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1. Differentials

In this short article, the notion of differentials on algebraic curves will be dis-
cussed. All of the following is based on the exposition in Chapter II Section 4 of
Silverman.

Definition 1.1. Let C be a smooth curve. The space of differential forms on C,
ΩC , is the K(C) vector space of all symbols df for each f in K(C) subject to the
following relations,

(1) d(f + g) = df + dg for all f, g in K(C)
(2) d(fg) = fdg + gdf for all f, g in K(C)
(3) dα = 0 for all α in K

Formally ΩC can be constructed by taking the free K(C) module of symbols df
for all f in K(C) and modding out by the submodule generated by the relations
above. If f = g

h then it is easy to see that df = 1
hdg −

f
hdh.

Theorem 1.2. Let C be a smooth plane curve.
(1) ΩC is a one dimensional vector space over K(C)
(2) Given f in K(C), df generates ΩC if and only if the field extension K(C)/K(f)

is finite and separable.
(3) Given a map between smooth curves φ : C1 → C2, there is an induced map

φ∗ : ΩC2 → ΩC2 such that φ∗ is injective if and only if φ is separable.

Proof.
(1) Firstly let C = V (F ) for some F ∈ K[x, y]. Then

0 = dF = Fxdx+ Fydy

where Fx and Fy denote the partial derivatives with respect to x and y.
Since C is smooth, both of these partial derivatives cannot vanish thus
w.l.o.g if Fy 6= 0

dy = −Fx(Fy)−1dx.

This shows that dimΩC ≤ 1. To get the dimension to be one we need to
show that ΩC is not the zero vector space.

Construct a map ψ : K(C) → K(C), ψ(f) = fx + fy. Now construct
a map λ : ΩC → K(C), λ(df) = ψ(f) extended linearly. To see that λ
is well defined it suffices to show that λ vanishes on the relations that the
differential might satisfy. For example,

λ(d(x+ y)− dx− dy) = λ(d(x+ y))− λ(dx)− λ(dy)
= ψ(x+ y)− ψ(x)− ψ(y)
= 1 + 1− 1− 1 = 0.
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The other relations can be checked similarly. Note that λ(dx) = ψ(x) = 1,
thus dx 6= 0.

(2) First we show that separability implies that df generates the vector space
ΩC . Choose t ∈ K(C) and F (X,T ) with minimal degree in T . Since the
extension is separable FT (X,T ) 6= 0. Thus

0 = dF = FX(f, t)df + FT (f, t)dt

and so dt = FX(f, t)(FT (f, t))−1df and thus df is a basis.
Now for the other direction note that K(C)/K(f) is finite since the

transcendence degree of K(C)/K and K(f)/K are both one. If the char-
acteristic of K is zero the result is clear, thus assume 0 6= p = char(K).
Given t ∈ K(C) we can find F (X,T ) with minimal degree in T such that
F (x, t) = 0. Assume the extension is not separable thus FT (X,T ) is zero
and every power of T in F must be a multiple of p, so

0 = dF = FX(f, t)df + FT (f, t)dt = FX(f, t)df.

Since df is a basis, FX(f, t) = 0 but this implies that every power of X in
F must be a multiple of p and thus we can find G,H ∈ K[X,Y ] such that
F (X,T ) = G(Xp, T p) = H(X,T )p, which contradicts the irreducibility of
F .

(3) Define φ∗(gdf) = φ∗(g)d(φ∗(f)) extended linearly. Now choose f in K(C2)
so that f generates ΩC2 . Note that

φ∗ is injective ⇔ d(φ∗(f)) 6= 0
⇔ d(φ∗(f)) is a basis for ΩC

⇔ K(C1)/K(φ∗(f)) is separable

⇔ K(C1)/φ∗K(C2) is separable

�

It is interesting to note that part 2 of the theorem above reasserts what it means
for an extension to be separable, namely that the minimal polynomials of elements
have non-zero derivative (and in our case form a basis).

Having studied some global properties of differentials, we now move to some
more local properties which will allow us to consider the divisor of a differential.

Theorem 1.3. Let C be a smooth curve and let t be a uniformizer at the point P
of C.

(1) For every ω in ΩC we can find a unique g in K(C) so that ω = gdt. We
let ω/dt = g.

(2) If f in K(C) is regular at P so is df/dt.
(3) Note that ordP (ω) is independent of the choice of t. We let this common

value be denoted as ordP (ω) .
(4) Choose f in K(C) such that K(C)/K(f) is separable and f vanishes at P .

Then if p = char(K) for all g in K(C),

ordP (gdf) = ordP (f) + ordP (g)− 1 if p = 0, p 6 |n
ordP (gdf) ≥ ordP (f) + ordP (g) otherwise
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(5) For all but finitely many P in C, ordP (ω) = 0.

Remark 1.4. Note that 4 asserts that the degree of vanishing of a differential of a
function is one less then the degree of vanishing of the function. This is certainly a
property we would want to capture.

Proof.

(1) From Lemma 2 in Silverman we know that if t is a uniformizer at point P
then the extension K(C)/K(t) is separable. Use this and 1.2 above to get
the result.

(2) Clear.
(3) Let s be another uniformizer at P . From the above, dt/ds and ds/dt are

both regular at P . From this it follows that ordP (ds/dt) = 0 and thus

ω = gds = g(
ds

dt
)dt.

So the result follows.
(4) Let f = utn where n = ordP (f) , n ≥ 1 and u is a unit. It is clear that

df = (nutn−1 +
du

dt
tn)dt.

Since du/dt is regular at P then if n 6= 0 and p 6 |n, the power of t in nutn−1

is the least and so

ordP (gdf) = ordP (g) + n− 1.

In the case where p|n, the result follows similarly.
(5) Choose g so that K(C)/K(g) is separable and let ω = fdg. From a theorem

in Hartshorne (see the Remark after this proof) the map g : C → P1 ramifies
at only finitely many points. Thus discarding these points and all points
Q ∈ C where f(Q) = 0,∞, g(Q) = ∞, we note that on all other points
P ∈ C, g − g(P ) is a uniformizer at Q and thus

ordP (ω) = ordP (fdg) = ordP (fd(g − g(P ))) = ordP (f)+ordP (g − g(P ))−1 = 0.

�

Remark 1.5. This result is the geometric analogue of the result in function fields
which states that only finitely many primes ramify in an integral extension of Z. In
general this result is a specific case of a result about integral extensions of Dedekind
domains.

Example 1.6. We conclude this section with an example of computations of di-
visors and differentials on elliptic curves. In the following we will use the conven-
tion that lower cased letters refer to coordinate functions on a specific affine piece
whereas upper case letters refer to projective coordinates. Let e1, e2, e3 ∈ K where
char(K) 6= 2. Consider the elliptic curve

y2 = (x− e1)(x− e2)(x− e3).

Let P1 = (e1, 0), P2 = (e2, 0), P3 = (e3, 0), and P∞ = [0 : 1 : 0]. It is clear that P∞
is the only point at infinity on the curve. We now compute several divisors.
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• div (x− ei) = 2Pi − 2P∞. We must consider the homogenized function
(X−eiZ)/Z. Note that y is not the tangent line to Pi, so y is a uniformizer
at Pi. Since

y2

(x− ej)(x− ek)
= (x− ei), i 6= j 6= k

ordPi
(X − eiZ) = 2 and so by Bezout’s Theorem

div
(
X − eiZ

Z

)
= div (X − eiZ)− div (Z) = 2Pi + P∞ − 3P∞ = 2Pi − 2P∞

• div (y) = P1+P2+P3−3P∞. Again y is the uniformizer at Pi for each i and
these are the only points at which y vanishes. Thus since deg(div (y)) = 0

div (y) = P1 + P2 + P3 − 3P∞
• div (dx) = P1 +P2 +P3 − 3P∞. Firstly consider P 6= P∞, Pi for i = 1, 2, 3.

If P = (a, b) it is clear that x − a is not a tangent line at P thus it is
a uniformizer. So ordP (dx) = ordP (d(x− a)) = ordP (x− a) − 1 = 0.
Now if P = Pi for i = 1, 2, 3 we know that ordP (dx) = ordP (d(x− ei)) =
ordP (x− ei) − 1 = 1. This leaves the case when P = P∞. Note that
dx = −x2d(1/x) thus

ordP (dx) = ordP

(
x2

)
+ ordP

(
1
x

)
− 1

and

div
(

1
x

)
= div

(
Z

X

)
= div (Z)− div (X) = 3P∞ − div (X) .

When x = 0, y2 = −e1e2e3 thus we see that this accounts for a total
intersection multiplicity of two. By Bezout’s theorem ordP (X) = 1 and so

ordP

(
1
x

)
= 3− 1 = 2.

Thus ordP (dx) = −4 + 2− 1 = −3 and

div (dx) = P1 + P2 + P3 − 3P∞.

From this we can conclude that dx
y is holomorphic and non-vanishing.


