1 The Riemann-Roch Theorem

Let C be a smooth curve defined over a field K with its divisor group Div(C).
For any divisor D in Div(C') let L(D) be the space of functions associated
to D as usual, and (D) the dimension of L(D). We denote the canonical
divisor on C' by K¢. The Riemann-Roch theorem then states that

Theorem 1.1. For any divisor D € Div(C') there is an integer g > 0 such
that

(D) — (K¢ —D)=deg D—g+1. (1)

We will prove the above theorem for two special cases: the extended
complex plane and the elliptic curves over complex numbers.
First, we shall note some facts that will be used in our proofs.

Proposition 1.2. (/Sil], Proposition 5.2)

(a) If deg D < 0, then L(D) = {0} and (D) =0

(b) If D is linearly equivalent to D', D ~ D', then L(D) = L(D') and
(D) = (D)

1.1 Riemann-Roch theorem for C U oo

By Proposition 1.2 (b), we can assume Ko = —2(00) (also see Example 4.5,
[Sil]). In particular, we will prove that [(D)—I(—2(c0)—D) = deg D+1. First
note that if deg D = —1 then the equality clearly holds by Proposition 1.2 (a).
If degD > —1 then it suffices to prove [(D) = deg D+1 as [(—2(c0)— D) = 0.
If degD < —1 then [(D) = 0 and the equation reads as —I(—2(c0) — D) =
deg D + 1. Substituting D' = —2(oc0) — D we obtain

D)) = —2—deg D' +1
= —deg D' —1.

where degD’ > 0. Hence, we aim to prove that
[(D)=deg D+1 (2)

for any divisor D with deg (D) > 0. If deg D = k then, by Proposition 1.2
(b), it is enough to consider any divisor Dy, of degree k > 0 .

Case 1. k =0: Let Dy = (. If f € L(Dg) then f cannot have any pole,
and so f must be a constant function. Clearly, any constant function is in
L(Dy), whence I(Dy) =1 =deg Dy + 1.



Case 2. k > 0: Let Dy = (s1) + (s2) + -+ + (sg) where s; # s;, and
s; # 0o. The set of functions 1 U {1/(z — s;)}*_, are linearly independent
over C and each of its elements are in L(Dy), that is, [(Dy) > k + 1. Now,
we show [(Dy) < k+1. Let f € L(Dy). The only poles of f can be from the
set {s;}%_, and f can only have a pole of order at most 1. So, we can write

9(2)
fz) = :
(2 = 54,)..(2 = 54,)
The polynomial g(z) must also satisfy that deg g(z) < j since otherwise f
would have a pole at co. If deg g(z) < j then using partial fractions technique
f can be written as

J
A
f) ==

=1

where each A; is constant. If deg g(z) = j then similarly as above one can
write

Hence, we get f € (1,1/(z — s1),...,1/(z — sx)) and I(Dy) < k + 1, as
required.

1.2 Elliptic functions

Let wy, wy be two complex numbers linearly independent over R and define
a lattice A = A(wy,ws) = Zwy + Zwy in C. An elliptic function, f, over
a lattice A is a meromorphic function on C such that f(z +1) = f(z) for
any [ € A. The set of all elliptic functions on A defines a field an denoted
C(A). The two very important examples of elliptic functions are Weirstrass
p-function and its derivative:



It is easy to check that Weirstrass p-function is an even elliptic function
defined everywhere on C — A, and ¢’ is an odd elliptic function defined
everywhere on C — A, ([Sil], Theroem 3.1). In fact, these two functions
generate the field of elliptic functions ([Sil], Theroem 3.2):

C(A) = C(p, ). (3)
One can write the Laurent series for p(z) as

o0

p(z) = 1 + Z(2k + 1)Gopya2?, (4)

22

and obtain the algebraic relation between p(z) and ¢'(2)
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where Gop = > Jwer W™ k¥ is the Eisenstein series which converges absolutely
w#0

for all £ > 1 ([Sil], Theorem 3.5).

1.3 Divisors on C/A

The divisor group Div(C/A) is defined to be the formal sum >°, ¢ /\ nw(w)
where n,, € Z and n,, = 0 for all but finitely many w. The divisor of an
elliptic function f € C(A) is then

divif) = 3 ordy(f)(w)

weC/A

The above sum is finite as the zeros and the poles of a meromorphic function
are isolated. Before giving some examples of divisors of functions we state
the following theorem.

Theorem 1.3. (/Sil/, Proposition 2.1, Theorem 2.2)
(i) An elliptic function with no poles or no zeros is constant.

(i) T weesn Resalf) = 0.
(i6)3_ ecya 07dw(f) = 0.
() 3 pec/n 0rdw(f)w =0 (mod A).

Corollary 1.4. A nonconstant elliptic function has order at least 2.

Proof. If f has a simple pole then by Theorem 1.3 (ii), f is holomorphic, and
by Theorem 1.3 (i), f must be constant. O
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Example 1.5. We will write the divisor of p(z). By (4), (%) has only one
pole at 0 with multiplicity 2. Since the degree of div(p(2)) is zero by Theorem
1.3, p(z) must have 2 zeros counting multiplicities. Moreover, if v is a zero
of p(2) then —r is a zero of p(z) as p(2) is an even function. Hence,

div(p(z)) = =2(0) + (r) + (=7). (6)
From now on, the letter r € C/A is reserved for the zero of p(z).

Example 1.6. We will write the divisor of ¢'(z). By (4), ¢'(z) has only one
pole at 0 with multiplicity 3. Since the degree of div(p'(2)) is zero by Theorem
1.3, ¢'(z) must have 3 zeros counting multiplicities. Note that ¢'(z) is an odd
function and 2wy, = 0in C/A. Thatis, ¢’ (w1/2) = —¢'(—w1/2) = —p' (w1 /2)
and @' (wy/2) = 0. Similarly, ¢'(we/2) = ¢'((wy +2)/2) = 0. Hence,

ding/ () = =30) + (5) + (52) + (“’1 - w2) . (7)

Now, let z = p(z) and y = ©/(z). Then, x is transcendental over C since
x has a pole at 0. Moreover y is algebraic over C(x) with degree at most 2
by (5). In fact, the algebraic degree of y is 2 because y is an odd function,
that is, y ¢ C(x). Combining this observation with (3) and (5) proves the
following proposition

Proposition 1.7. C(A) 2 C[X,Y]/(Y? — X3 — 15G4X — 35G).

The above proposition indicates a close relation between C/A and the
elliptic curves arising from the corresponding lattice, A. In fact, more is true
and for each elliptic curve defined over C there corresponds a unique lattice
A in C. The precise statement is as follows

Theorem 1.8 ([Sil2], Corollary 4.3). Let A, B € C satisfy 4A3 + 27B? # 0,
and let

E={(z,y) € C*: y* =2’ + Az + B} U {oo}
be an elliptic curve. Then there is a unique lattice A € C such that the map
¢:C/A — EcCC*U{oo}

),

e (o), 5

1s a complex analytic i.somorphism.



1.4 Riemann-Roch theorem for £/C

By Proposition 1.2 (b), we can assume Ko = ) (also see Example 4.6, [Sil]).
In particular, we will prove that

(D) —I(—=D) =deg D. (

oo
~

If deg D > 0 then we have to prove, by Proposition 1.2 (a), that [(D) =
deg D. If deg D < 0 then replacing D by D' = —D in (8), gives [(D’)
deg D' where deg D’ > 0. Hence, we left with two cases to prove:

I(D)=deg D, deg D >0, 9)
(D) —Il(—=D)=deg D, deg D =0. (10)

Moreover, by Theorem 1.8, proving the Riemann-Roch theorem for elliptic
curves over C is the same as proving it for C/A. Hence, we will prove (9)
and (10) for C/A. Before proceeding we give two important lemmas.

Lemma 1.9. Let s1,s9 € C/A, and D = (s1) + (s2). Then there exists a
nonconstant function f € C(A) such that f € L(D).

Proof. We will consider several cases for the values of s; and s5. If s = 55 =0
then p(z) € L(D), and if s; = sy # 0 then p(z — s1) € L(D) by (6).
Similarly, if s1 = —s9 and s; = r then 1/p(2) € L(D), and if s; = —sy and
s1 # r then 1/(p(z) — p(s1)) € L(D). If s = 0 and s; # s» then setting
f(z) = p(2) = p(s1) we get

div (ifj) = —(s1) — (=s1) — (0) + positive terms,
div <f(12)) = —(s1) — (—s1) + positive terms.

Now, letting g(z) = (Res_Sl <f(1z)>) : (2((2) - <Res_s1 <fc((;))>> : <f(1z)>, it

follows that
div(g(z)) = —(s1) — (0) + positive terms,

that is g(z) € L(D). Finally, if s; # sy then, by applying the previous
case, one can construct a nonconstant function, say g(z) € L(D') where
D’ = (s1 — s9) + (0). Translating g(z) by sy completes the proof. O

Lemma 1.10. Let sy, 89, 83,84 € C/A. Then (s1) + (s2) ~ (s3) + (s4) if and
only if s1 + So = S3 + S4.



Proof. First suppose that (s1) 4 (s2) ~ (s3) 4+ (s4). Then s; 4+ 52 = s3+ 54
by Theorem 1.3 (iv).

Now, assume $; + s = s3+ s4. We may also assume that that s; # s3, s4
and sy # s3,84. because otherwise we get (s1) + (s2) — (s3) — (s4) = 0.
By Lemma 1.9, there exist a nonconstant elliptic function g(z) such that
div(g) = —(s3) — (s4) + positive terms. Consider the elliptic function h(z) =
g(z) — g(s1) which has a pole at s3 and sy, and has a zero at s;. By Theorem
1.3 (iii), div(h) has degree 0, and so

div(h) = —(s3) — (s4) + (s1) + (5),

for some s € C/A. In fact, s+s; = s3+s4 by Theorem 1.3 (iv), and recalling
that s1 + so = s3 4+ s4 gives s = s9, as required. O

1.4.1 Proof of Riemann-Roch

Let Dy be a degree zero divisor. If Dy = () then (10) clearly holds. If
Do = (s1) — (s2) with s; # sy then L(Dg) does not contain constant elliptic
functions. But if f(z) € C(A) is nonconstant then f has at least two poles
by Corollary 1.4, and so f & L(Dy). That is, (Do) = I(—Dy) = 0 and (10)
holds. Now, let Dy = > 7" | (1) = >_j_,(s;) and n > 2. Then by Lemma 1.10,
Do~ S22 (r) + (racy + 70 — 80) — Z;:ll(sj) So, by induction on n, (10)
holds for any degree 0 divisor.

Now, let Dy = S0 (1) — > j—1(s;) be a degree 1 divisor. If n = 0 then
Dy = (r1) and clearly L(D;) contains constant functions. In fact, [(D;) = 1
as any nonconstant function must have a pole of degree at least 2 by by

Corollary 1.4. Tf Dy = S (1) — > i—1(s;) and n > 1 then by Lemma 1.10,
Dy~ S ) + (r + Poga — Sn) — Z;:ll(rj), and by induction on n, (9)
holds for any degree 1 divisor.

In general, if k > 2 and Dy = 32175 (r) — > 5—1(5) is a degree k divi-

sor then applying Lemma 1.10 repeatedly we may suppose Dy = Zle(ri).
Moreover, applying the equivalence (rx_1) + (%) ~ (0) + (rr—1 +ry) similarly,
we can further assume that Dy = (k—1)(0)+ (p) where p =11 +7r9+-- -+ 7.
Case 1. p = 0: Then Dy = k(0) and let z = p(2),y = ¢'(2)/2. Recalling
Example 6, we get that the functions

1z, 22 23, ...

have only poles at 0 and the order of the poles are 0,2,4,6, ..., respectively.
Similarly, by Example 7, the functions

y, 2y, 2y, 2y, . ..
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have only poles at 0 and the order of the poles are 3,5,7,9, ..., respectively. If
a function from the above list has a pole at 0 with order ¢, we denote it by f;.
Note that f; are linearly independent as z is transcendental over C and y has
algebraic degree 2 over C(x), as explained in the previous section. Therefore,
in order to prove [(Dy) = k it suffices to show L(Dyx) = (fo, f2, ..., fr) since
fo, fay -+, fr are in L(Dy). Now, let g be any function in L(Dy). We proceed
by induction on ¢ = ordy(g). If i = 0 then g is constant and g = ¢ - fy. The
case ¢ = —1 is impossible by Corollary 1.4. So, we can assume g has a pole of
order ¢ where 2 <4 < k. Then the function h(z) = g(2) — Resy(g) f; is either
constant or has a pole at 0 with order 2 < j < 4. By induction, h(z) € L(Dy)
and in particular, L(Dg) = (fo, fa, .-, fx)-

Case 2. p # 0: Then Dy = (kK —1)(0) + (p) and let D' = (k — 1)0. First
observe that [(Dy) > k — 1 since any function in L(D’) is also in L(Dy),
and from the previous case we have [(D’) = k — 1. Now, let f € C(A) be a
nonconstant function with divisor (recall Lemma 1.9)

div(f) = —(0) — (p) + positive terms.

Since f has a pole at 0, f € L(D’) and (D) > k. Now, we show [(Dy) < k.
Let g be any function in L(Dy) and consider the function

h(z) = (Res,(f)) 9(2) — (Res,(9)) f(2)-

Note that h can only have a pole at 0, and the multiplicity can be at
most k — 1. So, h € L(D'), or h € (fo, fo,.-., fr—1). In other words,

g S <f7 f07f27‘ . '7fk—1>7 as required.
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