
1 Smooth curves

1.1 Definition. Let C be an affine plane curve in A2 given by f ∈ k[x,y] and
let p = (a, b) ∈ C . Then p is said to be a smooth point (or simple point) of C
if ∇f(a, b) 6= (0,0). A point that is not smooth is called a singular point (or
multiple point). A curve that is smooth at every point is called a smooth curve
(or non-singular curve). A point p of C is smooth if and only if there exists
a unique normal vector to C at p. The tangent line to C at p is given by the
equation ∇f(a, b) · (x − a,y − b) = 0.

1.2 Examples.
(i) The parabola V(y − x2) is non-singular since its gradient is (−2x,1),

which is never (0,0).

(ii) The cusp V(y2 − x3) has a singular point at (0,0) since its gradient is
(−3x2,2y) which is (0,0) at (0,0).

(iii) The alpha curve V(y2 − x3 − x2) has a singular point at (0,0).

1.3 Definition. The Zariski tangent space to C at p = (a, b) is

Tp(C) = {v ∈ A2 | ∇f(a, b) · v = 0}.

Therefore, dimk(Tp(C)) = 1 if and only if p is a smooth point of C and
Tp = A2 if and only if p is singular. Clearly, Tp(C) is a k-vector space. The
k-vector space dual (Tp(C))∗ is called the Zariski cotangent space of C at p.
Note that (Tp(C))∗ is considered as a subspace of (A2)∗, whose elements are
1× 2 matrices. Recall the differential map dp : k[x,y]→ (A2)∗ defined by

dp g =
[
∂g
∂x (p)

∂g
∂y (p)

]
= Jac(g)(p).

Without loss of generality, we can assume that p = (0,0), as all notions under
discussion are invariant under translations. Then, if C is given by f ∈ k[x,y],
Tp(C) = ker(dp f). We can also define a differential map on Mp(C).

1.4 Definition. Let C be an affine plane curve. If p ∈ C , the map dp : Mp(C)→
(Tp(C))∗ defined by

dp
a
b
= dp a
b(p)

∣∣∣
Tp(C)

is called the differential map at p. Moreover, given g ∈ Mp(C), dp g is the
differential of g at p.

1.5 Proposition. Let C be an affine plane curve. If p ∈ C , the differential map
dp : Mp(C) → (Tp(C))∗ is a well-defined surjective linear map whose kernel is
M2
p(C).



Proof: As usual, without loss of generality we can assume that p = (0,0), as
all notions under discussion are invariant under translations. Let f ∈ k[x,y]
be such that C = V(f ). Suppose g ∈ Mp(C) is such that g = a/b = c/d, where
a,b, c, d ∈ k[C] are such that a(p) = c(p) = 0 and b(p),d(p) ≠ 0. Then
ad− cb = 0, so ad− cb = hf for some h ∈ k[x,y]. Thus,

dp(ad− cb) = dp(hf).

Expanding both sides of this equation gives

a(p)dp d+ d(p)dp a− c(p)dp b − b(p)dp c = h(p)dp f + f(p)dp h.

But a(p) = c(p) = f(p) = 0, so

d(p)dp a− b(p)dp c = h(p)dp f .

Since dp f |Tp(C) = 0,

d(p)dp a− b(p)dp c|Tp(C) = 0,

i.e.
dp a
b(p)

∣∣∣
Tp(C)

= dp c
d(p)

∣∣∣
Tp(C)

.

Therefore, dp : Mp(C) → (Tp(C))∗ is well-defined. Clearly, dp is linear. If
ϕ ∈ (Tp(C))∗, then ϕ is the restriction to Tp(C) of some linear function f on
A2, so dp f =ϕ. Let M = 〈x,y〉. Let δ : k[x,y]→ (A2) be the map

δ(h) = dp(h)|Tp(C).

Then, it is easy to see that ker(δ|M) = M2. Since Mp(C) = MOp(C),

ker(dp) = M
2Op(C) = M2

p(C). �

1.6 Corollary. Let C be an affine plane curve. Then Mp(C)/(Mp(C))2 � (Tp(C))∗.

Proof: This is immediate from the previous proposition and the First Isomor-
phism Theorem. �

1.7 Examples.
(i) Let C be the parabola V(y − x2). C is smooth at every point and k[C] =
k[t]. At p = (0,0), Mp(C) = 〈x〉 and Mp(C)/(Mp(C))2 = {λx | λ ∈ k}.

(ii) Let C be V(y2 − x3), which is singular at the origin p = (0,0). Here
k[C] = k[x,y]/〈y2 − x3〉 and Mp(C) = 〈x,y〉 ⊆ k(C). We have

(Mp(C))2 = 〈x2, xy,y2〉 = 〈x2, xy〉,

so Mp(C)/(Mp(C))2 = {ax + by | a,b ∈ k}. Since this has dimension
two, we know that p is a singular point.



1.8 Proposition. Let C be an affine plane curve given by f ∈ k[x,y]. Then
p ∈ C is a smooth point of C if and only if Mp(C) is principal. In this case,
Mp(C) = 〈t〉, where V(t) is any line through p that is not Tp(C).

Proof: Suppose that C is smooth at p. By making an appropriate affine trans-
formation, we may assume that p = (0,0) and that the tangent line at p is
y = 0. We will show that Mp is generated by x; the proof that M is generated
by any line that is not the tangent line is similar. By the above assumptions
f(0,0) = 0, so it has no constant term. That the tangent line at (0,0) is y = 0
implies that f has no linear term in x. Therefore

f(x,y) = y + higher order terms.

Grouping the terms with y , we get f = yg − x2h, where g is a unit in Op(C)
and h ∈ k[x]. Taking residue classes, we get that

0 = f = yg − x2h,

so y = g−1hx2. Therefore y ∈ 〈x〉, so Mp = 〈x,y〉 = 〈x〉 is principal.
Conversely, if the maximal ideal is principal, say Mp = 〈t〉, then M2

p = 〈t2〉
and Mp /M2

p = {at | a ∈ k}, a one dimensional k-vector space. This implies
that C is smooth at p by Corollary 1.6 and the remark after the definition of
the tangent space. �

1.9 Corollary. Let C be an affine plane curve. Then p ∈ C is a smooth point
of C if and only if Op(C) is a DVR.

Proof: This follows from the preceding proposition and the fact that Op(C)
is a Noetherian local ring. �

1.10 Corollary. Let C be an affine plane curve. Then C is smooth everywhere
if and only if k[C] is a Dedekind domain.

Proof: This follows from the preceding corollary and the characterization of
Dedekind domains as the one-dimensional integral domains whose localiza-
tions at all maximal ideals are DVRs. �


