1 Characterization of Supersingular Elliptic Curves

Let E/\mathbb{Q} be an elliptic curve which has complex multiplication by an order \mathcal{O} in a quadratic imaginary field, say k. That is, $\operatorname{End}(E) \cong \mathcal{O} \subseteq \mathcal{O}_k$ where \mathcal{O}_k is the ring of integers of k. Let p be a prime and always assume that E has a good reduction at p. We denote the reduced curve by \tilde{E}_p , or by \tilde{E} when p is clear from the context. By definition, \tilde{E} is supersingular if $\operatorname{End}(\tilde{E})$ is an order in a quaternion algebra. Now, let π be the p-power Frobenius map, and if ϕ is an isogeny between elliptic curves denote the dual of ϕ by $\hat{\phi}$. Then one can show that the following are equivalent ([Sil], Theorem 3.1)

- 1. $\operatorname{End}(\tilde{E})$ is an order in a quaternion algebra.
- 2. $\tilde{E}[p^r] = 0$ for all $r \ge 1$.
- 3. $\hat{\pi}$ is purely inseparable.

Fixing the notation as above we will prove that

Theorem 1.1. (Theorem 12, p.182, [Ser]) \dot{E}_p is supersingular if and only if p ramifies or remains prime in k.

First we prove another characterization for supersingular elliptic curves.

Lemma 1.2. Let E/\mathbb{F}_p be an elliptic curve and $\#E(\mathbb{F}_p) = p + 1 - t$. Then *E* is supersingular if and only if $t \equiv 0 \pmod{p}$.

Proof. First note that if ϕ is any endomorphism of E the it is a zero of the polynomial

$$f_{\phi}(X) = (X - \phi)(X - \phi)$$

= $X^2 - (\phi + \hat{\phi})X + \phi \circ$

 $\hat{\phi}$

Note that $\deg(1-\phi) = f([1]) = [1] - (\phi + \hat{\phi}) + [\deg(\phi)]$ and so for some integer t_{ϕ} we can rewrite the polynomial of ϕ as

$$f_{\phi}(X) = X^2 - ([t_{\phi}])X + [\deg(\phi)]$$

where $[t_{\phi}] = \phi + \hat{\phi}$. In particular, for the Frobenious endomorphism we obtain

$$f_{\pi}(X) = X^2 - ([t_{\pi}])X + [p]$$

where $[t_{\pi}] = \pi + \hat{\pi}$. Now, using Corollary 5.5 in [Sil] gives

 $E \text{ is supersingular } \Leftrightarrow \hat{\pi} \text{ is purely inseparable} \\ \Leftrightarrow [t_{\pi}] - \pi \text{ is purely inseparable} \\ \Leftrightarrow t_{\pi} \equiv 0 \pmod{p}.$

Finally, note that $[\#E(\mathbb{F}_p)] = [\deg_s(1-\pi)] = [\deg(1-\pi)] = f_{\pi}([1]) = [p+1-t_{\pi}]$, that is $t = t_{\pi}$ and we are done.

Lemma 1.3. Let ϕ be an isogeny from E_1/\mathbb{Q} to E_2/\mathbb{Q} . Let p be a prime and suppose that E_1 and E_2 have good reduction modulo p, say \tilde{E}_1 and \tilde{E}_2 . Then \tilde{E}_1 is supersingular if and only if \tilde{E}_2 is supersingular.

Proof. We first prove that if \tilde{E}_2 is supersingular then \tilde{E}_1 is supersingular. Let $\tilde{\phi}$ be the isogeny from \tilde{E}_1 to \tilde{E}_2 obtained by reducing ϕ modulo p. Suppose that \tilde{E}_1 is not supersingular. Then there exists a nontrivial point of order p on \tilde{E}_1 , say P. If $\tilde{\phi}(P) \neq O$ then $Q := \tilde{\phi}(P)$ is a nontrivial point of order p on \tilde{E}_2 and E_2 so is not supersingular. If $\tilde{\phi}(P) = O$ for all such points P on \tilde{E}_1 then $p \mid \deg_s \tilde{\phi} = \deg_s \hat{\phi} = \# \hat{\phi}^{-1}(O)$. That is, there exists $O \neq Q$ on \tilde{E}_2 such that pQ = O and so \tilde{E}_2 is not supersingular. We can argue similarly as above by considering the dual isogeny $\hat{\phi}$ and prove the converse.

Let E/\mathbb{Q} be an elliptic curve with complex multiplication $\mathcal{O} \subseteq \mathcal{O}_k$. It is possible to find an isogeny $\phi : E \to E'$ such that $\operatorname{End}(E') \cong \mathcal{O}_k$ ([Koh], [Galb]). Assuming that E and E' have good reduction at some prime p, \tilde{E}_p is supersingular if and only if $\tilde{E'}_p$ is supersingular by Lemma 1.3. So we can restate Theorem 1.1 as

Theorem 1.4. Let E/\mathbb{Q} be an elliptic curve which has complex multiplication by the maximal order \mathcal{O}_k in a quadratic imaginary field k. Suppose that E has a good reduction at prime p. Then \tilde{E}_p is supersingular if and only if p ramifies or remains prime in k.

Proof. Suppose first that p remains prime in k. Let $\operatorname{End}(\tilde{E}) \cong \mathcal{O}$ for some order \mathcal{O} in k and let $\theta : \mathcal{O} \to \operatorname{End}(\tilde{E})$ be the corresponding isomorphism. Take $\alpha \in \mathcal{O}$ such that $\theta(\alpha) = \pi$ is the p-power Frobenius map. The characteristic polynomial of π gives $\theta(\alpha) \circ \widehat{\theta(\alpha)} = [p]$. Now, setting $\widehat{\theta(\alpha)} = \theta(\beta)$ we get $\alpha\beta = p$. That is, α is an element in \mathcal{O} with norm p (note that α and β are nonunits). However, we observe that if \mathcal{O}_k is the maximal order in k and p remains prime in k then \mathcal{O}_k cannot contain any element of order p as otherwise if a is an element of order p with its conjugate a' then aa' = p and $p\mathcal{O}_k = \mathfrak{a}\mathfrak{a}'$, contradiction. Hence, \mathcal{O} must be an order in a quaternion algebra and so \tilde{E} is supersingular.

Now, suppose p ramifies in $k = \mathbb{Q}(\sqrt{d})$. Then $p = \mathfrak{p}\mathfrak{p} = \langle p, \sqrt{d} \rangle^2$. If α is the element in the order $\mathcal{O} \cong \operatorname{End}(\tilde{E})$ which corresponds to π then the norm of α is p and so $\mathfrak{p} = \langle \alpha \rangle$. Then $\pi + \hat{\pi} = \operatorname{trace}(\alpha) = mp$ for some integer m and by Lemma 1.2, \tilde{E} is supersingular.

Next assuming that p splits in k we prove \tilde{E} contains a nontrivial point of order p, that is \tilde{E} is not supersingular. First note that there is a unique isomorphism $\theta : \mathcal{O}_k \to \operatorname{End}(E)$ such that for any invariant differential w on E we have $\theta(\alpha)^* w = \alpha w$ for all $\alpha \in \mathcal{O}_k$ (p.97, [Sil2]). Let $p\mathcal{O}_k = \mathfrak{pp}'$. Choose an integer m such that $\mathfrak{p}^m = \mu \mathcal{O}_k$ and $\mathfrak{p}'^m = \mu' \mathcal{O}_k$. If θ is a as above and w is a differential such that its reduction modulo p, say \tilde{w} , is not zero then $\theta(\mu')^* \tilde{w} = \tilde{\mu'} \tilde{w} \neq 0$ as $\mu' \notin \mathfrak{p}$, and so $\theta(\mu')$ is separable (Proposition 4.2, p.35, [Sil]). On the other hand, since $\mu \mu' = p^m$ we have $\theta(\mu)\theta(\mu') = [p^m]$, that is $\theta(\mu')$ has degree a power of p and so $\theta(\mu')$ has degree a power of p. Finally, since $\theta(\mu')$ is separable, we conclude that $p \mid \deg_s(\theta(\mu'))$ and \tilde{E} has a nontrivial point of order p.

References

[Galb]	S. Galbraith, Constructing isogenies betweeen elliptic curves Over Finite Fields, London Math. Soc., Journal of Computa- tional Mathematics, Vol. 2, p. 118-138 (1999).
[Koh]	D. Kohel, Endomorphism rings of elliptic curves over finite fields, Berkeley PhD thesis, (1996).
[Ser]	S. Lang, Elliptic Functions, Springer- Verlag, (1987).
[Sil]	J. H. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, (1986).
[Sil2]	J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer- Verlag, (1994).