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a b s t r a c t

Pseudo empirical likelihood ratio confidence intervals for finite population parameters
are based on asymptotic χ2 approximation to an adjusted pseudo empirical likelihood
ratio statistic, with the adjustment factor related to the design effect. The calculation of
the design effect involves variance estimation and hence requires second order inclusion
probabilities. It also depends on how auxiliary information is used, and needs to be
derived one-at-a-time for different scenarios. This paper presents bootstrap procedures
for constructing pseudo empirical likelihood ratio confidence intervals. The proposed
method bypasses the need for design effects and is valid under general single-stage
unequal probability sampling designs with small sampling fractions. Different scenarios in
using auxiliary information are handled by simply including the same type of benchmark
constraints with the bootstrap procedures. Simulation results show that the bootstrap
calibrated intervals performverywell andhavemuch improved coverage probabilities over
the χ2-based intervals when the sample sizes are small or moderate.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The firstmajor result in the development of the empirical likelihood (EL)methodwas the establishment of asymptoticχ2
distribution of the EL ratio statistic for the population mean with independent and identically distributed (iid) sample data
(Owen, 1988). The profile EL ratio confidence intervals have several advantages over the traditional normal theory intervals,
such as range-respecting, transformation invariant and data-determined shapes. The EL intervals on the population mean
based on the χ2 approximation, however, tend to have coverage probabilities lower than nominal values when sample sizes
are not large. Significant improvement canbemadewhen theχ2 approximation is replacedby a bootstrap calibration (Owen,
2001, Section 3.3). Bootstrap procedures for the EL method and related theoretical justifications are often straightforward
for simple cases involving iid samples.
The EL method has been extended to complex survey data through a pseudo EL approach. The pseudo EL function,

formulated by Chen and Sitter (1999), is the Narain–Horvitz–Thompson (NHT) estimator (Narain, 1951; Horvitz and
Thompson, 1952) of the so-called ‘‘census’’ EL function and hence involves first order inclusion probabilities. It is shown
by Wu and Rao (2006) that the pseudo EL ratio confidence intervals based on the χ2 approximation require an adjustment
factor which involves variance estimation and hence evaluation of second order inclusion probabilities. In addition, the
adjustment factor also depends on how auxiliary information is used and needs to be derived one-at-a-time for different
scenarios. Rao and Wu (2009) presented a detailed account of the EL methods for finite populations.
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In this paper we present bootstrap procedures which bypass the adjustment factor previously required for the
construction of pseudo EL ratio confidence intervals. The use of auxiliary information is handled in a unified manner
by simply including the same type of benchmark constraints or calibration equations with the bootstrap procedure. The
proposed methods are theoretically justified for single-stage with-replacement unequal probability sampling designs. They
are also valid forwithout-replacement sampling designswhen sampling fractions are small. Simulation results show that the
bootstrap calibrated pseudo EL confidence intervals perform much better than those based on the χ2 approximation using
the adjustment factor when sample sizes are small. For simple random sampling without replacement with non-negligible
sampling fractions, a simple correction can be made to the proposed bootstrap method and the resulting confidence
intervals have correct asymptotic coverage probabilities. Simulation results show that the simple correction can also provide
improvedperformancewhen it is applied towithout-replacement unequal probability sampling designswith large sampling
fractions.
A brief review of the pseudo EL ratio confidence intervals for complex surveys is given in Section 2. The proposed

bootstrap procedures are presented in Section 3. Results from an extensive simulation study are reported in Section 4. We
conclude with a few additional remarks in Section 5.

2. The pseudo empirical likelihood method

Consider a finite populationU consisting of N units. Let {(yi, xi), i ∈ s} be a non-stratified probability sample with fixed
sample size n, where yi and xi are the values of the response variable y and the vector of auxiliary variables x associated with
the ith unit, and s is the set of sample units selected using a probability sampling design. Let πi = P (i ∈ s) be the inclusion
probabilities and di = 1/πi be the basic design weights. The pseudo EL function, first proposed by Chen and Sitter (1999),
is given by l( p) =

∑
i∈s di log(pi) which is the NHT estimator of the so-called ‘‘census’’ empirical likelihood

∑N
i=1 log(pi).

This definition works fine for point estimation of population parameters but is not convenient for interval estimation or
hypothesis testing.
The pseudo empirical likelihood (PEL) function defined in Wu and Rao (2006) is given by

lns( p) = n
∑
i∈s

d̃i(s) log(pi), (2.1)

where d̃i(s) = di/
∑
i∈s di are the normalized design weights and p = (p1, . . . , pn)′ is the discrete probability measure

imposed over the sampled units. Maximizing lns( p) subject to pi > 0 and
∑
i∈s pi = 1 gives p̂i = d̃i(s). The maximum PEL

estimator for the population mean Ȳ = N−1
∑N
i=1 yi is given by

ˆ̄Y PEL =
∑
i∈s p̂iyi =

∑
i∈s d̃i(s)yi, and

ˆ̄Y PEL is identical to the
well-known Hájek estimator of Ȳ .
For PEL ratio confidence intervals on Ȳ , we consider the general case where the vector of population means, X̄ =

N−1
∑N
i=1 xi, is known and needs to be incorporated into inferences. Let p̂i, i ∈ s be the maximizer of lns( p) subject to∑
i∈s

pi = 1, (2.2)∑
i∈s

pixi = X̄ . (2.3)

The maximum PEL estimator of Ȳ in this case is again defined as ˆ̄Y PEL =
∑
i∈s p̂iyi. Let p̃i(θ) be the maximizer of lns( p)

subject to (2.2), (2.3) and an additional constraint induced by the parameter of interest, Ȳ ,∑
i∈s

piyi = θ (2.4)

for a fixed θ . Let rns(θ) = −2{lns(p̃(θ)) − lns(p̂)} be the PEL ratio function. It is shown by Wu and Rao (2006) that, under
suitable regularity conditions, the adjusted PEL ratio function r [a]ns (θ) = rns(θ)/deffGR converges in distribution to a χ

2

randomvariablewith one degree of freedomwhen θ = Ȳ , where the design effect deffGR is calculated based on a generalized
regression (GR) estimator and requires second order inclusion probabilities πij = P (i, j ∈ s).
A stratified probability sample is given by {(yhi, xhi), i ∈ sh, h = 1, . . . ,H}where (yhi, xhi) is the value of (y, x) associated

with the ith unit in stratum h, sh is the set of sample units selected from stratum h with fixed stratum sample size nh, and
H is the total number of strata in the population. Let n =

∑H
h=1 nh be the overall sample size. Let dhi be the stratum design

weights and d̃hi(sh) = dhi/
∑
i∈sh
dhi be the normalized stratum design weights. The PEL function under stratified sampling

is defined as

lst(p1, . . . , pH) = n
H∑
h=1

Wh
∑
i∈sh

d̃hi(sh) log(phi), (2.5)
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where Wh = Nh/N , Nh is the population size for stratum h, N =
∑H
h=1 Nh is the overall population size, and ph =

(ph1, . . . , phnh)
′ is the probability measure over the stratum sample sh. The PEL ratio function rst(θ) for the population mean

Ȳ =
∑H
h=1WhȲh, where Ȳh = N

−1
h

∑Nh
i=1 yhi is the populationmean for stratum h, is similarly defined as for the non-stratified

case, with lns( p) replaced by lst(p1, . . . , pH), and the constraints (2.2)–(2.4) respectively replaced by (2.6)–(2.8) below:∑
i∈sh

phi = 1, h = 1, . . . ,H, (2.6)

H∑
h=1

Wh
∑
i∈sh

phixhi = X̄, (2.7)

H∑
h=1

Wh
∑
i∈sh

phiyhi = θ. (2.8)

The adjusted PEL ratio function r [a]st (θ) = rst(θ)/deffGR(st) is asymptotically distributed as χ21 when θ = Ȳ , where the design
effect deffGR(st) is computed based on a combined generalized regression estimator using the stratified sample (GR(st)) as
outlined in Wu and Rao (2006).
The (1− α)-level profile PEL ratio confidence intervals on Ȳ can be constructed from

Ca = {θ | r [a](θ) < χ21 (α)}, (2.9)

where χ21 (α) is the upper α quantile of the χ
2 distribution with one degree of freedom, and r [a](θ) is the adjusted PEL ratio

function based on either the non-stratified or the stratified sample. While the intervalCa shares all the attractive features of
EL intervals for iid data, it also inherits the problemof low coverage probabilitieswhen the sample size is not large.Moreover,
the calculation of the design effect deffGR or deffGR(st) depends on how auxiliary information is used and needs to be derived
one-at-a-time for different scenarios. It also requires second order inclusion probabilities πij. From a theoretical point of
view this is necessary since confidence intervals involve variances, either implicitly or explicitly; from a practical point of
view this is often difficult, since computing the πij’s can be a daunting task, especially when the initial sampling design has
to be modified or altered due to practical constraints. For example, Thompson and Wu (2008) encountered a practical case
of multi-stage sampling where several upper level clusters, initially selected with probability proportional to cluster size
using the randomized systematic pps sampling method (Hartley and Rao, 1962), needed to be replaced. They showed that
under substitution of units it is possible in principle to calculate the first order inclusion probabilities but the second order
inclusion probabilities become intractable.

3. Bootstrap procedures

The asymptotic χ2 distribution of the adjusted PEL ratio function may be replaced by a bootstrap calibration. A major
advantage of the bootstrap method in the current context is that it provides an approximation to the sampling distribution
of the un-adjusted PEL ratio function and hence bypasses the adjustment factor required for the χ2 approximation. It also
improves the coverage probabilities of the resulting confidence intervals for samples of small or moderate sizes, as shown
by the simulation results reported in Section 4.
The most crucial part of the proposed bootstrap procedures is that the basic design weights, di or dhi, need to be treated

as part of the sample data and a bootstrap version of the PEL function should be used. Consider a non-stratified single-stage
unequal probability sample {(di, yi, xi), i ∈ s}. Suppose that the populationmean X̄ is known and the constraint (2.3) is used
in defining the PEL ratio function rns(θ). Let bα be the upper α quantile of the sampling distribution of rns(θ) at θ = Ȳ . Then
the profile (1− α)-level confidence interval on Ȳ is constructed as

Cu = {θ | rns(θ) < bα}. (3.1)

The difference between Ca given by (2.9) and Cu specified by (3.1) is that Cu uses the un-adjusted PEL ratio function and
hence does not involve the adjustment factor and the design effect. The value of bα in (3.1) can be approximated through
the following bootstrap calibration procedure:

(1) Select a bootstrap sample s∗ of size n from the original sample s using simple random sampling with replacement and
denote the bootstrap sample data by {(d∗i , y

∗

i , x
∗

i ), i ∈ s
∗
}.

(2) Let the bootstrap version of the PEL function be defined as

l∗ns( p) = n
∑
i∈s∗
d̃∗i (s

∗) log(pi),

where d̃∗i (s
∗) = d∗i /

∑
j∈s∗ d

∗

j .
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(3) Calculate the un-adjusted PEL ratio function r∗ns(θ) at θ =
ˆ̄Y PEL based on the bootstrap sample s∗ and the bootstrap

version of the PEL function l∗ns( p) in the same way as rns(θ) calculated from the original sample. The bootstrap version
of the constraints (2.3) and (2.4) are given respectively by

∑
i∈s∗ pix

∗

i = X̄ and
∑
i∈s∗ piy

∗

i =
ˆ̄Y PEL.

(4) Repeat Steps (1), (2) and (3) a large number of times, B, independently, to obtain the sequence r∗1 (θ), . . . , r
∗

B (θ), all at

θ = ˆ̄Y PEL. Let b∗α be the upper 100αth sample quantile from this sequence.

Note that the maximum PEL estimator of X̄ , computed as ˆ̄XPEL =
∑
i∈s p̂ixi, is identical to X̄ . The bootstrap version of the

constraint (2.3) used in Step 3 is the same as
∑
i∈s∗ pix

∗

i =
ˆ̄XPEL. The bootstrap calibrated PEL ratio confidence interval on Ȳ

is constructed as C∗u = {θ | rns(θ) < b
∗
α}, where the quantile bα used in Cu of (3.1) is replaced by the bootstrap quantile b∗α .

Theorem 1. The bootstrap calibrated PEL ratio confidence interval C∗u on Ȳ has asymptotically correct coverage probability at
(1− α)-level if the original sample is selected using unequal probability sampling with replacement.

Proof. Following the same lines of the proof of Theorem 1 in Wu and Rao (2006) and assuming the same set of regularity
conditions C1–C3, we can show that both rns(θ) at θ = Ȳ and r∗ns(θ) at θ =

ˆ̄Y PEL converge in distribution to the same scaled
χ2 random variable with one degree of freedom. �

In practice, survey samples are usually selected by without-replacement sampling procedures. The interval C∗u can be
used for without-replacement sampling designs if the sampling fraction f = n/N is small. When f is not small, the interval
C∗u under the proposed with-replacement bootstrap procedure tends to have an over-coverage problem, as shown by the
simulation results reported in Section 4. For simple random sampling without replacement, the over-coverage problem can
be corrected easily through the finite population correction factor, 1− f .

Theorem 2. Let b∗α be obtained by the with-replacement bootstrap steps (1)–(4) and assume n/N → γ ∈ (0, 1) as n → ∞
and N →∞. Then the confidence interval C∗u ( f ) = {θ | rns(θ) < (1− f )b∗α} on Ȳ has correct asymptotic coverage probability
at the (1− α)-level if the original sample is selected by simple random sampling without replacement.

Proof of Theorem 2 follows from a straightforward asymptotic expansion of rns(θ) at θ = Ȳ and r∗ns(θ) at θ = ȳ =
n−1

∑
i∈s yi. Note that, under simple random sampling without replacement, the normalized design weights d̃i(s) = n

−1,
where n is the sample size. The asymptotic sampling distributions of rns(θ) and r∗ns(θ) differ by a scaling factor 1− f , due to
the fact that Var(ȳ) = (1 − f )S2/n under the sampling design but Var(ȳ∗) = s2/n under the with-replacement bootstrap
procedure, where S2 is the population variance, s2 is the sample variance, and ȳ∗ = n−1

∑
i∈s∗ y

∗

i is themean of the bootstrap
sample.
For a general without-replacement unequal probability sampling design with non-negligible sampling fraction f , the

intervalC∗u ( f ) does not necessarily have coverage probabilities at the (1−α)-level. In Section 4we explore several scenarios
involving different sampling method and sample size combinations through simulation studies. The results show that the
(1− f )-adjusted interval C∗u ( f ) performs reasonably well for most of the cases considered.
The bootstrap procedure described for non-stratified samples can be readily extended to stratified sampling. Let

{(d∗hi, y
∗

hi, x
∗

hi), i ∈ s
∗

h} be a bootstrap sample of size nh selected from {(dhi, yhi, xhi), i ∈ sh} using simple random sampling
with replacement, h = 1, . . . ,H . The bootstrap version of the un-adjusted PEL ratio function rst(θ) is computed by using
l∗st(p1, . . . , pH) = n

∑H
h=1Wh

∑
i∈s∗h
d̃∗hi(s

∗

h) log(phi), where d̃
∗

hi(s
∗

h) = d
∗

hi/
∑
i∈s∗h
d∗hi. Bootstrap versions of constraints (2.7)

and (2.8) are given respectively by
∑H
h=1Wh

∑
i∈s∗h
phix∗hi = X̄ and

∑H
h=1Wh

∑
i∈s∗h
phiy∗hi = θ , with θ replaced by ˆ̄Y PEL.

Similar to non-stratified cases, the bootstrap version of constraint (2.7) is the same as
∑H
h=1Wh

∑
i∈s∗h
phix∗hi =

ˆ̄XPEL. The
bootstrap calibrated PEL ratio confidence intervals are valid if sampling fractions within each of the strata are small.

4. Simulation studies

We examined the performance of the proposed bootstrap methods through simulation studies. Our study focused on
comparisons among three versions of the PEL ratio confidence intervals: (i) the interval based on the adjusted PEL ratio
function and asymptotic χ2 approximation, denoted by EL(χ2); (ii) the interval C∗u with bootstrap calibration to the un-
adjusted PEL ratio function, denoted by EL(B); and (iii) the interval C∗u ( f ) which replaces the bootstrap quantile b

∗
α used

in C∗u by (1 − f )b
∗
α , denoted by EL(Bf ). We consider different scenarios involving (a) non-stratified or stratified sampling

designs; (b) different sampling procedures for selecting non-stratified samples; and (c) the use of auxiliary information
through the inclusion or exclusion of calibration constraints. Our simulation is programmed in R using algorithms outlined
in Wu (2004, 2005).
For non-stratified sampling designs, finite populations of size N = 800 were generated from the model yi = β0+β1xi+

σεi. This is theModel I used inWu andRao (2006); see Section 4 ofWu andRao (2006) for a detailed description of themodel.
The finite population correlation coefficient between y and xwas set to be 0.80 for the current study. The finite population,
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Table 1
95% Confidence intervals on Ȳ : non-stratified samples by Rao–Sampford PPS sampling method.

n CI CP L U AL

40

NA 91.7 0.6 7.7 0.48

–
EL(χ2) 94.7 2.3 3.0 0.75
EL(B) 94.6 3.7 1.7 0.79
EL(Bf ) 93.9 4.1 2.0 0.77

x
EL(χ2) 92.3 2.7 5.0 0.47
EL(B) 96.0 1.3 2.7 0.56
EL(Bf ) 95.4 1.7 2.9 0.54

80

NA 94.2 1.5 4.3 0.34

–
EL(χ2) 94.6 1.8 3.6 0.51
EL(B) 95.4 2.8 1.8 0.55
EL(Bf ) 94.3 3.2 2.5 0.52

x
EL(χ2) 93.8 2.5 3.7 0.33
EL(B) 96.3 1.3 2.4 0.37
EL(Bf ) 94.6 1.7 3.7 0.35

Table 2
95% Confidence intervals on Ȳ : non-stratified samples by randomized systematic PPS sampling method.

n CI CP L U AL

40
– EL(B) 94.9 3.2 1.9 0.79

EL(Bf ) 94.7 3.3 2.0 0.77

x EL(B) 96.8 1.5 1.7 0.57
EL(Bf ) 96.6 1.7 1.7 0.56

80
– EL(B) 96.4 2.0 1.6 0.55

EL(Bf ) 95.6 2.3 2.1 0.52

x EL(B) 96.0 1.4 2.6 0.38
EL(Bf ) 94.1 2.3 3.6 0.36

once generated, was held fixed and repeated simulation samples were drawn from the fixed population. We considered
three different sample selection methods: the Rao–Sampford unequal probability sampling method (Rao, 1965; Sampford,
1967); the randomized systematic pps sampling method (Hartley and Rao, 1962); and simple random sampling without
replacement. For the Rao–Sampford method and the randomized systematic pps method, the inclusion probabilities were
set to be proportional to the values of the size measure, x. For each simulated sample, B = 1000 bootstrap samples were
used in finding b∗α . The total number of simulation runs was also 1000.
Performances of confidence intervals are evaluated and compared in terms of the simulated coverage probability (CP),

lower (L) and upper (U) tail error rates and average length (AL). Table 1 contains results for the 95% confidence intervals on
Ȳ where samples are selected by the Rao–Sampford method. The second column indicates whether the design variable
x was calibrated to the known population mean X̄ in constructing the pseudo EL intervals. The sample size n = 40
corresponds to f = 40/800 = 5% and n = 80 corresponds to f = 10%. The conventional confidence intervals based on
normal approximations (NA) are also included for comparison, since variance estimators are available for the Rao–Sampford
samplingmethod. Both EL(B) and EL(Bf )performedwell, with coverage probabilities closer to the nominal value than EL(χ2)
when calibration over x is involved. The EL(B) intervals are a bit wider, resulting in coverage probabilities greater than the
nominal value for a few cases. The EL(Bf ) intervals, however, do not seem to have such problemand performwell for all cases
considered. All PEL-based intervals perform better than the NA intervals in terms of coverage probabilities and balanced tail
error rates.
We repeated the simulation study described above with the same parameter setting but using two different sampling

methods. First, we replaced the Rao–Sampford method by the randomized systematic pps sampling method (Hartley and
Rao, 1962). The results are reported in Table 2. The NA and EL(χ2) intervals are not included since the required second order
inclusion probabilities are not readily computable. The results are very similar to those under the Rao–Sampford method.
Second, we considered simple random sampling without replacement with sample sizes n = 40, 80, 120 and 160. The
corresponding sampling fractions are f = 5%, 10%, 15% and20%. This is the scenario forwhich the result of Theorem2applies.
The results are shown in Table 3. The EL(B) intervals are generally wider that the EL(Bf ) intervals, and are ‘‘overshooting’’
(in terms of coverage probability) for some cases. The EL(Bf ) intervals, on the other hand, performwell regardless of sample
sizes.
For stratified sampling designs, we generated finite populations from the model yhi = αh + βhxhi + σεhi, i = 1, . . . ,Nh,

h = 1, . . . ,H , withH = 4,N1 = 800,N2 = 600,N3 = 400 andN4 = 200. This is theModel III used inWuandRao (2006); see
Section 4 ofWu and Rao (2006) for a detailed description of themodel. The finite population correlation coefficient between
y and xwas again set to be 0.80. Stratified samples were selected, with simple random sampling without replacement used
within each of the four strata. Equal sample size allocations were used so that the sampling fractions, nh/Nh, are larger for
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Table 3
95% Confidence intervals on Ȳ : non-stratified samples by simple random sampling without replacement.

n CI CP L U AL

40 EL(B) 95.1 2.0 2.9 0.86
EL(Bf ) 94.6 2.3 3.1 0.83

80 EL(B) 96.4 1.7 1.9 0.59
EL(Bf ) 95.5 2.1 2.4 0.56

120 EL(B) 94.8 2.3 2.9 0.47
EL(Bf ) 93.2 3.3 3.5 0.44

160 EL(B) 96.3 2.0 1.7 0.41
EL(Bf ) 94.0 2.9 3.1 0.37

Table 4
95% Confidence intervals based on stratified random samples.

nh CI CP L U AL

20

–
EL(χ2) 94.7 2.6 2.7 3.16
EL(B) 95.3 1.8 2.9 3.23
EL(Bf ) 95.1 1.9 3.0 3.16

x
EL(χ2) 94.5 3.1 2.4 2.27
EL(B) 95.4 1.7 2.9 2.41
EL(Bf ) 95.1 1.8 3.1 2.36

40

–
EL(χ2) 95.1 2.7 2.2 2.16
EL(B) 95.4 2.1 2.5 2.27
EL(Bf ) 94.7 2.4 2.9 2.18

x
EL(χ2) 93.3 2.3 4.4 1.59
EL(B) 95.6 1.7 2.7 1.67
EL(Bf ) 94.8 2.0 3.2 1.60

smaller strata, resulting in unequal selection probabilities across strata. The overall sampling fractions are f = 80/2000 =
4% for nh = 20 and f = 160/2000 = 8% for nh = 40. These are the values of f used for the EL(Bf ) intervals.
Table 4 contains results from stratified sampling. The second column indicates whether the calibration constraint (2.7) is

used or not. Themost interesting observation here is that the EL(B) intervals are not only good for caseswith f = 4% but also
acceptable for cases with f = 8%. Over-coverage does not seem to be a problem for these later cases. The EL(Bf ) intervals,
adjusted by the overall finite population correction 1− f , perform very close to the EL(χ2) intervals for all cases considered.

5. Concluding remarks

The bootstrapmethod proposed in this paper is used to obtain an approximation to the asymptotic sampling distribution
of the PEL ratio statistic for constructing confidence intervals or conducting statistical hypothesis tests. This is different from
the conventional normal approximation-based approach used in survey sampling where point estimation of variance of the
mean estimator is the focus of bootstrapmethods.Most existing bootstrap procedures for complex surveys are developed for
that purpose. For without-replacement complex sampling designs, consistent bootstrap variance estimators often require
special adjustment to the usual with-replacement bootstrap procedures. The Rao–Wu re-scaling bootstrap method (Rao
andWu, 1988) and themirror-matchmethod (Sitter, 1992) are twowell-known examples on variance estimation. Bootstrap
approximations to the sampling distribution of a statistic based on complex survey samples aremuchmore demanding than
point estimation of variance of themean estimator. The proposed bootstrapmethods performwell for single-stagewithout-
replacement sampling designs when sampling fractions are small. For simple random sampling without replacement, the
intervalC∗u ( f ), which replaces the bootstrap quantile b

∗
α by (1−f )b

∗
α , is asymptotically valid even if f is large.When sampling

fractions are appreciable and the sampling designs are complex, a simple adjustment by the finite population correction
factor 1− f may not always work. Bootstrap methods which provide consistent estimation of the sampling distribution of
the PEL ratio statistics in these later cases would be of great interest.
Our discussion in this paper is restricted to cases where the parameter θ is a scalar and the PEL ratio confidence intervals

(2.9) or (3.1) can be computed using a simple algorithm described in Wu (2005). Extensions to cases where θ is a vector
parameter are currently under investigation.
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