1 The Riemann-Roch Theorem

Let C be a smooth curve defined over a field K with its divisor group $\operatorname{Div}(C)$. For any divisor D in $\operatorname{Div}(C)$ let $L(D)$ be the space of functions associated to D as usual, and $l(D)$ the dimension of $L(D)$. We denote the canonical divisor on C by K_{C}. The Riemann-Roch theorem then states that

Theorem 1.1. For any divisor $D \in \operatorname{Div}(C)$ there is an integer $g \geq 0$ such that

$$
\begin{equation*}
l(D)-l\left(K_{C}-D\right)=\operatorname{deg} D-g+1 \tag{1}
\end{equation*}
$$

We will prove the above theorem for two special cases: the extended complex plane and the elliptic curves over complex numbers.

First, we shall note some facts that will be used in our proofs.
Proposition 1.2. ([Sil], Proposition 5.2)
(a) If deg $D<0$, then $L(D)=\{0\}$ and $l(D)=0$
(b) If D is linearly equivalent to $D^{\prime}, D \sim D^{\prime}$, then $L(D) \cong L\left(D^{\prime}\right)$ and $l(D)=l\left(D^{\prime}\right)$

1.1 Riemann-Roch theorem for $\mathbb{C} \cup \infty$

By Proposition 1.2 (b), we can assume $K_{C}=-2(\infty)$ (also see Example 4.5, [Sil]). In particular, we will prove that $l(D)-l(-2(\infty)-D)=\operatorname{deg} D+1$. First note that if $\operatorname{deg} D=-1$ then the equality clearly holds by Proposition 1.2 (a). If $\operatorname{deg} D>-1$ then it suffices to prove $l(D)=\operatorname{deg} D+1$ as $l(-2(\infty)-D)=0$. If $\operatorname{deg} D<-1$ then $l(D)=0$ and the equation reads as $-l(-2(\infty)-D)=$ $\operatorname{deg} D+1$. Substituting $D^{\prime}=-2(\infty)-D$ we obtain

$$
\begin{aligned}
-l\left(D^{\prime}\right) & =-2-\operatorname{deg} D^{\prime}+1 \\
& =-\operatorname{deg} D^{\prime}-1 .
\end{aligned}
$$

where $\operatorname{deg} D^{\prime} \geq 0$. Hence, we aim to prove that

$$
\begin{equation*}
l(D)=\operatorname{deg} D+1 \tag{2}
\end{equation*}
$$

for any divisor D with $\operatorname{deg}(D) \geq 0$. If $\operatorname{deg} D=\mathrm{k}$ then, by Proposition 1.2 (b), it is enough to consider any divisor D_{k} of degree $k \geq 0$.

Case 1. $k=0$: Let $D_{0}=\emptyset$. If $f \in L\left(D_{0}\right)$ then f cannot have any pole, and so f must be a constant function. Clearly, any constant function is in $L\left(D_{0}\right)$, whence $l\left(D_{0}\right)=1=\operatorname{deg} D_{0}+1$.

Case 2. $k>0$: Let $D_{k}=\left(s_{1}\right)+\left(s_{2}\right)+\cdots+\left(s_{k}\right)$ where $s_{i} \neq s_{j}$, and $s_{i} \neq \infty$. The set of functions $1 \cup\left\{1 /\left(z-s_{i}\right)\right\}_{i=1}^{k}$ are linearly independent over \mathbb{C} and each of its elements are in $\mathrm{L}\left(D_{k}\right)$, that is, $l\left(D_{k}\right) \geq k+1$. Now, we show $l\left(D_{k}\right) \leq k+1$. Let $f \in \mathrm{~L}\left(D_{k}\right)$. The only poles of f can be from the set $\left\{s_{i}\right\}_{i=1}^{k}$ and f can only have a pole of order at most 1 . So, we can write

$$
f(z)=\frac{g(z)}{\left(z-s_{i_{1}}\right) \ldots\left(z-s_{i_{j}}\right)}
$$

The polynomial $g(z)$ must also satisfy that $\operatorname{deg} g(z) \leq j$ since otherwise f would have a pole at ∞. If $\operatorname{deg} g(z)<j$ then using partial fractions technique f can be written as

$$
f(z)=\sum_{l=1}^{j} \frac{A_{l}}{z-s_{i_{l}}},
$$

where each A_{l} is constant. If $\operatorname{deg} g(z)=j$ then similarly as above one can write

$$
\begin{aligned}
f & =(z-t) \frac{g_{1}}{\left(z-s_{i_{1}}\right) \ldots\left(z-s_{i_{l}}\right)} \\
& =(z-t) \sum_{l=1}^{j} \frac{A_{l}}{z-s_{i_{l}}} \\
& =\sum_{l=1}^{j}\left(A_{l}+\frac{A_{l}\left(s_{i_{l}}-t\right)}{z-s_{i_{l}}}\right) .
\end{aligned}
$$

Hence, we get $f \in\left\langle 1,1 /\left(z-s_{1}\right), \ldots, 1 /\left(z-s_{k}\right)\right\rangle$ and $l\left(D_{k}\right) \leq k+1$, as required.

1.2 Elliptic functions

Let w_{1}, w_{2} be two complex numbers linearly independent over \mathbb{R} and define a lattice $\Lambda=\Lambda\left(w_{1}, w_{2}\right)=\mathbb{Z} w_{1}+\mathbb{Z} w_{2}$ in \mathbb{C}. An elliptic function, f, over a lattice Λ is a meromorphic function on \mathbb{C} such that $f(z+l)=f(z)$ for any $l \in \Lambda$. The set of all elliptic functions on Λ defines a field an denoted $\mathbb{C}(\Lambda)$. The two very important examples of elliptic functions are Weirstrass \wp-function and its derivative:

$$
\begin{aligned}
& \wp(z)=\frac{1}{z^{2}}+\sum_{\substack{w \in \Lambda \\
w \neq 0}}\left(\frac{1}{(z-w)^{2}}-\frac{1}{w^{2}}\right) \\
& \wp^{\prime}(z)=-2 \sum_{w \in \Lambda}\left(\frac{1}{(z-w)^{3}}\right) .
\end{aligned}
$$

It is easy to check that Weirstrass \wp-function is an even elliptic function defined everywhere on $\mathbb{C}-\Lambda$, and \wp^{\prime} is an odd elliptic function defined everywhere on $\mathbb{C}-\Lambda$, ([Sil], Theroem 3.1). In fact, these two functions generate the field of elliptic functions ([Sil], Theroem 3.2):

$$
\begin{equation*}
\mathbb{C}(\Lambda)=\mathbb{C}\left(\wp, \wp^{\prime}\right) . \tag{3}
\end{equation*}
$$

One can write the Laurent series for $\wp(z)$ as

$$
\begin{equation*}
\wp(z)=\frac{1}{z^{2}}+\sum_{k=1}^{\infty}(2 k+1) G_{2 k+2} z^{2 k} \tag{4}
\end{equation*}
$$

and obtain the algebraic relation between $\wp(z)$ and $\wp^{\prime}(z)$

$$
\begin{equation*}
\left(\frac{\wp^{\prime}(z)}{2}\right)^{2}=\wp(z)^{3}-15 G_{4} \wp(z)-35 G_{6}, \tag{5}
\end{equation*}
$$

where $G_{2 k}=\sum_{\substack{w \in \Lambda \\ w \neq 0}} w^{-2 k}$ is the Eisenstein series which converges absolutely for all $k>1$ ([Sil], Theorem 3.5).

1.3 Divisors on \mathbb{C} / Λ

The divisor group $\operatorname{Div}(\mathbb{C} / \Lambda)$ is defined to be the formal sum $\sum_{w \in \mathbb{C} / \lambda} n_{w}(w)$ where $n_{w} \in \mathbb{Z}$ and $n_{w}=0$ for all but finitely many w. The divisor of an elliptic function $f \in \mathbb{C}(\Lambda)$ is then

$$
\operatorname{div}(f)=\sum_{w \in \mathbb{C} / \Lambda} \operatorname{ord}_{w}(f)(w)
$$

The above sum is finite as the zeros and the poles of a meromorphic function are isolated. Before giving some examples of divisors of functions we state the following theorem.

Theorem 1.3. ([Sil], Proposition 2.1, Theorem 2.2)
(i) An elliptic function with no poles or no zeros is constant.
(ii) $\sum_{w \in \mathbb{C} / \Lambda} \operatorname{Res}_{w}(f)=0$.
(iii) $\sum_{w \in \mathbb{C} / \Lambda} \operatorname{ord}_{w}(f)=0$.
(iv) $\sum_{w \in \mathbb{C} / \Lambda} \operatorname{ord}_{w}(f) w \equiv 0(\bmod \Lambda)$.

Corollary 1.4. A nonconstant elliptic function has order at least 2.
Proof. If f has a simple pole then by Theorem 1.3 (ii), f is holomorphic, and by Theorem 1.3 (i), f must be constant.

Example 1.5. We will write the divisor of $\wp(z)$. By (4), $\wp(z)$ has only one pole at 0 with multiplicity 2 . Since the degree of $\operatorname{div}(\wp(z))$ is zero by Theorem 1.3, $\wp(z)$ must have 2 zeros counting multiplicities. Moreover, if r is a zero of $\wp(z)$ then $-r$ is a zero of $\wp(z)$ as $\wp(z)$ is an even function. Hence,

$$
\begin{equation*}
\operatorname{div}(\wp(z))=-2(0)+(r)+(-r) . \tag{6}
\end{equation*}
$$

From now on, the letter $r \in \mathbb{C} / \Lambda$ is reserved for the zero of $\wp(z)$.
Example 1.6. We will write the divisor of $\wp^{\prime}(z)$. By (4), $\wp^{\prime}(z)$ has only one pole at 0 with multiplicity 3 . Since the degree of $\operatorname{div}\left(\wp^{\prime}(z)\right)$ is zero by Theorem 1.3, $\wp^{\prime}(z)$ must have 3 zeros counting multiplicities. Note that $\wp^{\prime}(z)$ is an odd function and $2 w_{1}=0$ in \mathbb{C} / Λ. That is, $\wp^{\prime}\left(w_{1} / 2\right)=-\wp^{\prime}\left(-w_{1} / 2\right)=-\wp^{\prime}\left(w_{1} / 2\right)$ and $\wp^{\prime}\left(w_{1} / 2\right)=0$. Similarly, $\wp^{\prime}\left(w_{2} / 2\right)=\wp^{\prime}\left(\left(w_{1}+2\right) / 2\right)=0$. Hence,

$$
\begin{equation*}
\operatorname{div}\left(\wp^{\prime}(z)\right)=-3(0)+\left(\frac{w_{1}}{2}\right)+\left(\frac{w_{2}}{2}\right)+\left(\frac{w_{1}+w_{2}}{2}\right) . \tag{7}
\end{equation*}
$$

Now, let $x=\wp(z)$ and $y=\wp^{\prime}(z)$. Then, x is transcendental over \mathbb{C} since x has a pole at 0 . Moreover y is algebraic over $\mathbb{C}(x)$ with degree at most 2 by (5). In fact, the algebraic degree of y is 2 because y is an odd function, that is, $y \notin \mathbb{C}(x)$. Combining this observation with (3) and (5) proves the following proposition

Proposition 1.7. $\mathbb{C}(\Lambda) \cong \mathbb{C}[X, Y] /\left(Y^{2}-X^{3}-15 G_{4} X-35 G_{6}\right)$.
The above proposition indicates a close relation between \mathbb{C} / Λ and the elliptic curves arising from the corresponding lattice, Λ. In fact, more is true and for each elliptic curve defined over \mathbb{C} there corresponds a unique lattice Λ in \mathbb{C}. The precise statement is as follows

Theorem 1.8 ([Sil2], Corollary 4.3). Let $A, B \in \mathbb{C}$ satisfy $4 A^{3}+27 B^{2} \neq 0$, and let

$$
E=\left\{(x, y) \in \mathbb{C}^{2}: y^{2}=x^{3}+A x+B\right\} \cup\{\infty\}
$$

be an elliptic curve. Then there is a unique lattice $\Lambda \in \mathbb{C}$ such that the map

$$
\begin{aligned}
\phi: \mathbb{C} / \Lambda & \rightarrow E \subset \mathbb{C}^{2} \cup\{\infty\} \\
z & \mapsto\left(\wp(z), \frac{\wp^{\prime}(z)}{2}\right)
\end{aligned}
$$

is a complex analytic isomorphism.

1.4 Riemann-Roch theorem for E / \mathbb{C}

By Proposition 1.2 (b), we can assume $K_{C}=\emptyset$ (also see Example 4.6, [Sil]). In particular, we will prove that

$$
\begin{equation*}
l(D)-l(-D)=\operatorname{deg} D \tag{8}
\end{equation*}
$$

If $\operatorname{deg} D>0$ then we have to prove, by Proposition 1.2 (a), that $l(D)=$ $\operatorname{deg} D$. If deg $D<0$ then replacing D by $D^{\prime}=-D$ in (8), gives $l\left(D^{\prime}\right)=$ $\operatorname{deg} D^{\prime}$ where $\operatorname{deg} D^{\prime}>0$. Hence, we left with two cases to prove:

$$
\begin{align*}
l(D)=\operatorname{deg} D, \quad \operatorname{deg} D>0 \tag{9}\\
l(D)-l(-D)=\operatorname{deg} D, \quad \operatorname{deg} D=0 \tag{10}
\end{align*}
$$

Moreover, by Theorem 1.8, proving the Riemann-Roch theorem for elliptic curves over \mathbb{C} is the same as proving it for \mathbb{C} / Λ. Hence, we will prove (9) and (10) for \mathbb{C} / Λ. Before proceeding we give two important lemmas.

Lemma 1.9. Let $s_{1}, s_{2} \in \mathbb{C} / \Lambda$, and $D=\left(s_{1}\right)+\left(s_{2}\right)$. Then there exists a nonconstant function $f \in \mathbb{C}(\Lambda)$ such that $f \in L(D)$.

Proof. We will consider several cases for the values of s_{1} and s_{2}. If $s_{1}=s_{2}=0$ then $\wp(z) \in L(D)$, and if $s_{1}=s_{2} \neq 0$ then $\wp\left(z-s_{1}\right) \in L(D)$ by (6). Similarly, if $s_{1}=-s_{2}$ and $s_{1}=r$ then $1 / \wp(z) \in L(D)$, and if $s_{1}=-s_{2}$ and $s_{1} \neq r$ then $1 /\left(\wp(z)-\wp\left(s_{1}\right)\right) \in L(D)$. If $s_{2}=0$ and $s_{1} \neq s_{2}$ then setting $f(z)=\wp(z)-\wp\left(s_{1}\right)$ we get

$$
\begin{aligned}
\operatorname{div}\left(\frac{\wp^{\prime}(z)}{f(z)}\right) & =-\left(s_{1}\right)-\left(-s_{1}\right)-(0)+\text { positive terms, } \\
\operatorname{div}\left(\frac{1}{f(z)}\right) & =-\left(s_{1}\right)-\left(-s_{1}\right)+\text { positive terms. }
\end{aligned}
$$

Now, letting $g(z)=\left(\operatorname{Res}_{-s_{1}}\left(\frac{1}{f(z)}\right)\right) \cdot\left(\frac{\wp^{\prime}(z)}{f(z)}\right)-\left(\operatorname{Res}_{-s_{1}}\left(\frac{\wp^{\prime}(z)}{f(z)}\right)\right) \cdot\left(\frac{1}{f(z)}\right)$, it follows that

$$
\operatorname{div}(g(z))=-\left(s_{1}\right)-(0)+\text { positive terms, }
$$

that is $g(z) \in L(D)$. Finally, if $s_{1} \neq s_{2}$ then, by applying the previous case, one can construct a nonconstant function, say $g(z) \in L\left(D^{\prime}\right)$ where $D^{\prime}=\left(s_{1}-s_{2}\right)+(0)$. Translating $g(z)$ by s_{2} completes the proof.

Lemma 1.10. Let $s_{1}, s_{2}, s_{3}, s_{4} \in \mathbb{C} / \Lambda$. Then $\left(s_{1}\right)+\left(s_{2}\right) \sim\left(s_{3}\right)+\left(s_{4}\right)$ if and only if $s_{1}+s_{2}=s_{3}+s_{4}$.

Proof. First suppose that $\left(s_{1}\right)+\left(s_{2}\right) \sim\left(s_{3}\right)+\left(s_{4}\right)$. Then $s_{1}+s_{2}=s_{3}+s_{4}$ by Theorem 1.3 (iv).

Now, assume $s_{1}+s_{2}=s_{3}+s_{4}$. We may also assume that that $s_{1} \neq s_{3}, s_{4}$ and $s_{2} \neq s_{3}, s_{4}$. because otherwise we get $\left(s_{1}\right)+\left(s_{2}\right)-\left(s_{3}\right)-\left(s_{4}\right)=\emptyset$. By Lemma 1.9, there exist a nonconstant elliptic function $g(z)$ such that $\operatorname{div}(g)=-\left(s_{3}\right)-\left(s_{4}\right)+$ positive terms. Consider the elliptic function $h(z)=$ $g(z)-g\left(s_{1}\right)$ which has a pole at s_{3} and s_{4}, and has a zero at s_{1}. By Theorem 1.3 (iii), $\operatorname{div}(h)$ has degree 0 , and so

$$
\operatorname{div}(h)=-\left(s_{3}\right)-\left(s_{4}\right)+\left(s_{1}\right)+(s)
$$

for some $s \in \mathbb{C} / \Lambda$. In fact, $s+s_{1}=s_{3}+s_{4}$ by Theorem 1.3 (iv), and recalling that $s_{1}+s_{2}=s_{3}+s_{4}$ gives $s=s_{2}$, as required.

1.4.1 Proof of Riemann-Roch

Let D_{0} be a degree zero divisor. If $D_{0}=\emptyset$ then (10) clearly holds. If $D_{0}=\left(s_{1}\right)-\left(s_{2}\right)$ with $s_{1} \neq s_{2}$ then $L\left(D_{0}\right)$ does not contain constant elliptic functions. But if $f(z) \in \mathbb{C}(\Lambda)$ is nonconstant then f has at least two poles by Corollary 1.4, and so $f \notin L\left(D_{0}\right)$. That is, $l\left(D_{0}\right)=l\left(-D_{0}\right)=0$ and (10) holds. Now, let $D_{0}=\sum_{i=1}^{n}\left(r_{i}\right)-\sum_{j=1}^{n}\left(s_{j}\right)$ and $n \geq 2$. Then by Lemma 1.10, $D_{0} \sim \sum_{i=1}^{n-2}\left(r_{i}\right)+\left(r_{n-1}+r_{n}-s_{n}\right)-\sum_{j=1}^{n-1}\left(s_{j}\right)$. So, by induction on n, (10) holds for any degree 0 divisor.

Now, let $D_{1}=\sum_{i=1}^{n+1}\left(r_{i}\right)-\sum_{j=1}^{n}\left(s_{j}\right)$ be a degree 1 divisor. If $n=0$ then $D_{1}=\left(r_{1}\right)$ and clearly $\mathrm{L}\left(D_{1}\right)$ contains constant functions. In fact, $l\left(D_{1}\right)=1$ as any nonconstant function must have a pole of degree at least 2 by by Corollary 1.4. If $D_{1}=\sum_{i=1}^{n+1}\left(r_{i}\right)-\sum_{j=1}^{n}\left(s_{j}\right)$ and $n \geq 1$ then by Lemma 1.10, $D_{1} \sim \sum_{i=1}^{n-1}\left(r_{i}\right)+\left(r_{n}+r_{n+1}-s_{n}\right)-\sum_{j=1}^{n-1}\left(r_{j}\right)$, and by induction on n, (9) holds for any degree 1 divisor.

In general, if $k \geq 2$ and $D_{k}=\sum_{i=1}^{n+k}\left(r_{i}\right)-\sum_{j=1}^{n}\left(s_{j}\right)$ is a degree k divisor then applying Lemma 1.10 repeatedly we may suppose $D_{k}=\sum_{i=1}^{k}\left(r_{i}\right)$. Moreover, applying the equivalence $\left(r_{k-1}\right)+\left(r_{k}\right) \sim(0)+\left(r_{k-1}+r_{k}\right)$ similarly, we can further assume that $D_{k}=(k-1)(0)+(\rho)$ where $\rho=r_{1}+r_{2}+\cdots+r_{k}$. Case 1. $\rho=0$: Then $D_{k}=k(0)$ and let $x=\wp(z), y=\wp^{\prime}(z) / 2$. Recalling Example 6, we get that the functions

$$
1, x, x^{2}, x^{3}, \ldots
$$

have only poles at 0 and the order of the poles are $0,2,4,6, \ldots$, respectively. Similarly, by Example 7, the functions

$$
y, x y, x^{2} y, x^{3} y, \ldots
$$

have only poles at 0 and the order of the poles are $3,5,7,9, \ldots$, respectively. If a function from the above list has a pole at 0 with order i, we denote it by f_{i}. Note that f_{i} are linearly independent as x is transcendental over \mathbb{C} and y has algebraic degree 2 over $\mathbb{C}(x)$, as explained in the previous section. Therefore, in order to prove $l\left(D_{k}\right)=k$ it suffices to show $\mathrm{L}\left(D_{k}\right)=\left\langle f_{0}, f_{2}, \ldots, f_{k}\right\rangle$ since $f_{0}, f_{2}, \ldots, f_{k}$ are in $\mathrm{L}\left(D_{k}\right)$. Now, let g be any function in $\mathrm{L}\left(D_{k}\right)$. We proceed by induction on $i=\operatorname{ord}_{0}(g)$. If $i=0$ then g is constant and $g=c \cdot f_{0}$. The case $i=-1$ is impossible by Corollary 1.4. So, we can assume g has a pole of order i where $2 \leq i \leq k$. Then the function $h(z)=g(z)-\operatorname{Res}_{0}(g) f_{i}$ is either constant or has a pole at 0 with order $2 \leq j<i$. By induction, $h(z) \in \mathrm{L}\left(D_{k}\right)$ and in particular, $\mathrm{L}\left(D_{k}\right)=\left\langle f_{0}, f_{2}, \ldots, f_{k}\right\rangle$.
Case 2. $\rho \neq 0$: Then $D_{k}=(k-1)(0)+(\rho)$ and let $D^{\prime}=(k-1) 0$. First observe that $l\left(D_{k}\right) \geq k-1$ since any function in $\mathrm{L}\left(D^{\prime}\right)$ is also in $\mathrm{L}\left(D_{k}\right)$, and from the previous case we have $l\left(D^{\prime}\right)=k-1$. Now, let $f \in \mathbb{C}(\Lambda)$ be a nonconstant function with divisor (recall Lemma 1.9)

$$
\operatorname{div}(f)=-(0)-(\rho)+\text { positive terms }
$$

Since f has a pole at $0, f \notin \mathrm{~L}\left(D^{\prime}\right)$ and $l\left(D_{k}\right) \geq k$. Now, we show $l\left(D_{k}\right) \leq k$. Let g be any function in $\mathrm{L}\left(D_{k}\right)$ and consider the function

$$
h(z)=\left(\operatorname{Res}_{\rho}(f)\right) g(z)-\left(\operatorname{Res}_{\rho}(g)\right) f(z) .
$$

Note that h can only have a pole at 0 , and the multiplicity can be at most $k-1$. So, $h \in \mathrm{~L}\left(D^{\prime}\right)$, or $h \in\left\langle f_{0}, f_{2}, \ldots, f_{k-1}\right\rangle$. In other words, $g \in\left\langle f, f_{0}, f_{2}, \ldots, f_{k-1}\right\rangle$, as required.

2 Acknowledgments

The proofs of Lemma 1.9, Lemma 1.10, and the section 1.4.1 are based on the lecture notes by David [Jao].

References

[Jao] D. Jao, Topics in Cryptography - Lecture Notes, University of Waterloo, (2007).
[Sil] J. H. Silverman, The Arithmetic of Elliptic Curves, SpringerVerlag, (1986).
[Sil2] J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer- Verlag, (1994).

