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In previous discussions, it was shown that X0(1) is analytically isomorphic to H/SL2(Z).

Here, X0(1) is the set of isomorphism classes of elliptic curves over C, and H is the upper

half plane, and a matrix A = ( a b
c d ) acts on τ ∈ H by Aτ = aτ+b

cτ+d
. This analytic isomorphism

is given by ΨE = τ , where E ' [1, τ ] = {α + βτ : α, β ∈ Z}. In previous discussions,

it was shown that every elliptic curves over C is isomorphic to a unique curve of the form

[1, τ ], and that [1, τ ] = [1, Aτ ] for all A ∈ SL2(Z). So, Ψ is well defined, and bijective. This

fully descibes isomorphism classes of elliptic curves. In order to extend this description to

isogenies from one elliptic curve to another, it suffices to look at pairs (E,C), where E is an

elliptic curve, and C is a cyclic subgroup of order N . For, non trivial isogenies have finite

kernels [Silverman, III.4.9]. Thus, the kernel is finitely generated, and can be expressed as

a direct sum of cyclic groups. So, the problem of classifying all isogenies between elliptic

curves reduces to the problem of classifying elliptic curves and cyclic subgroups of every

order. Let X0(N) be isomorphism classes of pairs of elliptic curves and cyclic subgroups of

order N .

Theorem 1. Every isomorphism class in X0(N) contains a pair of the form (E,C) with

E = [1, τ ] and C = [ 1
N
, τ ].

Proof. Say E ' [α, β]. Then, C is cyclic, so there is a point δ ∈ E such that C ' Z-

span{δ} in E. So, Nδ ∈ E. Consider the line in H connecting δ to the origin. Let x be the

point of [α, β] with smallest non zero magnitude on this line (x exists, as C is finite). Then,
x
N

generates C. For, if Mδ is any element of C, then by subtracting x an appropriate number

of times, Mδ is equivalent to tx, where 0 ≤ t < 1. Then, NMδ ∈ E, so Ntx ∈ E. Thus,

tx = A
N

for some 0 ≤ A < N . Thus, [α, β] is isomorphic to 1
Nx

[α, β], and 1 ∈ 1
Nx

[α, β] is the

smallest non negative real number in 1
Nx

[α, β]. Also, this multiplication sends Z-span{δ} to

Z-span{ 1
N
}. By previous discussions, if 1 ∈ [α, β], then there is a τ ∈ H such that [α, β] is

isomorphic to [1, τ ]. So, (E,C) is isomorphic to ([1, τ ], [ 1
N
, τ ]).

There is a map from πN : X0(1) → X0(N), given by forgetting about the additional
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information provided by C. This map is well defined, for if (E1, C
1) and (E2, C

2) are two

pairs of elliptic curves and cyclic subgroups of order N , then they are in the same equivalence

class if and only if there is an isomorphism φ : E1 → E2 such that φC1 = C2. So, E1 is

isomorphic to E2, and thus πN(E1, C
1) = E1 = E2 = πN(E2, C

2) in X0(1). Also, this map

is surjective, for if an elliptic curve E ∈ X0(1) is given, E is isomorphic to an elliptic curve

of the form [1, τ ], and thus πN([1, τ ], [ 1
N
, τ ]) = E.

Define Γ0(N) = {( a b
c d ) : c ≡ 0(mod m)}. It will be shown that H/Γ0(N) ' X0(N).

The set Γ0(N) is a subgroup of SL(Z). Consider H/SL2(Z) as orbits of SL2(Z) acting on

H. Then, for every τ ∈ H, and for every coset Γ0(N)A of Γ0(N), Γ0(N)Aτ is a subset of

SL2(Z)τ . So, there is a map q : H/Γ0(Z) → H/SL2(Z), by sending Γ0(N)τ to SL2(Z)τ . By

the orbit stabiliser theorem, this is a [SL2(Z) : Γ0(N)] to one covering of H/SL2(Z).

Theorem 2. The function j(τ) is invariant under the action of SL2(Z). Also, j(τ) and

j(Nτ) are invariant under the action of Γ0(N).

Proof. If σ ∈ SL2(Z), then j(τ) = 1728g2(τ)3

g2(τ)3−27g3(τ)2
, and because g2, g3 are modular functions

of weight 2 and 3 respectively, j(στ) = j(τ). Also, Γ0(N) ⊂ SL2(Z), so j(τ) is clearly Γ0(N)

invariant. If γ = ( a b
c d ), and γ′ = ( a Nb

c
N

d ), then j(Nγτ) = j(γ′Nτ) = j(Nτ). So, j(Nτ) is

Γ0(N) invariant.

If γ ∈ Γ0(N), and (E,C) is an elliptic curve along with a cyclic subgroup of order N ,

then the pair is isomorphic to ([1, τ ], [ 1
N
, τ ]) for some τ ∈ H. Also, (γE, γC) is isomorphic

to ([1, γτ ], [ 1
N
, γτ ]). But, [ 1

N
, τ ] is isomorphc to N [ 1

N
, τ ], so [ 1

N
, γτ ] is isomorphic to [1, γNτ ].

So, by the above theorem, the j invariant of [1, τ ] is the same as that of [1, γτ ], and that of

[ 1
N
, τ ] is the same as that of [ 1

N
, γτ ]. Thus, X0(N) is invariant under the action of Γ0(N).

Thus, the map ω : X0(N) → H/Γ0(N) that sends (E,C) to τ , where (E,C) is isomorphic

to ([1, τ ], [ 1
N
, τ ]), is well defined.

This information can be summarised by the following diagram. Later, it will be shown

that this diagram commutes, and that the horizontal arrows are analytic isomorphisms:

X0(N)
ω
- H/Γ0(N)

X0(1)

πN

? ψ
- H/SL2(Z)

q

?
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Consider the set C(N) = {( a b
0 d ) : gcd(a, b, d) = 1, |ad| = N, 0 < a, 0 ≤ b < d}.

Theorem 3. There is a bijection between cosets of Γ0(N) in SL2(Z), and elements of

C(N).

Proof. Let σ = ( a b
0 d ) ∈ C(N) and σ0 = ( N 0

0 1 ) ∈ C(N). It will be shown that the set

σ−1
0 SL2(Z)σ ∩ SL2(Z) is a coset of Γ0(N) in SL2(Z). Elements in this set are of the form

(
a′a
N

aprimeb+b′d
N

c′a c′b+d′d
) where ( a′ b′

c′ d′ ) ∈ SL2(Z). Clearly, every such matrix has determinant 1, for

determinant is multiplicative. So, to deminstrate that there is an element in this set, it is

enough to find ( a′ b′

c′ d′ ) such that a′a
N

and a′b+b′d
N

integers, and a′, b′ coprime. For, then c′, d′

can be chosen so that a′d′ − b′c′ = 1, and thus, the matrix product is in SL2(Z).

Say x = a′a
N

= 1, so a′ = d, and g = (a, b). Then, a′b+b′d
N

= xb+b′

a
. For this to be an

integer, a must divide b+ b′ so write ka = b+ b′. But, (a
g
, b

g
) = 1, so by Dirichlet’s theorem

on primes in arithmetic progressions, there exists an integer k such that b′

g
= k a

g
− b

g
is a

prime greater than d. Then, b+b′

a
= k, an integer. Also, a′a

N
= 1 is an integer. Finally,

(a′, b′) = (d, ka− b) = 1. For, assume h > 0 and h|d and h|ka− b = g ka−b
g

. Then, ka−b
g

is a

prime greater than d, and h < d so h 6 |ka−b
g

. Thus, h|g and h|d implies h = 1, for (a, b, d) = 1

implies (g, d) = 1. This demonstrates the existance of an elementX ∈ σ−1
0 SL2(Z)σ∩SL2(Z).

Consider the set σ−1
0 SL2(Z)σ0 ∩ SL2(Z). This set is {( a′ Nb′

c′
N

d′ ) : ( a′ b′

c′ d′ ) ∈ SL2(Z)} ∩
SL2(Z) = {( a′ b′

c′ d′ ) ∈ SL2(Z) : N |c′} = Γ0(N). So, for any element σ ∈ C(N), choose

X as above, then there is an element Z ∈ SL2(Z) such that σ−1
0 Zσ = X. So, Γ0X =

σ−1
0 SL2(Z)σ0Zσ ∩SL2(Z) = σ−1

0 SL2(Z)Zσ0σ ∩SL2(Z). Thus, for every element σ ∈ C(N),

σ−1
0 SL2(Z)σ ∩ SL2(Z) is a coset of Γ0 in SL2(Z).

If X = ( a′ b′

c′ d′ ) ∈ SL2(Z), then there is a σ ∈ C(N) with X ∈ σ0SL2(Z)σ ∩ SL2(Z) if and

only if σ−1x−1σ−1
0 ∈ SL2(Z). That is, if B = (

ad′−bc′
N

a′b−ab′

− c′
a

NA′
a

) ∈ SL2(Z). Say a = (c′, N), then

a|c′ and a|Na′. So, − c′

a
and Na′

a
are integers. Also, ( c′

a
, N

a
) = 1, so there are integers α, b

such that N
a
α + c′

a
b = d′. Thus, α = ad′−c′b

N
is an integer. Furthermore, if α′ = α + k c′

a
, then

the choice b = ad′−Nα′

c′
= ad′−Nα

c′
+ kd also yields an integer. Thus, there is a unique choice

of b such that 0 ≤ b < d. Thus, if σ = ( a b
0 d ), then B has integer entries and determinant

1, and X ∈ σ−1
0 SL2(Z)σ ∩ SL2(Z). This choice has (a, b, d) = 1, for if (a, b, d) = δ > 1

then δ|d so δ|da′, and δ|a, δ|b implies δ|a′b − ab′, which is a contradiction, as B ∈ SL2(Z),

so (Na′

a
, a′b − ab′) = 1. Thus, every element of SL2(Z) appears in a coset of the form

σ−1
0 SL2(Z)σ ∩ SL2(Z). This selection of σ is unique given X. For, a|c′, a|Na′ is necessary.

Also, if N
a
, c′

a
have a common factor, then it also divides d′ for any choice of d. But, (c′, d′) = 1.

So, a = (N, c′). Also, b is determined by the choice of a.
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If ( w x
Ny z ) ∈ Γ0, then the above construction is invariant under multiplication on the left

by G. That is, X and GX both yield the same element of C(N). For, by computing the

coordinants of σ−1(GX)−1σ−1
0 , the above construction applied to GX yields a = (N,Nya′ +

zc′) and b = a(Nyb′+zd′)−Nβ
Nya′+zc′

. But, (N, z) = 1, so (N,Nya′ + zc′) = (N, c′). Write c′ = ta, and

then Nya′ + zc′ = ra implies that dya′ + zt = r. Then, (N, r) = 1, for otherwise (N, z) > 1,

and r
z

= t(mod d). So, b = Nyb′+zd′−bβ
r

= z
r
d′(mod d) = d′

t
(mod d). But, the choice for b

arising from X is ad′−Nα
c′

+ kd = d′−d
t

+ kd = d′

t
(mod d). Thus, the choice of b the same for

both X and GX. So, every element of SL2(Z) is in a coset coming from an element of C(N),

and two elements are in the same coset if and only if the corresponding elements of C(N)

are the same. Thus, there is a bijection between cosets of Γ0(N) in SL2(Z), and elements of

C(N).

Theorem 4. If L′ is a cyclic sublattice of L = [1, τ ] of order N , then there is a unique

matrix σ ∈ C(N) such that L′ = d[1, στ ]. Also, if σ ∈ C(N), then d[1, στ ] is a cyclic

sublattice of [1, τ ] of order N .

Proof. If L′ ⊂ L = [1, τ ], then L′ = [aτ + b, cτ + d]. In this case, [L : L′] = |ad− bc| = N .

This will be shown by appealing to the theory of Z-modules. If M = Z2, and A = ( a b
c d ), and

A′ = ( d −b
−c a ), then detA = M . Also, if M = [e1, e2], where e1, e2 are standard basis vectors,

then AM = [ae1 + be2, ce1 +de2], and (detA)M = [(ad− bc)e1, (ad− bc)e2]. If x ∈ (detA)M ,

and x = α(ad− bc)e1 + β(ad− bc)e2, then x = (αd− βc)(ae1 + be2) + (βa− αb)(ce1 + de2).

So, x ∈ AM .

Also, M/A′M ' AM/(detA)M as Z-modules. This isomorphism is given by multiplica-

tion by A and A−1, for AA′ = detA.

The sequence 0 → AM/(detA)M → M/(detA)M → M/AM → 0 is exact. For, AM ⊂
M implies AM/(detA)M ⊂ M/(detA)M . Also, as shown above det(A)M ⊂ AM , so he

mapM/(detA)M →M/AM is a quotient with kernel AM/(detA)M . It is clearly surjective,

for if x+AM ∈M/AM , then x+ (detA)M is mapped to x+AM . So, by this short exact

sequence, (M/(detA)M)/(AM/(detA)M) = M/AM . This implies that |M/(detA)M | =

|M/AM ||AM/(detA)M . But, |M/(detA)M | = (detA)2. The last equality can be seen

because M/(detA)M = {αe1 + βe2 : (detA)e1 = (detA)e2 = 0}, so there are (detA)2 ways

to choose α and β. Finally, M/AM ' M/A′M , for if θ = ( 0 −1
1 0 ), and x + AM ∈ M/AM ,

then θ(x + AM) = θx + A′M . And, θ−1 exists with integer coefficients. So, |M/A′M | =

|M/AM |. Combining this with the expression gained from the short exact sequence yields

4



|M/AM | = detA. Thus, [L : L′] = N .

To show gcd(a, b, c, d) = 1, a theorem of finite Abelian groups says that such a group

G is not cyclic if and only if there is a subgroup of the form (Z/dZ)2. So, if D divides all

of a, b, c, d, then write A = DA′. Then, A′M/DA′M = (Z/DZ)2. But, A′M ⊂ M implies

A′M/DA′M ⊂ M/AM , so M/AM is not cyclic. Conversely, if M/AM is not cyclic, then

there is M ′|M ′/AM ' (Z/DZ)2. So, M ′ = Z-span{x, y} for some x, y such that Dx ∈
AM,Dy ∈ AM . This implies DM ′ ⊂ AM , and thus there is A′ such that A′DM ′ = AM .

Then, A = DA′, and so D divides gcd(a, b, c, d).

If L′ ⊂ [1, τ ] is cyclic and of finite index, and [L : L′] = N , then let d b the smallest

positive integer in L′ ∩ Z. This exists, because [L : L′] is finite. Then, 1 ∈ L′

d
, and L′

d

is a lattice. By previous discussions, L′

d
= [1, τ ′]. But, dτ ′ ∈ L′, so dτ ′ = aτ + b, so

L′ = [d, aτ + b] = [d, aτ + (b + kd)]. These integers can be chosen so that 0 < a, and

0 ≤ b < d. From the first paragraph, |ad| = N, c = 0, (a, b, d) = 1. For uniqueness, say

L′ = [d, a′τ + d′], then |ad| = |a′d|, and a′ > 0, so a = a′. Also, if b′ = b, for 0 ≤ b′, b < d, so

if b′ 6= b, then (aτ − b′)− (aτ − b) = b′ − b is in L′, but then |b− b′| < d, which contradicts

the minimality of d.

Thus, the map q : X0(N) → X0(1) is a covering of degree |C(N)|, and ramifies only when

the automorphism class of E is non trivial. But, the map q : H/Γ0(N) → H/SL2(Z) is also

a covering of degree |C(N)|. Also, if the map Ψ : X0(1) → H/SL2(Z) gives the analytic

isomorphism fromX0(1) to H/SL2(Z) discussed in the first paragraph, then Ψ is a covering of

degree one. The map πN : X0(N) → X0(1) composed with the map Ψ: X0(1) → H/SL2(Z)

is the same as the map ω : X0(N) → H/Γ0(N) composed with the map q : H/Γ0(N) →
H/SL2(Z) (that is, ΨπN = qω.) For, if (E,C) ' ([1, τ ], [ 1

N
, τ ]) ∈ X0(N), then ΨπN(E,C) =

ΨE = SL2(Z)τ . Also, qω(E,C) = qΓ0(N)τ = SL2(Zτ). The degree of the covering qω

is |C(N)|, so the degree of the covering Ψω is also |C(N)|. But, degree of coverings is

multiplicative, so the degree of the covering ω is one. Also, q, πN and Ψ are all analytic, so

ω is also analytic. Thus, X0(N) is analytically isomorphic to H/Γ0(Z).
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