
1 The Riemann-Roch Theorem

Let C be a smooth curve defined over a field K with its divisor group Div(C).
For any divisor D in Div(C) let L(D) be the space of functions associated
to D as usual, and l(D) the dimension of L(D). We denote the canonical
divisor on C by KC . The Riemann-Roch theorem then states that

Theorem 1.1. For any divisor D ∈ Div(C) there is an integer g ≥ 0 such
that

l(D)− l(KC −D) = deg D − g + 1. (1)

We will prove the above theorem for two special cases: the extended
complex plane and the elliptic curves over complex numbers.

First, we shall note some facts that will be used in our proofs.

Proposition 1.2. ([Sil], Proposition 5.2)
(a) If deg D < 0, then L(D) = {0} and l(D) = 0
(b) If D is linearly equivalent to D′, D ∼ D′, then L(D) ∼= L(D′) and
l(D) = l(D′)

1.1 Riemann-Roch theorem for C ∪∞
By Proposition 1.2 (b), we can assume KC = −2(∞) (also see Example 4.5,
[Sil]). In particular, we will prove that l(D)−l(−2(∞)−D) = deg D+1. First
note that if deg D = −1 then the equality clearly holds by Proposition 1.2 (a).
If degD > −1 then it suffices to prove l(D) = deg D+1 as l(−2(∞)−D) = 0.
If degD < −1 then l(D) = 0 and the equation reads as −l(−2(∞) − D) =
deg D + 1. Substituting D′ = −2(∞)−D we obtain

−l(D′) = −2− deg D′ + 1

= −deg D′ − 1.

where degD′ ≥ 0. Hence, we aim to prove that

l(D) = deg D + 1 (2)

for any divisor D with deg (D) ≥ 0. If deg D = k then, by Proposition 1.2
(b), it is enough to consider any divisor Dk of degree k ≥ 0 .

Case 1. k = 0: Let D0 = ∅. If f ∈ L(D0) then f cannot have any pole,
and so f must be a constant function. Clearly, any constant function is in
L(D0), whence l(D0) = 1 = deg D0 + 1.
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Case 2. k > 0: Let Dk = (s1) + (s2) + · · · + (sk) where si 6= sj, and
si 6= ∞. The set of functions 1 ∪ {1/(z − si)}k

i=1 are linearly independent
over C and each of its elements are in L(Dk), that is, l(Dk) ≥ k + 1. Now,
we show l(Dk) ≤ k + 1. Let f ∈ L(Dk). The only poles of f can be from the
set {si}k

i=1 and f can only have a pole of order at most 1. So, we can write

f(z) =
g(z)

(z − si1)...(z − sij)
.

The polynomial g(z) must also satisfy that deg g(z) ≤ j since otherwise f
would have a pole at∞. If deg g(z) < j then using partial fractions technique
f can be written as

f(z) =

j∑
l=1

Al

z − sil

,

where each Al is constant. If deg g(z) = j then similarly as above one can
write

f = (z − t)
g1

(z − si1)...(z − sil)

= (z − t)

j∑
l=1

Al

z − sil

=

j∑
l=1

(Al +
Al(sil − t)

z − sil

).

Hence, we get f ∈ 〈1, 1/(z − s1), . . . , 1/(z − sk)〉 and l(Dk) ≤ k + 1, as
required.

1.2 Elliptic functions

Let w1, w2 be two complex numbers linearly independent over R and define
a lattice Λ = Λ(w1, w2) = Zw1 + Zw2 in C. An elliptic function, f , over
a lattice Λ is a meromorphic function on C such that f(z + l) = f(z) for
any l ∈ Λ. The set of all elliptic functions on Λ defines a field an denoted
C(Λ). The two very important examples of elliptic functions are Weirstrass
℘-function and its derivative:

℘(z) =
1

z2
+

∑
w∈Λ
w 6=0

(
1

(z − w)2
− 1

w2

)
,

℘′(z) = −2
∑
w∈Λ

(
1

(z − w)3

)
.
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It is easy to check that Weirstrass ℘-function is an even elliptic function
defined everywhere on C − Λ, and ℘′ is an odd elliptic function defined
everywhere on C − Λ, ([Sil], Theroem 3.1). In fact, these two functions
generate the field of elliptic functions ([Sil], Theroem 3.2):

C(Λ) = C(℘, ℘′). (3)

One can write the Laurent series for ℘(z) as

℘(z) =
1

z2
+

∞∑
k=1

(2k + 1)G2k+2z
2k, (4)

and obtain the algebraic relation between ℘(z) and ℘′(z)(
℘′(z)

2

)2

= ℘(z)3 − 15G4℘(z)− 35G6, (5)

where G2k =
∑

w∈Λ
w 6=0

w−2k is the Eisenstein series which converges absolutely

for all k > 1 ([Sil], Theorem 3.5).

1.3 Divisors on C/Λ

The divisor group Div(C/Λ) is defined to be the formal sum
∑

w∈C/λ nw(w)
where nw ∈ Z and nw = 0 for all but finitely many w. The divisor of an
elliptic function f ∈ C(Λ) is then

div(f) =
∑

w∈C/Λ

ordw(f)(w)

The above sum is finite as the zeros and the poles of a meromorphic function
are isolated. Before giving some examples of divisors of functions we state
the following theorem.

Theorem 1.3. ([Sil], Proposition 2.1, Theorem 2.2)
(i) An elliptic function with no poles or no zeros is constant.
(ii)

∑
w∈C/Λ Resw(f) = 0.

(iii)
∑

w∈C/Λ ordw(f) = 0.

(iv)
∑

w∈C/Λ ordw(f)w ≡ 0 (mod Λ).

Corollary 1.4. A nonconstant elliptic function has order at least 2.

Proof. If f has a simple pole then by Theorem 1.3 (ii), f is holomorphic, and
by Theorem 1.3 (i), f must be constant.
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Example 1.5. We will write the divisor of ℘(z). By (4), ℘(z) has only one
pole at 0 with multiplicity 2. Since the degree of div(℘(z)) is zero by Theorem
1.3, ℘(z) must have 2 zeros counting multiplicities. Moreover, if r is a zero
of ℘(z) then −r is a zero of ℘(z) as ℘(z) is an even function. Hence,

div(℘(z)) = −2(0) + (r) + (−r). (6)

From now on, the letter r ∈ C/Λ is reserved for the zero of ℘(z).

Example 1.6. We will write the divisor of ℘′(z). By (4), ℘′(z) has only one
pole at 0 with multiplicity 3. Since the degree of div(℘′(z)) is zero by Theorem
1.3, ℘′(z) must have 3 zeros counting multiplicities. Note that ℘′(z) is an odd
function and 2w1 = 0 in C/Λ. That is, ℘′(w1/2) = −℘′(−w1/2) = −℘′(w1/2)
and ℘′(w1/2) = 0. Similarly, ℘′(w2/2) = ℘′((w1 + 2)/2) = 0. Hence,

div(℘′(z)) = −3(0) +
(w1

2

)
+

(w2

2

)
+

(
w1 + w2

2

)
. (7)

Now, let x = ℘(z) and y = ℘′(z). Then, x is transcendental over C since
x has a pole at 0. Moreover y is algebraic over C(x) with degree at most 2
by (5). In fact, the algebraic degree of y is 2 because y is an odd function,
that is, y 6∈ C(x). Combining this observation with (3) and (5) proves the
following proposition

Proposition 1.7. C(Λ) ∼= C[X, Y ]/(Y 2 −X3 − 15G4X − 35G6).

The above proposition indicates a close relation between C/Λ and the
elliptic curves arising from the corresponding lattice, Λ. In fact, more is true
and for each elliptic curve defined over C there corresponds a unique lattice
Λ in C. The precise statement is as follows

Theorem 1.8 ([Sil2], Corollary 4.3). Let A, B ∈ C satisfy 4A3 + 27B2 6= 0,
and let

E = {(x, y) ∈ C2 : y2 = x3 + Ax + B} ∪ {∞}

be an elliptic curve. Then there is a unique lattice Λ ∈ C such that the map

φ : C/Λ → E ⊂ C2 ∪ {∞}

z 7→ (℘(z),
℘′(z)

2
)

is a complex analytic isomorphism.
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1.4 Riemann-Roch theorem for E/C
By Proposition 1.2 (b), we can assume KC = ∅ (also see Example 4.6, [Sil]).
In particular, we will prove that

l(D)− l(−D) = deg D. (8)

If deg D > 0 then we have to prove, by Proposition 1.2 (a), that l(D) =
deg D. If deg D < 0 then replacing D by D′ = −D in (8), gives l(D′) =
deg D′ where deg D′ > 0. Hence, we left with two cases to prove:

l(D) = deg D, deg D > 0, (9)

l(D)− l(−D) = deg D, deg D = 0. (10)

Moreover, by Theorem 1.8, proving the Riemann-Roch theorem for elliptic
curves over C is the same as proving it for C/Λ. Hence, we will prove (9)
and (10) for C/Λ. Before proceeding we give two important lemmas.

Lemma 1.9. Let s1, s2 ∈ C/Λ, and D = (s1) + (s2). Then there exists a
nonconstant function f ∈ C(Λ) such that f ∈ L(D).

Proof. We will consider several cases for the values of s1 and s2. If s1 = s2 = 0
then ℘(z) ∈ L(D), and if s1 = s2 6= 0 then ℘(z − s1) ∈ L(D) by (6).
Similarly, if s1 = −s2 and s1 = r then 1/℘(z) ∈ L(D), and if s1 = −s2 and
s1 6= r then 1/(℘(z) − ℘(s1)) ∈ L(D). If s2 = 0 and s1 6= s2 then setting
f(z) = ℘(z)− ℘(s1) we get

div

(
℘′(z)

f(z)

)
= −(s1)− (−s1)− (0) + positive terms,

div

(
1

f(z)

)
= −(s1)− (−s1) + positive terms.

Now, letting g(z) =
(
Res−s1

(
1

f(z)

))
·
(

℘′(z)
f(z)

)
−

(
Res−s1

(
℘′(z)
f(z)

))
·
(

1
f(z)

)
, it

follows that

div (g(z)) = −(s1)− (0) + positive terms,

that is g(z) ∈ L(D). Finally, if s1 6= s2 then, by applying the previous
case, one can construct a nonconstant function, say g(z) ∈ L(D′) where
D′ = (s1 − s2) + (0). Translating g(z) by s2 completes the proof.

Lemma 1.10. Let s1, s2, s3, s4 ∈ C/Λ. Then (s1) + (s2) ∼ (s3) + (s4) if and
only if s1 + s2 = s3 + s4.
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Proof. First suppose that (s1) + (s2) ∼ (s3) + (s4). Then s1 + s2 = s3 + s4

by Theorem 1.3 (iv).
Now, assume s1 + s2 = s3 + s4. We may also assume that that s1 6= s3, s4

and s2 6= s3, s4. because otherwise we get (s1) + (s2) − (s3) − (s4) = ∅.
By Lemma 1.9, there exist a nonconstant elliptic function g(z) such that
div(g) = −(s3)− (s4) + positive terms. Consider the elliptic function h(z) =
g(z)−g(s1) which has a pole at s3 and s4, and has a zero at s1. By Theorem
1.3 (iii), div(h) has degree 0, and so

div(h) = −(s3)− (s4) + (s1) + (s),

for some s ∈ C/Λ. In fact, s+s1 = s3 +s4 by Theorem 1.3 (iv), and recalling
that s1 + s2 = s3 + s4 gives s = s2, as required.

1.4.1 Proof of Riemann-Roch

Let D0 be a degree zero divisor. If D0 = ∅ then (10) clearly holds. If
D0 = (s1)− (s2) with s1 6= s2 then L(D0) does not contain constant elliptic
functions. But if f(z) ∈ C(Λ) is nonconstant then f has at least two poles
by Corollary 1.4, and so f 6∈ L(D0). That is, l(D0) = l(−D0) = 0 and (10)
holds. Now, let D0 =

∑n
i=1(ri)−

∑n
j=1(sj) and n ≥ 2. Then by Lemma 1.10,

D0 ∼
∑n−2

i=1 (ri) + (rn−1 + rn − sn) −
∑n−1

j=1 (sj). So, by induction on n, (10)
holds for any degree 0 divisor.

Now, let D1 =
∑n+1

i=1 (ri)−
∑n

j=1(sj) be a degree 1 divisor. If n = 0 then
D1 = (r1) and clearly L(D1) contains constant functions. In fact, l(D1) = 1
as any nonconstant function must have a pole of degree at least 2 by by
Corollary 1.4. If D1 =

∑n+1
i=1 (ri)−

∑n
j=1(sj) and n ≥ 1 then by Lemma 1.10,

D1 ∼
∑n−1

i=1 (ri) + (rn + rn+1 − sn) −
∑n−1

j=1 (rj), and by induction on n, (9)
holds for any degree 1 divisor.

In general, if k ≥ 2 and Dk =
∑n+k

i=1 (ri) −
∑n

j=1(sj) is a degree k divi-

sor then applying Lemma 1.10 repeatedly we may suppose Dk =
∑k

i=1(ri).
Moreover, applying the equivalence (rk−1)+(rk) ∼ (0)+(rk−1 +rk) similarly,
we can further assume that Dk = (k−1)(0)+(ρ) where ρ = r1 +r2 + · · ·+rk.
Case 1. ρ = 0: Then Dk = k(0) and let x = ℘(z), y = ℘′(z)/2. Recalling
Example 6, we get that the functions

1, x, x2, x3, . . .

have only poles at 0 and the order of the poles are 0, 2, 4, 6, . . ., respectively.
Similarly, by Example 7, the functions

y, xy, x2y, x3y, . . .
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have only poles at 0 and the order of the poles are 3, 5, 7, 9, . . ., respectively. If
a function from the above list has a pole at 0 with order i, we denote it by fi.
Note that fi are linearly independent as x is transcendental over C and y has
algebraic degree 2 over C(x), as explained in the previous section. Therefore,
in order to prove l(Dk) = k it suffices to show L(Dk) = 〈f0, f2, . . . , fk〉 since
f0, f2, . . . , fk are in L(Dk). Now, let g be any function in L(Dk). We proceed
by induction on i = ord0(g). If i = 0 then g is constant and g = c · f0. The
case i = −1 is impossible by Corollary 1.4. So, we can assume g has a pole of
order i where 2 ≤ i ≤ k. Then the function h(z) = g(z)−Res0(g)fi is either
constant or has a pole at 0 with order 2 ≤ j < i. By induction, h(z) ∈ L(Dk)
and in particular, L(Dk) = 〈f0, f2, . . . , fk〉.
Case 2. ρ 6= 0: Then Dk = (k − 1)(0) + (ρ) and let D′ = (k − 1)0. First
observe that l(Dk) ≥ k − 1 since any function in L(D′) is also in L(Dk),
and from the previous case we have l(D′) = k − 1. Now, let f ∈ C(Λ) be a
nonconstant function with divisor (recall Lemma 1.9)

div(f) = −(0)− (ρ) + positive terms.

Since f has a pole at 0, f 6∈ L(D′) and l(Dk) ≥ k. Now, we show l(Dk) ≤ k.
Let g be any function in L(Dk) and consider the function

h(z) = (Resρ(f)) g(z)− (Resρ(g)) f(z).

Note that h can only have a pole at 0, and the multiplicity can be at
most k − 1. So, h ∈ L(D′), or h ∈ 〈f0, f2, . . . , fk−1〉. In other words,
g ∈ 〈f, f0, f2, . . . , fk−1〉, as required.
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