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1. Introduction

In previous lectures we have developed the theory of modular curves as quotients
of the upper half plane by congruence subgroups of SL2(Z). In this essay we will
compute the genus for the curves X0(N) for N = 2, 3, 5, 7 and 13, i.e. all N such
that N − 1|24.

Recall that

Γ0(N) =
{(

a b
c d

)
: c ≡ 0 mod N

}
is a congruence subgroup of SL2(Z) and that

X0(N) ∼=
H*

Γ0(N)

Recall from Lloyd’s talk that the points of X0(N) consist of isomorphism classes
of pairs of the form (E,C) where E is an elliptic curve and C is a cyclic subgroup
of E of size N. Since Γ0(N) is a subgroup of SL2(Z) there is a natural map φ :
X0(N) → X0(1) which maps each point corresponding to (E,C) to the point on
Γ0(N) corresponding to E. This map is a covering of X0(1) by X0(N) of degree
[SL2(Z) : Γ0(N)]. For N prime E[N ] ∼=

( Z
NZ

)2
thus there are N+1 cyclic subgroups

of order N in the elliptic curve E. So unless there is an automorphism ψ : (E,C) →
(E,C ′) which maps the cyclic subgroup C to the cyclic subgroup C ′, (E,C) and
(E,C ′) correspond to different points of X0(N). From this we can also see that for
N prime, [X0(N) : X0(1)] = N + 1.

Thus we see that ramification of φ will occur at points of X0(N) (orbits) which
contain pairs (E,C) for which there is a non trivial automorphism. Note that
isomorphic elliptic curves have the same j invariant, so from our classification of
automorphisms this can only occur for elliptic curves with identified isomorphic
cyclic subgroups that have j invariant 1728, 0, and ∞. Once we find these ramifi-
cation degrees we can use the following to compute genus:

Theorem 1.1 (Riemann-Hurwitz). If f : X → Y is a surjective analytic function
between Riemann surfaces, then

2gX − 2 = deg(f)(2gY − 2) +
∑
P∈X

(e(P )− 1)

where gX is the genus of X and gY is the genus of Y.

Of course in our case we take Y = X0(1) which is isomorphic to C under j, so
it has genus 0. Now let us apply this theorem when N = 2. In this case the curve
with j = 1728 correspond to the lattice below
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We can easily check that in the case of j = 1728 that the subgroups marked by
boxes are mapped to each other by an element of the automorphism group while
the oval is distinct.

Thus these correspond to two unique points on the modular curve X0(2), one
of the points (corresponding to the pair (E,C) where C represents the boxes and
j(E) = 1728) ramifies twice and the other point ramifies once under φ.

Similarily in the case of j = 0 we can easily see that all the cyclic subgroups of size
to are the same under Aut(E). Thus this corresponds to a point with ramification
index 3.

This leaves the case of when j = ∞. Of course there is no elliptic curves which
correspond to a j invariant of infinity, but these correspond to the cusps of Γ0(N).
Before we proceed we state the following lemma

Lemma 1.2. If N is prime X0(N) consists of two cusps, [0, 1] and [1, 0] in P1(Q).

These two cusps correspond respectively to the orbits of Q and the point at
infinity, [1, 0]. First consider the orbit of Q. In the limit we can picture these ’curves’
as having arbritrarily small height as illustrated below. As this height goes to 0,
the 2 cyclic subgroups which lie off the imaginary axis will become identified, and
thus we have a point of ramification 2.
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In the case of [1, 0] we have a ’curve’ with arbritarily large height. In this case
it is clear that there is only one identified cyclic subgroup, the one on the real axis.
In the limit the other subgroups will not be cyclic. Thus this gives a point which
ramifies once.

Now to compute the genus we employ Riemann Hurwitz

2g − 2 = 3 · −2 + 2− 1 + 1− 1︸ ︷︷ ︸
j=1728

+3− 1︸ ︷︷ ︸
j=0

+2− 1 + 1− 1︸ ︷︷ ︸
j=∞

= −2

so g = 0.
Now we consider an alternative way to find the genus and ramification points.

We begin by defining the Dekekind η function

η(τ) = q1/24
∏
i≥1

(1− qi)

where q = exp(2πiτ). Define

j2(τ) =
η(τ)24

η(2τ)24
.
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We can easily show that j2 is a modular function of weight 0 for Γ0(2). Now j
defines a map on X0(2) and since j2 is a Hauptmodul we know that j must be a
rational function of j2. Namely

j =
(j2 + 256)3

j22
.

Note that this is enough information to determine the ramification points of φ. For
j = 0, this corresponds to j2 = −256 ramifying three times. When j = ∞, j2 = 0
which ramifies twice or j2 = ∞ ramifying once. When j = 1728, we can use the
fact that

j − 1728 =
(j2 + 64)(j2 − 512)2

j22
to see that this corresponds to points on X0(2) with j2 = 64 ramifying once (the
blue oval above), and j2 = 512 ramifying twice (the rectangles).

In general for N − 1|24 we have that

jN =
η(τ)24/(N−1)

η(Nτ)24/(N−1)

is an analytic isomorphism from X0(N) to C. Furthermore it is a Hauptmodul1 so
j as a function on X0(N) can be written as a rational function in j2. Now from the
lemma and a geometric argument analogous to the one above, X0(N) will have two
cusps, one of them will correspond to j2 = 0 and will have ramification N , and the
other will correspond to j2 = ∞ and will have ramification 1. Thus we know that

j =
P (jN )
jN
N

where jN is a polynomial of degree N +1. To determine the polynomial, recall that
we have the following expansion for j,

j =
1
q

+ 744 +
∞∑

n=1

c(n)qn =
(j2 + 256)3

j22
.

We can use this expression to solve for the coefficients of P (z). For example when
N = 3

P (jN ) = j4N + bj3N + cj2N + djN + e

and
(j4N + bj3N + cj2N + djN + e)− j3N · j = 0.

Expanding and equating coefficients of powers of q gives the result. A Maple file
has been attached explaining how to carry out this computation. Note that all we
have to check when equating powers of q is the negative Laurent terms since the
modular curves are compact Riemann surfaces and thus any non constant function
must have a pole. In the case of N = 3 the method given above gives

j =
(j3 + 27)(j3 + 243)3

j33
.

1A Hauptmodul is simply an analytic isomorphism from the upper half plane quotiented by

some congruence subgroup of SL2(Z) such that each modular function on the resulting surface
can be written as a rational function of the hauptmodul. In addition the Hauptmodul is always
chosen so that it’s Laurent expansion is of the form 1

q
+

∑∞
i=1 cnqn.



GENUS OF MODULAR CURVES 5

Thus when j = 0 we have a point of ramification 1 and a point which ramifies thrice.
The following table summarizes the ramification points for φ for N = 2, 3, 5, 7, 13.
The statement k to 1 is the ramification index of a particular point with the given
j value of that column.

N j Ramification
j = 1728 j = 0 j = ∞

2 (j2+256)3

j2
2

2 to 1 3 to 1 2 to 1
1 to 1 1 to 1

3 (j3+27)(j3+243)3

j3
3

2 to 1 3 to 1 3 to 1
2 to 1 1 to 1 1 to 1

5 (j2
5+250j5+55)3

j5
5

2 to 1 3 to 1 5 to 1
1 to 1 3 to 1 1 to 1
1 to 1
2 to 1

7 (j2
7+13j7+49)(j2

7+245j7+74)3

j7
7

2 to 1 3 to 1 7 to 1
2 to 1 3 to 1 1 to 1
2 to 1 1 to 1
2 to 1 1 to 1

13 (j2
13+5j13+13)(j4

13+247j3
13+3380j2

13+15379j13+134)3

j1
133

Six 2 to 1 Four 3 to 1 13 to 1
Two 1 to 1 Two 1 to 1 1 to 1

To demonstrate how we can use Riemann Hurwitz given this type of data consider
the case of N = 7,

2g − 2 = −2 · 8︸︷︷︸
deg φ

+1 + 1 + 1 + 1︸ ︷︷ ︸
j=1728

+2 + 2︸ ︷︷ ︸
j=0

+ 6︸︷︷︸
j=∞

= −2

which implies that the genus of X0(7) is 0.
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