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Abstract

Woodru� (1952) proposed a simple con�dence interval for quantiles in complex surveys based upon inverting the usual
con�dence intervals for the distribution function. In the moderate to extreme tail regions of the distribution function the
usual con�dence interval performs poorly for moderate sample size. In this paper we demonstrate that despite this fact,
the Woodru� intervals based upon inverting these badly behaved intervals perform very well. We go on to explain this
rather surprising fact. c© 2001 Elsevier Science B.V. All rights reserved
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1. Introduction

In this article we will consider inference for quantiles in surveys. If we let F(t) = N−1 ∑N
i=1 I[yi6t] be the

�nite population distribution function evaluated at t, then the p-quantile can be written as 	p = F−1(p) =
inf{t :F(t) ¿ p}, where N is the number of units in the �nite population. This is then estimated by 	̂p=

F̂
−1

(p) = inf{t: F̂(t) ¿ p}, where F̂(t) = ∑
i∈s wiI[yi6t], s is a sample of units from the �nite population

under some complex sampling design and {wi : i ∈ s} are the survey weights.
The conventional 1 − � normal con�dence interval for a distribution function F(t) at �xed t is based on

F̂(t) and its estimated variance v̂= v[F̂(t)] obtained from the general sampling design, and is constructed as
follows:

(F̂(t)− z�=2v̂1=2; F̂(t) + z�=2v̂1=2); (1.1)

where z�=2 is the 1 − �=2 quantile from N (0; 1). The interval in (1.1) relies on the asymptotic normality of
F̂(t),

F̂(t)− F(t)
v̂1=2

d→N (0; 1) (1.2)
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which can be justi�ed in many situations (see, for example, Francisco and Fuller, 1991, Theorem 2). Woodru�
(1952) proposed a large sample con�dence interval for 	p for general sampling designs, (	̂Lp; 	̂

U
p ), where

	̂Lp = inf{t: F̂(t)¿ p− z�=2v1=2[F̂(	̂p)]};

	̂Up = inf{t: F̂(t)¿ p+ z�=2v1=2[F̂(	̂p)]}

and

P(	̂Lp 6 	p 6 	̂Up )
:= 1− �: (1.3)

Approximation (1.3) is closely related to (1.1) and relies on the asymptotic normality of F̂(t). Francisco and
Fuller (1991) have justi�ed (1.3) under certain assumptions.
In the cases of large or small values of p and moderate sample size, the sampling distribution of F̂(	p)

is usually not symmetric. The smaller (larger) the value of p, the farther the departure from symmetry. The
consequence is that the normal con�dence interval (1.1) performs poorly: the right and left tail-errors are
very unbalanced and the coverage probability di�ers from the nominal value. One might believe that because
of this the Woodru� con�dence interval for large or small quantiles should not work and should not be
recommended in practice in such situations. However, a Monte Carlo study reported in Section 2 shows that
Woodru� intervals for large or small quantiles work far better than intuition might suggest. The reason for this
interesting phenomenon is discussed in Section 3, with suggestions and concluding remarks given in Section 4.

2. A simulation

The �nite population we use here was modi�ed from the one used by Francisco and Fuller (1991) in a
Monte Carlo study to investigate the performance of some statistics including the Woodru� interval. Their
study did not include large or small quantiles and they did not vary the sample size.
We generate the �nite population from a superpopulation which is a mixture of 10 lognormal distributions:

F(t) =
∑10

i=1 wiFi(t), with weights 0.08, 0.08, 0.10, 0.10, 0.12, 0.12, 0.14, 0.10, 0.10, 0.06 and means and
standard deviations of the distributions of the log of the random variables given by (1:5; 0:3); (2:0; 0:4); (2:1; 0:4);
(3:0; 0:6), (2:5; 0:5); (1:8; 0:4); (1:6; 0:3); (1:8; 0:4); (3:0; 0:6); (3:8; 0:8), respectively. The �nite population has ten
strata with stratum sizes proportional to the above weights. The observations in each of the strata were gen-
erated as simple random samples from the corresponding lognormal distributions.
The simulation was �rst conducted with �nite population size N = 500. For each simulation, a �nite

population was �rst generated and then a strati�ed simple random sample of size n = 50 was selected from
the �nite population, with 5 elements selected from each of the 10 strata. Normal con�dence intervals for F(t)
at t= 	0:05, 	0:10, 	0:25, 	0:50, 	0:75, 	0:90, 	0:95 were constructed using (1.1), and Woodru� con�dence intervals
for these same quantiles were obtained using (1.3). This process was repeated 10,000 times. The simulation
was then re-conducted with �nite populations of sizes N = 1000, 2000 and sample sizes of n= 100, 200; 10
and 20 elements from each of the 10 strata, respectively. The Monte Carlo error in this simulation study is
negligible.
Table 1 reports the estimated coverage probabilities (CP) of 90% con�dence intervals and estimated left

and right tail errors (L, U: nominal value is 5% for both) for F(t) at various quantiles and for the quantiles
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Table 1
Estimated coverage probabilities and tail errors and standardized length of 90% con�dence intervals from strati�ed
simple random sampling

p = 0:05 p = 0:10 p = 0:25 p = 0:50 p = 0:75 p = 0:90 p = 0:95

Normal Con�dence Interval for Distribution Function F(t) at t = 	p
N = 500 CP 82.5 85.7 88.4 88.8 86.9 86.5 80.7
n = 50 L 1.7 2.8 5.0 5.9 7.5 9.5 16.1

U 15.8 11.5 6.6 5.3 5.6 4.0 3.2
SL 0.93 0.97 0.99 1.00 1.00 0.96 0.94

N = 1000 CP 86.0 87.6 89.1 88.8 89.3 88.3 85.9
n = 100 L 1.9 3.2 5.3 6.1 5.9 8.4 11.3

U 12.1 9.2 5.6 5.1 4.8 3.3 2.8
SL 0.98 1.00 1.00 1.00 1.00 0.98 0.97

N = 2000 CP 88.1 88.7 89.6 89.8 89.3 89.1 88.1
n = 200 L 2.5 3.6 4.8 5.1 5.2 6.8 8.7

U 9.4 7.7 5.6 5.1 5.5 4.1 3.2
SL 0.99 1.01 1.01 1.00 1.01 1.00 1.00

Woodru� Con�dence Interval for Quantile 	p
	0:05 	0:10 	0:25 	0:50 	0:75 	0:90 	0:95

N = 500 CP 89.5 92.3 90.5 89.6 90.4 88.8 85.2
n = 50 L 7.0 3.5 5.1 6.0 5.3 6.5 8.4

U 3.5 4.2 4.4 4.4 4.3 4.7 6.4
SL 0.98 1.12 1.03 1.00 1.01 1.09 1.56

N = 1000 CP 92.7 91.2 90.2 89.6 90.4 89.3 85.9
n = 100 L 3.0 4.1 4.7 5.5 4.9 5.7 8.3

U 4.3 4.7 5.1 4.9 4.7 4.9 5.8
SL 1.17 1.05 1.00 0.98 1.01 1.04 0.99

N = 2000 CP 91.8 90.4 90.1 90.2 89.9 90.1 88.8
n = 200 L 3.6 4.8 5.0 5.5 5.7 5.5 6.5

U 4.6 4.8 4.9 4.3 4.4 4.4 4.7
SL 1.05 1.03 1.02 1.01 1.01 1.04 1.02

as well (all entries are presented as percentages). The standardized length (SL) of con�dence intervals were
estimated by dividing the average length of all 10,000 simulated intervals by 2z0:05(MSE)1=2, where MSE was
estimated by another 10,000 simulations.
For �xed sample size, normal con�dence intervals for F(	p) performed well at p = 0:50 and reasonably

well for p = 0:25; 0:75, that is, coverage probabilities were very close to 90% nominal and one-sided tail
errors were well balanced. However, for larger or smaller p, normal con�dence intervals for F(t) performed
poorly: coverage probabilities became lower and one-sided tail errors were no longer balanced. The smaller
(larger) the value of p, the more severe the unbalance of the two tails.
As for Woodru� intervals, they performed surprisely well for all quantiles. The unbalanced tail-error behavior

for large and small quantiles observed in normal con�dence intervals for F(t) mysteriously disappear or are
much improved and coverage probabilities are close to the nominal value and more conservative. Meanwhile,
the good performance of normal con�dence intervals for middle-range quantiles were well passed to the
Woodru� intervals.
When we increase the sample size from 50 to 100 and 200, the quality of both normal con�dence intervals

for F(t) and Woodru� con�dence intervals for 	p improve, as they should due to asymptotic properties.
However, the above phenomenon is still evident and the improvement for Woodru� intervals seems much
quicker than that of normal intervals.
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Table 2
Estimated coverage probabilities and tail errors of 90% idealized Woodru� intervals

	0:05 	0:10 	0:25 	0:50 	0:75 	0:90 	0:95

N = 1000 CP 86.3 87.8 89.3 89.1 89.6 89.0 86.8
n = 100 L 12.1 9.2 5.6 5.1 4.8 3.3 2.8

U 1.6 3.0 5.1 5.8 5.6 7.7 10.4

The above phenomenon was not case-speci�c. We conducted more simulation studies, including simple ran-
dom sampling from a �nite population generated from a single lognormal distribution and another “large-scale”
strati�ed simple random sampling (N = 14; 000) using the well-known Hansen, Madow & Tepping synthetic
population (Hansen et al., 1983). We also included 95% con�dence intervals in each case. The results were
similar and are not presented.

3. Investigation of the phenomenon

To illustrate what is causing this phenomenon, �rst let us re-do the simulations using v[F̂(	p)] in the
Woodru� interval instead of v[F̂(	̂p)]. We will refer to this as the idealized Woodru� interval. We can do
this in the simulation since we know 	p. In practice, however, we could not since 	p is unknown. The results
appear in Table 2. To save space we present only the case N = 1000 and n = 100. The other cases are
qualitatively similar (Wu, 1999). We see that the coverage probabilities and tail errors are almost identical
to that of con�dence intervals for the distribution function (Table 1), except that the left and right tail errors
are switched. So, for some reason replacing 	p with 	̂p improves things.
Given these and the simulation results of the previous section, one is compelled to further investigate the

formulation of Woodru� intervals. We consider simple random sampling where F̂(t) = 1=n
∑

i∈s I[yi6t],

v[F̂(t)] =
1− f
n− 1

F̂(t)[1− F̂(t)] (3.1)

and f is the �nite population correction factor. Consider that

F̂(	̂Lp)
:= p− z�=2v1=2[F̂(	̂p)] and F̂(	̂Up )

:= p+ z�=2v1=2[F̂(	̂p)];

noting that the equalities are approximate only as a result of the discreteness of the empirical distribution
function. The variance, v[F̂(t)], when viewed as a function of F̂(t), is monotone increasing for F̂(t) ∈ [0:0; 0:5)
and monotone decreasing for F̂(t) ∈ (0:5; 1:0], with maximum absolute derivative at F̂(t) = 0:0 and 1:0 and
minimum absolute derivative at F̂(t) = 0:5.
Let us �rst consider why using 	̂p instead of 	p decreases the unsatisfactorily high left tail error when p

is small (� 0:5). Assuming the sample size �xed, this follows from

P{F(	p)¿ F̂(	p) + z�=2v1=2[F̂(	p)]}¿ P{F̂(	p)6 p− z�=2v1=2[F̂(	p)]}

¿ P{F̂(	p)6 p− z�=2v1=2[F̂(	̂p)]}
:= P{F̂(	p)6 F̂(	̂Lp)}

¿ P(	p 6 	̂Lp): (3.2)

The key step in the above is the second inequality, which follows from v[F̂(	p)]¡v[F̂(	̂p)]. This can be
justi�ed as follows. It is clear that if F̂(	p) 6 p − z�=2v1=2[F̂(	p)], then p¿F̂(	p). Since, by de�nition,
p6 F̂(	̂p), we get F̂(	p)¡p6 F̂(	̂p), which in turn, by (3.1), implies v[F̂(	p)]¡v[F̂(	̂p)].
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One can similarly argue that

P{F(	p)¡F̂(	p)− z�=2v1=2[F̂(	p)]}6 P(	p¿ 	̂Up ): (3.3)

This gives some explanation for why the tail error rates are more balanced in the Woodru� interval than one
might expect. This alone would be a desirable property even if the interval coverage rate remained unchanged.
However, the coverage rate of the Woodru� intervals appear to be slightly higher (i.e. more conservative) and
closer to the nominal, as well. This does not follow directly from (3.2) and (3.3). To understand this consider
that F̂(	p) = n−1 ∑

i∈s I[yi6	p] can be viewed as the standard estimate of the �nite population proportion
F(	p) = N−1 ∑N

i=1 I[yi6	p]. If p�0:5, the distribution of F̂(	p) will be highly skewed and thus F̂(	p) will
more often be less than its mean, F(	p), than not. But, if F̂(	p)¡F(	p), then 	p¡ 	̂p which implies
v[F̂(	p)]¡v[F̂(	̂p)], and consequently the interval (F̂(	p)± z�=2v1=2[F̂(	̂p)]) will be longer than the interval
(F̂(	p)± z�=2v1=2[F̂(	p)]). Noting that

P{F̂(	p)− z�=2v1=2[F̂(	̂p)]¡F(	p)¡F̂(	p) + z�=2v1=2[F̂(	̂p)]}
:= P{p− z�=2v1=2[F̂(	̂p)]¡F̂(	p)¡p+ z�=2v1=2[F̂(	̂p)]}
:= P{F̂(	̂Lp)¡F̂(	p)¡F̂(	̂Up )}

6 P(	̂Lp ¡	p¡ 	̂Up );

this gives an explanation for the observed behaviour.
To summarize, the large right tail error of the normal con�dence interval for F(	p) is switched to a smaller

left tail error for the Woodru� con�dence interval on 	p, while the small left tail error on F(	p) is “inverted”
to a larger right tail error on 	p. In addition, the coverage probability on F(	p) is inPated a bit on 	p.
The result is a better con�dence interval for 	p. Similar arguments hold for p�0:5. For general sampling
designs, as long as the changing pattern of v[F̂(t)] over F̂(t) is similar to that of (3.1), the justi�cation will
be identical.

4. Concluding remarks

Woodru� con�dence intervals for quantiles are basically an inversion of normal con�dence intervals for
the distribution function, with only one modi�cation: we replace the unknown quantile 	p in v[F̂(	p)] by its
estimate, 	̂p. Although this is a common practice in statistics, sometimes we lose precision or eQciency with
this replacement, especially when the sample size is not very large. For Woodru� intervals, this replacement
not only works but improves things: it keeps the good performance of the normal con�dence interval of
distribution functions for the middle-range quantiles and adjusts its ill behavior for large and small quantiles
in the desirable direction.
Given the known poor performance of the interval for F(t) given in (1.1) when t is large or small,

one might be tempted to use a better interval before applying Woodru�’s method. Wu (1999) used a logit
transformation method which drastically improved the performance of the intervals for F(t). However, when
one then uses this interval in Woodru�’s method, similar arguments as those given in Section 3 suggest the
Woodru� interval will perform badly. This was veri�ed in a simulation (Wu, 1999).
The high coverage probability of Woodru� intervals for small and large quantiles is partially due to the

inPated length of the interval. In fact, according to a weak version of the Bahadur representation of the sample
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quantile (Francisco and Fuller, 1991; Rao et al., 1990),

	̂p = 	p − [f(	p)]−1[F̂(	p)− F(	p)] + op(n−1=2)

where f(t) is the derivative of the limiting function of F(t) as N → ∞. We see that the sampling distribution
of 	̂p is closely related to that of F̂(	p). As we pointed out earlier, when sample size is small or moderate and
p is small or large, the sampling distribution of F̂(	p) is not symmetric. This is also true for 	̂p. Therefore,
the con�dence interval for 	p with balanced two tail errors will be longer than the symmetric normal interval,
which implies that the SL of better-behaved Woodru� intervals will be larger than 1. As sample size increases,
the sampling distributions of both F̂(	p) and 	̂p tend to be more symmetric and consequently, the SL of these
intervals will approach 1.
There exist more elaborate methods for constructing con�dence intervals for quantiles, for example, the

test inversion procedure (Francisco and Fuller, 1991) or possibly a bootstrap interval (Sitter, 1992). However,
Woodru� intervals are simple and easy to implement and thus are popular with practitioners. The good
performance for large and small quantiles demonstrated here makes them even more appealing.
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