1 Isogenies between Elliptic Curves and the Tate Module

1.1 The Tate Module

1.1 Definition. Let E be an elliptic curve and ℓ a prime. The $(\ell$ -adic) Tale module of E is the inverse limit of $E[\ell^n]$, where the inverse limit is taken with respect to the natural maps

$$E[\ell^{n+1}] \to E[\ell^n].$$

The Tate module of *E* is denoted by $T_{\ell}(E)$.

Since each $E[\ell^n]$ is a $\mathbb{Z}/\ell^n\mathbb{Z}$ -module, and \mathbb{Z}_ℓ is the inverse limit of $\mathbb{Z}/\ell^n\mathbb{Z}$, we see that the Tate module has a natural structure as a \mathbb{Z}_ℓ -module,

- **1.2 Proposition.** *Let* E *be an elliptic curve. Then, as a* \mathbb{Z}_{ℓ} *-module, the Tate module of* E *has the following structure:*
 - (i) if $\ell \neq \operatorname{char}(\mathbb{k})$, then $T_{\ell}(E) \cong \mathbb{Z}_{\ell} \times \mathbb{Z}_{\ell}$;
 - (ii) if $\ell = \operatorname{char}(\mathbb{k}) > 0$, then $T_{\ell}(E) \cong \{0\}$ or $T_{\ell}(E) \cong \mathbb{Z}_{\ell}$.

PROOF: This follows immediately from Corollary III.6.4 (c) in Silverman.

The preceding proposition shows that as a \mathbb{Z}_ℓ -module, $\mathsf{T}_\ell(E)$ is free of degree at most 4. We will use the Tate module to show that the same thing is true of $\mathsf{Hom}(E_1,E_2)$ as a \mathbb{Z} -module for any pair of elliptic curves E_1 and E_2 . The important idea here is that isogenies of elliptic curves can be extended to homomorphisms of their Tate modules. Indeed, let $\varphi: E_1 \to E_2$ be an isogeny of elliptic curves. We know from our work on isogenies that φ induces natural maps from $E_1[\ell^n] \to E_2[\ell^n]$ for all primes $\ell \in \mathbb{Z}$, and these in turn induce a \mathbb{Z}_ℓ -linear map $\varphi_\ell: \mathsf{T}_\ell(E_1) \to \mathsf{T}_\ell(E_2)$. Therefore, we obtain a homomorphism from $\mathsf{Hom}(E_1,E_2)$ to $\mathsf{Hom}(\mathsf{T}_\ell(E_1),\mathsf{T}_\ell(E_2))$. By Proposition 1.2, both $\mathsf{T}_\ell(E_1)$ and $\mathsf{T}_\ell(E_2)$ are free \mathbb{Z}_ℓ -modules of rank at most 2. Hence $\mathsf{Hom}(\mathsf{T}_\ell(E_1),\mathsf{T}_\ell(E_2))$ is a free \mathbb{Z}_ℓ -module of rank at most 4, but this will require more work than it seems it should.

1.3 Proposition. Let E_1 and E_2 be elliptic curves. Then the degree map deg : $\text{Hom}(E_1, E_2) \to \mathbb{Z}$ is a positive-definite quadratic form.

PROOF: We only need to show that the pairing $\langle \cdot, \cdot \rangle$ given by

$$\langle \varphi, \psi \rangle = \deg(\varphi + \psi) - \deg(\varphi) - \deg(\psi)$$

is bilinear. This is clear, as

$$\begin{split} [\langle \varphi, \psi \rangle] &= [\deg(\varphi + \psi)] - [\deg(\varphi)] - [\deg(\psi)] \\ &= (\widehat{\varphi} + \psi) \circ (\varphi + \psi) - \widehat{\varphi} \circ \varphi - \widehat{\psi} \circ \psi \\ &= \widehat{\varphi} \circ \psi + \widehat{\psi} \circ \varphi. \end{split}$$

By Proposition III.4.2 (b) of Silverman, we know that $\text{Hom}(E_1, E_2)$ is torsion-free. Therefore, $\text{Hom}(E_1, E_2)$ naturally injects into $\text{Hom}(E_1, E_2) \otimes \mathbb{Q}$. If M is a submodule of $\text{Hom}(E_1, E_2)$, we define

$$M^{\mathrm{div}} = (M \otimes \mathbb{Q}) \cap \mathrm{Hom}(E_1, E_2),$$

or equivalently

$$M^{\text{div}} = \{ \varphi \in \text{Hom}(E_1, E_2) : n \cdot \varphi = [n] \circ \varphi \in M \text{ for some } n \in \mathbb{N} \}.$$

1.4 Proposition. Let E_1 and E_2 be elliptic curves. Then if M is a finitely generated submodule of $Hom(E_1, E_2)$, then M^{div} is also finitely generated.

PROOF: We will view M^{div} as a subgroup of $M \otimes \mathbb{R}$. We will show it is a discrete subgroup, which implies that it is finitely generated. Since the degree map is a quadratic form on $\text{Hom}(E_1, E_2)$, it is a quadratic form on M. Since M is finitely generated, we can think of it being given by a quadratic polynomial in the coefficients of each generator. Therefore, it extends naturally to a quadratic form on $M \otimes \mathbb{R}$, which is automatically continuous. Hence

$$U = \{ \varphi \in M \otimes \mathbb{R} : \deg(\varphi \otimes x) < 1 \}$$

is a neighbourhood of the origin in $M \otimes \mathbb{R}$, but it clearly only intersects M^{div} at 0, so M^{div} must be a discrete subgroup of $M \otimes \mathbb{R}$.

1.5 Theorem. Let E_1 and E_2 be elliptic curves, and let ℓ be a prime distinct from char(k). Then the map

$$\operatorname{Hom}(E_1, E_2) \otimes \mathbb{Z}_{\ell} \to \operatorname{Hom}(\mathsf{T}_{\ell}(E_1), \mathsf{T}_{\ell}(E_2))$$

given by $\varphi \otimes a \mapsto a \cdot \varphi_{\ell}$ is injective.

PROOF: Suppose that

$$\varphi = a_1(\varphi_1)_{\ell} + \cdots + a_k(\varphi_k)_{\ell} = 0,$$

where $a_1,\ldots,a_k\in\mathbb{Z}_\ell$ and $\varphi_1,\ldots,\varphi_k\in \mathrm{Hom}(E_1,E_2)$. Let M be the submodule of $\mathrm{Hom}(E_1,E_2)$ generated by $\varphi_1,\ldots,\varphi_k$. By Proposition 1.4, M^{div} is finitely generated, and hence free. Let ψ_1,\ldots,ψ_m be a basis for M^{div} . Then there exist $b_1,\ldots,b_m\in\mathbb{Z}_\ell$ such that

$$\varphi = b_1(\psi_1)_{\ell} + \cdots + b_m(\psi_m)_{\ell} = 0.$$

We will show that each b_i is zero by showing that its $\mathbb{Z}/\ell^n\mathbb{Z}$ part is zero for each n. If $n \in \mathbb{N}$, there is a $c_i \in \mathbb{Z}$ such that $b_i \equiv c_i \pmod{\ell^n}$. Hence,

$$\psi = c_1(\psi_1)_{\ell} + \cdots + c_m(\psi_m)_{\ell}$$

agrees with

$$\varphi = b_1(\psi_1)_{\ell} + \cdots + b_m(\psi_m)_{\ell}$$

up to the level of ℓ^n . Since φ acts as 0 on $T_\ell(E_1)$, ψ acts as 0 on $E_1[\ell^n]$. Since $\ell \neq \operatorname{char}(\Bbbk)$, $[\ell^n]$ is a separable morphism, and since its kernel is contained in the kernel of ψ , we can factor ψ as $[\ell^n] \circ \psi'$. Since $\psi \in M^{\operatorname{div}}$, $\psi' \in M^{\operatorname{div}}$ also, so

$$\psi' = d_1(\psi_1)_{\ell} + \cdots + d_m(\psi_m)_{\ell}$$

for some $d_1, \ldots, d_m \in \mathbb{Z}$. But the ψ_i are a basis for M^{div} , so $c_i = d_i \ell^n$. Hence $b_i \equiv 0 \pmod{\ell^n}$. Since $n \in \mathbb{N}$ was chosen arbitrarily, the b_i are 0 in \mathbb{Z}_ℓ , so $\varphi = 0$ as desired.

1.6 Corollary. Let E_1 and E_2 be elliptic curves. Then $Hom(E_1, E_2)$ is a free \mathbb{Z} -module of rank at most 4.

PROOF: Let ℓ be a prime distinct from char(k). By Theorem 1.5 and Proposition 1.2, $\text{Hom}(E_1, E_2) \otimes \mathbb{Z}_{\ell}$ is free of rank at most 4, so

$$\operatorname{Hom}(E_1, E_2) \otimes \mathbb{Q}_{\ell} \cong (\operatorname{Hom}(E_1, E_2) \otimes \mathbb{Z}_{\ell}) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}$$

is as well. Since $\text{Hom}(E_1, E_2) \otimes \mathbb{Q}$ is a vector space, it is automatically free, and it has rank at most 4, since

$$\operatorname{Hom}(E_1, E_2) \otimes \mathbb{Q}_{\ell} \cong (\operatorname{Hom}(E_1, E_2) \otimes \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}.$$

We may choose generators for $\operatorname{Hom}(E_1, E_2) \otimes \mathbb{Q}$ that lie in $\operatorname{Hom}(E_1, E_2)$ by clearing denominators, and these generators will generate a finitely generated submodule M of $\operatorname{Hom}(E_1, E_2)$. Since they generate all of $\operatorname{Hom}(E_1, E_2) \otimes \mathbb{Q}$ over \mathbb{Q} ,

$$M^{\mathrm{div}} = (M \otimes \mathbb{Q}) \cap \mathrm{Hom}(E_1, E_2)$$

 $\cong (\mathrm{Hom}(E_1, E_2) \otimes \mathbb{Q}) \cap \mathrm{Hom}(E_1, E_2)$
 $\cong \mathrm{Hom}(E_1, E_2),$

so by Proposition 1.4, we know that $\text{Hom}(E_1, E_2)$ is finitely generated. Since $\text{Hom}(E_1, E_2)$ is torsion-free, this implies that it is free. Therefore, by Theorem 1.5 and Proposition 1.2, the rank of $\text{Hom}(E_1, E_2)$ is at most 4.