
1 The Uniformization Theorem

In these notes we will prove the Uniformization Theorem, which states that
any elliptic curve defined over C is isomorphic to C/Λ for some lattice Λ. We
will actually present two proofs. The first, which is shorter, uses the theory
of coverings of Riemann surfaces. The second, which contains more ideas
that bear fruit beyond the proof of the Uniformization Theorem, constructs a
compact Riemann surface whose points correspond to equivalence classes of
lattices. The proof then uses this to show that the j invariant, restricted to
elliptic curves that come from lattices, is surjective. The main sources used
are [1], [2], [3], [4].

1.1 Lattices

1.1.1 Definition. Let V be an n-dimensional real vector space. An additive
subgroup Λ ⊆ V is called a lattice if there exist non-zero vectors γ1, . . . , γn ∈ V ,
linearly independent over R, such that

Λ = Zγ1 + · · · + Zγn.

The following proposition gives a characterization of lattices that will be
useful in showing that they arise from the action of the group of deck trans-
formations on the universal cover C of a

1.1.2 Proposition. Let V be a finite dimensional real vector space. A subgroup
Λ ⊆ V is a lattice if and only if

(i) Λ is discrete, i.e. there exist a neighbourhood U of zero such that Λ∩U =
{0}, and

(ii) Λ is contained in no proper vector subspace of V .

Proof: The forward direction is clear. Suppose that Λ is discrete and is con-
tained in no proper vector subspace of V . By induction on n = dim(V), we will
show that there exist γ1, . . . , γn ∈ V such that

Λ = Zγ1 + · · · + Zγn.

This is trivial when n = 0. Suppose that it holds for n ≥ 0. We will show that
it holds for n+1. Since Λ is not contained in any proper vector subspace of V ,
there exist n + 1 linearly independent vectors x1, . . . , xn+1 ∈ Λ. Let V0 be the
vector subspace of V spanned by x1, . . . , xn, and let Λ0 = Λ∩ V0. By applying
the induction hypothesis to Λ0, which is clearly a lattice, there exists linearly
independent vectors γ1, . . . , γn ∈ Λ0 ⊂ Λ such that

Λ0 = Zγ1 + · · · + Zγn.

Hence every vector x ∈ Λ may be written uniquely in the form

x = c1(x)γ1 + · · · + cn(x)γn + c(x)xn+1,



where the ci(x) and c(x) are real numbers. Since the parallelotope

P = {λ1γ1 + · · · + λnγn + λxn+1 : λi, λ ∈ [0,1]}

is compact, Λ∩P is finite. Hence there exists a vector γn+1 ∈ (Λ∩P) \V0 such
that

c(γn+1) = min{c(x) : x ∈ (Λ∩ P) \ V0} ∈ (0,1].

We claim that Λ = Λ0 + Zγn+1. Suppose that x ∈ Λ is arbitrary. Then there
exist mj ∈ Z such that

x′ = x −
n+1∑
j=1

mjγj =
n∑
j=1

λjγj + λxn+1,

where 0 ≤ λj ≤ 1 for j = 1, . . . , n, and 0 ≤ λ < c(γn+1). Since x′ ∈ Λ ∩ P , it
follows from the definition of γn+1 that λ = 0. Thus x′ ∈ Λ∩ V0 = Λ0. Hence
all λj are integers and thus are zero. This implies that x′ = 0, i.e. that

x =
n+1∑
j=1

mjγj ∈ Zγ1 + · · · + Zγn+1.
�

Let Λ be a lattice in C. Clearly, C/Λ is naturally given the structure of a
compact Riemann surface, which is also a complex Lie group because Λ is an
additive subgroup of C. Recall that the Eisenstein series of weight 2k for Λ is
the series

G2k(Λ) =
∑
ω∈Λ
ω≠0

ω−2k.

When there is no confusion about Λ, we will simply use the notation G2k. It is
proven in Silverman, Theorem IV.3.6 (a) that this series is absolutely conver-
gent for all k > 1. We let

g2 = g2(Λ) = 60G4 and g3 = g3(Λ) = 140G6.

Let E be the complex curve given by

y2 = 4x3 − g2x − g3.

It is proven in Silverman, Theorem VI.3.6 that the discriminant of this curve
vanishes, i.e. that it is smooth, and thus that it is an elliptic curve. Define the
map ϕ : C/Λ→ E ⊆ P2(C) by

ϕ(z) = [℘(z) : ℘′(z) : 1].

Silverman also proves there that ϕ is a complex analytic isomorphism of com-
plex Lie groups. Let Λ1 and Λ2 be lattices in C. In Corollary VI.4.1.1, Silver-
man proves that C/Λ1 and C/Λ2 are isomorphic if and only if Λ1 and Λ2 are



homothetic, i.e. Λ1 = αΛ2 for some α ∈ C∗. We will now give a different
characterization of homothety of lattices.

Let Λ be a lattice, and let γ1, γ2 ∈ C∗ be independent vectors over R such
that

Λ = Zγ1 + Zγ2.

Since γ1 and γ2 are independent over R, one of γ1/γ2 and γ2/γ1 is in the upper
half plane, and the other is in the lower half plane. Without loss of generality,
suppose that γ1/γ2 ∈ H, and let τ = γ1/γ2. Define

Λτ = Z+ Zτ.

Then Λ and Λτ are homothetic, as Λτ = γ−1
1 Λ. Therefore, for most of our later

discussions, we only need to consider lattices of the form Λτ for some τ ∈ H.

Recall that SL(2,R) is the group of 2×2 matrices
(
a b
c d

)
with real coefficients

such that ad − bc = 1. The elements of SL(2,R) are realized as the Möbius
transformations on P1, i.e. if A =

(
a b
c d

)
, we define

Az = az + b
cz + d .

It is easy to verify the formula

Im(Az) = (ad− bc)Im(z)
|cz + d|2 = Im(z)

|cz + d|2 ,

which implies that the upper half plane H is invariant under the action of
SL(2,R). Since the element

(−1 0
0 −1

)
of SL(2,R) acts as the identity transforma-

tion on H, the group action of SL(2,R) on H is not faithful. However, this is
essentially the only obstruction to a faithful action of SL(2,R) on H.

1.1.3 Proposition. The group action of SL(2,R)/{±1} on H is faithful. Fur-
thermore, SL(2,R)/{±1} is precisely the group of automorphisms of H.

Proof: This is an exercise in elementary complex analysis. �

Let SL(2,Z) be the subgroup of SL(2,R) formed by the matrices with integer
coefficients. The action of SL(2,Z) onH is intimately connected to the study of
elliptic curves. The following proposition is the first step in the construction
of modular curves.

1.1.4 Proposition. If τ, τ′ ∈ H, then Λτ and Λτ′ are homothetic if and only if
there is some A ∈ SL(2,Z) such that τ′ = Aτ .

Proof: Suppose that Λtau and Λτ′ are homothetic. Then there exists some
α ∈ C∗ such that Λτ = αΛτ′ . Thus α and ατ′ generate Λτ , so there exist
a,b, c, d ∈ Z such that ad− bc = ±1, ατ′ = aτ + b, and α = cτ + d. Thus,

τ′ = aτ + b
α

= aτ + b
cτ + d =

(
a b
c d

)
τ.



Since τ and τ′ are both inH, we have that ad−bc = 1, so that
(
a b
c d

)
∈ SL(2,Z).

Conversely, suppose that there is some A =
(
a b
c d

)
∈ SL(2,Z) such that

τ′ = Aτ . Let α = cτ + d. Then ατ′ = aτ + d, so that Λτ′ ⊆ αΛτ . Since
ad − bc = 1, we can exchange τ and τ′ and do the same with A−1 ∈ SL(2,Z)
to show that αΛτ ⊆ Λτ′ . �

1.2 A Covering Space Proof

The following proposition could be included in the proof of the Uniformization
Theorem, but it is of independent interest.

1.2.1 Proposition. Let G be a group of automorphisms of C with no fixed
points such that every orbit of G is discrete. Then G is one of the following:

(i) the trivial group,

(ii) the group of all translations of the form

z , z +nγ,

where γ ∈ C∗ is fixed and n ∈ Z,

(iii) the group of all translations of the form

z , z +mγ1 +nγ2,

where γ1, γ2 ∈ C∗ are fixed and linearly independent over R, and m,n ∈
Z.

Proof: It is well known that the holomorphic automorphisms of C are the
affine maps of the form

z , az + b,

where a,b ∈ C and a ≠ 0. If a ≠ 1, then this transformation has a fixed
point. Thus G consists only of translations z , z + b. Let Λ be the orbit of
the origin under G. Then Λ is a discrete subgroup of C and G consists of all
translations z , z + b, where b ∈ Λ. Let V ⊆ C be the smallest real subspace
of C containing Λ. By Proposition 1.1.2, depending on whether the dimension
of V is 0, 1, or 2, one has case (i), (ii), or (iii). �

1.2.2 Theorem (Uniformization). Let X be a compact Riemann surface of genus
one. Then X is isomorphic to C/Λ for some lattice Λ ⊆ C.

Proof: Since X has genus one, its universal cover is C. Hence covering space
theory says that X is isomorphic to the orbit space Γ\C, where Γ is the group
of deck transformations of the cover of X by C. By covering space theory,
we also known that this action has discrete orbits and is free of fixed points.
Therefore, by Proposition 1.2.1, Γ is of one of the three forms mentioned in
the proposition. Since X is compact, this eliminates the first two possibilities,



which would lead to non-compact orbit spaces. Therefore, Γ consists of all
translations of the form

z , z +mγ1 +nγ2,

where γ1, γ2 ∈ C∗ are fixed and linearly independent over R, and m,n ∈ Z.
But this implies that X is isomorphic to C/Λ, where Λ is the orbit of the origin,
i.e.

Λ = {mγ1 +nγ2 : m,n ∈ Z}. �

1.3 Discrete Subgroups of SL(2,R)

We are mostly interested in the group SL(2,Z) in proving the Uniformization
Theorem, but other discrete subgroups of SL(2,R) are important, e.g. for
defining higher modular curves.

1.3.1 Definition. If A ∈ SL(2,R), we say that A is hyperbolic if its eigenvalues
are real and distinct, elliptic if its eigenvalues are not real and distinct (and
thus complex conjugates of each other), and parabolic otherwise.

Recall that a non-trivial Möbius transformation has either one or two fixed
points on P1. It is easy to see that A ∈ SL(2,R) is hyperbolic if and only if it
has two fixed points on R, elliptic if and only if it has two fixed points, one in
H and the other in H, and parabolic if and only if it has exactly one fixed point.
Given a subgroup Γ of SL(2,R), we can examine the action of Γ on H in terms
of the fixed points of the transformations in Γ .

1.3.2 Definition. Let Γ be a subgroup of SL(2,R). If the stabilizer of z ∈ H
under the action of Γ is trivial, we call z a regular point of Γ . If z is the unique
fixed point in H of an elliptic element of Γ , we say that z is an elliptic point of
Γ . If z ∈ R∪ {∞} is the unique fixed point of a parabolic element of Γ , we say
that z is a cusp of Γ .

We would like to form an orbit space of the action of Γ on H. However, it
will often be the case that the orbit space is not compact. In order to remedy
this situation, we will adjoin additional points in order to compactify the orbit
space. These additional points we will add are simply the cusps of Γ , which
intuitively makes sense, as the points of R∪{∞} are the “points at infinity” of
H. For any cusp s of Γ , we define

P(s) = {A ∈ SL(2,R) : A(s) = s, and A is parabolic or A = ±1},

and
Γs = {σ ∈ Γ : σ(z) = z}.

1.3.3 Proposition. Let Γ be a discrete subgroup of Γ , and let s be a cusp of Γ .
The quotient Γs/(Γ ∩ {±1} is isomorphic to Z. Moreover, an element of Γs is
either ±1 or parabolic, i.e. Γs = Γ ∩ P(s).



Proof: Omitted for now, but not too difficult. �

1.3.4 Definition. Let Γ be a subgroup of SL(2,R), let Cusp(Γ) be the set of cusp
points of Γ , and let H∗ = H∪ Cusp(Γ). If z ∈ H∗, we let Γ(z) denote the orbit
of z, and we let Γ\H∗ denote the set of orbits of H∗ under the action of Γ .

We would like to put a topology on Γ\H∗. In order to do this, we must
first put a topology on H∗, as the subspace topology will not give the desired
behaviour at the cusp points. We will define the topology on H∗ by defining
families of local neighbourhood systems. We give any point in H the usual
neighbourhood system. If z is a cusp of Γ other than ∞ then we take the basic
neighbourhoods of z to be

{z} ∪ {the interior of a circle in H tangent to the real axis at z}.

If ∞ is a cusp of Γ , then we take the basic neighbourhoods of ∞ to be

{∞} ∪ {z ∈ H : Im(z) > C},

where C > 0. It is easy to see that this defines a Hausdorff topology on H∗,
and that every element of Γ acts as a homeomorphism of H∗. We can then
form the quotient space Γ\H∗. We would like to show that the quotient space
is a locally compact Hausdorff space.

We will assume that ∞ is a cusp of Γ , which is true in all of the cases we
considered in class. If σ ∈ Γ , let cσ denote the lower left entry of the matrix σ .

Then Γ∞ = {σ ∈ Γ : cσ = 0}. By Proposition 1.3.3, there is a generator ±
(

1 h
0 1

)
of Γ∞ modulo ±1.

1.3.5 Proposition. |cσ | depends only on the double coset Γ∞σ Γ∞.

Proof: This is a simple computation. �

1.3.6 Proposition. Given M > 0, there are only finitely many double cosets
Γ∞σ Γ∞ such that σ ∈ Γ and |cσ | ≤ M .

Proof: Since Γ∞ = {σ ∈ Γ : cσ = 0}, it is sufficient to consider only those σ
for which cσ ≠ 0. Let τ = ±

(
1 h
0 1

)
of Γ∞ modulo ±1. Let σ =

(
a b
c d

)
∈ Γ , with

c non-zero such that |c| ≤ M . We want to find an element σ ′′ in Γ∞σ Γ∞ such
that σ ′′(i) is contained in a compact set K which depends only on M and h.
First, choose n ∈ Z such that

1 ≤ d+nhc ≤ 1+ |hc|,

and let σ ′ = στn =
(
a′ b′
c′ d′

)
. Then |c′| = |c|, |d′| = d+nhc, and

Im(σ ′(i)) = 1
c′2 + d′2 .



We have 1 ≤ |d′| ≤ 1+ |hc| and |c| ≤ M , so

1 ≤ c′2 + d′2 < M2 + (1+ |h|M)2.

Therefore, σ ′(i) belongs to the domain defined by

1 ≥ Im(z) ≥ 1
M2 + (1+ |h|M)2 .

The transformation z , τm(z) = z +mh does not change Im(z), so we can
take m so that τmσ ′(i) is in this domain and

0 ≤ Re(z) ≤ |h|.

The set

K =
{
z ∈ H : 0 ≤ Re(z) ≤ |h| and 1 ≥ Im(z) ≥ 1

M2 + (1+ |h|M)2
}

is a compact subset of H. We have thus found an element σ ′′ = τmστn such
that σ ′′(i) ∈ K. It is then not hard to show that by the discreteness of Γ there
must be only finitely many such σ ′′. �

1.3.7 Proposition. There exists a positive number r , depending only on Γ ,
such that |cσ | ≥ r for all σ ∈ Γ \ Γ∞. Moreover, for such an r , one has

Im(z) · Im(σ(z)) ≤ 1
r 2

for all z ∈ H and all σ ∈ Γ \ Γ∞.

Proof: The existence of such an r follows immediately from the previous

proposition. If σ =
(
a b
c d

)
∈ Γ and c ≠ 0, then we have

Im(σ(z)) = Im(z)
|cz + d|2 ≤

Im(z)
(cIm(z))2

≤ 1
r 2Im(z)

.
�

1.3.8 Proposition. For every cusp s of Γ , there exists a neighbourhood U of s
in H∗ such that Γs = {σ ∈ Γ : σ(U)∩U ≠∅}.

Proof: We may assume that s = ∞. Let U = {z ∈ H∗ : Im(z) > 1/r}, where r
is chosen as in the previous proposition. If σ ∈ Γ \ Γ∞ and z ∈ U , we have, by
the previous proposition, that Im(σ(z)) < 1/r . �

It follows that two points of U are equivalent under Γ if and only if they are
equivalent under Γs , so we may identify Γs\U with a subset of Γ\H∗.

1.3.9 Proposition. For every cusp s of Γ and for every compact set K of H,
there exists a neighbourhood U of s such that U ∩ Γ(K) = ∅ for every γ ∈ Γ .



Proof: Again, we assume that s = ∞. We can find two positive numbers A and
B so that A < Im(z) < B for all z ∈ K. Let r be as in Proposition 1.3.7, and let

U = {z ∈ H∗ : Im(z) > max(B,1/(Ar 2))}.

By Proposition 1.3.7, if σ ∈ Γ \ Γ∞, then Im(σ(z)) < 1/(Ar 2). If σ ∈ Γ∞, then
Im(σ(z)) = Im(z) < B. �

1.3.10 Theorem. The quotient topology on Γ\H∗ is Hausdorff.

Proof: We know that the quotient Γ\H is Hausdorff from basic facts about
discrete group actions. Since Γ\H∗ is the union of Γ\H, it remains to show
that an equivalence class of cusps can be separated from an equivalence class
of points in H and also from another equivalence class of cusps. Proposi-
tion 1.3.9 handles the former case, so let us only be concerned with the latter
case. Suppose that there exist two cusps s and t which are not equivalent.

Without loss of generality, we may assume that t = ∞. Let ±
(

1 h
0 1

)
be as be-

fore, and define

L = {z ∈ C : Im(z) = u},
K = {z ∈ L : 0 ≤ Re(z) ≤ |h|},
V = {z ∈ H∗ : Im(z) > u},

where u > 0. Since K is compact, by Proposition 1.3.9 there is a neighbourhood
U of s so that K ∩ ΓU = ∅. We may assume that the boundary of U is a
circle tangent to the real line. We now simply need to show that V ∩ ΓU = ∅.
Suppose, on the contrary, that γ(U) ∩ V ≠ ∅ for some γ ∈ Γ . Since γ(s) ≠
∞, the boundary of γ(U) is a circle tangent to the real line. Therefore, if
γ(U)∩ V ≠∅, then γ(U)∩ L ≠∅. Hence γ(U) intersects some translation of
K by an element δ of Γ∞. Then δ−1γ(U)∩ K ≠∅, which gives a contradiction.
Therefore, our assumption that there are two inequivalent cusps is false. �

1.3.11 Proposition. The quotient topology on Γ\H∗ is locally compact.

Proof: We already know that any point in Γ\H has a system of compact neigh-
bourhoods, so we only need ot worry about cusps. Let s be a cusp of Γ , and
let π : H∗ → Γ\H∗ be the natural projection map. As usual, without loss of
generality we may assume that s = ∞. By Proposition 1.3.8 and the remarks
thereafter, there exists a neighbourhood V = {z ∈ H∗ : Im(z) ≥ c} with a posi-

tive constant c such that V/Γ∞ is identified with π(V). If ±
(

1 h
0 1

)
is a generator

of Γ∞ modulo ±1, we see that π(V) coincides with the image of

{z ∈ V : z = ∞ or 0 ≤ Re(z) ≤ |h|}

under π . The latter set is obviously compact, so π(V) is compact. �



We will now put a complex structure on Γ\HP∗. Let π : H∗ → Γ\H∗ denote
the natural projection map. For every v ∈ H∗, let

Γv = {γ ∈ Γ : γ(v) = v}.

From elementary facts about discrete group actions in the case of v ∈ H and
Proposition 1.3.8 in the case of a cusp, there exists an open neighbourhood U
of v such that

Γv = {γ ∈ Γ : γ(U)∩U ≠∅}.

Ths gives an injection Γv\U → Γ\H∗ such that Γv\U is an open neighbourhood
of π(v). If v is neither elliptic nor a cusp, thn Γv contains only 1 and possible
−1, so that the map ϕ : U → Γv\U is a homeomorphism. We take (Γv\U,π−1)
to be a pair of a neighbourhood and local parameter in the complex structure
on Γ\H∗.

If v is elliptic, let Γv denote the group (Γv ·{±1})/{±1}. Let λ be a holomor-
phic isomorphism ofH onto the unit discD such that λ(v) = 0. If Γv is of order
n, then λΓvλ−1 consists of the transformations w , ζkw for k = 0, . . . n − 1,
where ζ = e2piin. We can then define a map p : Γv\U → C by p(π(z)) = λ(z)n.
It is easy to see that p is a homeomorphism onto an open subset of C, so we
include the pair (Γv\U,p) in the complex structure on Γ\H∗.

Let s be a cusp of Γ , and let σ be an element of SL(2,R) such that σ(s) = ∞.
Then

σ Γsσ−1 · {±1} =
{
±
(

1 h
0 1

)m
: m ∈ Z

}
for some h > 0. Then we can define a homeomorphism p of Γs\U into an open
subset of C by

p(π(z)) = exp(2πip(z))
h

,

and we include the pair (Γs\U,p) in the complex structure on Γ\H∗. It is easy
to verify that this actually defines a complex structure.

1.4 The Modular Group

The modular group is the group SL(2,Z) of matrices in SL(2,R) with integer
coefficients. Clearly, SL(2,Z) is a discrete subgroup of SL(2,R).

1.4.1 Proposition. The cusps of SL(2,Z) are precisely the points in Q ∪ {∞},
and all of these cusps lie in the same SL(2,Z) orbit.

Proof: It is clear that ∞ is a fixed point under the parabolic element
(

1 1
0 1

)
of

SL(2,Z). Let
(
a b
c d

)
be a parabolic element of SL(2,Z), and let z be its unique

fixed point. Since we already dealt with ∞, we may assume that z is finite, in
which case it satisfies the equation

cz2 + (d− a)z − b = 0,



and c ≠ 0. Since the discriminant of the above equation vanishes, z must be
rational. Conversely, if p,q ∈ Z satisfy q ≠ 0 and gcd(p, q) = 1, let t and u be
integers such that pt − qu = 1. Then

σ =
(
p u
q t

)
∈ SL(2,Z),

and σ(∞) = p/q. Since the image of any cusp under the action of SL(2,Z) is a
cusp, this implies that the cusps of SL(2,Z) are precisely the points ofQ∪{∞}.
Also, it implies that all cusps are in a single orbit. Therefore,

SL(2,Z)\H∗ = (SL(2,Z)\H)∪ {∞}. �

1.4.2 Definition. If Γ is a discrete subgroup of SL(2,R), we call F a fundamenal
domain for Γ if

(i) F is a connected open subset of H;

(ii) every point of H is equivalent to some point of the closure of F under Γ ;
(iii) no two points of F are equivalent under Γ .

It is apparently possible to show that every discrete subgroup of SL(2,R)
has a fundamental domain, but we will only identify the fundamental domain
of SL(2,Z).

1.4.3 Theorem. The set

F =
{
z ∈ C : −1

2
< Re(z) <

1
2
, |z| > 1

}
is a fundamental domain for SL(2,Z).

Proof: Clearly, F is a connected open subset of H. Fix z ∈ H and σ =
(
a b
c d

)
∈

SL(2,Z). Then

Im(σ(z)) = Im(z)
|cz + d|2 .

Since {cz + d : c,d ∈ Z} is a lattice in C, there exists a pair (c, d) ≠ (0,0)
minimizing |cz + d. Thus, for a given z, there is a σ ∈ SL(2,Z) maximizing
Im(σ(z)). We will assume that σ has this property, and letw = σ(z) = x+iy ,
and let γ =

(
0 1
−1 0

)
. Then

Im(γσ(z)) = Im
(−1
w

)
= y
|w|2 ≤ y,

and hence |w| ≥ 1. If τ =
(

1 1
0 1

)
, we have that

Im(τhσ(z)) = Im(σ(z))



for every h ∈ Z, and hence τhσ(z)| ≥ 1. Choosing a suitable h, we see that z
is equivalent to a point of the region

F =
{
z ∈ C : −1

2
≤ Re(z) ≤ 1

2
, |z| ≥ 1

}
.

Now all that remains to be shown is that no two points of F are equivalent
under Γ . Let z and z′ be distinct points of F , and suppose that z′ = σ(z) for

some σ =
(
a b
c d

)
∈ SL(2,Z). Without loss of generality, we may assume that

Im(z) ≤ Im(z′) = Im(z)
|cz + d|2 .

Then
|c| · Im(z) ≤ |cz + d| ≤ 1.

If c = 0, then a and d are equal and are either −1 or 1, so that z′ = z ± b,
which is impossible. Therefore, c ≠ 0. By some simple plane geometry, we
observe that Im(z) >

√
3//2, so by the above equation, |c| = 1, and we have

that |z±d| ≤ 1. But if z ∈ F and |d| ≥, we have that |z+d| > 1. Therefore, we
must have that d = 0, so that |z| ≤ 1. But this contradicts the assumption that
z ∈ F . Therefore, our assumption that z and z′ are equivalent under the action
of SL(2,Z) is false, showing that F is a fundamental domain for SL(2,Z). �

1.4.4 Corollary. The Riemann surface SL(2,Z)\H∗ = (SL(2, Z)\H) ∪ {∞} is
compact.

Proof: This follows from the easily verified fact that

F ′ =
{
z ∈ C : |z| ≥ 1,Re(z) = −1

2

}
∪
{
z ∈ C : |z| = 1,= 1

2
≤ Re(z) ≤ 0

}
is a se of representatives for H modulo the action of SL(2,Z). �

1.4.5 Proposition. The group SL(2,Z) is generated by the elements

σ =
(

1 1
0 1

)
and τ =

(
0 −1
1 0

)

Proof: Let G be the subgroup of SL(2,Z) generated by σ and τ . Then −1 =
τ2 ∈ G. Observe that every element in SL(2,Z) of the form

(
a b
0 d

)
is contained

in G, and if
(
a b
c d

)
∈ G, then(

−c −d
a b

)
= τ ·

(
a b
c d

)
∈ G.

Suppose that G ≠ SL(2,Z), and fix
(
a b
c d

)
∈ SL(2,Z) \G such that min(|a|, |c|)

is minimized. We may assume that |a| ≥ |c| > 0. Let q and r be integers such
that a = cq + r and 0 ≤ r < |c|. Then

σ−q
(
a b
c d

)
=
(
r ∗
c ∗

)
∉ G,



and
r = min(r , |c|) < |c| = min(|a|, |c|),

contradicting the choice of
(
a b
c d

)
. Therefore, our assumption that G is not all

of SL(2,Z) is false. �

1.5 Modular Functions

We are interested functions that we can define that are invariants of elliptic
curves, and in particular, functions on elliptic curves that come from lattices
that are invariants of the underlying curves. Since the points of SL(2,Z)\H
correspond to equivalence classes of lattices under homothety, it is natural to
attempt to define these as meromorphic functions on SL(2,Z)\H∗, or mero-
morphic functions on H that satisfy certain regularity conditions under the
action of SL(2,Z). We will also be interested in functions that do not quite
pass to the quotient, but fail to do so in a rather trivial way.

1.5.1 Definition. Let k be an integer, and let f be a meromorphic function on
H. We say that f is weakly modular of weight 2k if

f
(
az + b
cz + d

)
= (cz + d)2kf(z)

for all
(
a b
c d

)
∈ SL(2,Z) and z ∈ H.

Remark. The reason we only consider modular functions of even weight is
that there would be no interesting function satisfying the definition for an odd
weight m, as

(−1 0
0 −1

)
∈ SL(2,Z) and we would have

f(z) = f
(−z + 0

0− 1

)
= (−1)mf(z) = −f(z)

for all z ∈ H.

Since we computed a useful set of generators for SL(2,Z), we have an alter-
nate characterization of modular functions.

1.5.2 Proposition. Let f be a meromorphic function on H. Then f is weakly
modular of weight 2k if and only if

f(z + 1) = f(z) and f
(
−1
z

)
= z2kf(z)

for all z ∈ H.

Proof: Immediate from Proposition 1.4.5. �



Suppose that f is a meromorphic function on H such that f(z+1) = f(z).
Then f can be expressed as a function of q(z) = e2πiz that is holomorphic
in the open unit disk with the origin removed, which we will denote by f̃ .
If f̃ extends to a holomorphic (meromorphic) function at the origin, then we
say that f is holomorphic (meromorphic) at infinity. If f is holomorphic at
infinity, we define f(∞) = f̃ (0). This notation makes sense, because both 0
and ∞ are cusps of SL(2,Z), and all cusps of SL(2,Z) are equivalent. If f is
a weakly modular function of weight 2k, we say that f is a modular function
of weight 2k. It is easy to see that the modular functions on H correspond to
the meromorphic functions on SL(2,Z)\H∗ by examining the definition of the
complex structure on H∗.

1.5.3 Definition. If f is a modular function that is holomorphic everywhere
(including infinity), we say that f is a modular form. If, in addition, it vanishes
at infinity, we say that it is a cusp form.

A modular form is then given by a series

f(z) =
∞∑
n=0

anqn =
∞∑
n=0

ane2πinz,

which converges for |q| < 1, i.e. for Im(z) > 0, and satisfies the identity

f
(
−1
z

)
= z2kf(z).

It is a cusp form precisely when a0 = 0.
We have already encountered the Eisenstein series of a lattice. We will

define a modular form G2k on H by simply letting G2k(z) be the Eisenstein
series of the lattice Λz, i.e.

G2k(z) = G2k(Λz) =
∑
ω∈Λz
ω≠0

ω−2k =
∑

m,n∈Z
(mz +n)−2k.

1.5.4 Proposition. Let k > 1 be an integer. The function G2k is a modular form
of weight 2k, and G2k(∞) = 2ζ(2k), were ζ is the Riemann zeta function.

Proof: The definition of G2k and what we already know about the Eisenstein
series of a lattice show that G2k is a weakly modular function of weight 2k
that is holomorphic in H. To show that G2k is holomorphic at infinity, we need
to show that G2k(z) has a limit as Im(z) → ∞. If we suppose that z is in the
fundamental domain D, then we can apply uniform convergence and compute
the limit term by term. The terms (mz + n)−2k relative to m ≠ 0 give 0, and
the others give n−2k. Therefore,

lim
Im(z)→∞

G2k(z) =
∑
n∈Z

n−2k = 2
∞∑
n=1

n−2k = 2ζ(2k).
�



The Eisenstein series that we are most concerned with are those with weights
4 and 6. It is helpful to replace them with the multiples

g4(z) = 60G4(z) and g6(z) = 140G3(z).

We then have g4(∞) = 120ζ(4) and g6(∞) = 280ζ(6). Using the known values
of the Riemann zeta function, we have that

g4(∞) =
4
3
π4 and g6(∞) =

8
27
π6.

Hence, if we let
∆(z) = g3

4(z)− 27g2
6(z),

then ∆(∞) = 0, so ∆ is a cusp form of weight 12.
Let j be the function defined by

j(z) = 1728g2(z)3

∆(z)
.

It follows from our previous investigation of the j invariant for elliptic curves
that j(z) is the j invariant of C/Λz.

1.5.5 Proposition. The function j is a modular function of weight 0 that is
holomorphic on H and has a simple pole at infinity.

Proof: The first assertion follows from the fact that g3
4 and ∆ are both modu-

lar functions of weight 12. The second assertion follows from the fact that g3
4

is non-zero at infinity whereas ∆ has a simple zero at infinity. �

We are now ready to prove the result that has motivated most of our labour.

1.5.6 Theorem. The function j induces an analytic isomorphism of SL(2,Z)\H∗
with P1.

Proof: Clearly, j is injective when viewed as a holomorphic function from
SL(2,Z)\H∗ to P1, and it is obviously non-zero. Therefore, by the compactness
of SL(2,Z)\H∗, j is surjective. Therefore, j is an analytic isomorphism. �

1.5.7 Corollary. Let E be a complex elliptic curve. Then E is isomorphic to
E/Λ for some lattice Λ in C.

Proof: This follows from the surjectivity of the j function given by previous
theorem and the fact that the j invariant is a complete invariant of elliptic
curves. �
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