1 Smooth curves

1.1 Definition. Let C be an affine plane curve in \mathbb{A}^{2} given by $f \in \mathbb{k}[x, y]$ and let $p=(a, b) \in C$. Then p is said to be a smooth point (or simple point) of C if $\nabla f(a, b) \neq(0,0)$. A point that is not smooth is called a singular point (or multiple point). A curve that is smooth at every point is called a smooth curve (or non-singular curve). A point p of C is smooth if and only if there exists a unique normal vector to C at p. The tangent line to C at p is given by the equation $\nabla f(a, b) \cdot(x-a, y-b)=0$.

1.2 Examples.

(i) The parabola $\mathrm{V}\left(y-x^{2}\right)$ is non-singular since its gradient is $(-2 x, 1)$, which is never $(0,0)$.
(ii) The cusp $\mathrm{V}\left(y^{2}-x^{3}\right)$ has a singular point at $(0,0)$ since its gradient is $\left(-3 x^{2}, 2 y\right)$ which is $(0,0)$ at $(0,0)$.
(iii) The alpha curve $\mathrm{V}\left(y^{2}-x^{3}-x^{2}\right)$ has a singular point at $(0,0)$.
1.3 Definition. The Zariski tangent space to C at $p=(a, b)$ is

$$
\mathrm{T}_{p}(C)=\left\{v \in \mathbb{A}^{2} \mid \nabla f(a, b) \cdot v=0\right\}
$$

Therefore, $\operatorname{dim}_{k}\left(\mathrm{~T}_{p}(C)\right)=1$ if and only if p is a smooth point of C and $\mathrm{T}_{p}=\mathbb{A}^{2}$ if and only if p is singular. Clearly, $\mathrm{T}_{p}(C)$ is a \mathbb{k}-vector space. The \mathbb{k}-vector space dual $\left(\mathrm{T}_{p}(C)\right)^{*}$ is called the Zariski cotangent space of C at p. Note that $\left(\mathrm{T}_{p}(C)\right)^{*}$ is considered as a subspace of $\left(\mathbb{A}^{2}\right)^{*}$, whose elements are 1×2 matrices. Recall the differential map $\mathrm{d}_{p}: \mathbb{k}[x, y] \rightarrow\left(\mathbb{A}^{2}\right)^{*}$ defined by

$$
\mathrm{d}_{p} g=\left[\begin{array}{ll}
\frac{\partial g}{\partial x}(p) & \frac{\partial g}{\partial y}(p)
\end{array}\right]=\operatorname{Jac}(g)(p)
$$

Without loss of generality, we can assume that $p=(0,0)$, as all notions under discussion are invariant under translations. Then, if C is given by $f \in \mathbb{k}[x, y]$, $\mathrm{T}_{p}(C)=\operatorname{ker}\left(\mathrm{d}_{p} f\right)$. We can also define a differential map on $\mathrm{M}_{p}(C)$.
1.4 Definition. Let C be an affine plane curve. If $p \in C$, the $\operatorname{map}^{\mathrm{d}_{p}}: \mathrm{M}_{p}(C) \rightarrow$ $\left(\mathrm{T}_{p}(C)\right)^{*}$ defined by

$$
\mathrm{d}_{p} \frac{\bar{a}}{\bar{b}}=\left.\frac{\mathrm{d}_{p} a}{b(p)}\right|_{\mathrm{T}_{p}(C)}
$$

is called the differential map at p. Moreover, given $g \in \mathrm{M}_{p}(C), \mathrm{d}_{p} g$ is the differential of g at p.
1.5 Proposition. Let C be an affine plane curve. If $p \in C$, the differential map $\mathrm{d}_{p}: \mathrm{M}_{p}(C) \rightarrow\left(\mathrm{T}_{p}(C)\right)^{*}$ is a well-defined surjective linear map whose kernel is $\mathrm{M}_{p}^{2}(C)$.

Proof: As usual, without loss of generality we can assume that $p=(0,0)$, as all notions under discussion are invariant under translations. Let $f \in \mathbb{k}[x, y]$ be such that $C=\mathrm{V}(f)$. Suppose $g \in \mathrm{M}_{p}(C)$ is such that $g=\bar{a} / \bar{b}=\bar{c} / \bar{d}$, where $\bar{a}, \bar{b}, \bar{c}, \bar{d} \in \mathbb{k}[C]$ are such that $a(p)=c(p)=0$ and $b(p), d(p) \neq 0$. Then $\bar{a} \bar{d}-\bar{c} \bar{b}=0$, so $a d-c b=h f$ for some $h \in \mathbb{k}[x, y]$. Thus,

$$
\mathrm{d}_{p}(a d-c b)=\mathrm{d}_{p}(h f)
$$

Expanding both sides of this equation gives

$$
a(p) \mathrm{d}_{p} d+d(p) \mathrm{d}_{p} a-c(p) \mathrm{d}_{p} b-b(p) \mathrm{d}_{p} c=h(p) \mathrm{d}_{p} f+f(p) \mathrm{d}_{p} h .
$$

But $a(p)=c(p)=f(p)=0$, so

$$
d(p) \mathrm{d}_{p} a-b(p) \mathrm{d}_{p} c=h(p) \mathrm{d}_{p} f
$$

Since $\left.\mathrm{d}_{p} f\right|_{\mathrm{T}_{p}(C)}=0$,

$$
d(p) \mathrm{d}_{p} a-\left.b(p) \mathrm{d}_{p} c\right|_{\mathrm{T}_{p}(C)}=0
$$

i.e.

$$
\left.\frac{\mathrm{d}_{p} a}{b(p)}\right|_{\mathrm{T}_{p}(C)}=\left.\frac{\mathrm{d}_{p} c}{d(p)}\right|_{\mathrm{T}_{p}(C)} .
$$

Therefore, $\mathrm{d}_{p}: \mathrm{M}_{p}(C) \rightarrow\left(\mathrm{T}_{p}(C)\right)^{*}$ is well-defined. Clearly, d_{p} is linear. If $\varphi \in\left(\mathrm{T}_{p}(C)\right)^{*}$, then φ is the restriction to $\mathrm{T}_{p}(C)$ of some linear function f on \mathbb{A}^{2}, so $\mathrm{d}_{p} f=\varphi$. Let $M=\langle x, y\rangle$. Let $\delta: \mathbb{k}[x, y] \rightarrow\left(\mathbb{A}^{2}\right)$ be the map

$$
\delta(h)=\left.\mathrm{d}_{p}(h)\right|_{\mathrm{T}_{p}(C)} .
$$

Then, it is easy to see that $\operatorname{ker}\left(\left.\delta\right|_{M}\right)=M^{2}$. Since $\mathrm{M}_{p}(C)=\bar{M} \mathcal{O}_{p}(C)$,

$$
\operatorname{ker}\left(\mathrm{d}_{p}\right)=\bar{M}^{2} \mathcal{O}_{p}(C)=\mathrm{M}_{p}^{2}(C)
$$

1.6 Corollary. Let C be an affine plane curve. Then $\mathrm{M}_{p}(C) /\left(\mathrm{M}_{p}(C)\right)^{2} \cong\left(\mathrm{~T}_{p}(C)\right)^{*}$.

Proof: This is immediate from the previous proposition and the First Isomorphism Theorem.

1.7 Examples.

(i) Let C be the parabola $\mathrm{V}\left(y-x^{2}\right)$. C is smooth at every point and $\mathbb{k}[C]=$ $\mathbb{k}[t]$. At $p=(0,0), \mathrm{M}_{p}(C)=\langle x\rangle$ and $\mathrm{M}_{p}(C) /\left(\mathrm{M}_{p}(C)\right)^{2}=\{\lambda x \mid \lambda \in \mathbb{k}\}$.
(ii) Let C be $\mathrm{V}\left(y^{2}-x^{3}\right)$, which is singular at the origin $p=(0,0)$. Here $\mathbb{k}[C]=\mathbb{k}[x, y] /\left\langle y^{2}-x^{3}\right\rangle$ and $\mathrm{M}_{p}(C)=\langle\bar{x}, \bar{y}\rangle \subseteq \mathbb{k}(C)$. We have

$$
\left(\mathrm{M}_{p}(C)\right)^{2}=\left\langle\bar{x}^{2}, \overline{x y}, \bar{y}^{2}\right\rangle=\left\langle\bar{x}^{2}, \overline{x y}\right\rangle
$$

so $\mathrm{M}_{p}(C) /\left(\mathrm{M}_{p}(C)\right)^{2}=\{a \bar{x}+b \bar{y} \mid a, b \in \mathbb{k}\}$. Since this has dimension two, we know that p is a singular point.
1.8 Proposition. Let C be an affine plane curve given by $f \in \mathbb{k}[x, y]$. Then $p \in C$ is a smooth point of C if and only if $\mathrm{M}_{p}(C)$ is principal. In this case, $M_{p}(C)=\langle t\rangle$, where $\mathrm{V}(t)$ is any line through p that is not $\mathrm{T}_{p}(C)$.

Proof: Suppose that C is smooth at p. By making an appropriate affine transformation, we may assume that $p=(0,0)$ and that the tangent line at p is $y=0$. We will show that M_{p} is generated by \bar{x}; the proof that M is generated by any line that is not the tangent line is similar. By the above assumptions $f(0,0)=0$, so it has no constant term. That the tangent line at $(0,0)$ is $y=0$ implies that f has no linear term in x. Therefore

$$
f(x, y)=y+\text { higher order terms. }
$$

Grouping the terms with y, we get $f=y g-x^{2} h$, where g is a unit in $\mathcal{O}_{p}(C)$ and $h \in \mathbb{k}[x]$. Taking residue classes, we get that

$$
0=\bar{f}=\overline{y g}-\bar{x}^{2} \bar{h},
$$

so $\bar{y}=\bar{g}^{-1} \bar{h} \bar{x}^{2}$. Therefore $\bar{y} \in\langle\bar{x}\rangle$, so $\mathrm{M}_{p}=\langle\bar{x}, \bar{y}\rangle=\langle\bar{x}\rangle$ is principal.
Conversely, if the maximal ideal is principal, say $\mathrm{M}_{p}=\langle t\rangle$, then $M_{p}^{2}=\left\langle t^{2}\right\rangle$ and $\mathrm{M}_{p} / \mathrm{M}_{p}^{2}=\{$ at $\mid a \in \mathbb{k}\}$, a one dimensional \mathbb{k}-vector space. This implies that C is smooth at p by Corollary 1.6 and the remark after the definition of the tangent space.
1.9 Corollary. Let C be an affine plane curve. Then $p \in C$ is a smooth point of C if and only if $\mathcal{O}_{p}(C)$ is a $D V R$.

Proof: This follows from the preceding proposition and the fact that $\mathcal{O}_{p}(C)$ is a Noetherian local ring.
1.10 Corollary. Let C be an affine plane curve. Then C is smooth everywhere if and only if $\mathfrak{k}[C]$ is a Dedekind domain.

Proof: This follows from the preceding corollary and the characterization of Dedekind domains as the one-dimensional integral domains whose localizations at all maximal ideals are DVRs.

