1 Smooth curves

1.1 Definition. Let C be an affine plane curve in A? given by f € k[x,y] and
let p = (a,b) € C. Then p is said to be a smooth point (or simple point) of C
if Vf(a,b) # (0,0). A point that is not smooth is called a singular point (or
multiple point). A curve that is smooth at every point is called a smooth curve
(or non-singular curve). A point p of C is smooth if and only if there exists
a unique normal vector to C at p. The tangent line to C at p is given by the
equation V f(a,b) - (x —a,y —b) = 0.

1.2 Examples.
(i) The parabola V(y — x?2) is non-singular since its gradient is (-2x, 1),
which is never (0, 0).

(ii) The cusp V(y? — x3) has a singular point at (0,0) since its gradient is
(—3x2,2y) which is (0,0) at (0, 0).

(iii) The alpha curve V(1?2 — x3 — x2) has a singular point at (0, 0).

1.3 Definition. The Zariski tangent space to C at p = (a, b) is
T,(C) = {v € A> | Vf(a,b) - v =0}.

Therefore, dimy(T,(C)) = 1 if and only if p is a smooth point of C and
T, = A? if and only if p is singular. Clearly, T,(C) is a k-vector space. The
k-vector space dual (T, (C))* is called the Zariski cotangent space of C at p.
Note that (T, (C))* is considered as a subspace of (A2)*, whose elements are
1 x 2 matrices. Recall the differential map d, : k[x, y] - (A2)* defined by

dyg =[50 F®]=Tac@)p).

Without loss of generality, we can assume that p = (0, 0), as all notions under
discussion are invariant under translations. Then, if C is given by f € k[x, y],
T,(C) = ker(d, f). We can also define a differential map on M, (C).

1.4 Definition. Let C be an affine plane curve. If p € C, the map d, : M,,(C) —
(Tp(C))* defined by

dy,a

b(p) 1,

a
d, = =
b

is called the differential map at p. Moreover, given g € M,(C), d, g is the
differential of g at p.

1.5 Proposition. Let C be an affine plane curve. If p € C, the differential map
dy : M, (C) — (T,(C))* is a well-defined surjective linear map whose kernel is
M2 (C).
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PROOF: As usual, without loss of generality we can assume that p = (0,0), as
all notions under discussion are invariant under translations. Let f € k[x, ]
be such that C = V(f). Suppose g € M,,(C) is such that g = @/b = ¢/d, where
a,b,c,d € k[C] are such that a(p) = c(p) = 0 and b(p),d(p) = 0. Then
ad —cb =0,s0ad —cb = hf for some h € k[x, y]. Thus,

dy(ad —cb) =d,(hf).

Expanding both sides of this equation gives
a(p)dpd+d(p)dpa—c(p)dyb—b(p)dyc =h(p)d, f+ f(p)dph.
But a(p) = c(p) = f(p) =0, so
d(p)dya—b(p)dyc = h(p)d, f.
Since dp, f1r,(c) = 0,
d(p)dpa —b(p)dyclr,c) =0,

ie. dya i d, ¢

b(p)!1©  d(p)!Tp©)°

Therefore, d, : M, (C) — (T,(C))* is well-defined. Clearly, d, is linear. If
@ € (T, (C))*, then @ is the restriction to T, (C) of some linear function f on
A%, s0d, f = @.Let M = (x,y). Let § : k[x, ¥] — (A?) be the map

o(h) =dp(W)It,)-
Then, it is easy to see that ker(5|y) = M2. Since M, (C) = HO,](C),

ker(d,) = M°0,(C) = M2(C). .

1.6 Corollary. Let C be an affine plane curve. ThenM,, (C)/ (M, (C))? = (T, (C))*.

PROOF: This is immediate from the previous proposition and the First Isomor-
phism Theorem. O

1.7 Examples.
(i) Let C be the parabola V(y — x?). C is smooth at every point and k[C] =
k[t]. At p = (0,0), M, (C) = {x) and M,,(C)/(M,(C))?* = {Ax | A € k}.

(ii) Let C be V(y? — x3), which is singular at the origin p = (0,0). Here
k[C] = kix,»1/{(y? - x3) and M, (C) = (X,¥) < k(C). We have

(M, (C))? = (X%, %7, 7°) = (X°,XV),

SO M,g(C)/(M,g(C))2 = {ax + by | a,b € k}. Since this has dimension
two, we know that p is a singular point.



1.8 Proposition. Let C be an affine plane curve given by f € k[x,y]. Then
p € C is a smooth point of C if and only if M, (C) is principal. In this case,
M, (C) = (t), where V(t) is any line through p that is not T, (C).

PROOF: Suppose that C is smooth at p. By making an appropriate affine trans-
formation, we may assume that p = (0,0) and that the tangent line at p is
v = 0. We will show that M,, is generated by X; the proof that M is generated
by any line that is not the tangent line is similar. By the above assumptions
f(0,0) = 0, so it has no constant term. That the tangent line at (0,0) is ¥ =0
implies that f has no linear term in x. Therefore

f(x,y) = y + higher order terms.

Grouping the terms with y, we get f = yg — x%h, where g is a unit in 0, (C)
and h € k[x]. Taking residue classes, we get that

0=f=yg-x°h,

so ¥ = g 'hx?®. Therefore ¥ € (X), so M, = (X,¥) = (X) is principal.
Conversely, if the maximal ideal is principal, say M, = (t), then Mg = (t2)
and M, / Mf, = {at | a € k}, a one dimensional k-vector space. This implies
that C is smooth at p by Corollary 1.6 and the remark after the definition of
the tangent space. O

1.9 Corollary. Let C be an affine plane curve. Then p € C is a smooth point
of C if and only if O,(C) is a DVR.

PROOEF: This follows from the preceding proposition and the fact that O, (C)
is a Noetherian local ring. ]

1.10 Corollary. Let C be an affine plane curve. Then C is smooth everywhere
if and only if k[C] is a Dedekind domain.

PROOF: This follows from the preceding corollary and the characterization of
Dedekind domains as the one-dimensional integral domains whose localiza-
tions at all maximal ideals are DVRs. a



