
1 Characterization of Supersingular Elliptic

Curves

Let E/Q be an elliptic curve which has complex multiplication by an order
O in a quadratic imaginary field, say k. That is, End(E) ∼= O ⊆ Ok where
Ok is the ring of integers of k. Let p be a prime and always assume that
E has a good reduction at p. We denote the reduced curve by Ẽp, or by Ẽ
when p is clear from the context. By definition, Ẽ is supersingular if End(Ẽ)
is an order in a quaternion algebra. Now, let π be the p-power Frobenius
map, and if φ is an isogeny between elliptic curves denote the dual of φ by
φ̂. Then one can show that the following are equivalent ([Sil], Theorem 3.1)

1. End(Ẽ) is an order in a quaternion algebra.

2. Ẽ[pr] = 0 for all r ≥ 1.

3. π̂ is purely inseparable.

Fixing the notation as above we will prove that

Theorem 1.1. (Theorem 12, p.182, [Ser]) Ẽp is supersingular if and only if
p ramifies or remains prime in k.

First we prove another characterization for supersingular elliptic curves.

Lemma 1.2. Let E/Fp be an elliptic curve and #E(Fp) = p + 1− t. Then
E is supersingular if and only if t ≡ 0 (mod p).

Proof. First note that if φ is any endomorphism of E the it is a zero of the
polynomial

fφ(X) = (X − φ)(X − φ̂)

= X2 − (φ + φ̂)X + φ ◦ φ̂

Note that deg(1 − φ) = f([1]) = [1] − (φ + φ̂) + [deg(φ)] and so for some
integer tφ we can rewrite the polynomial of φ as

fφ(X) = X2 − ([tφ])X + [deg(φ)]

where [tφ] = φ+φ̂. In particular, for the Frobenious endomorphism we obtain

fπ(X) = X2 − ([tπ])X + [p]
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where [tπ] = π + π̂. Now, using Corollary 5.5 in [Sil] gives

E is supersingular ⇔ π̂ is purely inseparable

⇔ [tπ]− π is purely inseparable

⇔ tπ ≡ 0 (mod p).

Finally, note that [#E(Fp)] = [degs(1 − π)] = [deg(1 − π)] = fπ([1]) =
[p + 1− tπ], that is t = tπ and we are done.

Lemma 1.3. Let φ be an isogeny from E1/Q to E2/Q. Let p be a prime and
suppose that E1 and E2 have good reduction modulo p, say Ẽ1 and Ẽ2. Then
Ẽ1 is supersingular if and only if Ẽ2 is supersingular.

Proof. We first prove that if Ẽ2 is supersingular then Ẽ1 is supersingular. Let
φ̃ be the isogeny from Ẽ1 to Ẽ2 obtained by reducing φ modulo p. Suppose
that Ẽ1 is not supersingular. Then there exists a nontrivial point of order p
on Ẽ1, say P . If φ̃(P ) 6= O then Q := φ̃(P ) is a nontrivial point of order p
on Ẽ2 and E2 so is not supersingular. If φ̃(P ) = O for all such points P on

Ẽ1 then p | degs φ̃ = degs
ˆ̃φ = #ˆ̃φ−1(O). That is, there exists O 6= Q on Ẽ2

such that pQ = O and so Ẽ2 is not supersingular. We can argue similarly as

above by considering the dual isogeny ˆ̃φ and prove the converse.

Let E/Q be an elliptic curve with complex multiplication O ⊆ Ok. It
is possible to find an isogeny φ : E → E ′ such that End(E ′) ∼= Ok ([Koh],
[Galb]). Assuming that E and E ′ have good reduction at some prime p, Ẽp

is supersingular if and only if Ẽ ′
p is supersingular by Lemma 1.3. So we can

restate Theorem 1.1 as

Theorem 1.4. Let E/Q be an elliptic curve which has complex multiplication
by the maximal order Ok in a quadratic imaginary field k. Suppose that E
has a good reduction at prime p. Then Ẽp is supersingular if and only if p
ramifies or remains prime in k.

Proof. Suppose first that p remains prime in k. Let End(Ẽ) ∼= O for some
order O in k and let θ : O → End(Ẽ) be the corresponding isomorphism.
Take α ∈ O such that θ(α) = π is the p-power Frobenius map. The char-

acteristic polynomial of π gives θ(α) ◦ θ̂(α) = [p]. Now, setting θ̂(α) = θ(β)
we get αβ = p. That is, α is an element in O with norm p (note that α
and β are nonunits). However, we observe that if Ok is the maximal order
in k and p remains prime in k then Ok cannot contain any element of order
p as otherwise if a is an element of order p with its conjugate a′ then aa′ = p
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and pOk = aa′, contradiction. Hence, O must be an order in a quaternion
algebra and so Ẽ is supersingular.

Now, suppose p ramifies in k = Q(
√

d). Then p = pp = 〈p,
√

d〉2. If α is
the element in the order O ∼= End(Ẽ) which corresponds to π then the norm
of α is p and so p =< α >. Then π + π̂ = trace(α) = mp for some integer m
and by Lemma 1.2, Ẽ is supersingular.

Next assuming that p splits in k we prove Ẽ contains a nontrivial point
of order p, that is Ẽ is not supersingular. First note that there is a unique
isomorphism θ : Ok → End(E) such that for any invariant differential w on
E we have θ(α)∗w = αw for all α ∈ Ok (p.97, [Sil2]). Let pOk = pp′. Choose
an integer m such that pm = µOk and p′m = µ′Ok. If θ is a as above and
w is a differential such that its reduction modulo p, say w̃, is not zero then

θ̃(µ′)
∗
w̃ = µ̃′w̃ 6= 0 as µ′ /∈ p, and so θ̃(µ′) is separable (Proposition 4.2,

p.35, [Sil]). On the other hand, since µµ′ = pm we have θ(µ)θ(µ′) = [pm],

that is θ(µ′) has degree a power of p and so θ̃(µ′) has degree a power of p.

Finally, since θ̃(µ′) is separable, we conclude that p | degs(θ̃(µ
′)) and Ẽ has

a nontrivial point of order p.
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