A. The response is essentially a sine wave at frequency 0.5
Hz. The system has ‘filtered out’ all frequency components of the input except at 0.5 Hz. (This
sort of resonant behaviour is important in technology, e.g. in broadcast radio, and is the basis for
some molecular assays, such as FRET—fluorescence resonance energy transfer.)

Figure 6.23 illustrates filtering behaviours more commonly observed in cellular networks. Three
different systems are shown, along with their responses to a common input signal. The input (Panel

fA periodic signal can be expressed as a sum of sine waves over a discrete set of frequencies in a Fourier series.
A non-periodic signal can be written as the integral of sine waves over a continuum of frequencies via the Fourier
transform.
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Figure 6.22: Filtering behaviour of a resonant system. A. The input signal is composed of roughly equal
content at a wide range of frequencies. B. The Bode gain plot for a resonant system. The system responds
strongly to input oscillations at 0.5 Hz. At all other frequencies, the response is significantly attenuated. C.
The system output. The oscillations at 0.5 Hz have ‘passed through’ the filter, resulting in a near sine-wave
response at this resonant frequency. Adapted from Figure 10.7 of (Ang et al., 2011).

A) is a low frequency sine wave corrupted by high-frequency noise. Panel B shows the Bode gain
plot for a low-pass filter. This system lets the low-frequency components of the input pass into the
output signal. The gain plot has a ‘corner’ at about 1 Hz, above which there is a steady decrease in
the gain. The frequency at which this corner occurs is called the system bandwidth, defined as the
frequency above which the system fails to respond significantly to input signals. In the output from
a low-pass filter, the low-frequency components are retained while high-frequency components are
stripped away. This is illustrated in the response in Panel C: the input’s low-frequency oscillation
is retained, while the high-frequency ‘chatter’ has been considerably smoothed.

Panel D also shows a low-pass filter. Comparing with Panel B, the corner frequency in Panel
D is lower (about 0.01 Hz), meaning that this low-pass filter is more stringent than the system in
Panel B. The difference is apparent in the response in panel E: the low frequency oscillations are
again retained, but in this case almost all of the higher-frequency noise has been filtered away.

Panel F shows a different behaviour. This gain plot is characteristic of a band-pass filter. Over
a narrow range where the plot peaks (around 100 Hz), frequency components will pass; any content
at higher or lower frequencies is attenuated. The response in Panel G illustrates these filtering
properties: the input’s low-frequency oscillations have been eliminated, but the higher-frequency
noise has passed through into the response.

Three features of Bode gain plots are often used to summarize system behaviour:

o Low-frequency gain: The gain at low frequency describes the system’s linear response to con-
stant (unchanging) perturbations. The value of this gain is equal to the (absolute) parametric
sensitivity coefficient, as defined in Section 4.5. (Electrical engineers typically refer to this
value as the ‘DC gain,’ since direct current (DC) provides a constant input.)

e Bandwidth: For most systems, the Bode gain plot shows a steady drop in response beyond a
certain frequency. That frequency is called the system bandwidth; it represents the fastest
time-scale on which the system can respond. The system output does not reflect input
frequency content that lies above the bandwidth.

e Roll-off: Above the bandwidth frequency, a gain plot exhibits a consistent downward slope,
called the roll-off. The absolute slope of the roll-off is called the relative degree of the system,
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Figure 6.23: Frequency filtering. A. The input: high-frequency noise added to a low-frequency sine-wave.
B. The Bode gain plot for a low-pass filter. C. The response of the filter in Panel B to the input in Panel A.
The low-frequency oscillation is retained, as are the lower-frequency components of the noise, resulting in a
smoother curve. D. The Bode gain plot for a low-pass filter with a lower bandwidth than in Panel B. E. The
output response from the system in Panel D. As in Panel C, the low-frequency oscillation has been preserved
in the response. This more stringent filter has stripped away almost all of the high-frequency noise. F. The
Bode gain plot for a band-pass filter. G. The response of the band-pass system in Panel F. This filter has
blocked the low-frequency oscillation, leaving only the high-frequency noise in the response. Adapted from
Figure 10.8 of (Ang et al., 2011).

and is a measure of how quickly changes in the input are reflected in the response. (A large
relative degree corresponds to a sluggish response). The simple filters shown in Figure 6.23
all have roll-off with a slope of negative one (on the log-log plot), indicating a relative degree
of one.

Returning to the Bode gain plot for the G-protein pathway model (Figure 6.21), we see that
it exhibits low-pass behaviour. The low-frequency gain is about 700 molecules per cell/nM, the
bandwidth frequency is at 0.002 Hz and the roll-off has slope -2. We conclude that this signal
transduction system provides significant gain at low frequencies, and is not responsive to noise at
frequencies higher than 0.002 Hz (indicating a time-scale of hours). The system has relative degree
two, corresponding to a reasonably quick response to changes in the input level.
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6.6.3 Construction of the frequency response

We next demonstrate how a system’s frequency response can be constructed from a differential
equation model. Because the frequency response is used for investigating linear system behaviour,
the construction begins with linearization of a general nonlinear model.

Linearization of input-output systems

Recall that in Section 4.2.2 we addressed the linearization of a system of differential equations
about a steady state (as a tool for stability analysis). Here, we extend that analysis to incorporate
an input signal and an output response. Using vector notation, suppose the nonlinear system of
differential equations

Dx(t) = g(x(1)

has a steady state at x = 0 (that is, g(0) = 0). The linearization of this model about the steady
state x = 0 is the system

d
—x(t) = Ax(t
Cx(t) = Ax(1)
where A is the system Jacobian, as introduced in Section 4.2.2. In vector notation, A = g—i.
To generalize this construction to an input-output system, consider a nonlinear model in which

an input signal u affects the dynamics:

d
x(t) = £x(0), u(t), (6.3)

and an output response y is identified:
y(t) = h(x(t), u(?)). (6.4)

(Most commonly, the response y is simply one of the state variables x;. In that case the function h
simply returns one of the components of the x vector, i.e. h(x,u) = x;.) Suppose that the steady-
state nominal operating condition is specified by x = 0, u = 0, and y = 0. (The input signal can
be scaled so that u describes the deviation of the input from the nominal level, likewise for the
response y.) In this case, the linearization takes the form of a linear input-output system:

%x(t) — Ax(t) + Bu(®) (6.5)
y(t) = Cx(t) + Du(t).
where
of of
A= % PTw
oh oh
c - D=3

The derivatives are evaluated at the nominal operating point. The matrix A is the system Jacobian,
B and C are linearizations of the input- and output-maps, respectively, and D is called the feed-
through (or feed-forward) term.
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Exercise 6.6.1 Verify that the linearization of the system

%m(t) = u(t) +21(t) = 21 (1)
Laat) = —r(t) — 3201

with output y = x9 at the steady state (z1,22) = (0,0), with nominal input u = 0, is given by

A:[ii], B:[éy c=[01, D=o

Exercise 6.6.2 Consider the system

R
which describes the concentration of a species that is produced at rate V and consumed at a
Michaelis-Menten rate. Verify that for V = Vj, the steady state is s%° = ‘/7‘:05/0’ provided Vy < V,,.
Take the system input to be V(¢), with nominal input value V- =V (with Vj < V},). Take the
system output to be y(t) = s(t) — s*°. Define x(t) = s(t) — s** and u(t) = V(t) — Vo. Then steady
state occurs at x = 0, u = 0, and y = 0. Verify that the linearization of this input-output system
(as in equation 6.5) has

(Vi — Vp)?

A=—
VK

B=1, C=1, D=0.

The frequency response

Given the linear system description in (6.5), the frequency response, H, is given as a function of
frequency w by

H(w) = C (iwl — A)"'B + D, (6.6)

where i = y/—1 and I is the identity matrix of the same dimension as A. (This formula can be
derived using the Laplace Transform, which is used to construct the system transfer function—a
valuable tool for system analysis and design.)

The frequency response H (w) is a complex-valued function. When written as

H(w) = a(w) + b(w)si,
with a and b real-valued, the system gain takes the form
Gain(w) = Va(w)? + b(w)?,

which is the modulus (or magnitude) of the complex number H(w). The phase shift, given by
tan~!(a(w)/b(w)) is the argument (or phase) of the complex number H (w).
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Example: derivation of the frequency response of the G-protein signalling model

As an example, we will derive the G-protein signalling model’s frequency response (shown in Fig-
ure 6.21). From Section 6.1.2, the nonlinear model can be written as (Exercise 6.1.1):

i [RL|(t) = kre[L|(t)-(Rr — [RL](t)) — krLm[RL](?)

@
4160 = kel BLIE-[G)) + kea(Gr ~ [G0) - [G]1)- (G — [G1(D)
D160 = kealRLI(E)-[C)(1) — kaaolCal(t).

Here, the input signal is the ligand level [L], while the output is the concentration of active G-
GTP: [G,]. Comparing with equation (6.3), with x = ([RL], [G], [G,]) and u = [L], this system
defines f as a vector function with three coeflicients:

fl([RL]v [G]’ [Ga]7 [L]) = kRL [L](RT - [RL]) - kRLm[RL]
f([RL],[G), [Gal, [L]) = —kaa[RL][G] + k(G — 2[G]Gr + [G]? — [GalGr + [G4[G))

f3([RL]7 [G]7 [Ga]7 [L]) = kGa[RL] [G] — kado [Ga]’
The output function (equation (6.4)) takes the simple form
h([RL]7 [G]7 [Ga]a [L]) = [Ga]’

The Jacobian
af1 af1 9f1
BIRL] 9[G] 9[Gal

A— | 9L 92 f2
%RL} 0[G]  0]Gal
fa Ofs f3
O[RL] JG] 9G]
is given by
—]{IRL[L] — kRrm 0 0
A= —kaalG] —kga[RL] + ka1 (2]G] — 2G1 + [Ga])  ke1([G] — Gr)
kcalG] kGa[RL] —kaao
The linearized input map takes the form
of
%[_le] krr(Rr — [RL])
B = TE] = 0
Ofs 0
IlL]

The linearized output map is

oh oh oh
€= [a[RL] Flle] a[Ga]] =00

There is no feed-through:
Oh
D=—=0.
olL]
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Substituting the parameter values indicated in Figure 6.5 into these matrices, and taking the
nominal input value to be [L] = 1 nM, the system’s frequency response can be calculated from
equation (6.6):

359 + 0.6261w
—iw3 — 571w? + 71.3iw + 0.533

H(w) = molecules per cell/nM

Key features of the Bode plots can be gleaned directly from this formula: the low frequency
gain corresponds to the magnitude at frequency w = 0, which is 673 (=359/0.533) molecules per
cell/nM; the roll-off is the difference in degree between the denominator and numerator, which is
2. (The bandwidth is more difficult to discern; it is determined by the location of the roots of the
denominator). MATLAB commands for computing the frequency response and generating Bode
plots are described in Appendix C.

Exercise 6.6.3 Consider the linear one-dimensional input-output model:

d
Ex(t) = —ax(t) +u(t)

y(t) = =z(t)

a) Verify that the frequency response of this system is (from equation (6.6))

b) Verify that the gain of the system is

1
VaZ+w?

The low-frequency gain (attained at w = 0) is then % The bandwidth is w = a (because for w > a,
the gain shrinks rapidly). O

6.7 Suggestions for Further Reading

e Signal Transduction Pathways: Most introductory cell biology texts address signal trans-
duction pathways. A comprehensive treatment is provided by Cellular Signal Processing: An
Introduction to the Molecular Mechanisms of Signal Transduction (Marks et al., 2009). A
range of prokaryotic signal transduction systems is presented in The Physiology and Bio-
chemistry of Prokaryotes (White, 2000). Several models of signal transduction pathways are
surveyed in Systems Biology: A Textbook (Klipp et al., 2009).

e Bacterial Chemotaxis: The book E. coli in Motion (Berg, 2004) provides an accessible
account of bacterial chemotaxis. A model-based analysis of the robustness of chemotaxis
signalling can be found in An Introduction to Systems Biology: Design Principles of Biological
Circuits (Alon, 2007).

e Calcium Oscillations: Models of calcium oscillations are covered in the book Biochemical
Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour
(Goldbeter, 1996).
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e The Frequency Response: Frequency response analysis is a component of systems control
theory. An accessible introduction to this area can be found in Feedback Systems: An In-
troduction for Scientists and Engineers (Astrom and Murray, 2008). An introduction to the
use of these tools in systems biology can be found in Feedback Control in Systems Biology
(Cosentino and Bates, 2011)

6.8 Problem Set

6.8.1 Cooperativity in the bacterial two-component signalling pathway. Modify the two-
component signalling pathway model in Section 6.1.1 so that ligand-bound receptors dimerize before
becoming active. A strongly cooperative binding mechanism can be approximated by replacing the
ligand-binding reaction with

k1

2L+ R RLs

k_q

where R now represents a receptor dimer. With parameter values as in Figure 6.3, prepare a
dose-response curve for this modified model. Compare with Figure 6.3B, and verify that the
cooperative model exhibits an ultrasensitive response. Next, confirm that the ultrasensitivity is
more pronounced if the dimers tetramerize with strong cooperativity upon ligand binding (i.e. 4L+
R < RLy).

6.8.2 The two-component KdpD/KdpFE signalling pathway. When cells of the bacterium
E. colineed to increase the rate at which they take up K™ ions from the environment, they increase
production of a high affinity K™ uptake system. Production of this system is under the control of
the protein KdpE, which is the response regulator in a two-component signalling pathway. KdpFE
is activated by a sensor protein called KdpD. Activation of KdpE is a two-step process: first,
activated KdpD undergoes autophosphorylation; next, the phosphate group is transferred to KdpFE.
Inactivation is also mediated by KdpD; it acts as a phosphatase, removing the phosphate group
from activated KdpFE. In a 2004 paper, Andreas Kremling and his colleagues published a model of
the KdpD/KdpE pathway (Kremling et al., 2004). A simplified version of their model network is

k1
ATP + KdpD ——> ADP + KdpDP

KdpDP + KdpE —— KdpD + KdpFEP

KdpFEP + KdpD —> KdpE+ KdpD + Pi,

where P indicates phosphorylation, and Pi is a free phosphate group. The parameter k; can be
used as an input to the system.

a) Treating the concentration of AT'P as constant, write a set of differential equations describing
the system behaviour. Suppose the total concentrations of the proteins (in the unphosphorylated
and phosphorylated states) are fixed at KdpEp and KdpDr.
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b) The parameter values reported by Kremling and colleagues are: (in uM) [ATP]= 1500, KdpEr=4,
KdpDr=1, (in pM~'h=1) ky = 0.0029, ko = 108, k_o = 1080, k3 = 90. This value of k; corresponds
to an activated sensor. Run a simulation from initial condition of inactivity (no phosphorylation).
How long does it take for the system to reach its steady-state response? Run another simulation
to mimic inactivation of the activated system (i.e. by decreasing k; to zero from the active steady
state). Does the system inactivate on the same time-scale?

¢) Kremling and colleagues conducted in vitro experiments on this system at a low ATP level of
[ATP]= 100 pM. How does that change affect the system behaviour? Does it impact the activation
and inactivation time-scales?

d) How would the system behaviour be different if the inactivating phosphatase were not KdpD?
Does this dual-role of KdpD enhance or diminish the system’s response? (Note, only the unphos-
phorylated form of KdpD has phosphatase activity.)

e) In addition to activating production of the high-affinity K™ uptake system, KdpEP also causes
increased production of the KdpD and KdpFE proteins. How would the model’s behaviour change if
this feedback were included?

6.8.3 G-protein signalling pathway: gain. Recall that for the parameter values in Figure 6.5,
the G-protein signalling pathway model in Section 6.1.2 does not exhibit amplification from acti-
vated receptors (RL) to active G-protein output (Ga). Find an alternative set of parameter values
for which the pathway output amplifies the activated receptor signal (i.e. for which the steady-state
concentration of Ga is larger than that of RL).

6.8.4 G-protein signalling pathway: inhibition. Consider the G-protein signalling pathway
model in Section 6.1.2. Suppose you would like to design a drug to inhibit the G-protein signalling
pathway response, and that your hypothetical drug would have the effect of changing the value
of one of the kinetic constants by 50%. Which parameter provides the best target (based on the
steady-state response at L = 1 nM)? How might the drug work? (Describe a potential biochemical
mechanism-of-action.)

6.8.5 G-protein signalling pathway: receptor recycling. The G-protein signalling pathway
model in Section 6.1.2 is a simplification of the original model of Yi and colleagues (Yi et al,
2003). The original model includes an additional feature: production and degradation of receptor
molecules. The rate of production of receptors is constant: krs. Degradation of receptors depends
linearly on concentration, with rate constants k4o for unbound receptors and kg4; for ligand-bound
receptors. Extend the model to include these effects. (Note, the total receptor abundance will no
longer be conserved).

Run a simulation with krs = 4 molecules per cells™, kpgo = 4 x 1074 s7! and kpy = 2 x
1072 s~'. Compare your simulation to the simplified model illustrated in Section 6.1.2. Does the
expansion of the model have a significant impact on the response? If not, can you think of an
experiment that can be simulated by the complete model but not by the simplified version?

6.8.6 Ultrasensitivity. Derive equation (6.2) in Section 6.2.1, as follows. Begin by writing
the steady-state conditions for each of the four species in network (6.1). Use the steady-state
conditions for the complexes WE; and W*E, to write the steady-state concentration [WE;] in
terms of [W]*$, Eyp, and the rate constants. Likewise, write [W*FE]®® in terms of [W*]*%, Eop,
and the rate constants. Finally, use the steady-state condition ki[WE;] = ko[W*Es] and the
approximation W = [W] 4 [W*] to derive equation (6.2).
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6.8.7 Multistep ultrasensitivity. In a 2005 paper, Jeremy Gunawardena presented a straight-
forward analysis of multistep ultrasensitivity, and revealed that it is not well-described by Hill
functions (Gunawardena, 2005).

Consider a protein S that undergoes a sequential chain of n phosphorylations, all of which are
catalysed by the same kinase F, but each of which requires a separate collision event. Let S
denote the protein with k phosphate groups attached. Suppose the phosphatase F' acts in a similar
multistep manner. The reaction scheme is then

S(] ‘51 ‘SQ =2 ‘Sn

In steady state, the net reaction rate at each step is zero.
a) Consider the first phosphorylation-dephosphorylation cycle. Expanding the steps in the catalytic
mechanism, we have

klE kcatE le kcatF
~ /S, >F + 5 and S1+ F ~ 'Sy > F + 5.

—1E k—lF

So+ FE

Apply a rapid equilibrium assumption to the association reactions (Sy + E <> ESy and Sy + F <
F'S7), to describe the reaction rates as

kca kca
ke [ESo] = K—tE[SO] [E] and Eeair|[FS1] = K—tF[Sl][F],
ME MF
where Ky p = 12’1—1;, Kyr = %, and [E] and [F] are the concentrations of free kinase and
phosphatase.

b) Use the fact that at steady state the net phosphorylation-dephosphorylation rate is zero to arrive
at the equation

where \ = ’Zcﬂ%
catF ME
¢) Suppose that the kinetic constants are identical for each for each phosphorylation-dephosphorylation

step. In that case, verify that

@—@ SO @:2 @2 and more genera, ﬂ:j @j
ARG S = ([F]) . andmore generally 7o) =2 ([F}) |

d) Use the result in part (c) to write the fraction of protein S that is in the fully phosphorylated
form as

[Sh] _ (Au)"
[Siotal 1+ Au+ (Au)2+ - ()’

where u = [E]/[F] is the ratio of kinase to phosphatase concentrations. Hint: [Si...] = [So] + [S1]+
[S2] + -+ [Sn].

e) Use the ratio [E]/[F] to approximate the ratio of total concentrations [Eiu]/[Fiota], SO that
equation (6.7) describes the system’s dose-response. Plot this function for various values of n.
Take A =1 for simplicity. Use your plots to verify Gunawardena’s conclusion that, for high values
of n, these dose-response curves exhibit a threshold (in this case, at u = 1) but their behaviour
cannot be described as switch-like, since they show near-hyperbolic growth beyond the threshold,
regardless of the values of n.

(6.7)
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Figure 6.24: Mitogen activated protein kinase (MAPK) cascade for problem 6.8.8. Adapted from Figure 1
of (Kholodenko, 2000).

6.8.8 Feedback in MAPK cascades. As discussed in Section 6.2, MAPK cascades are common
features of eukaryotic signalling pathways. In the year 2000, Boris Kholodenko published a simple
model of the mammalian Ras-Raf-ERK activation cascade in order to explore dynamic behaviours
of MAPK pathways (Kholodenko, 2000). His model follows the reaction scheme in Figure 6.24,
which includes a feedback from the pathway output (MAPK-PP) to the first activation reaction.

For simplicity, Michaelis-Menten kinetics are used to describe the reaction rates:

_ w|MAPKKK](1+K.]MAPK-PP)) _ %[MAPKKK-P]
U= K+ [MAPKKK]) (1+ &, [MAPK-PD]) Y2 = Kt [MAPKK-P]
' kears MAPKKK-P|[MAPKK] ' kears[MAPKKK-P|[MAPKK-P]
vs = Kt [IMAPKK] v = Kt IMAPKK-P]
_ 1[MAPKK-PP] _ 1[MAPKK-P]
Y = K - IMAPKK-PD] Y6 = Ko [MAPKK-P
ket MAPKK-PP][MAPK] " kears MAPKK-PP|[MAPK-P]
vr = Kur+[MAPK] vs = Kus+MAPK-P|
oo — _Vo[MAPK-PP] oo Vio[MAPK-P]
9~ Ko+ [MAPK-PP] 10 Ko+ [MAPK-P]

The parameters K, and K; characterize activation or inhibition of the initial reaction by the
output MAPK-PP. Kholodenko took parameter values of (in nM sec™!) V; = 2.5, V5 = 0.25,
Vs = Vg = 0.75, Vo = Vig = 0.5; (in sec™) kears = keata = keatr = kears = 0.025; (in nM)
Ky =10, Kpy2 =8, Kz = Kyg = Kys = Ke = Ky = Ky = Ky = Ko = 15.

a) Set K, = K; = 0 so that there is no feedback in the system. Run simulations with initial
concentrations of (in nM) [MAPKKK]=100, [MAPKK]=300, [MAPK]=300, and all other concen-
trations zero. Take V; as the system input and confirm the system’s switch-like dose-response by
determining the steady-state output ([MAPK-PP]) for values of V; in the range from 0 to 0.4 nM
sec L.
b) To explore the effect of feedback on the dose-response curve, simulate the model for the case
K, =0.02, K; =0 and the case K, =0, K; = 0.0002. Interpret your results.

¢) Kholodenko used the model to demonstrate that negative feedback could lead to an oscillatory
response. Verify his conclusion by simulating the system for K; = 0.1, and input V; = 2.5 (with
K, =0.) What is the period? Do the oscillations persist at lower input levels?

183



6.8.9 Chemotaxis: saturation of adaptation. The bacterial chemotaxis signalling model in
Section 6.3.1 was constructed under the assumption that enzyme CheR is fully saturated (which
is why the rate of methylation does not depend on the concentration of unmethylated receptors).
This assumption ensures that the system adapts to ligand inputs over a wide range.

a) Use the model to generate a dose-response curve showing the system’s steady-state response

([Am]**) as a function of ligand level, for [L] between 20 and 100. Use parameter values as in
Figure 6.14. Verify that the system shows near-perfect adaptation over this input range.

b) When the assumption of CheR saturation is removed, the system does not adapt well at high lig-
and levels. Confirm this claim by replacing the zeroth-order methylation rates (k_1[R], k_2[R]) with
Michaelis-Menten rate laws. Use parameter values for the rest of the model as in Figure 6.14, and
select parameter values for the methylation kinetics so that CheR is not fully saturated. Generate
dose-response curves for your modified model, and compare with Figure 6.14.

¢) The modified model in part (b) fails to adapt when the receptors become saturated by methyl
groups. This effect can be alleviated by incorporating multiple methylation sites on each receptor.
Modify your model from part (b) so that each receptor has two methylation sites (each receptor
can then be unmethylated, once-methylated, or twice-methylated). Treat the kinetics of the second
methylation-demethylation reactions as identical to the first. To simplify your analysis, assume
that only the twice-methylated, non-ligand-bound receptor complexes are active. Verify that in
comparison with the model in part (b), this extended model shows improved adaptation at high
ligand levels.

6.8.10 Apoptosis: duration of triggering signal. Consider the model of apoptosis presented
in Section 6.4.1. In the simulation shown in Figure 6.16, the input signal was maintained for
900 minutes (until after the system had settled to the caspase-active ‘death’ state.) Re-run this
simulation to determine how short the input pulse can be while still triggering the irreversible
life-to-death transition. Use the same input size as in the figure (Input=200).

6.8.11 Apoptosis: model reduction. In a 2007 paper, Steffen Waldherr and colleagues pre-
sented a reduced version of the apoptosis model presented in Section 6.4.1 (Waldherr et al., 2007).
They determined that bistability is retained when a quasi-steady state assumption is applied to
four of the state variables. Verify their finding, as follows. Apply a quasi-steady state assumption
to the species [C8], [C3|, [[AP] and [BAR| and demonstrate bistability in the reduced model.
(This model reduction was not motivated by a separation of time-scales. Instead, Waldherr and
colleagues determined the significance of each state variable for bistability, and eliminated those
that were not needed.)

6.8.12 Calcium-induced calcium release: frequency encoding. Consider the model of cal-
cium oscillations presented in Section 6.5.1. Run simulations to explore the dependence of frequency
and amplitude on the strength of the input. Prepare plots showing frequency and amplitude as a
function of model input I over the range 1-10 gM. Does the amplitude vary significantly over this
range? What about for higher input levels?

6.8.13 Calcium-induced calcium release: parameter balance. Consider the model of cal-
cium oscillations presented in Section 6.5.1. The model’s oscillatory behaviour depends on a balance
between the positive and negative effects of calcium binding. Oscillations are easily lost if parameter
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Figure 6.25: ¢cAMP signalling in Dictyostelium (Problem 6.8.15). Adapted from Figure 2 of (Maeda et al.,
2004).

values vary. Explore this sensitivity by choosing one of the model parameters and determining the
range of values over which the system exhibits oscillations (with I = 1 pM). Provide an intuitive
explanation for why oscillations are lost outside the range you have identified.

6.8.14 Calcium-induced calcium release: frequency decoding. One mechanism by which
cells can ‘de-code’ the information encoded in calcium oscillations is by the activity of Ca?* /calmod-
ulin-dependent protein kinases (CaM-kinases). Calmodulin is a protein that mediates a number of
calcium-dependent cellular processes. It has four high-affinity Ca?* binding sites, and is activated
when saturated by Ca?". CaM-kinases are activated (by autophosphorylation) upon binding to
active calmodulin. The CaM-kinase activity is ‘turned off’ by phosphatases.

Extend the model in Section 6.5.1 to include CaM-kinase activity, and verify that, for persistent
oscillations, the higher the frequency of Ca?* oscillations, the higher the average CaM-kinase activ-
ity level. To keep the model simple, suppose that four calcium ions bind calmodulin simultaneously
(i.e. with high cooperativity), and that CaM-kinase autophosphorylation occurs immediately upon
calmodulin binding. (Hint: the frequency-dependent effect is strongest when the time-scales of
deactivation of calmodulin and CaM-kinase are slow, so that high-frequency inputs cause near-
constant activity levels.)

6.8.15 cAMP oscillations in Dictyostelium. The slime mold Dictyostelium discoideum is
used as a model organism in the study of development. Dictyostelium is eukaryotic; it feeds on
bacteria. When bacterial prey are plentiful, the cells forage independently. When food is scarce,
the population comes together to form first a motile ‘slug,” and then a fruiting body, which scatters
Dictyostelium spores into the environment. Aggregation into a slug involves cell-to-cell commu-
nication mediated by secretion of cyclic AMP (cAMP). The concentration of cAMP oscillates in
waves across the colony, thus directing the cells to an aggregation point.

In 1998, Michael Laub and William Loomis proposed a model of the intracellular signalling
pathway that generates oscillations in cAMP levels (reviewed in Maeda et al., 2004). A version of
their model involves the network in Figure 6.25. In this model, extracellular cAMP activates the
transmembrane receptor CAR1, which activates the signalling molecule ERK2 and the membrane-
associated enzyme adenylyl cyclase (ACA). ACA catalyses production of cAMP, some of which is
directly secreted. ERK2 inhibits the enzyme REG A, which degrades intracellular cAMP. Feedback
is provided by protein kinase A (PKA) which is activated by cAMP and inhibits both ERK2 and
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ACA. The model accounts for activation/production and deactivation/degradation of each species.
The equations are

CIACAI() = h[CARI|(1) — kol ACA](1)-[PKA](1)
DIPKAI(1) = ksleAMP],,,(1) — ki[PKA]()
SIBRK2)(t) = ks[CARI)(E) — hs[ERK2)(1)-[PKA] (1
%[REG Al®) = ks — ks[REG A](t)-[ERK2](¢)
%[CAMP]W@) — ko[ACA](t) — k1o[REG AJ(t)- [cAMP], ,(¢)
CIeAMP],(1) = kn[ACAJ(!) — kuofeAMP],, (1)
%[CARl}(t) — Fa[cAMP]_,(t) — kuCAR1)()

Parameter values are (in min™') k; = 2.0, k3 = 2.5, ky = 1.5, k5 = 0.6, ky = 1.0, kg = 0.3,
kin = 0.7, k1o = 4.9, ki3 = 23.0, kyy = 4.5; (in min~™! pM~1Y) ky = 0.9, k¢ = 0.8, kg = 1.3,
k1o = 0.8.
a) Simulate this model and determine the period and amplitude of the oscillations of intracellular
cAMP. (You can take all initial conditions to be 1 puM.)
b) These oscillations are brought about by coupled positive and negative feedback. Describe the
positive feedback loop that causes external cAMP to amplify its own concentration. Describe the
negative feedback loop that keeps internal cAMP levels low. Run simulations that cut each of
these feedback loops and verify that persistent oscillations are not maintained in either case. (For
example, to cut the positive feedback in extracellular cAMP, you could replace the production term
k11[ACA](t) with a constant: kj;.)
c) Extend the model to address two neighbouring cells that share the same pool of extracellular
cAMP. Your extended model will need to include separate compartments for each cell, with separate
descriptions of each internal species. The shared extracellular pool of cAMP can be described by
a single equation:

CIAMP], (1) = kulACAJ, (1) + kn[ACAL,(H) — hizcAMP], (1)
where [ACA]; and [ACA]y are the ACA concentrations in each of the two cells. Choose initial
conditions for the two cells so that they begin their oscillations out of phase (i.e. so that the peaks
and troughs are not aligned). Confirm that the shared cAMP pool synchronizes the oscillations in
the two cells. How long does it take for synchrony to occur?

6.8.16 The cell division cycle: bistability. The cell division cycle is the process by which
cells grow and replicate. The eukaryotic cell cycle is driven by a relaxation oscillator that consists
of a negative feedback wrapped around a bistable system. The negative feedback causes periodic
transitions between two quasi-stable states. In Xenopus cells, the bistable system has been identified
as the Cdc2 activation switch. (Xenopus laevis is an African clawed frog.)
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Figure 6.26: Bistable Cdc2 activation network (Problem 6.8.16).

Cdc2 is activated by the protein cyclin B, and promotes its own activation via a positive feed-
back. A simple model of the Cdc2 activation switch was published by Ibrahima Ndiaye, Madalena
Chaves, and Jean-Luc Gouzé in 2010 (Ndiaye et al., 2010). The model network is shown in Fig-
ure 6.26.

They treated the concentration of the activator cyclin B as a fixed input parameter (u). A Hill
function was used to describe the positive feedback that enhances Cdc2 activation. Presuming that
the total abundance of Cdc2 remains fixed, the model describes the evolution of the fraction of
Cdc2 in the active state, denoted x. The inactive fraction is then 1 — . The activation-inactivation
dynamics are modelled as

d

a:ﬂ(t) = <k‘(w0 +u)+V ()" n) (1 —2(t)) — ~yax(t). (6.8)

o + (x(t))
Here wy is a basal level of cyclin B. Inactivation is presumed to occur at a steady rate ~.

a) Take parameter values & = 1 nM~! time™!, wg = 61 nM, V = 430 time™!, v = 843 nM~!
time™!, # = 0.27 and n = 4. Explore the bistable nature of the system by constructing phase-lines
(as in Problem 4.8.1) for u = 30, 45, and 60 nM. (These can be generated by plotting the rate of
change (dz/dt) against x. Points at which the rate of change is zero are steady states.)

b) Produce a bifurcation diagram showing the steady-state fraction of active Cdc2 (i.e. x) as a
function of the cyclin B concentration (u). Determine the two bifurcation points.

c¢) Ndiaye and colleagues also considered an expanded version of model (6.8) that describes periodic
changes in cyclin B levels. Cyclin levels are linked to Cdc2 by another feedback—active Cdc2
activates the Anaphase Promoting Complex (APC), which causes degradation of cyclin B. With y
denoting the level of APC activity, the model takes the form

d ai (z(t)"
El’(f) = <k‘ <w0 + w) + V1 W) (1 - $(t)) - 'VIy(t)x(t)

—y(t) = Vo—"-+— t).

Q) > ; Y2y(t)

Simulate this model with parameter values k = 3.77 x 10™* nM~! time™!, wg = 2 nM, a; = 0.015
nM?, Vi = 162 time™!, Vo = 0.25 time™!, 71 = 0.36 nM ™! time™!, 75 = 0.026 time™!, #; = 0.27,
f> = 0.27 and n = 4. Verify that the system exhibits limit cycle oscillations. Provide an intuitive
explanation for the cyclic rise-and-crash behaviour of Cdc2.

More detailed models of the cell cycle are introduced in (Goldbeter, 1996) and (Fall et al., 2002).
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6.8.17 *Frequency response analysis: linear regime.

a) Consider the G-protein signalling model presented in Section 6.1.2. As shown in Figure 6.19,
this model displays near-linear behaviour for small-amplitude input oscillations. Verify that this
near-linear (sinusoidal) response is maintained even when the input oscillations have an amplitude
of 2 nM (again centered at L = 1 nM).

b) To illustrate the breakdown of the frequency response for nonlinear systems, consider the in-
put/output system:

%;C(t) = —a(t) + u(t) + 2()u(t), y(t) = a(t).

For uw = 0 the steady state is x = 0. Simulate the system’s response to input signals of the form
u(t) = upsin(t). Verify that (i) for up < 0.1, the response is approximately a sine-wave centered at
x = 0; (ii) for 0.1 < uy < 1, the response is roughly sinusoidal, but is no longer centered at x = 0;
and (iii) for u > 1 the response is periodic, but is not a smooth sine-wave oscillation.

6.8.18 *Frequency response analysis of a two-component signalling pathway.

a) Following the procedure in Section 6.6.3, determine the linearization of the two-component
signalling pathway model of Section 6.1.1 at an arbitrary nominal input value. Use species conser-
vations to reduce the model before linearizing.
b) Simulate the model to determine the steady state corresponding to a nominal input of Ly = 0.04.
Use MATLAB to generate the magnitude Bode plot of the corresponding frequency response (details
in Appendix C).

c) Repeat part (b) for a nominal input of of Ly = 0.4. Use Figure 6.3 to explain the difference in
the frequency response at these two nominal input values.
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Chapter 7

Gene Regulatory Networks

[In the ancestral Indo-European language, the word]| gene signified beginning, giving
birth... [It later] emerged as genus, genius, genital, and generous; then, still holding on
to its inner significance, it became “nature” ([from the Latin] gnasci).

—Lewis Thomas, The Lives of a Cell

As demonstrated in the previous chapters, all cellular functions are driven by proteins. Protein
production occurs through gene expression—a process that involves reading information encoded
in the DNA. The cellular abundance of each protein is controlled primarily by its production rate;
these production rates are, in turn, controlled by specialized proteins called transcription factors.
A set of genes whose protein products regulate one another’s expression rates is referred to as a
gene requlatory network. In this chapter we will address gene regulatory networks that implement
switch-like responses, store memory, generate oscillations, and carry out logical computations and
cell-to-cell communication.

Gene expression is a two-step process. The first step, transcription, occurs when the coding
region of a gene is ‘re-written’ in the form of a complementary RNA strand called a messenger
RNA (mRNA). Transcription is carried out by a protein-complex called RNA polymerase, which
binds the promoter region of the gene and then ‘walks’ along the DNA, catalysing formation of the
mRNA strand from nucleotide precursors.

The second step of gene expression is translation, in which the mRNA molecule binds a
protein-RNA complex called a ribosome, which reads the nucleotide sequence and produces a
corresponding polypeptide chain. Translation, like transcription, involves information transfer; the
ribosome ‘reads along’ the mRNA and catalyses the formation of a protein from amino acid building
blocks.

Although the organization and behaviour of gene regulatory networks share a number of sim-
ilarities with metabolic networks and signal transduction pathways, the underlying processes are
significantly different. The biochemical interactions in metabolic or signal transduction systems
are each decomposable into a handful of elementary chemical events. In contrast, transcription and
translation are complex processes that each involve a very large number of biochemical reactions
(many of which have not been fully characterized).

We will use a mass-action based formalism to develop models of gene regulatory networks, but
we will be applying this rate law in a more abstracted sense than in the previous chapters; our
descriptions of gene expression processes will be far more ‘coarse-grained’ than our earlier models
of biochemical networks.
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A further complication in modelling genetic systems is that the molecules involved in the regu-
lation of gene expression are often present in very small numbers. Recall from Section 2.1.2 that the
continuum hypothesis (which justifies our use of smoothly-varying concentration values) should only
be applied when there are large numbers of molecules present (so that individual reaction events
produce near-infinitesimal changes in abundance). Proteins that impact gene expression are often
present in small quantities: the copy number of each protein species is regularly in the hundreds
or less. Moreover, genes themselves are almost always present at very low copy number—rarely
more than dozens, and often as few as one or two. Cells typically have a small number of copies of
their inherent (chromosomal) genes—typically one or two, in some cases four or more. Genes that
are introduced to a bacterial cell from its environment (e.g. in the laboratory) are typically carried
on small circular DNA molecules called plasmids, which can be maintained at much higher copy
numbers—as many as a few hundred.

In addressing the behaviour of systems with low molecule counts, we can justify the mass-action
formalism by interpreting differential-equation models as descriptions of the average behavior over a
large population of cells. This interpretation is useful when addressing cultures or tissues composed
of comparable cells exhibiting similar behaviours.

An alternative modelling framework—one that describes individual reaction events—can be
adopted in cases where we seek to truly capture the behaviour of individual cells (for example
where single-cell measurements are available). This stochastic framework, which incorporates the
probabilistic (i.e. noisy) effects that play a significant role at these small scales, will be taken up in
Section 7.6.

7.1 Modelling Gene Expression

7.1.1 Unregulated gene expression

The fundamental processes that constitute gene expression are sketched in Figure 7.1. Transcription
and translation involve information transfer from DNA to RNA to protein, while degradation results
in turn-over of the RNA and protein pools. Each of these processes relies on a significant amount
of background cellular “machinery”—including nucleic acids, RNA polymerases, amino acids, and
ribosomes. In developing models of gene expression, we will assume that the activity of these
‘housekeeping’ elements is fixed.

To simplify our discussion, we will focus on prokaryotic gene expression. Eukaryotic gene
regulatory networks are also modelled using the procedure we will develop here, but eukaryotic
gene expression involves a number of additional processes that we will not address explicitly (such
as splicing of mRNA and transport of mRNA across the nuclear membrane).

Unregulated, or constitutive, gene expression involves the four processes shown in Figure 7.1.
Applying mass action to arrive at simple rate laws gives

—m(t) = ko— dmm(t) (7.1)
%p(t) = kim(t) — opp(t),

where m is the concentration of mRNA molecules and p is the concentration of the gene’s protein
product. The population-averaged transcription rate kg depends on a number of factors, including
the gene copy number, the abundance of RNA polymerase, the strength of the gene’s promoter
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Figure 7.1: Gene expression. Transcription of the gene results in the formation of mRNA molecules, which
can then be translated by ribosomes to produce proteins. These production processes are balanced by
degradation of mRNA and protein molecules.

(e.g. its affinity for RNA polymerase), and the availability of nucleotide building blocks. Parameter
k1, the per-mRNA translation rate, likewise depends on a range of factors, including the availability
of ribosomes, the strength of the mRNA’s ribosome binding site (i.e. the mRNA’s affinity for
ribosomes), and the availability of transfer RNAs and free amino acids.

Transcription and translation are balanced by decay of the mRNA and protein pools, character-
ized by the degradation rates d,, and d,. Several factors contribute to the decay process. Generally,
mRNA and protein molecules may be unstable, and so decay spontaneously (with characteristic
half-lives). Additionally, the cell contains ribonucleases and proteases that specifically degrade
mRNA and protein molecules.

The parameters d,, and J,, can also be used to describe the dilution of mRNA and protein pools
caused by cell growth. (Constant growth causes the overall cell volume to increase exponentially,
resulting in an exponential decrease in concentrations; model (7.1) applies if the cell maintains
constant concentrations of the background expression machinery.) In rapidly growing bacterial
cells, dilution is often more significant than degradation. In model (7.1), we will use the parameters
0 and 6, as combined degradation/dilution rates.

The steady state concentrations in model (7.1) are easily determined:

SS

SS

ko kg
O P S om

Models of gene expression are often simplified by taking advantage of the fact that mRNA decay
is typically much faster than protein decay. (mRNA half-lives are typically measured in minutes,
while proteins often have half-lives of hours. In rapidly growing bacterial cells, protein degradation
is often negligible, and so the protein decay rate is dictated solely by the cell’s growth rate.) This
separation of time-scales justifies a quasi-steady state approximation for the mRNA levels. The
reduced model is:

—p(t) = —— —opp(t). (7.2)

The parameter o = kg—’i‘) is the expression rate.
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Figure 7.2: Transcriptional regulation. A. Unregulated gene expression. RNA polymerase (RNAp) binds
the gene’s promoter region, then slides along the DNA to the coding region, where it produces the mRNA
transcript. B. A repressor binds to its operator region and blocks access to the promoter. When the repressor
is bound, transcription cannot occur. C. An activator enhances transcription. In this case the promoter
region has a low affinity for RNA polymerase, and so transcription does not occur from the unregulated
gene. Once bound at the operator, the activator binds RNA polymerase and recruits it to the promoter site.

7.1.2 Regulated gene expression

Gene expression can be regulated at many stages, including RNA polymerase binding, elongation
of the mRNA strand, translational initiation (i.e. mRNA-ribosome binding), and polypeptide elon-
gation. In addition, mRNA and protein molecules can be specifically targeted for—or protected
from—degradation.

Despite this range of control points, the majority of gene regulation occurs through control
of the initiation of transcription. In prokaryotes, this is achieved primarily through regulating
the association of RNA polymerase with gene promoter regions. Proteins that bind DNA and
affect polymerase association are called transcription factors. In prokaryotes, transcription-factor
binding-sites, called operator regions, are typically situated close to the promoter of the affected
gene. If a transcription factor increases the rate of RNA polymerase binding it is called an activator
of gene expression; if it inhibits binding, it is called a repressor (Figure 7.2).

Transcription-factor binding

The binding of a transcription factor to an operator site can be described by:

a
O+ P—=—0P
d

where O is the unbound operator, P is the transcription factor protein, and the complex OP is the
bound operator. This association-dissociation event occurs on a much faster time-scale than gene
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expression, so it can be treated in equilibrium when modelling gene expression. Setting K = d/a,
we find (compare with equation (3.17)):

[OP]
[0] + [OP)]
[O1[P)/ K
(0] + [O][P)/ K
[Pl/ K [P]

T 1+[P]/K  K~+[P| (7.3)

fraction of bound operators =

Note, K, the dissociation constant of the binding event, is the half-saturating concentration for the
transcription factor P.

Equation (7.3) describes the promoter occupancy; it represents the fraction of a population of
operators that are bound to transcription factor proteins (or, equivalently, the fraction of time that
any given operator spends in the protein-bound state).

Rates of transcription from regulated genes

The rate of transcription from a regulated gene depends on the promoter occupancy. If the tran-
scription factor P is an activator, then the rate of gene transcription is proportional to the occu-

pancy:
[P]/ K

rate of activated transcription = a—————.
P 1+ [P]/K

(7.4)
The constant of proportionality, «, is the mazimal transcription rate. Formula (7.4) suggests that
the rate of transcription will be zero when the activator P is absent. Most activated genes are
transcribed at a low (so-called basal) rate even when the activator is unbound. Incorporating a
basal expression rate of ag gives:

[Pl/ K

rate of activated transcription = ap + a—————.
P O T IPK

(7.5)

In this case, the maximal transcription rate is ag + «.
When the transcription factor P acts as a repressor, the regulated transcription rate is propor-

tional to the fraction of unbound operators W. If we allow for a small transcription rate ag
from the repressed promoter (a ‘leak’), we have
te of ible t ipti + !
rate of repressible transcription = ay+a———.
P P T IPI/K

In many cases this leak is small (and is often neglected), but complete repression can never be
achieved: thermal fluctuations cause continual unbinding and re-binding at the operator, so there
is always some chance that RNA polymerase will find its way to the promoter.

Regulation by multiple transcription factors

Genes are commonly regulated by multiple transcription factors, and by multiple copies of each
factor. To introduce the general technique for analysing these multiple-regulator schemes, we next
provide an analysis of the promoter occupancy for a gene regulated by two transcription factors.
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Consider a promoter with two non-overlapping operator sites: O 4 binds transcription factor A;
Op binds transcription factor B. The promoter can then be found in four states:

O: A and B unbound
OA: A bound at Oy, B unbound
OB : B bound at O, A unbound
OAB: A at bound Oy4, B bound at Op.

If the binding events at O4 and Op are independent of one another, then the reaction scheme is

O+ A OA O+ B OB
d1 d2
OB+ A OAB OA+B OAB
dl d2
which results in the following steady state distribution of promoters:
1
fraction in state O:
A Al][B
SRR
%
fraction in state O A: A (7.6)
A Al[B
R
[[(ﬂ
fraction in state OB: B
A Al][B
RO
I[(z“][]?]
. . AKB
fraction in state OAB: 0 Al

(B]
L ot R Ve
where K4 = dj/a; and Kp = ds/as are the dissociation constants for the two binding events.

Exercise 7.1.1 Derive equations (7.6) by treating the binding events in steady state. O

The rate of transcription from this regulated promoter depends on the nature of the transcription
factors A and B. For instance, if both are repressors and the binding of either factor blocks
polymerase binding, then transcription can only occur from state O; the corresponding transcription

rate can be written as
Q

A, Bl [AlB]
I+ % T &5 T ’aks
Alternatively, the two repressors might inhibit transcription only when both are bound, in which
case transcription occurs from all states except OAB. The resulting transcription rate takes the
form

o A

Exercise 7.1.2 Which promoter state(s) would allow transcription if A is an activator of the gene
while B is a repressor that completely blocks the RNA polymerase binding site? Suppose that no
expression occurs if A is unbound. Formulate a description of the rate of transcription in this case.
Od
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Cooperativity in transcription factor binding

Recall from Section 3.3 that cooperativity occurs when multiple ligands bind a single protein and
the association of ligand at a binding site affects the affinity of the other sites. Cooperativity also
occurs among transcription-factors binding multiple operator-sites along a length of DNA.

Consider the case in which two transcription factors bind at non-overlapping operator sites with
positive cooperativity. Suppose the dissociation rate of the second DNA-binding event is reduced
by a factor Kg. In this case the dissociation constant for A binding to OB is Ky Kg (< Ka),
indicating enhanced affinity. (Likewise the dissociation constant for B binding to OA is KK,
which is less than Kp.) The steady-state distribution of promoters is then:

fraction in state O: 1
: A B AllB
L+ 30+ 10 + Raks i
%
fraction in state OA: A
A B AllB
SR
}{ﬂ
fraction in state OB: B
A B AllB
I
s
fraction in state OAB: 0 A[B}B Q Al

If the cooperativity is strong, the second operator site will almost always be occupied when the
first binding event has occurred. Consequently, the states OA and OB will be negligible. This case
corresponds to Kg < 1, which allows the approximation

W B AL, A

1 = Al
T’y T K T KakpKg KiKpKg

The distribution of promoter states is then:

1
fraction in state O: . AB
I+ Kerg
_[A]B]
KAKBKQ
[A[B]
L+ % Kprg

fraction in state OAB:

In the particular case that the two transcription factors are identical (A = B = P) the distribution
becomes:

fraction in state O: GE

pEo
[P
o K2K
fraction in state OAB: Pi[PﬁQ
KZKqg
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Figure 7.3: Autoregulatory gene circuit. (The dashed arrow indicates regulation.) The protein product of
the gene regulates its own expression by acting as an activator or as an inhibitor.

The promoter occupancy thus takes the familiar form of a Hill function (as introduced in Sec-
tion 3.3).

When N transcription factors bind with strong cooperativity, promoter occupancy can be writ-
ten as

(&) IO
() R )

where K is the half-saturating concentration. This functional form is often used as an empirical fit
when the details of transcription factor binding are unknown.

Transcription factors commonly bind DNA as multimers (e.g. dimers or tetramers). For-
mula (7.7) can sometimes be used to describe occupancy by a multimer. However, because the
multimerization process occurs in the cytosol—rather than at the operator site—the analysis in
this section does not apply directly. See Problem 7.8.4 for details.

7.1.3 Gene regulatory networks

A gene regulatory network, also called a genetic circuit, is a group of genes whose protein products
regulate one another’s expression. The simplest genetic circuit consists of a single gene that regu-
lates its own activity (Figure 7.3). If the gene’s protein product enhances expression, the gene is
called as autoactivator; if the product inhibits expression, the gene is an autoinhibitor.

Autoinhibition

To construct a simple model of an autoinhibitor, we treat mRNA in quasi-steady state and presume
that the transcription factor P binds to a single operator site. The resulting model is

d

Ep(t) = aw_épp(t)’ (7.8)

where p = [P].
Many genes are autoinhibitory. One advantage of this regulatory scheme is reduction of sensi-
tivity to certain perturbations: autoinhibition decreases the sensitivity to variation in the maximal
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expression rate « (Problem 7.8.2). Because a depends on a host of background processes, this
increased robustness can provide a significant advantage over unregulated expression.

Another advantage of autoinhibition is a fast response to changes in demand for protein product.
Consider an unregulated gene whose product attains a particular concentration. If an autoinhibitory
gene is to generate an equivalent abundance of protein, it must have a higher maximal expression
rate o, and will consequently respond more quickly when changes in protein level are required
(Problem 7.8.1).

Autoactivation

The behaviour of an autoactivating gene can be modelled as

d p(t)/K

P = QW—%IJ(U- (7.9)

Positive feedback of this sort can lead to run-away behaviour. However, because the expression
rate cannot rise above «, autoactivation typically results in quick convergence to a state in which
the gene is expressing at a high rate—an ON state. (This simple model also exhibits a steady OFF
state, at p =0.)

Exercise 7.1.3 Derive a formula for the non-zero steady-state solution of model (7.9). Confirm
that this steady state does not occur when a < K¢,. Verify that when the non-zero steady state
exists, it is stable and the zero steady-state is unstable. O

An autoactivator P that binds cooperatively at multiple operator sites can be described by:

d /K

@ = Ty Y o

This nonlinear model can exhibit bistability, in which the OFF state (p = 0) and the high-expressing
ON state are both stable. The basin of attraction of the OFF state tends to be small, meaning that
once turned ON, it takes a significant effect to transition to the OFF state. In the next section, we
will consider genetic switches that exhibit more balanced behaviours.

Exercise 7.1.4 Verify that when N = 2, the system in equation (7.10) exhibits three non-negative
steady states provided that o > 2K¢,,. O

7.2 Genetic Switches

7.2.1 The lac operon

One of the best understood gene circuits involves a set of genes found in F. coli whose products allow
the bacterium to metabolize lactose (milk sugar). This set of genes is contained in an operon—a
single promoter region followed by a set of coding regions, one for each protein product (Figure 7.4).
The genes in an operon are expressed simultaneously, and are co-ordinately regulated via the shared
promoter.

The lac operon contains coding regions for three proteins:
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Promoter lacZ | lacY| lacA

Coding regions

Figure 7.4: The lac operon. The coding regions for the three lac genes—lacZ, lacY and lacA—follow one
another on the DNA. Transcription of these coding regions begins at a shared promoter, so the genes are
transcribed together.

e (-galactosidase — coded by the gene lacZ
e (-galactoside permease — coded by the gene lacY
e [-galactoside transacetylase — coded by the gene lacA.

Together, these proteins allow E. coli to metabolize lactose. In this bacteria’s natural environ-
ment (the mammalian gut), lactose is typically far less abundant than other sugars, and so the cell
represses expression from the lac operon, in order to conserve resources. This repression is caused
by a transcription factor called Lacl (or simply lac repressor), which binds to an operator region
near the operon’s promoter and blocks expression (Figure 7.5A).

The lac repressor is constitutively present; when lactose is scarce the repression is almost
complete—leaked expression maintains only a few copies of each of the lac protein products in
the cell. When lactose is abundant, it is converted to allolactose, which binds lac repressor, reduc-
ing its affinity for the operator site (by about a thousandfold). Thus, expression from the operon
is triggered by the presence of lactose, with allolactose as the inducer (Figure 7.5B).

A B

lac repressor
RNA polymerasg - Allolactose
&

\/
(lac repressor) RNA polymerjas

| | | IacZ| IacY| IacA| \IJ ‘I\J | IacZ| IacY| IacA|

Promoter Coding regions

Promoter Coding regions

Figure 7.5: The lac repressor, Lacl. A. The lac repressor binds at the lac promoter, interfering with
RNA polymerase binding. B. When bound to allolactose, the lac repressor is unable to bind DNA. RNA
polymerase is then free to bind the lac promoter and transcription proceeds.

In addition to the direct induction by allolactose, the presence of lactose sets off a positive
feedback that leads to rapid expression of the lac genes. This feedback is implemented by the lac
proteins themselves: (-galactoside permease is a transmembrane protein that transports lactose
into the cell; B-galactosidase is an enzyme that catalyses the conversion of lactose to allolactose.
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Figure 7.6: Feedback in the lac operon. (Dashed blunted arrows indicate repression.) The protein prod-
ucts of the operon—permease and (-galactosidase—bring lactose into the cell and convert it to allolactose.
Allolactose activates gene expression by de-repression (inactivation of the lac repressor).

B-galactosidase also catalyses the metabolism of lactose. (The third protein in the operon, (-
galactoside transacetylase, chemically modifies S-galactosidase, but its role in lactose metabolism
is currently unclear.) These lac proteins, as mentioned, are present at very low levels when lactose
is absent. When lactose is introduced to the environment, the action of this handful of lac protein
molecules leads to a small amount of allolactose being present in the cell, and the repression of
the lac operon weakens. This weakened repression leads to increased expression from the operon,
resulting in increased levels of allolactose, and further increases in expression, as in Figure 7.6.
(This is not the whole story: transcription from the lac operon requires the presence of an activator
called catabolic gene activating protein (CAP), which is only active when glucose is absent from
the environment. Glucose is the preferred energy and carbon source for these cells. The CAP
mechanism ensures that when glucose is present the lac genes are not expressed, regardless of the
availability of lactose.)

A model of the lac operon

In 2007, Moisés Santillan, Michael Mackey and Eduardo Zeron published a model of lac operon
activity (Santillan et al., 2007). We will address a simplified version of their model.
To begin, we describe binding of the lac repressor (R) to the operon’s operator site by
k1
k_q

O+R OR.

where O is the unbound operator and OR is the repressor-bound operator. (In fact, the repressor
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binds at three distinct operator sites; we’ll ignore that complication in this simple model.) Treating
the repressor binding event in steady state, the fraction of un-repressed genes can be written as

1
1+r(t)/Ky’

where r is the concentration of lac repressor and K; = k,;l L is the dissociation constant. Letting m
denote the concentration of operon mRNA, we can write

d 1

—m(t) = GIW — oy m(t) (7.11)

where a is the maximal rate of transcription and d,; is the mRNA degradation/dilution rate.
We next consider the permease (coded by lacY). Letting y denote its concentration, we have

Su(t) = eum(®) — dyy(t) (7.12)

where ¢ is the rate of translation and dy is the protein’s degradation/dilution rate.

Because the operon’s protein products are translated from the same mRNA transcript, these pro-
teins are translated at comparable rates. Supposing that g-galactosidase and permease also share
the same degradation/dilution rate, the model for -galactosidase is identical to equation (7.12).
However, the [-galactosidase protein is a tetramer, while permease is a monomer. Ignoring the
dynamics of tetramer formation, we can write the S-galactosidase tetramer concentration, denoted
b, as one fourth that of the permease

(7.13)

Lactose uptake is mediated by the permease. Assuming Michaelis-Menten kinetics for the
transport event gives

kL y(t)Le

lactose uptake = ———~—
P Ky + Le

where k7, is the maximal (per permease) transport rate, L. is the external lactose concentration,
and K7, is the Michaelis constant. Once it has been transported across the membrane, lactose
is either converted to allolactose or is metabolized (into the simpler sugars glucose and galactose);
both reactions are catalysed by §-galactosidase. Denoting the intracellular concentration of lactose
by L, we write

iL(t) _ kpy()Le  kgb()L()  kab(t)L(t)
dt  Kuyr+Le Kuyg+L(t) Ko+ L(t)

- 5L L(t)7

where d7, is the dilution rate. The parameters k; and k, are the maximal (per S-galactosidase)
rates at which lactose can be metabolized or converted to allolactose, respectively; Kyrg and Kpq
are the corresponding Michaelis constants.

Making the assumption that the two reactions catalysed by (-galactosidase have identical ki-
netics (i.e. kg = kq, Knrg = Kpq) we arrive at a simplified description of the lactose dynamics:

d byl | kybOL)
Lo = )
dt Ky + Le KMg+L(t)

—r L(t). (7.14)
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Figure 7.7: Switching behavior in the lac operon. A. Dynamic response. A series of steps in the external
lactose concentration (L) lead to changes in the activity of the lac operon, reflected in the abundance of -
galactosidase. The initial increase from 0 to 50 uM (at time 500 minutes) causes a negligible rise in activity.
A later increase to 100 uM (at 1000 min) has a significant impact: the system shifts abruptly to its ‘on’
state. A further increase to 150 pM (at 1500 min) elicits no response—the system is already fully active.
Finally, at time 2000 min the external lactose is removed. Once the internal lactose level drops, the system
rapidly switches to the ‘off’ state. B. Dose-response. The solid line shows the behaviour of the lac operon
model. The steady-state level of operon activity (indicated by S-galactosidase abundance) switches abruptly
at a threshold lactose concentration. The dashed dose-response curve corresponds to a hypothetical model
in which the positive feedback loop has been cut (details in Problem 7.8.5). The resulting graded response
contrasts sharply with the switch-like behaviour of the true lac model. Parameter values: d5; = 0.48 min !,
Sy = 0.03 min~t, 67, = 0.02 min~!, a3 = 0.29 molecules min~!, Ky = 2.92 x 10% molecules, Rr /K, =213.2,
c1 =188 min~ ', kz = 6.0 x 10* min~*, Kz = 680 uM, k, = 3.6 x 10 min~*, K7, = 7.0 x 10> molecules.

Santillin and his colleagues made the further simplifying assumption that the concentration of
allolactose, denoted A, is equivalent to the concentration of lactose (justified in Exercise 7.2.1), so

(7.15)

Finally, we address inactivation of lac repressor by allolactose. The repressor is a homotetramer
(i.e. a complex of four identical monomers). It is inactivated by the binding of an allolactose
molecule to any of its four monomers. Taking these binding events as independent, the fraction of
unbound monomers is

_ K
Ky + A(t)’

fraction of unbound monomers =

(7.16)

where K is the dissociation constant. The concentration of active repressor tetramers (in which
all four monomers are unbound) is then

(7.17)

where Ry is the total concentration of repressor protein (presumed constant).
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Equations (7.11-7.17) comprise a model with three independent state variables: m, y, and L.
Figure 7.7 illustrates the model’s response to changes in the external lactose level, L.. Panel A
shows the time-varying response to a series of increases in the external lactose level. When L.
rises from 0 to 50 uM, there is a negligible response in system activity, as evidenced by the minor
increase in f-galactosidase abundance. When the lactose level doubles to 100 M, a dramatic
increase in enzyme level is triggered. A further step in the lactose level to (Le = 150 uM) elicits
no response—the system has already switched to its fully ‘on’ state. When the external lactose is
removed, the system abruptly returns to its ‘off” state of low activity.

The dose-response curve in Panel B shows the switch-like nature of the system’s response. The
solid curve shows that the model’s transition from low activity to high activity occurs at a threshold
lactose concentration. This ‘all-or-nothing’ response results in a discrete (yes/no) response to the
lactose input. Panel B also shows the behaviour of a modified model in which the positive feedback
loop has been cut (details in Problem 7.8.5). The dashed dose-response curve for this hypothetical
model shows a graded response to lactose availability, in contrast to the switch-like behaviour of
the true lac system.

The lac operon is a sensory gene regulatory network. Its function is to provide the cell with
an appropriate response to the current environmental conditions. When conditions change, the
response changes as well; in this case, the switch turns ‘on” when lactose is present, and ‘off” when
lactose is absent. In the next section, we consider a system in which a yes/no decision must persist
after the activating stimulus has been removed.

kg b(t)L(t)
m. AHO—
lactose is almost identical to lactose in structure, and so is metabolized by B-galactosidase in the
same manner as lactose (and consequently with the same kinetics). Denoting the concentration of

allolactose by A, and allowing for dilution, this gives

Exercise 7.2.1 The rate of allolactose production is given in equation (7.14) as

iA(t) _ kgb(t)L(t) _ kqb(t)A(t)
dt Kprg + L(t) Ky + A(t)

— SLA().

Taking kg = k, and Kjyrg = Ky (as above), Santillan and colleagues made the assumptions that
(i) dilution of allolactose is negligible; and (ii) allolactose is in quasi-steady state. Verify that these
assumption lead to the equivalence

ATS(4) = L(t).
Od

Exercise 7.2.2 Experimental studies of the lac operon often make use of IPTG (isopropyl -D-
1-thiogalactopyranoside), which is a molecular mimic of allolactose, but is not metabolized in the
cell. Extend the model to include the effect of IPTG. For simplicity, suppose that IPTG is present
at a fixed intracellular concentration. O

7.2.2 The phage lambda decision switch

Developmental gene regulatory networks are responsible for guiding the differentiation processes
that occur as a single fertilized egg cell develops into a multi-cellular organism. Many of the
decisions made during development require discrete (yes/no) responses to environmental conditions.
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Figure 7.8: Phage lambda infection. Upon attaching to a host cell, the phage injects its genome and then
follows one of two infection processes. If the host is healthy, the phage genome is incorporated into the
host’s DNA, as a so-called prophage. The prophage is copied when the cell divides, so all the host’s progeny
are dormantly infected. Alternatively, if the host cell is under stress, expression of phage genes leads to the
production of new phage particles. The cell wall is then ruptured (lysed), releasing the phage particles to
infect new hosts. Adapted from Figure 1.2 of (Ptashne, 2004).

Moreover, because the triggering signals do not continue indefinitely, these responses need to be
persistent.

In this section, we will address the lysis/lysogeny decision-switch in phage lambda. This genetic
circuit that has a discrete (on/off) character and retains a memory of past stimuli. This is a viral
response process that occurs in host bacterial cells. Nevertheless, it serves as a biological model of
more complex differentiation processes in multicellular organisms.

Phage lambda is a bacteriophage—a virus that infects bacterial cells. Phage particles, like all
viruses, consist of a small genome encased in a protein shell. Upon penetrating the membrane of
an E. coli host cell, the phage follows one of two infection processes (Figure 7.8):

e lytic growth: the host’s genetic machinery is employed to produce about a hundred new
phages, which then lyse (burst) the host cell.

e lysogenic growth: the phage’s genetic material is integrated into the host cell’s genome.
(The viral genome is then called a prophage.) When the lysogenized host divides, it makes a
copy of the prophage along with its own DNA. The phage thus dormantly infects all progeny
of the host cell.

The phage senses the host’s condition and chooses the appropriate infection mechanism: if the
host is growing well, the phage integrates and multiplies lysogenically along with the host and
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its progeny; if the host cell is starving or damaged, the phage grows lytically—an ‘abandon ship’
response. This decision is based on a genetic switch.

The decision switch

We will not address the initial infection process, which involves several phage genes. Instead, we will
model the simpler situation in which a prophage ‘chooses’ whether to continue to grow lysogenically
or to begin the lytic process. This decision switch can be described in terms of two genes and their
protein products:

e gene cl codes for protein cl, also called repressor;
e gene cro codes for protein cro (an acronym for control of repressor and others).

These two genes are adjacent to one another on the phage DNA. They lie on opposite strands
of the double helix, and are consequently transcribed in opposite directions. Their promoters lie
back-to-back, as shown in Figure 7.9.

ORoperator
] " >
cl coding region Og3 | 0OR2 Orl cro coding regior
g ) L J
cl promoter cro promoter

Figure 7.9: Phage lambda decision genes. The ¢l and cro genes lie on opposite strands of the DNA double
helix and so are transcribed in opposite directions. Their promoter regions lie back-to-back. The shared
operator, called Og, overlaps both promoters; it contains three sites at which both cI and cro bind.

Both the cI and cro proteins regulate their own and each other’s expression. This regulation
occurs through the binding of these proteins to an operator region that overlaps both the ¢l and
cro promoters. This operator region is called Ogr. The Og region contains three binding sites called
ORr1, Ogr2, and Ogr3. Both cl and cro bind to all three of these sites, but in different manners and
with opposing effects, as we next describe.

Regulation by cI

The cI protein is a homodimer. These dimers bind strongly to Or1l, and weakly (with about 10
times less affinity) to Og2 and Or3. However, a cI dimer bound to Ogl interacts with another
at Ogr2. This cooperativity greatly increases the affinity of cI dimers for Og2. Consequently, at
low concentrations, cl dimers are found bound to Ogrl and Ogr2, while at high concentrations, cl
dimers will be bound to all three operator sites.

The effects of cI binding are as follows (Figure 7.10A):

e When no proteins are bound at the operator site, there is strong expression of cro. The cl

promoter has only weak affinity for RNA polymerase, so there is minimal expression of cl in
this case.
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Figure 7.10: Regulation by cI and cro. A. Dimers of cI bind to Ogl and Or2 at low concentration, and
at Ogr3 at higher concentration. Basal expression of cI is weak, but polymerase binding is enhanced by a
cI dimer bound at Og2. When bound to Ogl, cl blocks cro expression. When cI binds Og3, it blocks
expression from the cI gene. B. Dimers of cro bind strongly to Or3, and weakly to Or2 and Orl. When
bound to Og3, cro blocks expression of cI. When bound to Or2 or Og1, cro blocks its own expression.

e When cl dimer is bound to Ogl, it inhibits cro expression by blocking access to the cro
promoter.

e When cl dimer is bound to Og2, it upregulates its own expression (about ten-fold) by binding
to RNA polymerase at the cI promoter, effectively increasing the affinity of the docking site.
Thus clI is an autoactivator.

e When cl dimer is bound to Og3, it blocks access to the cl promoter, and thus represses its
own expression. Thus, at high concentrations, cl is an autoinhibitor.

The interplay of autoactivation at low levels and autoinhibition at high levels results in tight
regulation of the cl concentration.
Regulation by cro

The cro protein is also a homodimer. These dimers bind to all three operator sites, with affinity
opposite to that of cI, and with no cooperative effects. The cro dimer has a high affinity for Og3,
and so binds there at low concentrations; it has lower affinity for Or2 and Ogl (roughly equal),
and so is found at these sites only at higher concentrations.
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The effects of cro binding are as follows (Figure 7.10B):

e As described above, when no proteins are bound at the operator site, cro is expressed strongly
while only weak expression of ¢l occurs.

e When cro dimer is bound to Og3, it blocks the cI promoter. Hence cro inhibits expression of
cl.

e When cro dimer is bound to Ogr2 or Ogl, it inhibits its own expression by blocking access to
the cro promoter. Thus, at high concentrations, cro is an autoinhibitor.

Bistability

The cl and cro genes are antagonists—each represses the other. Consequently, we expect the system
to exhibit two steady states: either cl will be abundant, repressing cro; or cro will be abundant,
repressing cl. These two states characterize the two pathways of infection.

e In the lysogenic state, the cl concentration is high, and the cro concentration is low.

e Lysis begins when the cl concentration is low and the cro concentration is high.

The system is bistable. The lysogenic state is stable on a long time-scale; it can be maintained
for generations of hosts. In contrast, the lytic state is necessarily transient—it leads to the host
cell’s death. Nevertheless, we are justified in calling the lytic condition a steady state on the
relatively short timescale of the decision switch itself.

Flipping the switch

Once it has integrated into the host’s genome, the prophage continuously monitors the state of the
cell. When it senses that the host cell is in jeopardy, it ‘flips the switch’ to begin lytic growth. There
is no mechanism for a switch in the opposite direction—lytic growth is an irreversible process.

The switch to lysis occurs when the host cell is under stress (e.g. is injured or starving). In
the laboratory, the simplest way to induce lysis is by exposing the cells to ultraviolet light, which
causes DNA damage. Cells respond to this damage by invoking expression of a number of repair
proteins—this is called the SOS response. A key component of the SOS response is the bacterial
protein RecA, which triggers expression of DNA repair genes. Once activated, RecA cleaves cl,
rendering it unable to bind the Op sites. This frees cro from repression, leading to lytic phage
growth.

Modelling the switch

We present here a simple model that captures the bistable nature of the system with minimal detail.
(A detailed model that incorporates descriptions of DNA-binding and expression processes can be
found in (Reinitz and Vaisnys, 1990).

We will neglect mRNA dynamics and incorporate only two state variables: the concentrations
of cI and cro protein. Because cI is also called repressor, we will write r = [cI] and ¢ = [cro]. The
model takes the form

_T(t) = fr(r(t)7c(t)) - 57,7’(15) (718)
—c(t) = fe(r(t),c(t)) — dec(t),
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where ¢, and 6. account for dilution and degradation, and f, and f. describe the rates of expression
from the cl and cro promoters, respectively.

To characterize the operator occupancy function, we begin by making the following simplifying
assumptions: (i) cro and cI will never bind the operator simultaneously; (ii) strong cooperativity
causes the binding of cI at Or2 to happen concurrently with cI binding to Or1; and (iii) states in
which cro dimer is bound to Ogl or Og2 can be lumped together. These assumptions result in five
distinct DNA-binding states (Figure 7.10), as summarized in the following table, which indicates
the rates of expression of cI and cro from each state. (The parameters a and b are the expression
rates from the unregulated genes.)

State Notation rate of cl expression | rate of cro expression
unbound operator O a b
cl at Orl and OR2 O(clp)9 10a 0
cl at Ogrl, Ogr2, and ORr3 O(cls)s 0 0
cro at OR3 O(cro9) 0 b
cro at Og3 and Ogl and/or Og2 | O(crog)o 0 0

We have assumed that there is no expression from the repressed states (i.e. leakage is negligible).
Next, we consider the occupancy functions for these binding states. For simplicity, we assume that
all ¢l and cro protein is in the dimer form, so that

[cla] = @ and [crog] = i;)

Treating the corresponding DNA-binding events in quasi-steady state we arrive at expression
rates for cI and cro (Exercise 7.2.3):

a+ 10aK(r/2)?
1+ Kl(T/Q)z + KgKl(T/2)3 + Kg(C/Q) + K4K3(C/2)2
b—l-ng(C/Q)
1+ Kl(T/Q)z + KgKl(T/2)3 + Kg(C/Q) + K4K3(C/2)2

cl expression rate :  f,.(r,c) = (7.19)

cro expression rate :  fo(r,¢) =

The model behaviour is illustrated in Figure 7.11. The phase portrait in Panel A reveals the
bistable nature of the system. Both stable states exhibit near-zero levels of the repressed protein.
The lytic state has a small basin of attraction; only initial conditions with overwhelmingly large
concentrations of cro will end up in this high-cro, low-cI condition. Panel B shows the system
behaviour when RecA is active (simulated by a tenfold increase in d,). This parameter change
shifts the r-nullcline so that the system is monostable—only the lytic steady state (high-cro, low-
cl) remains.

The lambda decision network fulfills the two requirements of a developmental switch: a threshold
transition from one condition to another, and a persistent memory. This response is consistent
with Lewis Wolpert’s ‘French Flag’ developmental model, in which a nascent tissue is exposed
to a gradient of a chemical signal-—called a morphogen—that induces differentiation into specific
cell types. The signal strength varies continuously over the tissue domain, and does not persist
indefinitely. In response, each cell makes a discrete decision (as to how to differentiate), and
internalizes that decision so that the effect persists after the signal is removed.

The phage lambda decision circuit is a valuable model of developmental gene circuits. However,
because it is irreversible, it cannot serve as an example of a generic on/off switch that could be
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Figure 7.11: Behaviour of the decision switch model. A. This phase portrait shows the bistable nature of
the system. The nullclines intersect three times (boxes). The two stable steady states are close to the axes;
in each case the repressed protein is virtually absent. B. When RecA activity is included (by increasing 9,
tenfold), the system becomes monostable—all trajectories are attracted to the lytic (high-cro, low-cI) state.
Parameter values: ¢ = 5 min™!', b = 50 min™!, K; = 1 nM~2, Ko = 0.1 nM™!, K3 =5nM~!, K, = 0.5
nM~1 8, = 0.02 min~! (0.2 in panel B), d. = 0.02 min~1.

employed as part of a larger decision-making circuit. In the next section, we consider a genetic
switch that was designed to be reversible.

Exercise 7.2.3 Derive the expression rates in equation (7.19) as follows. Note that the DNA-
binding events are:

O+cly+cly O(CIQ)Q 0(012)2 + cly O(C12)3
k’_l —2
3 ka
O + crog === 0O(cro9) O(crog) + crog === O(crog)9+
k_3 k_4

For i = 1, 2, 3, 4, define the association constants K; = k;/k_;, and determine the equilibrium
conditions for each binding event. Next, use these equilibrium equations, along with conservation
of operator sites:

(0] + [O(clg)g] + [O(clp)3] + [O(crog)] + [O(crog)g 4] = Or,
to determine the occupancy function for each of the five states. Finally, use the expression rates
for each state (in the table above) to derive the expression rates in equation (7.19). o

7.2.3 The Collins toggle switch

As discussed in Chapter 1, in the year 2000, Timothy Gardner, Charles Cantor and Jim Collins
designed and constructed a genetic toggle switch by re-wiring the components of existing gene
regulatory networks (Gardner et al., 2000).
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Figure 7.12: Collins toggle switch. (Dashed blunted arrows indicate repression.) Two genes repress each
other’s expression, leading to a bistable system. Each transcription factor was chosen so that it could be
deactivated by an experimental intervention.

Their engineered circuit (Figure 7.12) employs the same mutual repression scheme that we saw
in the phage lambda decision switch. However, the toggle switch can be ‘flipped’ in both directions:
the transcription factors were chosen so that each could be inhibited by an appropriate intervention.

The toggle switch design includes a reporter gene, which allows for direct observation of the
system’s activity. The reporter is green fluorescent protein (GFP), which fluoresces green when
exposed to blue light. The coding region for the GFP reporter was attached downstream of the
coding region for one of the two repressors, creating an operon. The concentration of GFP—and
intensity of fluorescence—is then correlated with the concentration of that repressor.

Gardner and his colleagues constructed multiple instances of the toggle switch network. They
used only genes and promoters whose behaviour had been well characterized: the lac repressor
(Lacl) and the tet repressor (TetR) from E. coli, and cI from phage lambda. (TetR inhibits ex-
pression from the tet genes which are responsible for protection from tetracycline, an antibiotic.)
The target of cl repression was not the cro promoter studied in the previous section, but another
phage promoter, Py, whose repression mechanism is simpler. For each of these transcription fac-
tors, expression from the target gene could be induced by inactivating the repression. (Lacl is
inactivated by isopropyl [-D-1-thiogalactopyranoside (IPTG)—a non-metabolizable analogue of
allolactose. Likewise, TetR can be inactivated by anhydrotetracycline (aTc)—a non-toxic analogue
of its natural inactivator tetracycline. The phage protein cI does not have a native inactivation
mechanism. Gardner and colleagues made use of a mutated form of cl that is temperature-sensitive:
it functions normally at 30°C, but is non-functional when the temperature is raised to 42°C.)

Gardner and his colleagues developed a simple model in order to explore the behavior of the
switch circuit. The model was not meant to accurately reflect the specifics of their proposed
construction, but was used to investigate the nature of bistability in such a device.

Neglecting mRNA dynamics, the model can be written as

d a1

—pi(t) = — —pi(t 7.20

dtpl() s (;Dz(t))ﬁ pl() ( )
1+io
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Figure 7.13: Behaviour of the toggle switch model. Repressor 2 is abundant in the initial condition. At
time ¢ = 10, inducer 2 is introduced, rendering repressor 2 inactive, and so inducing expression of repressor
1. Repressor 1 is then able to repress expression of repressor 2. The high level of repressor 1 is maintained
after the inducer is removed at ¢ = 20. The opposite effect occurs on introduction of inducer 1 (at t = 30,
removal at ¢t = 40). Parameter values: a3 = 3 (concentration/time), as = 2.5 (concentration/time), 5 = 4
and v = 4. Inducer activity is simulated by increasing i1 or i from 0 to 10 in each case. Units are arbitrary.

d a9

—po(t) = ——————— —polt 21

dtm( ) 1+ <p1(t))7 p2(t) (7:21)
1441

where p; and py are the concentrations of the two proteins, «; and ag are their maximal expression
rates, # and  indicate the degree of nonlinearity (i.e. cooperativity) in the repression mechanisms,
and 1, 19 characterize the two inducers. Dilution is considered to be dominant over degradation,
so the decay rates are identical. Gardner and colleagues scaled the time and concentration units
to reduce the number of parameters in the model (Exercise 7.2.4).

Figure 7.13 shows the model behaviour. The two inducers have the desired effect of causing
transitions between the stable steady states. Figure 7.14A shows a phase portrait for the un-induced
(bistable) system. The portrait in Panel B shows the monostable system that occurs when inducer
2 is present.

Gardner and his colleagues used their model to predict features of the circuit that would result
in bistability. The two-dimensional bifurcation plot in Figure 7.15 shows the results of such an
analysis. This plot subdivides the aj-as parameter space into regions in which the system is
monostable or bistable, for various values of 8 and . As expected, when a1 = ag, the system is
perfectly balanced and so is bistable, provided that the maximal expression rates are sufficiently
large (otherwise a single balanced steady state occurs). When the two expression rates are not
balanced, bistability may be lost as one gene dominates the other. The degree of imbalance that
is allowed within the bistability domain depends strongly on v and S, which reflect the degree
of nonlinearity in repressor-DNA binding. The greater the nonlinearity, the more allowance the
switch has for unequal expression rates. These observations suggest that (i) bistability is favored
by strong expression (i.e. strong promoters and strong ribosome binding sites); and (ii) the more
cooperativity involved in repressor-DNA binding, the more robust the switch’s bistability will be
to asymmetry between the two component genes. Gardiner and colleagues used these principles to
construct multiple functioning instances of the genetic switch (implemented in E. coli cells). They
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Figure 7.14: Phase portraits for the toggle switch. A. The un-induced switch (i; = i2 = 0). The nullclines
intersect three times: at two stable steady states and one intermediate unstable steady state. B. Under the
influence of inducer 2 (i2 = 10), the nullcline for repressor 1 has shifted so there is a single steady state, to
which all trajectories converge. Parameter values as in Figure 7.13. Adapted from Figure 2 of (Gardner et

al., 2000).

successfully confirmed the bistable behaviour of the device by monitoring the GFP read-out in the
lab.

Exercise 7.2.4 When constructing a generic model, rescaling of units can absorb parameters into
the definition of time- or concentration-scales, thus reducing the number of free parameters. For
instance, the concentration profile s(t) = e t/60 nM, where t is measured in seconds, can be written
as s(7) = e nM, where 7 is measured in minutes (i.e. in time-units of 60 seconds).

Consider a model of gene expression:

d o

0 = Ty~ o)

Describe the re-scaling of time and concentration units in which the model can be written as

() = T — ()

g

Exercise 7.2.5 Analysis of bistability as in Figure 7.15 can be carried out analytically in the
special case of § = = 1. Verify that in this case the system is monostable (i.e., it exhibits a single

steady state) when oy = ag. (Take i1 =iy = 0.) O

7.3 Oscillatory Gene Networks

We next consider examples of gene regulatory networks that generate persistent oscillations. These
networks allow cells to maintain internal clocks that can be used to predict periodic changes in

conditions (such as the night-day cycle).
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Figure 7.15: Dependence of bistability on parameter values. For each value of 8 and v, the a;-ay parameter
space is divided into regions in which the system is monostable or bistable (i1 = io = 0). As the degree of
nonlinearity (i.e. 8 and «) increases, the bistable region grows, indicating that bistability is preserved despite
asymmetry between the two components of the switch. The parameter set for the simulation in Figure 7.13
is indicated by the dot near the bottom left-hand corner. Adapted from Figure 2 of (Gardner et al., 2000).

7.3.1 The Goodwin oscillator

In 1965, Brian Goodwin proposed a generic model of an oscillatory genetic circuit (Goodwin, 1965).
The model, sketched in Figure 7.16, involves a single gene. The mRNA, X, is translated into enzyme
Y, which catalyses production of metabolite Z, which causes inhibition of expression (by activating
an unmodelled repressor). Neglecting the specifics of catalysis and inhibition, Goodwin formulated
the model in terms of concentrations z, y and z as:

d a

Ex(t) = T GOr GOy bx(t)

Su(t) = aalt) — By(t) (7.22)
d

Sat) = lt) — 52(0).

The model was not meant to describe a particular system; it was constructed to demonstrate how
persistent oscillations could be generated by an autoinhibitory gene circuit.

Goodwin included three states in the model to impose sufficient delay in the negative feedback
loop. As discussed in Section 4.3, oscillations can arise from negative feedback if the effect of the
feedback is delayed and if there is sufficient nonlinearity in the loop. Indeed, a two-state model
that arises from applying the quasi-steady state assumption to the Goodwin model cannot exhibit
sustained oscillations, as verified by J. S. Griffith (Griffith, 1968).

Even with three steps providing a lag in the feedback, a high degree of nonlinearity is required
to generate limit-cycle oscillations in this model. In his paper, Griffith showed that the system
cannot exhibit sustained oscillations unless the Hill coefficient n is higher than eight, and even
then, oscillations only occur for certain values of the other parameters (Problem 7.8.8).

The system’s oscillatory behaviour is shown in Figure 7.17. The mechanism of oscillations is
apparent in Panel A. In each cycle, the mRNA concentration rises, followed by a rise in enzyme
concentration, and then a rise in metabolite concentration. The rise in z causes a crash in x, which
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Figure 7.16: The Goodwin oscillator. (The dashed blunted arrow indicates repression.) The mRNA (X)) is
translated into an enzyme (Y), which catalyses production of a metabolite (Z), which (indirectly) represses
gene expression. This negative feedback, coupled with the delay inherent in the three-step loop, can result
in oscillatory behavior.

causes y and z to drop, allowing x to rise again. Panel B shows a three-dimensional phase portrait,
confirming that the system trajectories all settle to a periodic (limit cycle) behaviour.

Exercise 7.3.1 Goodwin offered multiple interpretations of his model. In addition to the descrip-
tion given here (X is mRNA, Y is enzyme, Z is metabolite), he also suggested that the model could
be used to describe the following feedback loops:

a) X is nuclear mRNA, Y is cytoplasmic mRNA, Z is protein product;

b) X is mRNA| Y is inactive protein product, Z is active protein product;

Under what assumptions can the model apply to each of these cases? O

7.3.2 Circadian rhythms

The Goodwin model demonstrates that an autoinhibitory gene can generate persistent oscillations.
A specific instance of this behavior is provided the circadian rhythm generator in the fruit fly
Drosophila melanogaster.

We are familiar with the circadian rhythms of our own bodies; they regulate our sleep-wake
cycles and are disrupted by jet-lag when we travel across time zones. Because they allow prediction
of periodic changes in temperature and light, these internal rhythms are an important aspect of
many organisms’ biology.

Behavioral studies of these internal clocks have shown them to have a free-running period of
roughly 24 hours (i.e. in the absence of external cues). Moreover, these rhythms are readily entrained
to light and temperature cues and are remarkably robust to changes in ambient temperature.

In mammals, the primary circadian pacemaker has been identified as a group of about 8000
neurons in the suprachiasmatic nucleus (located in the hypothalamus), which have a direct connec-
tion to the retina (in the eye). A model of the gene network responsible for generation of circadian
rhythms in mammals is provided in (LeLoup and Goldbeter, 2003).

Here, we consider the first dynamical mathematical model that was proposed for a circadian
oscillator: Albert Goldbeter’s model of circadian rhythms in Drosophila (reviewed in (Goldbeter,
1996)).
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Figure 7.17: The Goodwin oscillator. A. This simulation shows relaxation to sustained (limit cycle)
oscillations. B. A phase portrait showing convergence to a limit cycle in the three-dimensional phase space.
Parameter values are a = 360 (concentration - time™1), k = 1.368 (concentration), b = 1 (time 1), a = 1
(time™1), B =10.6 (time™!), v =1 (time™!), § = 0.8 (time™!), n = 12. Units are arbitrary.

Studies of Drosophila have yielded many advances in genetics. In 1971, Ronald Konopka and
Seymour Benzer published a study in which they identified flies with mutations that caused changes
in the period of the free-running circadian rhythm (Konopka and Benzer, 1971). These mutations
occurred in a gene named per (for period); the protein product is called PER. In contrast to
wild-type (i.e. non-mutant) flies, whose rest/activity patterns demonstrated a roughly 24 hour
free-running period, they reported on three mutations:

e an arrhythmic mutant that exhibits no discernible rhythm in its activity;
e a short-period mutant with a period of about 19 hours;
e a long-period mutant with a period of about 28 hours.

Additional molecular analysis provided clues to the dynamic behaviour of per gene expression.
Observations of wild-type flies revealed that total PER protein levels, per mRNA levels, and levels
of phosphorylated PER protein all oscillate with the same 24-hour period, with the peak in mRNA
preceding the peak in total protein by about 4 hours. Moreover, it was shown that when the
import of PER protein into the nucleus was blocked, the oscillations did not occur. Based on these
observations, Goldbeter constructed a model of an autoinhibitory per circuit.

Goldbeter’s model, sketched in Figure 7.18, has the same basic structure as the Goodwin model:
a gene codes for a product that, after a delay, represses its own expression. In this case the
delay is caused by transport across the nuclear membrane and a two-step activation process (by
phosphorylation).

The feedback loop begins with the production of per mRNA (M), which is exported from the
nucleus to the cytosol. In the cytosol, the mRNA is translated into protein, and is subject to degra-
dation. Newly-translated PER protein (Pp) is inactive. It undergoes two rounds of phosphorylation
to become active PER (P,), which is reversibly transported across the nuclear membrane. Once in
the nucleus (Py), PER represses transcription of the per gene. Degradation of PER is assumed to
occur only in the cytosol, and degradation of inactive PER is assumed negligible.
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Figure 7.18: Goldbeter’s circadian oscillator model. (The dashed blunted arrow indicates repression.) The
per gene is transcribed in the nucleus; per mRNA (M) is exported to the cytosol, where is it translated
and is subject to degradation. PER protein (Fy) is activated by two reversible rounds of phosphorylation.
Active PER (P,) is subject to degradation, and can cross the nuclear membrane. Once in the nucleus, PER
(Pn) represses transcription of the per gene. Delay oscillations arise from the combination of autoinhibitory
feedback, nonlinear repression kinetics, and delay. Adapted from Figure 11.6 of (Goldbeter, 1996).

Using lowercase letters to denote concentrations, Goldbeter’s model takes the form

i (t) _ Vs . vmm(t)

" T T N /KD K+ m(?)

d _ Vipo(t) Vapi (t)

Epo(t) = hami(t) - Ki+po(t)  Ka+pilt)

d 0 — Vipo(t) — Vapi(t)  Vapi(t) Vipa ()

™ Ki+po(t) Ko+pi(t) Kz+pi(t) Ki+pa(t)

d  Vapu(®) Vipa(t) vapa(t)
am(t) B K33+1p1(t) B K44+2p2(t) = Fapa(f) - hapw () - Kdd-i-izm(t)
Son(t) = kipa(t) ~ apn (6).

The model is based on first-order kinetics for transport across the nuclear membrane, and Michaelis-
Menten kinetics for the degradation and phosphorylation/dephosphorylation processes. Transcrip-
tion and export of mRNA are lumped into a single process, which is cooperatively repressed by Py
with Hill coefficient n. As with the Goodwin model, this model only exhibits oscillatory behaviour
if the repression kinetics is sufficiently nonlinear. Goldbeter carried out his analysis with n = 4; he
found that the model can exhibit oscillations with n = 2 or even n = 1, but only under restrictive
conditions on the other parameter values.

The oscillatory behaviour of the model is illustrated in Figure 7.19. Panel A shows the periodic
behaviour of per mRNA, total PER protein, and nuclear PER protein. The period is roughly
24 hours, and the mRNA peak precedes the total PER peak by about 4 hours. This behaviour
is consistent with experimental observation, but does not provide direct validation of the model,
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Figure 7.19: Behaviour of the Goldbeter circadian oscillator model. A. The simulated concentrations of
mRNA (m), total PER protein (pr = po + p1 + p2 + pn ), and nuclear PER, protein (pyn). The period of the
oscillation is about 24 hours, with a lag of about 4 hours between the peak in mRNA and protein levels.
B. This continuation diagram shows the effect of changes in the maximal PER degradation rate (vq) on
the oscillation period. Within the range over which oscillations occur, the period ranges from about 20 to
more than 60 hours. Parameter values are vs = 0.76 uM/h, v,, = 0.65 uM/h, vg = 0.95 uM/h (Panel A) ,
ks=038h™1 ki =19h™ 1 ko =13h"1 Vi =3.2 uM/h, Vo =1.58 uM/h, V3 =5 uM/h, V4 = 2.5 uM/h,
Ki=Ko=1uM, K3 =K4=2uM, K; =1 uM, K;,; = 0.5 uM, Kg = 0.2 uM, n = 4. Adapted from
Figures 11.7 and 11.9 of (Goldbeter, 1996).

because Goldbeter chose parameter values to arrive at this behaviour. Nevertheless, the model
represented a valuable hypothesis as to how circadian rhythms could be generated by the activity
of the per gene.

Goldbeter used the model to explore possible mechanisms for the effects of the short- and
long-period per mutations. To explore the hypothesis that these mutations affect the rate of PER
degradation, he determined the effect of changes in the maximal PER degradation rate (v4) on the
oscillation period. His findings, reproduced in Figure 7.19B, show that as v, varies (between 0.45
and 2.6 pM/hr), the period ranges between 20 and 62 hours (beyond this range the oscillations are
lost). The mutant periods fall roughly into this range, indicating that alterations in the protein
degradation rate could be the cause of the observed changes.

In the years since Goldbeter’s model was published, additional experiments have led to a better
understanding of the circadian clock in Drosophila. A model that incorporates more recent findings
is explored in Problem 7.8.10.

7.3.3 Synthetic oscillatory gene networks

In this section we address two gene circuits that were engineered to display oscillatory behaviour.

A synthetic delay oscillator: the repressilator

In the year 2000, Michael Elowitz and Stanislas Leibler announced the construction of an oscil-
latory synthetic circuit (Elowitz and Leibler, 2000). Elowitz and Leibler called their device the
repressilator, in homage to the theoretical oscillating chemical system known as the Brusselator
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Figure 7.20: Repressilator gene network. (Dashed blunted arrows indicate repression.) Three genes each re-
press expression of the next around a loop. This network architecture can give rise to sustained oscillations—
the protein levels rise and fall in succession. The reporter gene, GFP, is under the control of a separate copy
of promoter 3.

(Exercise 4.3.1).

The repressilator design, like the Collins toggle switch, involves stringing together promoter-
repressor pairs; in this case there are three genes in the loop (Figure 7.20). This three-repressor
loop does not lend itself to steady-state behaviour. When any one protein dominates over the
others, it leads to its own repression—the dominant protein de-represses its own repressor, which
then becomes dominant. When this process continues around the loop, the result is sustained
oscillations in the protein concentrations. This is a delay oscillator—each protein inhibits its own
expression through the chain of three inhibitions.

Elowitz and Leibler constructed a simple model of the network as part of the design process.
Because they needed to capture the network’s time-varying behaviour, they included mRNA dy-
namics explicitly. Assuming that all three genes have identical characteristics, they arrived at the
following model:

() = a0+ T — i) Cpi(t) = B (t) — (1)
d « d

am2(t) =ap + W —ma(t) am(t) = Bma(t) — Bpa(t)
%m?&(t) = oo + m - m3(t) %p?&(t) = 5m3(t) - 5]93(75)-

The six state variables are the mRNA concentrations (m1, mg, mg) and the protein concentrations
(p1, p2, p3). The parameter o represents the rate of ‘leaky’ transcription from the fully repressed
promoter, while oy + « is the maximal expression rate (achieved in the absence of repression).
The degree of cooperativity in repressor-DNA binding is characterized by the Hill coefficient n.
Parameter 3 is the decay rate for the proteins. Additional parameters were eliminated by scaling
of the time and concentration units.
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Figure 7.21: Behaviour of the repressilator model. A. Simulation of the model. The peaks in protein
concentration are about 50 minutes apart, giving an overall period of about 150 minutes. Parameter values:
ap = 0.03 (molecules per cell - min~1!), o = 298.2 (molecules per cell - min~1), 3 = 0.2 (min~!), n = 2. The
model outputs are scaled as follows: protein concentration = 40 p;(t) (corresponding to a half-saturating
constant of 40 molecules per cell); time = t,/0.3485 (corresponding to a mRNA half life of 2 minutes). B. A
set of two-dimensional bifurcation plots showing the range of « and S values for which the model exhibits
sustained oscillations. Oscillations are favored by 8 near one, and a and n large. Adapted from Figure 1 of
(Elowitz and Leibler, 2000).

A simulation of the model is shown in Figure 7.21A. The symmetric nature of the model is
apparent; all three protein profiles follow identical cycles. The parameters have been chosen so
that the period is about 150 minutes.

Figure 7.21B shows a set of two-dimensional bifurcation plots demonstrating the system be-
haviour. As expected, oscillatory behaviour is favored by stronger cooperativity in the repression
kinetics (i.e. increased nonlinearity n). Moreover, stronger expression («) results in a more robust
oscillator. The plot also shows that the value of 3 (the ratio of protein decay rate to mRNA decay
rate) has a significant impact on the behaviour of the system. Oscillatory behaviour is easier to
attain when this ratio is close to one. This finding is consistent with the need for a significant
delay in the loop; if mRNA dynamics are very fast, they will not contribute to the overall delay. A
similar analysis shows that low leakiness (ag) favors oscillations (Problem 7.8.12).

Elowitz and Leibler made used model-based observations in their design process. Firstly, they
chose promoters that were known to be cooperatively repressed (high n values), and selected strong
versions of those promoters (high «) with tight repression (low ag). Secondly, to bring the protein
decay rate closer to the (typically much faster) mRNA decay rate, they added a ‘degradation tag’
to the proteins in the network, reducing their half lives by as much as 15-fold.

Elowitz and Leibler constructed their circuit from the same promoter-repressor pairs that were
employed in the Collins toggle switch: Lacl and TetR from FE. coli, and cl from phage lambda.
They were able to synchronize a population of E. coli cells hosting the network by exposing them
to a pulse of IPTG (which inhibits LacI), and successfully demonstrated oscillations. The period
of the oscillations (about 150 minutes) was considerably longer than the doubling time of the cells
(about 30 minutes); the state of the oscillations was passed from mother to daughter cells after
division.

Although the repressilator design resulted in oscillatory behaviour, the oscillations themselves
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Figure 7.22: Genetic relaxation oscillator network. (Dashed arrows indicate regulation.) Identical promoters
drive expression of the activator and the repressor. The interplay between positive and negative feedback
can lead to sustained oscillations (characterized by bursts of expression followed by periods of repression).

were irregular; the cells exhibited significant variation in amplitude, period, and phase. We next
consider an engineered gene network that acts as a relaxation oscillator, and consequently exhibits
less variability in its periodic behaviour.

A synthetic relaxation oscillator

Relaxation oscillators typically exhibit more robust behaviour than delay oscillators. To implement
an oscillator with robust periodic behaviour, Jesse Stricker and colleagues designed and constructed
a relaxation oscillator involving two genes: an activator and a repressor (Stricker et al., 2008). They
employed a promoter that is regulated by both of these transcription factors. The network, sketched
in Figure 7.22 incorporates two identical copies of this promoter, separately driving expression of
the repressor and activator.

Stricker and co-workers used both deterministic (differential equation-based) and stochastic
models in designing the system. A preliminary model, published earlier by Jeff Hasty and colleagues
(Hasty et al., 2002), takes the form (details in Exercise 7.3.2):

d - 1+ z(t)? + acx(t)?

#*Y = A arresemaryon W (7.23)
d B 1+ z(t)? + acx(t)?

v = 1+ 202 +oz@H1 +y0)b) Wy (),

where x and y are the concentrations of the activator, X, and repressor, Y, respectively.

The model’s behaviour is shown in Figure 7.23. Panel A shows the persistent oscillations exhib-
ited by the system: the activator X and repressor Y are expressed together. Their concentrations
grow until the repressor cuts off expression. Concentrations then fall until repression is relieved and
the next burst of expression begins. The oscillations exhibit sharp peaks—particularly for X. This
relaxation behaviour is displayed in panel B, which shows the limit cycle trajectory in the phase
plane, along with the nullclines. The horizontal motions are rapid—the trajectory spends most
of its time following the z nullcline at low X concentration (in the repressed state). Because this
behaviour is dependent on positive feedback (autoactivation), it is relatively robust to parameter
variation.
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Figure 7.23: The Hasty relaxation oscillator model. A. This simulation of the system’s periodic behaviour
shows concentrations of the activator X and the repressor Y rising and falling in near unison. Sharp peaks
in the concentration of X indicate that this is a relaxation oscillator. B. This phase portrait shows the
nullclines along with the limit cycle trajectory. The points are plotted along a single period, and are spaced
equally in time. The trajectory transits rapidly around the cycle, but moves slowly in the repressed (low
[X]) condition. Parameter values: o = 11, 0 = 2, 7, = 0.2 (time™!), v, = 0.012 (time™!), a, = 0.2
(concentration - time~!). Units are arbitrary.

Stricker and colleagues successfully implemented their relaxation oscillator design using Lacl
and an activator called AraC. They used a microfluidic platform to observe individual cells and
saw steady, persistent oscillations over several periods. They also found that they could tune the
period of the oscillator through partial inactivation of Lacl.

Both the repressilator and the Stricker oscillator successfully generate single-cell oscillations.
However, when implemented in a population, deviations in phase between individual cells tend
to cancel out the population-averaged oscillatory signal. In the next section, we will address gene
networks that involve cell-to-cell communication, providing a mechanism to synchronize populations
of cellular oscillators.

Exercise 7.3.2 Derive the expression rates in the model (7.23). The repressor is assumed to bind
with strong cooperativity at four sites. The activator X binds with strong cooperativity at each of
two distinct pairs of sites. Assume that the activator and repressor binding events are independent
of one another. Expression, which is completely blocked by Y binding, occurs at a basal rate unless
all four X sites are occupied. Rescale the concentration units so that the half-saturating constants
for DNA-binding of the first two X molecules and of the four ¥ molecules are both one. Rescale
the time units so that the basal expression rate for X is one. The parameter « is the degree to
which the expression rate increases when the second activator pair is bound, while ¢ is the ratio of
the binding affinities at the two pairs of activator sites. O

7.4 Cell-to-Cell Communication

Gene networks operating in individual cells can communicate their states to one another by pro-
ducing a signalling molecule that can pass from one cell to another—providing an intercellular con-
nection. In this section we will consider two examples of cell-to-cell communication in engineered
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gene circuits: the passing of signals between two distinct populations of cells, and the synchroniza-
tion of a population of cellular oscillators. These circuits are based on bacterial quorum sensing
mechanisms, which we introduce next.

7.4.1 Bacterial quorum sensing

Cell-to-cell signalling is crucial to the development and proper functioning of all multi-cellular
organisms. For bacterial cells, the need for intercellular communication is less critical, but these
cells nevertheless use a multitude of such signals to monitor their environment. One well-studied
example of bacterial cell-to-cell communication is quorum sensing—a mechanism by which bacterial
cells measure the local density of their population. Bacteria use this information to enhance their
survival. (One example is the formation of bacterial biofilms when cells reach sufficiently high
density. Biofilms are protective layers of proteins and polysaccharides that are secreted from the
cells.)

To implement quorum sensing, each cell communicates its presence by secreting a signalling
molecule, called an autoinducer, into the local environment. These molecules are taken up by
neighboring cells, and activate gene expression—including genes that lead to production of the
autoinducer itself. This positive feedback results in a switch-like response (as in Section 7.2) to
changes in the local population density.

Quorum sensing was first identified in the bioluminescent marine bacterium Vibrio fischeri.
These cells live freely in seawater, but can also take up residence in specialized light organs of some
squid and fish. In seawater, V. fischeri are usually found at low densities (less than 100 cells per
mL), and produce only a small amount of light (less than 0.8 photons/cell/second). In light organs,
the cells reach densities of more than 109 cells per mL and increase their per-cell light output more
than a thousandfold.

The quorum sensing mechanism that controls light output makes use of a signalling molecule
called acyl-homoserine lactone (AHL). This autoinducer is a small non-polar molecule that diffuses
freely across the cell membrane. As shown in Figure 7.24, production of AHL is catalysed by an
enzyme called LuxI. Intracellular AHL (whether self-generated or imported from the environment)
binds to the constitutively expressed protein LuxR. When complexed with AHL, LuxR binds to
an operator called the lux box, enhancing production of LuxI. The light-producing protein—called
luciferase—is coded in an operon with LuxI (along with enzymes needed to fuel its activity). Thus
increased Luxl expression leads to increased light production.

LuxI and AHL form a positive feedback loop: expression of LuxI enhances AHL production,
and so enhances LuxI expression. This system responds to external AHL with a steep switch-like
response in Lux]I expression—and in light production.

Sally James and her colleagues published a model of the V. fischeri quorum sensing mechanism
in the year 2000 (James et al., 2000). A simplified version of their model is the following:

CAW) = kol(1) — r(A(D) ~ A1) — 20 (AW (R — 2R* ()7 + 2o (1)

%R*(t) = ki (A®))*(Rr — 2R*(t))* — ke R*(t) (7.24)
d B aR*(1)

1) = a0+ Ku iR bI(t)

d

EAext (t) = pT(A(t) - Aext(t)) - dAext(t)’

221



extracellular space
8 é&&igg

B3330008 S555590 5 5553590905383338053 55555954

cytosol
LuxR AHL
Y \
LuxR-AHL ’
. Luxl

[ lux boxl Promoter]luxI coding region| luciferase coding regit

% <--- luciferase activity

Figure 7.24: Quorum sensing in Vibrio fischeri. (Dashed arrows indicate activation.) The autoinducer AHL
diffuses freely across the cell membrane. Its production is catalysed by LuxI. AHL binds to the regulator
LuxR, causing it to enhance transcription of LuxI and of the luciferase genes, whose protein products generate
light. Adapted from Figure 18 of (Weiss et al., 2003).

The state variable A is the (averaged) intracellular concentration of free autoinducer (AHL), R* is
the concentration of active LuxR-AHL complexes (each composed of a LuxR homodimer bound to
two molecules of AHL), I is the concentration of LuxI, and A.,, is the extracellular concentration of
autoinducer. The rate of diffusion of AHL across each cell membrane is given by 7(A(t) — A.(t)).
This results in diffusion into the extracellular environment at rate pr(A(t) — A..(t)), where the
parameter p accounts for the population density. The rate at which extracellular AHL diffuses
away from the population (i.e. out of the system) is characterized by d. Parameter Ry is the total
concentration of LuxR monomers (presumed fixed).

The solid curve in Figure 7.25 shows the model’s response (the LuxI concentration, which is
proportional to the rate of light production) as a function of population density p. At low cell
density, AHL diffuses out of the system and there is no response in Luxl expression. As the density
rises above a threshold value, the positive feedback causes a run-away increase in intracellular AHL
and LuxI levels, culminating in maximal expression of LuxI (and luciferase). The figure also shows a
hypothetical graded response in which the positive feedback is absent (dashed curve), corresponding
to a modified system in which AHL production is not LuxI-dependent.

Exercise 7.4.1 In the model (7.24), the LuxR concentration is held fixed (corresponding to con-
stitutive expression and decay). In fact, LuxR expression is activated by AHL. Considering the
dose-response curve in Figure 7.25, would you expect this additional feedback on LuxR expression
to make the response steeper or more shallow? O

7.4.2 Engineered cell-to-cell communication

In the year 2000, Ron Weiss and Tom Knight published a paper describing two engineered strains
of E. coli that demonstrate cell-to-cell communication (Weiss and Knight, 2001). Signals could be
passed from cells of the first strain, called ‘sender cells,’ to cells of the second strain, called ‘receiver
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Figure 7.25: Dose-response curves for the model of quorum sensing in V. fischeri (solid curve). As the
population density rises, switch-like activation of the quorum sensing mechanism occurs at a threshold
value. This sigmoidal response is caused by the positive feedback loop involving LuxI and AHL. The dashed
curve shows the dose-response of a model variant in which the AHL production rate is fixed. In this case
the LuxI levels rise in a graded manner. Parameter values: ky = 8 x 107% (time™!), r = 0.6 (time™1!),
Rt = 0.5 (concentration), k; = 0.5 (time™! - concentration=3), ko = 0.02 (time~! - concentration—3), a = 10
(concentration - time™!) b = 0.07 (time™!), Kj; = 0.01 (concentration), and d = 1000 (time~!). In the
modified model, the term koI(¢) is replaced with 15kg, corresponding to a mid-range LuxI concentration.
Units are arbitrary.

cells.” They used the Vibrio autoinducer AHL as the inter-cellular signalling molecule. The two
strains were created by splitting the V. fischeri quorum sensing network into separate sending and
receiving modules: the sender cells host the Luxzl gene, and hence can produce AHL; the receiver
cells contain the LuzR gene and so respond to the presence of AHL (Figure 7.26).

Weiss and Knight engineered the sender population so that AHL production could be controlled
experimentally: they placed the Luxl gene under the control of a promoter that is repressed by
TetR, and incorporated a constitutively expressed tetR gene in the cells. The addition of aTc¢ (which
inhibits TetR) induces expression of LuxI, and hence generates AHL. Activity of the receiver cells
is monitored via a gfp gene controlled by the LuxR-sensitive promoter. (As in the original network,
LuxR expression was constitutive.)

Exercise 7.4.2 Modify the model of quorum-sensing cells in (7.24) to arrive at a model of Weiss’s
receiver cell population as in Figure 7.26. O

The Weiss group followed-up on this design with elaborations of the receiver cell network that
result in spatio-temporal pattern formation. We next consider two of their constructions.

Pulse generation

As we saw in Section 6.3.1, the bacterial chemotaxis signalling network generates a transient re-
sponse to a persistent stimulus. This behaviour, described as pulse generation, can be produced by
a simple gene regulatory network called a feedforward loop, in which a gene’s activity is activated
on a fast time-scale and inhibited on a slower time-scale (Problem 7.8.16).
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Figure 7.26: Engineered network for cell-to-cell communication. (Dashed arrows indicate regulation.)
Addition of aTc to the sender cells induces expression of LuxI, and hence leads to production of AHL. This
chemical signal diffuses to the receiver cells, where it activates LuxR, leading to GFP expression. Adapted
from Figure 19 of (Weiss et al., 2003).

Subhayu Basu and colleagues adapted Weiss’s cell-to-cell communication system by engineer-
ing a new receiver population that responds to an AHL stimulus with a transient pulse of GFP
expression (Basu et al., 2004). The receiver cell network, shown in Figure 7.27, incorporates the
cl gene from phage lambda into the original receiver cell design. In this network, both ¢l and gfp
are activated by the LuxR-AHL complex, but GFP expression is also inhibited by cl. Exposure to
AHL causes an initial increase in GFP and clI levels, but once cl levels are sufficiently high, GFP
expression is repressed.

Basu and colleagues developed a model to explore the system’s behaviour. A simplified version
of the model for receiver cell activity is:

d

SRt = k1A% (Rr — 2R (1)) — ko R* (1)
d _ac(R*(t)/Kr)
Y = T m oK Y
d B ac(R*(t)/KR) _
EG(t) T 11 (R (O)/Kr) + (CH)/Ko)? + (R*(0)/Kp)(C(t)/Kc)? baG(t)  (7.25)

where R*, C, and G are the concentrations of the AHL-LuxR complex, cI, and GFP, respectively.
The AHL concentration A is taken as an input signal. Figure 7.28 shows the model behaviour. AHL
is introduced at time zero, after which both cI and GFP levels rise. Once cl levels are sufficiently
high, the GFP abundance drops.

Basu and co-workers used their model as an aid to design. They selected destabilized versions
of ¢l and GFP, a specific ribosome binding site for cI, and tuned the sensitivity of the GFP pro-
moter to cl by introducing point mutations. Experiments confirmed the network’s pulse-generating
behaviour.

Exercise 7.4.3 Verify that the GFP expression rate in equation (7.25) corresponds to the case
that cI binds with strong cooperativity at two sites, LuxR-AHL binds at a single site, the binding
events are independent, and expression occurs only when LuxR-AHL is bound and cl is not bound.
Od

224



/Receiver Cell

AHL =—— AHL

\_

LuxR

J
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expression of both cI and GFP. Production of GFP is repressed by cl, so only a transient pulse of fluorescence
is produced in response to an AHL signal. Adapted from Figure 1 of (Basu et al., 2004).
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Figure 7.28: Pulse generation. At time zero the AHL concentration rises from 0 to 10, causing a sudden

increase in the LuxR-AHL abundance.

This leads to a rapid rise in GFP and a slower rise in cl. As

the cl concentration increases, repression of GFP leads to a drop in GFP abundance. Parameter values:
k1 = 0.5 (min~! - concentration=3), ko = 0.02 (min~! concentration?), Ry = 0.5 (concentration), ac = 0.5
(concentration min~!') Kr = 0.02 (concentration), bc = 0.3 (min~!), ag = 80 (concentration min—1!),
K¢ = 0.008 (concentration), bg = 0.07 (min~!). Concentration units are arbitrary.
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Figure 7.29: Engineered band detector. (Dashed arrows indicate regulation.) The AHL input binds LuxR,
leading to expression of Lacl and cl. Lacl is also expressed from a separate cl-repressible promoter. GFP
expression is repressed by Lacl. At high and low levels of AHL, GFP expression is repressed. At intermediate
AHL levels, a sufficiently low LaclI level allows for GFP expression. Adapted from Figure 1 of (Basu et al.,
2005).

Spatial patterning

In addition to temporal patterns like pulses, cell-to-cell communication can also produce steady
spatial patterns. In another project, Basu and colleagues developed an AHL-receiver strain that
acts as a band detector (Basu et al., 2005). These cells were engineered to respond only to a mid-
range of inducer activity—mno response is shown at low or high AHL concentrations. A population
of these receiver cells surrounding a group of AHL-sender cells will then fluoresce in a ‘bullseye’
pattern.

The gene network in the band detector cells is sketched in Figure 7.29. The autoinducer AHL
binds to LuxR, leading to expression of cI and the lac repressor, Lacl. Lacl is also expressed from a
separate promoter that is repressed by cl. Finally, GFP expression is inhibited by Lacl. The system’s
behaviour can be understood in terms of the dose-response curves shown in Figure 7.30. At high
levels of AHL, the LuxR-induced levels of Lacl are high, and GFP expression is repressed. At low
AHL levels, cl is not expressed. Consequently, Lacl is generated from the cl-repressible promoter
and, again, GFP expression is repressed. At intermediate levels of AHL, moderate expression of cl
and Lacl occur. The system was tuned so that repression of Lacl by cl is highly effective, while
repression of GFP by Lacl is not. Thus at these mid-range input levels, expression of Lacl is
sufficiently low that significant GFP expression occurs.

The curves shown in Figure 7.30 were generated from the following simple model of the band-
detector network, which is a variant of the model developed by Basu and colleagues.

d

SR = kA (Rp —2R(1)° — R (1)
d _ ari araR* (t)

) = O B brL(t) (7.26)
d acR*(t)
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Figure 7.30: Dose-response curve for the band-detector circuit. The extracellular AHL concentration
increases from left to right, so distance from the sender population increases from right to left. At high AHL
levels there is strong expression of Lacl from the LuxR-induced promoter. At low AHL levels, there is strong
expression of Lacl from the cl-repressible promoter. In the intermediate range, Lacl levels are sufficiently
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ac =1 pM min~!, bg = 0.07 min~!, ag = 2 uM min~*!, bg = 0.07 min~!, K; = 0.8 uM. Adapted from
Figure 26 of (Weiss et al., 2003).

d ag

—G(t) = —baG(t

i) 1+ (L(t)/KL)? ¢ ®)
The state variables R*, L, C, and G are the concentrations of the AHL-LuxR complex, LuxlI, cI,
and GFP, respectively. The AHL concentration A is taken as an input signal.

7.4.3 Synchronization of oscillating cells

Cell-to-cell communication allows intracellular oscillations to be synchronized across a population.
This occurs in the circadian rhythm generators in animals. The engineered oscillatory networks dis-
cussed in Section 7.3.3 can generate population-wide oscillations when cells are able to communicate
their states to one another.

Synchronization behaviour can be illustrated by a simple extension of the relaxation oscillator
model of Section 7.3.3, as follows. Consider a pair of identical cells each hosting a relaxation
oscillator. Suppose further that the activation signal X can diffuse across the cell membranes and
so can be shared between the two cells. Using a subscript ¢ = 1,2 to indicate concentrations in
each cell, we can model the pair of networks as:

d - 1+ 21(t)? 4+ aowy (t)?

7 = T om0 Pl )
d B 1+ 21(t)? + aoczy (t)!

ah® = A+ 2102 +or (ONHA + (D) Yyr(t);

d B 1+ 22(t)? + aoza(t)?

) = 1+ 2202 + 022N (1 + 92 (0)8) Ya2(t) + D21 = 22)
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Figure 7.31: Synchronized relaxation oscillators. The cells each contain a relaxation oscillator. Initially,
they are oscillating out of phase. The cells communicate their phase to one another through the shared
activator; over time, this brings the cells into synchrony. Parameter values: a = 11, 0 = 2, v, = 0.2
(time™!), v, = 0.012 (time™ '), a, = 0.2 (concentration - time™'), D = 0.015 (time™').
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where D characterizes the rate at which activator X diffuses between the two cells. The behaviour of
this simple model is illustrated in Figure 7.31, which shows the two cells beginning their oscillations
out of phase, and then being drawn into synchrony by the shared activator.

The synchronization strategy employed in this model cannot be easily applied to the relaxation
oscillator design of Stricker and colleagues, since the activator (AraC) is a transcription factor
protein (and so will not cross the cell membrane without a dedicated transporter). In 2010, Tal
Danino and colleagues successfully demonstrated synchronization of intracellular relaxation oscil-
lators; they employed a design in which AHL acts as the inter-cellular signal (Danino et al., 2010).
A synchronization scheme for the repressilator is addressed in Problem 7.8.19.

7.5 Computation by Gene Regulatory Networks

The initial discovery of gene regulatory networks prompted an analogy to the human-made tech-
nology of electrical circuits, and thus lead to the term ‘genetic circuit.” This analogy can be made
explicit by treating promoter/transcription-factor interactions (the building blocks of gene net-
works) as logic gates (the building blocks of computational electrical circuits). These ideas were
reviewed in (Weiss et al., 2003).

7.5.1 Promoters as logic gates

In digital electronics, a signal (e.g. voltage), is either considered HIGH (present) or LOW (absent),
depending on whether a threshold has been passed. The same discretization process can be applied
to the continuously varying concentrations of transcription factors in a gene network, as illustrated
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Figure 7.32: Discretization of gene activity. When the concentration of a gene’s protein product is above a
threshold, the gene is considered to be ON, and the protein concentration is assigned a value of 1 (HIGH).
When the concentration drops below threshold, the gene is OFF, and the protein concentration is assigned
a value of 0 (LOW).

in Figure 7.32. This abstraction results in a binary description of gene activity: at a give time-point,
each gene is either ON (expressing above threshold) or OFF (expressing below threshold). Dynamic
models that describe two-state (ON/OFF) behaviours are called Boolean models. (Boolean models
are often used to describe gene regulatory networks, and are particularly useful for addressing large
networks. See (De Jong et al., 2002) for a review.)

Using the Boolean framework, all signals take either the value 1 (HIGH) or 0 (LOW). Applying
this notion to the concentration of a transcription factor provides, as an example, an explicit
comparison between repression of expression and a digital inverter (Figure 7.33). An inverter is
a device that inverts a Boolean signal-—a HIGH input yields a LOW output; a LOW input yields
a HIGH output. Figure 7.33 also includes the truth table for the inverter, which summarizes its
input-output behaviour. The inverter is an example of a logic gate—a device that responds to a
set of Boolean input variables (each equal to 0 or 1) and returns a Boolean output. The inverter is
referred to as a NOT gate.

Promoters that are regulated by multiple transcription factors can be represented by multi-input
logic gates. Figure 7.34 illustrates two promoters that are each regulated by two distinct activators.
In Panel A, the binding of either activator is sufficient to drive expression, so the promoter acts as an
OR gate. Panel B shows the case in which binding of both activators is necessary to drive expression;
this implements AND gate logic. Promoters that are regulated by two distinct repressors can be
classified in a similar way: if either repressor suffices to inhibit repression, the promoter acts as
a NOR (i.e. NOT-OR) gate, while if repression only occurs if both repressors are bound, then a
NAND (i.e. NOT-AND) logic applies.

Exercise 7.5.1 Construct truth tables for the NOR and NAND logic gates. Verify that they can
be constructed by connecting NOT gates downstream of OR and AND gates, respectively. O
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Figure 7.33: Repression of gene expression as an inverter. When the repressor input is absent (LOW; value
0), expression proceeds (the output is HIGH; value 1). Alternatively, when repressor is present (HIGH;
value 1), expression does not occur (LOW; value 0). The promoter thus “inverts” the input signal (repressor
concentration) to determine the output signal (expression rate, and thus concentration of protein product).
This same behaviour is exhibited by a digital inverter, or NOT gate, characterized by the truth table shown
on the right. Adapted from Figure 1 of (Weiss et al., 2003).

Exercise 7.5.2 For promoters that are regulated by both an activator and a repressor, different
cases arise depending on the priority of the inputs. The corresponding digital elements, called
IMPLIES gates, can be built by combining an inverter and one of the two-input gates already
considered (e.g. AND or OR). Referring to Section 7.2.1, determine the truth table that describes
lac operon expression, where the two inputs are the lac repressor and allolactose. Verify that the
resulting IMPLIES logic can be constructed by an appropriate combination of a NOT gate and an
OR gate.

O

7.5.2 Digital representations of gene circuits

In digital electronics, elementary logic gates provide a foundation for the construction of complex
computational devices. The same notions can be applied to the design of gene regulatory networks.

Consider, as an example, the repressilator circuit described in Section 7.3.3. Because each
promoter is repressed by the gene that precedes it in the loop, this device can be described as a
set of three NOT gates strung together in a loop, as shown in Figure 7.35. This type of network
is known in digital electronics as a ring oscillator, and is commonly used to generate periodic
behaviour.

The dynamic behaviour of a ring oscillator can be simulated by supposing that all three of
the elements update simultaneously at discrete time-steps. Although this rigid lock-step does not
reflect the smooth variation of genetic processes, digital analogies often provide a useful abstraction
of gene network behaviour.

The analogy between promoter activity and digital logic gates provides a useful framework
for the design and analysis of gene regulatory networks. However, logic gates cannot provide a
comprehensive description of gene circuit behaviour. In addition to the abstraction introduced by
discretization, the Boolean framework is not well-suited to represent genes that exhibit multiple

230



A A
output output
B B
OR gate AND gate
inputs inputs
output P output

A B A B
0 0 0 0 0 0
1 0 1 1 0 0
0 1 1 0 1 0
1 1 1 1 1 1

Activator A absent ictllvator AB abbsent @
Activator B absent ctivator B absent
\/ no expression \/ no expression

& -

Activator A present

Activator A present Activator B absent

Activator B absent

m expression

Y/

no expression

—

VA

Activator A absent
Activator A absent

Activator B present
Activator B present
expression .
M no expression
="

=
Activator A present Acti'vator A present
Activator B present Activator B present
expression expressior
|\ ~_/ g U

Figure 7.34: Dual-activator promoters as digital logic gates A. If either transcription factor suffices to

activate expression, the promoter exhibits an OR gate logic. B. If expression only occurs when both activators
are present, the promoter is represented by an AND gate.
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Figure 7.35: Digital representation of the repressilator circuit (see Section 7.3.3.) A loop of three NOT gates
forms a ring oscillator. In the simulation shown, the signals are simultaneously updated at each time-step.
At time ¢t = 0 the three signals have values A=0, B=1, C=0. At the next time-step (¢t = 1), the value of
A is replaced with the new value NOT(C)=1, while B is updated as NOT(A)=1, and C takes the value
NOT(B)=0. (Because the updates occur simultaneously, the values of the signals at the previous time-step
are used in the update computation.) The behaviour is periodic: the state at the sixth time-step is identical
to the initial state (¢t = 0). Adapted from Figure 9 of (Weiss et al., 2003).

expression rates. This fact was vividly demonstrated in an experiment by Yaki Setty and colleagues,
who mapped the response of the lac promoter to two inducers and found the resulting response to
be a hybrid of OR and AND behaviours (Setty et al., 2003).

Another crucial distinction between electrical circuits and gene circuits is the manner in which
the specificity of the interconnections is achieved. In an electrical circuit, all connections employ
the same signal (flow of charge). Undesired connections (short-circuits) are avoided by maintaining
spatial separation between signals. In contrast, the signal carriers for gene circuits (transcrip-
tion factors) are mixed together in a single compartment. Unwanted interconnections are avoided
through chemical specificity (of the protein-DNA binding surfaces). This reliance on chemical
specificity allows complex networks to operate on tiny spatial scales, but it means that each time
a connection is added to an existing network, a chemically distinct promoter-regulator interaction
must be introduced.

7.5.3 Complex gene regulatory networks

The synthetic biology community is engaged in the design and construction of gene circuits of
increasing complexity. Examples include a tunable version of a band detector, a gene cascade
designed to display ultrasensitive responses, and a cellular ‘counter’ that is able to keep track
of a sequence of input events (These projects were surveyed in the paper (Khalil and Collins,
2010), which also highlights applications of synthetic circuits to biosensing, bioremediation, biofuel
production, and biomanufacturing and delivery of drugs.) A broad range of computational and
signal-processing gene networks has been proposed by the iGEM community.” Nevertheless, current
attempts at gene circuit design pale in comparison to the complexity found in natural gene networks.

“www.igem.org
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Natural gene circuits can be roughly divided into two classes: sensory networks, which mount
a response to a cell’s current environmental conditions; and cell-fate decision (or developmental)
networks, which cause cells to adopt persistent states.

Sensory networks enhance a cell’s survival by tailoring its behaviour to suit the prevailing
conditions. The lac operon of E. coli is a canonical example. Because they demand a timely
response, sensory networks tend to be rather ‘shallow’—they do not usually involve long cascades
of gene regulation between input and output. (Such cascades would introduce significant gene
expression lags.)

Cell-fate decision networks do not normally act under tight time-constraints; they often involve
long cascades of interacting genes and complex feedback loops, particularly positive feedback loops
that ‘lock in’ decisions. There are many known examples of bacterial cell-fate decision networks,
such as the lysis-lysogeny switch in phage lambda (Section 7.2.2) and the sporulation decision
network in B. subtilis. These bacterial networks are typically simpler than the gene networks
responsible for the development of multicellular organisms, which can involve dozens of individual
genes, each typically regulated by several distinct transcription factors (reviewed in (Stathopoulos
and Levine, 2005) and (Davidson, 2006)).

We conclude this section by introducing two well-studied examples of complex developmental
gene networks.

The segmentation gene network in the fruit fly Drosophila melanogaster

During their growth, Drosophila embryos develop a segmented body-plan. This spatial patterning
is derived from maternal genes whose mRNA transcripts are placed in different regions of the egg.
The gene regulatory network responsible for the segmentation process is sketched in Figure 7.36.
The temporal progression of activity in the network corresponds to the steps in the segmentation
process as shown. Because segmentation is a spatio-temporal process, ordinary differential equation
(ODE)-based models are not directly applicable. An ODE model can be employed if one supposes a
compartmental structure across the embryo, but a more natural modelling approach is to make use
of partial differential equations, as introduced in Section 8.4. (An ODE model appears in (Jaeger
et al., 2004); a spatial model was presented in (Perkins et al., 2006).)

The endomesoderm specification network in Strongylocentrotus purpuratus

Eric Davidson’s lab has worked for many years on mapping the gene regulatory network that
drives differentiation of cells in the early embryo of the sea urchin Strongylocentrotus purpuratus
(Figure 7.37). The behaviour of this network begins with maternally-specified asymmetries in the
egg, and leads to development of the endoderm (inside layer), skeletal, and mesoderm (middle
layer) components of the embryo. A full kinetic characterization of the interactions in a network
of this size is daunting, and so models are typically constructed using simpler methods, such as
Boolean frameworks. (Appropriate modelling frameworks are reviewed in (Bolouri and Davidson,
2002).)

The study of complex gene regulatory networks has revealed an important insight into their
structure: they often exhibit a modular architecture, meaning that the network is composed of
subnetworks that play their role somewhat independently of one another. Modularity is a key aspect
of human-engineered systems; it allows individual components to be designed, constructed and
tested independently of the entire system. Moreover, modularity allows the re-use of components
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Figure 7.36: Segmentation gene network in Drosophila. Embryonic development is driven by spatial expres-
sion patterns of a number of genes, shown in the regulatory network that guides their behaviour. Adapted

from Figure 3.5 of (Carroll et al., 2005).

g rized .
Licl ~GSK-3 NIRRTl Vaternal inputs T

X

o Nucl. ?PS-TCFOFCNS [ {Mat Noich] @
= T —

v 'nt. l
la 1b unkn mes/end GSK -3 [T
Blimp1 /Krox (SR T50  ng-TCF l—sr
thiq Ubiq S0 unkn vegetal activ Wat

Y

Pmarl R of mic SU(H)  SoxB1 e | ‘ :
et — el AT
U"“IJT;{ ﬁum_ _;_[ v N Hnf 6 Bumpll.,‘llﬂ!gx B a O
et Fll 17 ‘-I’L* b Notch T ]
Tl Py | Delta 4 - _l_ -!-
> 3 of mi sl (=
Ublg l’;" ? ‘_llh + Bra  Foxa Gatak
[ Nrl
e T e G e -
st [ ]| uvia el o tar{.l* = 1_“_' M
oxB

TH
| *l il M l Alxl 6:!{-“ mes  endo '_J?’E Br1/2/4 F
||L_Dr L1 T I = i
I i |
1 m££ 1_f7‘ﬁ pl I

H
Gsc i viGrR 2 VEGF ~ Eve Hox11/13b
T T ) KE T |
i 1 ]
ottt t [T e ¢l pliellrle Lt Lt
SuTx CAPK Dpt  Pks | OrCT Kakapo OrCT  Kakapo
3 a5 =
Lol [l ¢ Y - R LrLr Ly
Sm30 Acadherin Ficolin  Cyl FvMol,2,3 Decorin Apobec  Gelsolin Apobec Gelsolin Endoll
Ubiq=ubiquitous; Mat = maternal; activ = activator; rep = repressor; Copyright © 2001-2006 Hamid Bolauri and Eric Davidson

unkn = unknown; Nucl. = nuclearization; x = f-catenin source;
nB-TCF = nuclearized b-B-catenin-Tcf1; ES = early signal;
ECNS = early cytoplasmic nuclearization system; Zyg. N. = zygotic Notch

Figure 7.37: Endomesoderm specification network in the sea urchin Strongylocentrotus purpuratus. The
genes are organized into boxes based on their function. Maternal inputs appear at the top; differentiation
proteins are encoded by genes in the bottom boxes. The network describes events that occur in the 30 hours
following fertilization. Reproduced, with permission, from (Davidson, 2006; Figure 4.2).
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in multiple systems—a feature that is likely of use in evolutionary ‘design’. (Modularity is reviewed
in (Wagner et al., 2007); the challenges and opportunities that modular design presents to synthetic
biology are discussed in (Purnick and Weiss, 2009).)

7.6 *Stochastic Modelling of Biochemical and Genetic Networks

Chemical reactions result from collisions of individual molecules. Most molecular collisions do not
cause reactions. On a molecular scale, reactions are thus rare events, and are difficult to predict.
In many cellular processes, this molecular randomness is ‘averaged out’ over large numbers of
reaction events, resulting in predictable system behaviour. In contrast, processes that depend on
small numbers of molecules can be strongly affected by the randomness of biochemical events.
Gene expression often involves molecular species that are present in low numbers, and so gene
regulatory networks can be subject to this random variation. (The effects of noise on developmental
gene networks reveals itself in differences between genetically identical organisms, from bacteria to
humans. Stochasticity in gene expression is discussed in (Raj and van Oudenaarden, 2008).)

Random variation is often considered an inconvenience that must be overcome; the fact that this
randomness is usually referred to as ‘noise’ suggests it is a nuisance. However, in some biological
contexts, random behaviour can be exploited for improved performance. An example is provided
by the phenomenon of bacterial persistence, in which a genetically identical population gives rise to
a small number of so-called persistent cells that exhibit antibiotic resistance at the cost of a reduced
growth rate. In the absence of antibiotics, slow-growing persistent cells are quickly out-competed,
but the presence of a handful of these cells ensures the population’s survival when antibiotics are
encountered.

At the cellular level, randomness can be partitioned into two categories: extrinsic noise, which
refers to random variations that impact all processes in the cell equally, and intrinsic noise, which is
driven by thermal fluctuations at the molecular level. In models of intracellular networks, extrinsic
noise appears as randomness in the values of model parameters, and so can be directly incorporated
into a differential equation-based framework. In contrast, treatment of intrinsic noise demands the
adoption of a modelling framework that takes into account the randomness of the biochemical
events that drive reaction dynamics.

A reaction network that comprises large numbers of reactant molecules will involve many simul-
taneous reaction events. In such cases, network behaviour corresponds to the average over these
events, and is well described by deterministic differential equation models. Figure 7.38, which
shows the behaviour of a decaying population of molecules, illustrates this averaging effect. The
solid curve in each panel shows a simulation that incorporates randomness; the dashed curve shows
a corresponding deterministic simulation. In Panel A, the initial population size is large. In this
case, individual decay events have a negligible effect on the overall pool. Averaged over many events,
the random timing of the reactions is smoothed out, so the deterministic model provides a good
description of system behaviour. In panel B, the initial population consists of a smaller number of
molecules, so the averaging effect is not as strong. Panel C shows a simulation that starts with just
ten molecules. Each decay event has an appreciable effect on the overall abundance. In this case,
the system’s discrete, random behaviour is not well-described by the deterministic simulation.

In this section, we introduce a stochastic modeling framework that is suitable for describing
systems that involve small numbers of molecules. The term ‘stochastic’ means ‘random’; it is
used to describe dynamic processes that have some element of randomness in their progression.
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Figure 7.38: Simulations of constitutive decay. The solid curves show simulations that incorporate ran-
domness (stochastic simulations). The dashed curves show the corresponding deterministic (differential
equation-based) simulations. The initial pool sizes are 1000 (A), 100 (B) and 10 (C) molecules. For large
pool size (A), the simulations agree. However, as the molecule count decreases (B, C), random effects become
more pronounced, and are not well-described by the deterministic model.

(Appendix B contains a brief introduction to some basic concepts from probability.)

7.6.1 A discrete modelling framework

In developing a stochastic modelling framework for chemical reaction networks, we will continue
to assume spatial homogeneity, and a fixed volume. The abundance of each chemical species will
be described by the number of molecules in the reaction volume. The state of the system is then
the vector N of molecule counts. As the stochastic dynamics proceed, the molecule counts change
their values in discrete jumps. (In contrast, the state of differential equation-based model is the
vector s of species concentrations, which change smoothly over time.)

We will characterize each reaction in the network by a stoichiometry vector s, and a propensity
function a. For each reaction, the stoichiometry vector indicates the identity and number of reac-
tants and products: the j-th component of this vector is the net number of molecules of species j
produced or consumed in the reaction. The propensity is a description of reaction rate.

To illustrate these ideas, consider the network composed of the two reactions

]{71 ]{72
Ri: A+ B—C Ry: C ——

The state of this system describes the numbers of molecules of species A, B, and C present at any
given time. The stoichiometry vectors are

-1 +— A 0 +— A
s1= | —1 +~ B and So = 0 +~— B .
1 +—C -1 «—C

When a reaction occurs, the state vector N is updated by addition of the corresponding stoichiom-
etry vector. For example, suppose that at a given time the state is N = (N4, N, N¢) = (12, 3,4).
If reaction R; were to occur, we would update the state by replacing N with N +s; = (11,2, 5).
The reaction propensities are functions of reactant abundance. We will assume that the prob-
ability of a reaction event is proportional to the product of the abundance of each reactant species
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(as in mass action). The propensities for this example are then
al(N) = k?lNANB ag(N) = k,’gNC

Reaction propensities take the same form as mass-action rate laws, but differences appears when
multiple copies of an individual reactant are involved.!

7.6.2 The chemical master equation

We will build a stochastic modelling framework on the assumption that there are small time incre-
ments dt for which:

e At most one reaction event can occur during any time interval of length dt.

e The probability that reaction Ry occurs in any time interval [¢,¢ 4 dt] is the product of the
reaction propensity at time ¢ and the length of the interval: aj(N(t)) dt.

Under these assumptions, the probability that no reactions occur during a time interval [¢, ¢+ dt]
is 1 =Y, ax(N(t))dt, where the sum is taken over all reactions in the system.

Let P(N,t) denote the probability that the system is in state N at time ¢. This is called the
probability distribution of the state (and is dependent on the initial condition—it is a conditional
probability distribution). If the distribution P(N,t) is known at time ¢, we can use the assumptions
above to describe the distribution at time ¢ + dt:

P(N,t+dt) = P(N,t) - (1 — ) ax(N) dt) +> P(N — s, t) ap (N — s,) dt. (7.27)
k k

probability of reaction Rj occurring while in state N — sy

probability of no reactions firing

This equation is called a probability balance. The first term is the probability of being in state N
at time ¢ and remaining in that state until time ¢ + dt (because no reaction events occur). The
second term is the sum of the probabilities of transitioning into state N from another state (because
reaction Ry causes a transition from N — s to (N — si) + s, = N).

As an example, consider the simple reaction chain in which species A is produced at zero order
and degrades at first order:

k‘l k2
R: ——> A Ry: A——

The state of the system is the number of molecules of A, i.e. N = N4. The reaction stoichiometries
are s; = [1], s = [—1]. The reaction propensities are a; = k1 and as = ko N4. The transitions
between states follow the scheme in Figure 7.39.

In this case, the probability balance reads:

P(0,t+dt) = P(0,t)[1 —kidt] + P(1,t)-ko dt
P(l,t—l—dt) = P(l,t)[l—(k‘l—l-k‘Q)dt]—I—P(O,t)'k’ldt—l—P(Q,t)'Qk’gdt

k
"For instance, the propensity of the bimolecular reaction A + A—— C'is kNa(Na — 1)/2. This formula reflects

the number of unique pairings of two A molecules.

237



ki, ki kg kg K K, kg kg kg

/N /N N N 2 N /TN N N
0 1 2 3 4 e N-1 N N+1 -
\ U A A A U2 2 2 Y

Ky 2k, 3ky 4k, 5k,  (N-1)k, Nk, (N+1)k, (N+2)k,

Figure 7.39: Transitions among states for the simple reaction chain " A% The reaction propensities are
indicated.

P2,t+dt) = P(2,t)[1— (ki + 2ko)dt] + P(1,¢)-ky dt + P(3,)-3ks dt
P(B3,t+dt) = P(3,t)[1— (ki + 3ko)dt] + P(2,t)-ky dt + P(4,t)-4k, dt

P(N,t + dt)

P(N,t)[1 — (k1 + Nkg)dt] + P(N — 1,t)-kydt + P(N 4+ 1,t)-(N + 1)ko dt

Exercise 7.6.1 Verify that the probability balance for the scheme:

k1

R, _ A
ko

Ry —_—

is
P((Na,Np),t+dt) = P((Na,Np),t)[1— (k1 + ko + NaNpgks)dt]
+ P((Ng —1,Np),t)-kidt + P((Na,Np — 1),t)-kodt
+ P((Noa+1,Ng+1),t)-(Na + 1)(Np + 1)ksdt.

a

The probability balance (7.27) can be used to derive a differential equation describing the
rate of change of the probability distribution, as follows. Subtracting P(N,t) from each side of
equation (7.27) gives

P(N,t +dt) — P(N,t) = —P(N, t) (Z ap(N) dt> + Z P(N — s, t) ap (N — sp,) dt.
k

Dividing both sides by dt and taking the limit as dt tends to zero results in

%P(Nt) _ _P(N,t)<zk:ak( >+ZP — sp, t)ag (N — sp)
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= > | =P(N,t)ap(N) + P(N — sy, t)ag (N — sy.)
p

flow out of state N flow into state N

This is called the chemical master equation. It is a system of differential equations describing the
time-varying behaviour of the probability distribution. The terms on the right-hand-side account for
probability flow out of, and into, the state N at time t. The master equation includes a differential
equation for every state N that the system can adopt, and so typically involves an infinite number
of equations.

For the simple reaction chain described above (13 A 13), the master equation is

d

EP(O’t) = —P(0,t) k1 + P(1,t) ko
d
ap(l,t) = —P(1,t) (k1 + ko) + P(0,t)k1 + P(2,t) 2k
d
aP(Q, t) = —P(2,t) (k1 + 2ke) + P(1,t)k1 + P(3,t) 3ks (7.28)
d
EP(N’ t) = —P(N,t)(ky + Nko)+ P(N —1,t) k1 + P(N + 1,t) (N + 1)ky
Exercise 7.6.2 Determine the chemical master equation for the system in Exercise 7.6.1 O

To illustrate the behaviour of solutions of the master equation, we consider the closed reaction
network:

k1 k2
Ri: A—— B Ry: B—— A (7.29)

To keep the analysis simple, we suppose that there are only two molecules present in the system.
The system state N = (N4, Ng) can then take only three possible values: (2,0), (1,1), or (0,2).
The master equation is a system of three differential equations:

d

CP((2.0),0) = ~P((2,0),1)2k + P((1,1),1)
CP11)0) = ~P((1,1),0)ks ~ P((1,1), 1)k + P((2,0), )2k + P((0,2),1) 2k, (7.30)
%P((o,z),t) — _P((0,2),) 2ks + P((1,1),0)

Note the right-hand-sides sum to zero, as dictated by conservation of probability.

A simulation of system (7.30) is illustrated in Figure 7.40, which shows plots of the probability
distribution (histograms) at three time points.

For this network, the steady-state distribution P**(N4, Np) can be found by setting the time
rates of change to zero:

0 = —P58(2,0)2k‘1 —I—Pss(l,l)k‘g
0 = —P*(1,1) ks — P*(1,1) ky + P*(2,0) 21 + P*5(0,2) 2k»
0 = —P*(0,2)2ks + P*(1,1) ki
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Figure 7.40: Evolution of probabilities for the closed reaction network (7.29). Probability distributions for
N = (N4, Np) at times t =0, ¢t = 0.1, and ¢t = 1 are shown. A uniform initial distribution is chosen, so that
at time ¢ = 0 all states are equally likely: P((2,0),0) = P((1,1),0) = P((0,2),0) = 1/3. Parameter values
(in time™1): k; = 3, ko = 1. Time units are arbitrary.

Solving these equations, along with the condition that probability is conserved (P**(2,0)+P**(1,1)+
P?#%(0,2) = 1), yields the steady state probability distribution:

k2 2y kg k2

P*¥(2,0) = ——=—, P¥(1,1)) = ——+—, P*0,2) = ————.
(2,0) (k1 + k2)? (1,1) (k1 + k2)? (0,2) (k1 + k2)?

(7.31)
Exercise 7.6.3 Verify equations (7.31). Does the simulation in Figure 7.40 appear to have reached
steady state by time t = 17 O

As the number of molecules in the system increases, the steady state distribution of probabil-
ities becomes smoother and more tightly peaked. Figure 7.41 shows the steady-state probability
distributions for Np in system (7.29) when there are 2, 20, and 200 molecules present. As the
molecule count increases, the distribution converges to a tight peak at which three-fourths of the
total pool consists of molecules of B. The deterministic (mass-action based) description of the
system yields a steady state that is concentrated at this single point. The probabilistic solution
thus converges to the deterministic description for large molecule counts.

Exercise 7.6.4 Verify that the means (i.e. expected values) of Ny and Np in the steady-state
probability distribution (7.31) correspond to the deterministic (mass-action based) model of sys-
tem (7.29). O

For most systems, the chemical master equation is intractable. (Simulations typically need
to incorporate an infinite number of equations!) Consequently, a number of methods have been
developed to provide alternative descriptions of stochastic behaviour (reviewed in (Khammash,
2010)). These include the linear noise approxzimation, which generates differential equations whose
solutions approximate the mean and variance of system behaviour; moment closure methods, which
allow calculation of approximate statistics for the probability distribution; and the finite state
projection, which approximates the chemical master equation by a finite system of differential
equations.

Rather than address these analytic approaches, we next consider a numerical method for gen-
erating simulations of stochastic systems.
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Figure 7.41: Steady-state probability distribution for Np in reaction network (7.29) for a total molecule
count of 2 (A), 20 (B), and 200 (C). As the molecule count grows, the distribution tends to a single peak
for which Np = 3N 4, which corresponds to the deterministic (mass-action) steady state.

7.6.3 Gillespie’s stochastic simulation algorithm

Numerical algorithms that incorporate stochastic effects (by calling on random number generators)
are called Monte Carlo methods. In 1977, Dan Gillespie published a Monte Carlo method for sim-
ulating individual trajectories of chemical reaction networks characterized by the chemical master
equation (reviewed in (Gillespie, 2007)). These trajectories, called sample paths, represent single
elements drawn from a probability distribution generated by the system. Statistics of the trajectory
distribution can be determined by generating a large collection of these sample paths (called an
ensemble).

Gillespie’s method, which he called the Stochastic Simulation Algorithm (SSA), tracks each
individual reaction event. The simulation does not proceed over a fixed time-grid, but jumps
forward in time from one reaction event to the next. After each reaction, the algorithm determines
which reaction will occur next, and how much time will elapse before it occurs.

The simulation algorithm depends on the properties of two random variables: the time T to the
firing of the next reaction, and the reaction R that will occur next. We next consider how these
two random variables are determined.

Determining the next reaction

The probability that a particular reaction will occur is proportional to the propensity of the reaction.
Consider a network that involves three reactions, R;, Ro, and Rg, with propensities a1, as, and
as. Let P(R = R;) denote the probability that R; will be the next reaction to occur. Probability
P(R = R;) is proportional to the propensity a; of reaction R;. Together, these probabilities sum
to one. The probability distribution is:

P(R=R,) = I S
ar +az +as
P(R=Ry) = —2 (7.32)

ar +az +as
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Figure 7.42: Selection of the next reaction. For a network with three reactions, the interval from zero to one
is divided into three subintervals, whose lengths correspond to the probabilities of the reactions. A number
sampled from the uniform zero-to-one distribution corresponds to a selection of the next reaction.

as

P(R=Ry) = — %
( = Tt

In order to implement a simulation of this network’s behaviour, we need to sample from this
probability distribution. Most numerical software packages have built-in functions that generate
random numbers drawn uniformly between zero and one. Samples from this uniform distribution
can be converted to samples from the distribution (7.32), as follows. We divide the zero-to-one
interval into three subintervals—one for each reaction—as in Figure 7.42. The length of each
subinterval is equal to the probability of the corresponding reaction. A number v that is drawn from
the uniform distribution falls into one of these subintervals, and thus corresponds to a particular
reaction. This procedure can be formalized as follows:

if 0< wu SL, then we set R = Ry
a1 +as + as
a a1+ a
if —1 < SL, then we set R = Ry (7.33)
a1 + ag + as a1 +as + as
if w< U Swzl, then we set R = Rs.
a1 +ag +as a1 + ag + asg

Figure 7.43 provides a visualization of this process. Here, the uniform random number u is
assigned to the vertical axis. The height of the staircase graph corresponds to the cumulative
probabilities as employed in algorithm (7.33). The next reaction is determined by selecting a
number u from the uniform zero-to-one distribution and then extending a horizontal line to the
staircase graph, as shown. This graph is called the cumulative distribution function for the random
variable R.

Determining the time to the next reaction

The time T that elapses between reactions is also a random variable. Unlike R, it does not have
a discrete value-set, but can take any non-negative value. Because it can take infinitely many
values, the probability of 7" having any particular value is vanishingly small. Thus, rather than
frame our discussion in terms of point-wise probabilities, we will instead sample T' directly from
the cumulative distribution function, as we did for the random variable R in Figure 7.43. The
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Figure 7.43: Cumulative distribution function for the random variable R. The height of the staircase graph
corresponds to the cumulative probability as in algorithm (7.33). A reaction is chosen by selecting a number
u from the uniform distribution on the vertical axis and then extending a horizontal line to the staircase
graph.

cumulative distribution function for T is given by:
POST<t)=1—e"" (7.34)
where a is the sum of the reaction propensities:
a=a1+a+ as.

Equation (7.34) characterizes T" as an ezponential random variable.

The cumulative distribution function for 7" is shown in Figure 7.44. Most often, samples u from
the uniform zero-to-one distribution will correspond to short wait-times between reactions; only
occasionally (when w is chosen near 1) will a long time be selected. The steepness of the curve
depends on a, the sum of the propensities. If this sum is large (many highly probable reactions)
then the curve rises steeply and waiting times are almost always short. If the sum is smaller, then
the curve rises more slowly, and longer waiting times are more likely.

Gilliespie’s algorithm can be summarized as follows:

Stochastic Simulation Algorithm (SSA)
1. Set the initial state N. Initialize time ¢ to zero.
2. Calculate the reaction propensities ay(IN).

Draw a sample Ry from the random variable R (Figure 7.43).

-~ w

Draw a sample 7 from the random variable 7' (Figure 7.44).
5. Increment the simulation time t — ¢ + 7 to account for the elapsed time.
6. Update the state vector N — N + s, to reflect the fact that reaction R has occurred.

7. Return to step 2.
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Figure 7.44: Cumulative distribution function for the waiting time 7. The parameter a is the sum of
the propensities. Waiting times T are determined by selecting numbers u from the uniform zero-to-one
distribution and then extending a horizontal line to the graph, as shown. For large values of a, the curve
rises sharply—most samples u correspond to short waiting times. For smaller a values, larger waiting times
are more likely.

The algorithm is usually continued until the simulation time ¢ reaches the end of a specified
time interval.

7.6.4 Examples

We conclude by using Gillespie’s stochastic simulation algorithm to explore the behaviour of some
simple reaction networks.

Constitutive Decay

Consider the decay reaction

k

A —

The behaviour of this system was illustrated by the stochastic simulations in Figure 7.38, which
show that the trajectories are highly variable when the system consists of only a small number of
molecules. Figure 7.45 shows ensembles of sample paths, each starting with only ten molecules.
Three ensembles are shown, along with the average behaviour (solid line). Although the individual
sample paths show significant variability, the average is more consistent. As the ensemble size in-
creases, the averaged behaviour converges to the solution of the deterministic model. By generating
a large ensemble, a complete description of system behaviour—including measures of the variability
in the distribution of trajectories—can be reached (Problem 7.8.24).

In some cases, a very large number of sample paths is needed to guarantee confidence in these
ensemble-derived results; generating a sufficiently large ensemble can be a time-consuming process.
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Figure 7.45: Ensembles of sample paths for the decay reaction. Each sample path begins with 10 molecules.
Ensembles of 3 (A), 10 (B), and 30 (C) sample paths are shown (gray curves). The black lines shows the
ensemble average. This averaged behaviour approaches the deterministic prediction (exponential decay) as
the ensemble size grows. Parameter value: k = 1 (time™!). Time units are arbitrary.

A number of refinements of the stochastic simulation algorithm have been proposed that aim to
reduce the computational requirements for simulation (see Problem 7.8.25 for an example).
Constitutive gene expression

We next consider a simple model of unregulated gene expression, involving mRNA, M, and protein,
P. The reaction network is:

R; : (transcription) — M propensity: k.

R : (translation) —P propensity: k, N

R3 : (degradation) M—-> propensity: 6, Ny (7.35)
R, : (degradation) P—> propensity: d,Np

Sample paths from a Gillespie simulation are shown in Figure 7.46A. The mRNA traces are centered

around an average of about 10 molecules. The protein count shows an average of about 60.
Experimental observations have revealed that transcription is sometimes a ‘bursty’ process in

which each transcription event leads to the production of multiple copies of mRNA (reviewed in

(Chubb and Liverpool, 2010).)
This model can be modified to describe bursty transcription by replacing reaction R; with

~ k
Ry : (bursty transcription) ——> 5M  propensity: é

In this modified model, each transcription event produces 5 mRNA molecules. To allow direct
comparison with the original model, the propensity of this bursty transcription reaction has been
reduced by a factor of 5, so that the time-averaged mRNA production rate is unchanged. Fig-
ure 7.46B shows simulations of this modified model. Although the mRNA and protein averages are
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Figure 7.46: Stochastic simulations of constitutive gene expression. A. Each transcription event produces
a single mRNA transcript. B. Transcription is modelled as ‘bursty’: each transcription events produces 5
mRNA molecules. The propensity of the transcription reaction has been reduced by a factor of 5 to give the
same average as in panel A. Parameter values (in time™'): k, = 10, k, =6, §, = 1, §, = 1 . Time units are
arbitrary.

the same in both models, the modified model exhibits considerably more variability. This differ-
ence in behaviour could not be described by a mass action-based model: the deterministic versions
of these two models are identical (in both cases, the transcription rate is k). Variability is an
experimentally observable feature of system behaviour that can only be captured in a stochastic
modelling framework.

The Brusselator

Our final example, the Brusselator, is a theoretical chemical system that exhibits sustained oscil-
lations (Exercise 4.3.1). The reaction network is:

Ry: — X propensity: ki

Ro: X—Y propensity: koNx

Rs3: 2X+Y — 3X propensity: %NX(NX —1)Ny
Ry : X — propensity: ksNx

A sample path is shown in Figure 7.47, in both the time domain (panel A) and the phase space
(panel B). The trajectories are somewhat jagged, but the oscillations are fairly regular. In contrast,
some oscillatory stochastic systems exhibit considerable variability in the timing and shape of the
cycles (Problem 7.8.27).
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Figure 7.47: Stochastic simulation of the Brusselator. A. Oscillations are evident in the time-domain: a
slow increase in Y is followed by a sudden crash when Y levels are sufficiently high. B. This phase-portrait
shows the approximate limit cycle followed by the periodic trajectories. Initial conditions are X = 1000,
Y = 2000. Parameter values (in time™!): k; = 5000, ks = 50, k3 = 0.00005 and k4 = 5. Time units are
arbitrary.

7.7

7.8

Suggestions for Further Reading

Modelling gene regulatory networks: The book An Introduction to Systems Biology:
Design Principles of Biological Circuits (Alon, 2007) surveys a number of models of gene
regulatory networks. The text Computational Modeling of Gene Regulatory Networks — a
Primer (Bolouri, 2008) addresses a wider range of modelling approaches than discussed in
this chapter.

Phage Lambda: The book A Genetic Switch: Phage Lambda Revisited (Ptashne, 2004)
provides a detailed description of the molecular genetics of the decision switch, including an
accessible account of the experiments that led to these discoveries.

Synthetic gene circuits: Discussions of modelling and design in synthetic biology are pro-
vided in the book chapter “Synthetic gene regulatory systems” (Weiss and Kaern, 2006) and
in  Engineering Gene Circuits (Myers, 2010). The non-technical book Biology is Technol-
ogy: The Promise, Peril, and New Business of Engineering Life (Carlson, 2010) provides a
thoughtful discussion of the potential impact of synthetic biology.

Stochastic modelling in systems biology: An introduction to stochastic modelling tech-
niques in systems biology is provided in the book chapter “Modeling and analysis of stochastic
biochemical networks,” (Khammash, 2010). The book Stochastic Modelling for Systems Bi-
ology (Wilkinson, 2006) provides a detailed treatment of stochastic approaches.

Problem Set
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7.8.1 Response time of autoinhibitory genes. Consider expression from an unregulated gene
as modelled in equation (7.2):

d

—p(t) = ao = op(t) (7.36)

For comparison, consider an autoinhibitory gene whose expression can be modelled as in equa-
tion (7.8):

d 1

T (t) = aw_ép(ﬂv (7.37)

a) Take § = 1 (time™!) in models (7.36) and (7.37) and let K = 1 (concentration) for the autoin-
hibited gene. Verify that both genes generate the same steady-state protein concentration when
a = ap(ag+ 1). (Hint: substitute p** = « into the autoinhibited model.)

b) Simulate the two models with ag = 5 and a = 30 (concentration - time™!). Take the initial
concentrations to be zero. Verify that, as a result of having a higher maximal expression rate, the
autoinhibited gene reaches steady state more quickly than the unregulated gene.

¢) How would you expect the response time to be affected by cooperative binding of multiple copies
of the repressor? Verify your conjecture by comparing your results from part (b) with the model

d
Pt = T ER — op().

Take az = 130 (concentration - time™1).

7.8.2 Robustness of autoinhibitory genes.
a) Verify that the steady states of the unregulated and autoinhibitory models in Section 7.1 (equa-
tions (7.2) and (7.8)) are given by

ss o s —L++/1+4a/(Kdp)

-2 d =
punreg 6p an preg 2/K

where the unregulated model has expression rate .
b) Take derivatives with respect to « to verify the relative sensitivities:

« 8plsxflreg _ « 8pfesg _ 2a/(K5p)
PiS e O pss. Oa (V14+4a/(Kop)) (=14 /14 4a/(K0p))

c) Verify that the sensitivity of the autoinhibited protein is smaller than the sensitivity of the
Opzs
p?;sg 8ag

unregulated protein by showing that the expression for is always less than one, regardless of

the parameter values. Hint: the formula depends on the quotient 4a/(K ). Letting x = 4a/(KJp),
it is required to show that

x/2
WV1i+z)(-1+V1+z
for any positive z value. You can convince yourself of this by plotting this function of x. For

a mathematically rigorous proof, begin by expanding the denominator and multiplying by the
conjugate (1 +x + 1+ x).

)<1.
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7.8.3 Alternative regulatory schemes. The models in this chapter focus on the regulation
of transcriptional initiation (i.e. the binding of RNA polymerase to promoter regions). Other
regulatory mechanisms include:

a) Antisense RNA. Gene expression can be inhibited by the production of antisense RNA, which is
complementary to a gene’s mRNA. The antisense RNA binds tightly to its complementary partner

(by base pairing), and so sequesters the mRNA away from the translation machinery. In this case
the transcription of the gene is unaffected, but translation of the resulting mRNA is inhibited.
Extend the model of gene expression in equation (7.1) to incorporate inhibition by antisense RNA.
b) mRNA stability. Protein production can be repressed by factors that target mRNA molecules
for degradation. (An example is the protein S-tubulin, which destabilizes its own mRNA.) Develop
a differential equation model that describes autoinhibition of protein expression in this manner.

7.8.4 Transcription factor multimerization. Many transcription factors function as multi-
mers (e.g. dimers or tetramers). Consider a transcription factor P that dimerizes and binds an
operator O. The reaction scheme is:

k1
ko

P+ P

a
Py O+Pp—=——0P,
d

a) Letting Ko = ko/k1 and K1 = d/a, suppose that these binding events are in equilibrium and
verify that the resulting promoter occupancy is:

OR]  [PP/KoK,
O]+ [OP] 1+ [P]?/KoK,’

Fraction of bound operators:

This is the same Hill function we used in Section 7.1.2 to describe cooperativity in operator bindi