
1 The Group Law

Throughout these notes, k will be an algebraically closed field and E will be
an elliptic curve over k in Weierstrass form. Recall that ∞ = [0 : 1 : 0] is the
point at infinity, and the tangent line to ∞ in projective coordinates is given
by z, which intersects E at only z, so by Bézout’s Theorem, it intersects with
multiplicity 3.

1.1 Definition of the group law

If p,q ∈ E, let L be the line connecting p and q, and let t be the third point
of the intersection of L with E. Let L′ be the line connecting t and ∞. Then
p ⊕ q is the point such that L′ intersecs E at t, ∞, and p ⊕ q, whose existence
is guaranteed by Bézout’s Theorem.

1.1 Proposition. Let E be an elliptic curve. Then:

(i) if a line L intersects E at p,q, t, then (p ⊕ q)⊕ t = ∞;

(ii) p ⊕∞ = p;

(iii) p ⊕ q = q ⊕ p.

(iv) if p ∈ E, then there exists a q ∈ E such that p ⊕ q = ∞.

Proof: Only the last statement requires proof. Let L be the line through p and
∞. Then it must intersect E at one more point q, so that by a combination of
(i) and (ii),

p ⊕ q = (p ⊕∞)⊕ q = ∞. �

However, we have not yet shown that this group law is actually associative.
There are a few ways to do so. The first, which is suggested in Silverman, is to
use the explicit formulas given for p ⊕ q in terms of the coordinates of p and
q to verify that the group law is associative by hand. The second approach,
which we will present here, is to use facts about elementary projective plane
geometry to derive the associativity. The final approach, which is more in line
with the material in the reading course thusfar, is to derive the associativity
by first proving that there is an operation-preserving bijection of E with its
divisor class group.

1.2 An elementary approach

We will use the following consequence of Bézout’s Theorem: if C and D are
plane curves of degrees m and n respectively that intersect in more than mn
points, then C and D have a common component. This can also be proven for
curves over an arbitrary infinite field with a fairly simple direct argument.



1.2 Proposition. Let E be an elliptic curve. If C and C′ are plane cubics such
that

E ∩ C =
9∑
i=1

(pi),

and

E ∩ C′ =
8∑
i=1

(pi)+ (q),

then q = p9.

Proof: Since E and C only intersect in 9 points, they must be distinct. Observe
that no four of the points of intersection between E and C can lie on a line,
because otherwise by Bézout’s Theorem that line would be a common compo-
nent of E and C , contradicting the fact that E is irreducible and distinct from
C . By the same reasoning, no seven of the the points of intersection between
E and C can lie on a conic.

If C′ is not of the form αE + βC , then αE + βC + γC′ is a two-dimensional
homogeneous family of cubics, and for any distinct points p,q ∈ P2, there
exists a point [α : β : γ] ∈ P2 such that αE + βC + γC′ goes through p and q.
We will use this fact to extend the facts mentioned in the previous paragraph
to three and six points respectively.

Suppose that p1, p2, p3 lie on a common line L. Let D be the conic through
p4, p5, p6, p7, and p8. Choose p′ on L and p′′ off of L and off of D. Then, by
Bézout’s Theorem, the cubic αE+βC+γC′ going through p′, p′′, and p1, . . . , p8

has L and D as components. But this contradicts the choice of p′′ as being off
of D and L. Therefore, our assumption is false, and none of p1, p2, and p3 lie
on a common line. By reordering p1, . . . , p8, this shows that no three of those
points lie on a common line.

Now, suppose that p1, . . . , p6 lie on a common conic D. Let L be the line
through p7 and p8. Choose p′ on D and p′′ off of D and off of L. Then, by
Bézout’s Theorem, the cubic αE+βC+γC′ going through p′, p′′, and p1, . . . , p8

has D and L as components. This contradicts the choice of p′′ off of D and L.
Therefore, our assumption is false, and none of p1, p2, and p3 lie on a common
line. By reordering p1, . . . , p8, this shows that no six of those points lie on a
common conic.

Finally, let L be the line through p1 and p2, and let D be the conic through
p3, p4, p5, p6, and p7. Choose distinct points p′ and p′′ on L but not on D.
Then, by Bézout’s Theorem, the cubic αE + βC + γC′ going through p′, p′′,
and p1, . . . , p8 has L and D as components. This contradicts the fact that p8

is not on L or C by the previous two paragraphs. Therefore, we must have
C′ = αE + βC for some [α : β] ∈ P2, which implies that q = p9. �

1.3 Corollary. Let E be an elliptic curve. The binary operation ⊕ on E is asso-
ciative.



Proof: Suppose p,q, r ∈ E. Let L1, M1, and L2 be lines such that

E ∩ L1 = (p)+ (q)+ (s′)
E ∩M1 = (∞)+ (s′)+ (s),
E ∩ L2 = (s)+ (r)+ (t′).

Similarly, let M2, L3, and M3 be lines such that

E ∩M2 = (q)+ (r)+ (u′),
E ∩ L3 = (∞)+ (u′)+ (u),
E ∩M3 = (p)+ (u)+ (t′′).

By the definition of the group law, we know that (p ⊕ q)⊕ r is the third point
on the line joining ∞ and t′, and that p ⊕ (q ⊕ r) is the third point on the line
joining ∞ and t′′. Thus, it suffices to show that t′ = t′′. To do this, let

C = L1L2L3 and C′ = M1M2M3,

and apply Proposition 1.2. �

1.3 An approach using divisors

One can show that the group law is associative by using the theory of divisors
on curves. The key ingredient is the following proposition, which we will prove
by using the Riemann-Roch Theorem, but there is a more elementary proof.

1.4 Proposition. Let E be an elliptic curve. If p,q ∈ E, then (p) ∼ (q) if and
only if p = q.

Proof: The backwards direction is trivial, so we need only prove the forwards
direction. Suppose that (p) ∼ (q), and f ∈ k(C) is such that div(f ) = (p)−(q).
Then f ∈ L((q)), and by the Riemann-Roch Theorem, dimL(q) = 1. But
L((q)) already contains the constant functions, so f is constant and p = q. �

Recall that Cl0(E), the (degree zero) divisor class group of E, is the quotient
of Div0(E), the degree zero divisors on E, by the principal divisors. The above
proposition implies that (p)−∞ and (q)− (∞) give distinct classes in Cl0(E)
whenever p ≠ q. Since ∞ is the identity for the group law,

1.5 Proposition. Let E be an elliptic curve. Then:

(i) if (p)− (∞) ∈ Div0(E), −((p)− (∞)) ∼ (t)− (∞) for some t ∈ E;

(ii) if (p)− (∞), (q)− (∞) ∈ Div0(E),

((p)− (∞))+ ((q)− (∞)) ≡ (t)− (∞)

for some t ∈ E.



(iii) if D ∈ Div0(E), then there exists a p ∈ E such that D ∼ (p)− (∞).

Proof:
(i) Fix (p)− (∞) ∈ Div0(E). Let L be the line in P2 through p and ∞. Then,

by Bézout’s Theorem, L∩E = (∞)+(p)+(t) for some t ∈ E. If L is given
by the 1-form h, then

div(h/z) = div(h)− div(z)
= ((∞)+ (p)+ (t))− 3(∞)
= p + t − 3(∞)
= (p −∞)+ (t −∞)],

so −((p)− (∞)) ∼ (t)− (∞).
(ii) Fix (p) − (∞), (q) − (∞) ∈ Div0(E). Let L be the line through p and q.

Then L∩E = p+q+r for some r ∈ E. If L is given by the 1-form h, then

div(h/z) = div(h)− div(z)
= ((p)+ (q)+ (r))− 3(∞)
= ((p)− (∞))+ ((q)− (∞))+ ((r)− (∞)),

so ((p) − (∞)) + ((q) − (∞)) ∼ −((r) − (∞)). By (i), there exists a t ∈ E
such that −((r)−(∞)) ∼ (t)−(∞). Therefore, ((p)−(∞))+((q)−(∞)) ∼
(t)− (∞).

(iii) Fix D ∈ Div0(E). For some r1, . . . , rm, s1, . . . , sm ∈ E, we have that

D =
m∑
i=1

(ri)−
m∑
i=1

(si)

=
m∑
i=1

((ri)− (∞))−
m∑
i=1

((si)− (∞))

=
m∑
i=1

((ri)− (∞))+
m∑
i=1

−((si)− (∞)).

By part (i), −((si)− (∞)) ∼ ((ti)− (∞)) for some ti ∈ E, so that

D ∼
m∑
i=1

((ri)− (∞))+
m∑
i=1

((ti)− (∞)).

By applying part (ii) repeatedly, we have that D ∼ (q) − (∞) for some
q ∈ E, �

Define ΦE : E → Cl0(E) by ΦE(p) = [(p) − (∞)]. It is injective by Proposi-
tion 1.4, and surjective by part (iii) of Proposition 1.5. By the proof of part (i)
of Proposition 1.5, it is clear that ΦE(p ⊕ q) = ΦE(p) + ΦE(q). Therefore, the
operation ⊕ on E is associative, and ΦE is a group isomorphism.


