1 Smooth curves

1.1 Definition. Let *C* be an affine plane curve in \mathbb{A}^2 given by $f \in \Bbbk[x, y]$ and let $p = (a, b) \in C$. Then *p* is said to be a *smooth point* (or *simple point*) of *C* if $\nabla f(a, b) \neq (0, 0)$. A point that is not smooth is called a *singular point* (or *multiple point*). A curve that is smooth at every point is called a *smooth curve* (or *non-singular curve*). A point *p* of *C* is smooth if and only if there exists a unique normal vector to *C* at *p*. The *tangent line* to *C* at *p* is given by the equation $\nabla f(a, b) \cdot (x - a, y - b) = 0$.

1.2 Examples.

- (i) The parabola $V(y x^2)$ is non-singular since its gradient is (-2x, 1), which is never (0, 0).
- (ii) The cusp $V(y^2 x^3)$ has a singular point at (0,0) since its gradient is $(-3x^2, 2y)$ which is (0,0) at (0,0).
- (iii) The alpha curve $V(y^2 x^3 x^2)$ has a singular point at (0,0).

1.3 Definition. The *Zariski tangent space* to *C* at p = (a, b) is

$$T_{\mathcal{P}}(C) = \{ v \in \mathbb{A}^2 \mid \nabla f(a, b) \cdot v = 0 \}.$$

Therefore, $\dim_{\Bbbk}(T_p(C)) = 1$ if and only if p is a smooth point of C and $T_p = \mathbb{A}^2$ if and only if p is singular. Clearly, $T_p(C)$ is a \Bbbk -vector space. The \Bbbk -vector space dual $(T_p(C))^*$ is called the *Zariski cotangent space* of C at p. Note that $(T_p(C))^*$ is considered as a subspace of $(\mathbb{A}^2)^*$, whose elements are 1×2 matrices. Recall the differential map $d_p : \Bbbk[x, y] \to (\mathbb{A}^2)^*$ defined by

$$d_p g = \begin{bmatrix} \frac{\partial g}{\partial x}(p) & \frac{\partial g}{\partial y}(p) \end{bmatrix} = \text{Jac}(g)(p)$$

Without loss of generality, we can assume that p = (0, 0), as all notions under discussion are invariant under translations. Then, if *C* is given by $f \in k[x, y]$, $T_p(C) = \ker(d_p f)$. We can also define a differential map on $M_p(C)$.

1.4 Definition. Let *C* be an affine plane curve. If $p \in C$, the map $d_p : M_p(C) \rightarrow (T_p(C))^*$ defined by

$$\mathbf{d}_p \, \frac{\overline{a}}{\overline{b}} = \frac{\mathbf{d}_p \, a}{b(p)} \Big|_{\mathbf{T}_p(C)}$$

is called the *differential map at p*. Moreover, given $g \in M_p(C)$, $d_p g$ is the *differential of g at p*.

1.5 Proposition. Let *C* be an affine plane curve. If $p \in C$, the differential map $d_p : M_p(C) \to (T_p(C))^*$ is a well-defined surjective linear map whose kernel is $M_p^2(C)$.

PROOF: As usual, without loss of generality we can assume that p = (0,0), as all notions under discussion are invariant under translations. Let $f \in \Bbbk[x, y]$ be such that C = V(f). Suppose $g \in M_p(C)$ is such that $g = \overline{a}/\overline{b} = \overline{c}/\overline{d}$, where $\overline{a}, \overline{b}, \overline{c}, \overline{d} \in \Bbbk[C]$ are such that a(p) = c(p) = 0 and $b(p), d(p) \neq 0$. Then $\overline{ad} - \overline{cb} = 0$, so ad - cb = hf for some $h \in \Bbbk[x, y]$. Thus,

$$\mathbf{d}_p(ad-cb) = \mathbf{d}_p(hf).$$

Expanding both sides of this equation gives

 $a(p) \operatorname{d}_p d + d(p) \operatorname{d}_p a - c(p) \operatorname{d}_p b - b(p) \operatorname{d}_p c = h(p) \operatorname{d}_p f + f(p) \operatorname{d}_p h.$

But a(p) = c(p) = f(p) = 0, so

$$d(p) \operatorname{d}_p a - b(p) \operatorname{d}_p c = h(p) \operatorname{d}_p f.$$

Since $d_p f|_{T_p(C)} = 0$,

$$d(p) \operatorname{d}_p a - b(p) \operatorname{d}_p c|_{\operatorname{T}_p(C)} = 0,$$

i.e.

$$\frac{\mathrm{d}_p a}{b(p)}\Big|_{\mathrm{T}_p(C)} = \frac{\mathrm{d}_p c}{d(p)}\Big|_{\mathrm{T}_p(C)}.$$

Therefore, $d_p : M_p(C) \to (T_p(C))^*$ is well-defined. Clearly, d_p is linear. If $\varphi \in (T_p(C))^*$, then φ is the restriction to $T_p(C)$ of some linear function f on \mathbb{A}^2 , so $d_p f = \varphi$. Let $M = \langle x, y \rangle$. Let $\delta : \Bbbk[x, y] \to (\mathbb{A}^2)$ be the map

$$\delta(h) = \mathrm{d}_p(h)|_{\mathrm{T}_p(C)}.$$

Then, it is easy to see that $\ker(\delta|_M) = M^2$. Since $M_p(C) = \overline{M}\mathcal{O}_p(C)$,

$$\ker(\mathbf{d}_p) = \overline{M}^2 \mathcal{O}_p(C) = \mathrm{M}_p^2(C).$$

1.6 Corollary. Let *C* be an affine plane curve. Then $M_p(C)/(M_p(C))^2 \cong (T_p(C))^*$.

PROOF: This is immediate from the previous proposition and the First Isomorphism Theorem. $\hfill \Box$

1.7 Examples.

- (i) Let *C* be the parabola $V(y x^2)$. *C* is smooth at every point and $\Bbbk[C] = \&[t]$. At p = (0, 0), $M_p(C) = \langle x \rangle$ and $M_p(C)/(M_p(C))^2 = \{\lambda x \mid \lambda \in \Bbbk\}$.
- (ii) Let *C* be $V(y^2 x^3)$, which is singular at the origin p = (0,0). Here $k[C] = k[x, y]/(y^2 x^3)$ and $M_p(C) = \langle \overline{x}, \overline{y} \rangle \subseteq k(C)$. We have

$$(\mathbf{M}_p(C))^2 = \langle \overline{x}^2, \overline{xy}, \overline{y}^2 \rangle = \langle \overline{x}^2, \overline{xy} \rangle,$$

so $M_p(C)/(M_p(C))^2 = \{a\overline{x} + b\overline{y} \mid a, b \in \Bbbk\}$. Since this has dimension two, we know that p is a singular point.

1.8 Proposition. Let *C* be an affine plane curve given by $f \in k[x, y]$. Then $p \in C$ is a smooth point of *C* if and only if $M_p(C)$ is principal. In this case, $M_p(C) = \langle t \rangle$, where V(t) is any line through *p* that is not $T_p(C)$.

PROOF: Suppose that *C* is smooth at *p*. By making an appropriate affine transformation, we may assume that p = (0,0) and that the tangent line at *p* is y = 0. We will show that M_p is generated by \overline{x} ; the proof that *M* is generated by any line that is not the tangent line is similar. By the above assumptions f(0,0) = 0, so it has no constant term. That the tangent line at (0,0) is y = 0 implies that *f* has no linear term in *x*. Therefore

$$f(x, y) = y +$$
higher order terms.

Grouping the terms with y, we get $f = yg - x^2h$, where g is a unit in $\mathcal{O}_p(C)$ and $h \in k[x]$. Taking residue classes, we get that

$$0 = \overline{f} = \overline{y}\overline{g} - \overline{x}^2\overline{h},$$

so $\overline{y} = \overline{g}^{-1}\overline{h}\overline{x}^2$. Therefore $\overline{y} \in \langle \overline{x} \rangle$, so $M_p = \langle \overline{x}, \overline{y} \rangle = \langle \overline{x} \rangle$ is principal.

Conversely, if the maximal ideal is principal, say $M_p = \langle t \rangle$, then $M_p^2 = \langle t^2 \rangle$ and $M_p / M_p^2 = \{at \mid a \in k\}$, a one dimensional k-vector space. This implies that *C* is smooth at *p* by Corollary 1.6 and the remark after the definition of the tangent space.

1.9 Corollary. Let *C* be an affine plane curve. Then $p \in C$ is a smooth point of *C* if and only if $\mathcal{O}_p(C)$ is a DVR.

PROOF: This follows from the preceding proposition and the fact that $\mathcal{O}_p(C)$ is a Noetherian local ring.

1.10 Corollary. *Let C be an affine plane curve. Then C is smooth everywhere if and only if* k[C] *is a Dedekind domain.*

PROOF: This follows from the preceding corollary and the characterization of Dedekind domains as the one-dimensional integral domains whose localizations at all maximal ideals are DVRs. $\hfill \Box$