1 Characterization of Supersingular Elliptic Curves

Let E / \mathbb{Q} be an elliptic curve which has complex multiplication by an order \mathcal{O} in a quadratic imaginary field, say k. That is, $\operatorname{End}(E) \cong \mathcal{O} \subseteq \mathcal{O}_{k}$ where \mathcal{O}_{k} is the ring of integers of k. Let p be a prime and always assume that E has a good reduction at p. We denote the reduced curve by \tilde{E}_{p}, or by \tilde{E} when p is clear from the context. By definition, \tilde{E} is supersingular if $\operatorname{End}(\tilde{E})$ is an order in a quaternion algebra. Now, let π be the p-power Frobenius map, and if ϕ is an isogeny between elliptic curves denote the dual of ϕ by $\hat{\phi}$. Then one can show that the following are equivalent ([Sil], Theorem 3.1)

1. $\operatorname{End}(\tilde{E})$ is an order in a quaternion algebra.
2. $\tilde{E}\left[p^{r}\right]=0$ for all $r \geq 1$.
3. $\hat{\pi}$ is purely inseparable.

Fixing the notation as above we will prove that
Theorem 1.1. (Theorem 12, p.182, [Ser]) \tilde{E}_{p} is supersingular if and only if p ramifies or remains prime in k.

First we prove another characterization for supersingular elliptic curves.
Lemma 1.2. Let E / \mathbb{F}_{p} be an elliptic curve and $\# E\left(\mathbb{F}_{p}\right)=p+1-t$. Then E is supersingular if and only if $t \equiv 0(\bmod p)$.

Proof. First note that if ϕ is any endomorphism of E the it is a zero of the polynomial

$$
\begin{aligned}
f_{\phi}(X) & =(X-\phi)(X-\hat{\phi}) \\
& =X^{2}-(\phi+\hat{\phi}) X+\phi \circ \hat{\phi}
\end{aligned}
$$

Note that $\operatorname{deg}(1-\phi)=f([1])=[1]-(\phi+\hat{\phi})+[\operatorname{deg}(\phi)]$ and so for some integer t_{ϕ} we can rewrite the polynomial of ϕ as

$$
f_{\phi}(X)=X^{2}-\left(\left[t_{\phi}\right]\right) X+[\operatorname{deg}(\phi)]
$$

where $\left[t_{\phi}\right]=\phi+\hat{\phi}$. In particular, for the Frobenious endomorphism we obtain

$$
f_{\pi}(X)=X^{2}-\left(\left[t_{\pi}\right]\right) X+[p]
$$

where $\left[t_{\pi}\right]=\pi+\hat{\pi}$. Now, using Corollary 5.5 in [Sil] gives

$$
\begin{aligned}
E \text { is supersingular } & \Leftrightarrow \hat{\pi} \text { is purely inseparable } \\
& \Leftrightarrow\left[t_{\pi}\right]-\pi \text { is purely inseparable } \\
& \Leftrightarrow t_{\pi} \equiv 0(\bmod p)
\end{aligned}
$$

Finally, note that $\left[\# E\left(\mathbb{F}_{p}\right)\right]=\left[\operatorname{deg}_{s}(1-\pi)\right]=[\operatorname{deg}(1-\pi)]=f_{\pi}([1])=$ [$p+1-t_{\pi}$], that is $t=t_{\pi}$ and we are done.

Lemma 1.3. Let ϕ be an isogeny from E_{1} / \mathbb{Q} to E_{2} / \mathbb{Q}. Let p be a prime and suppose that E_{1} and E_{2} have good reduction modulo p, say \tilde{E}_{1} and \tilde{E}_{2}. Then \tilde{E}_{1} is supersingular if and only if \tilde{E}_{2} is supersingular.

Proof. We first prove that if \tilde{E}_{2} is supersingular then \tilde{E}_{1} is supersingular. Let $\tilde{\phi}$ be the isogeny from \tilde{E}_{1} to \tilde{E}_{2} obtained by reducing ϕ modulo p. Suppose that \tilde{E}_{1} is not supersingular. Then there exists a nontrivial point of order p on \tilde{E}_{1}, say P. If $\tilde{\phi}(P) \neq O$ then $Q:=\tilde{\phi}(P)$ is a nontrivial point of order p on \tilde{E}_{2} and E_{2} so is not supersingular. If $\tilde{\phi}(P)=O$ for all such points P on \tilde{E}_{1} then $p \mid \operatorname{deg}_{s} \tilde{\phi}=\operatorname{deg}_{s} \hat{\tilde{\phi}}=\# \hat{\tilde{\phi}}^{-1}(O)$. That is, there exists $O \neq Q$ on \tilde{E}_{2} such that $p Q=O$ and so \tilde{E}_{2} is not supersingular. We can argue similarly as above by considering the dual isogeny $\hat{\tilde{\phi}}$ and prove the converse.

Let E / \mathbb{Q} be an elliptic curve with complex multiplication $\mathcal{O} \subseteq \mathcal{O}_{k}$. It is possible to find an isogeny $\phi: E \rightarrow E^{\prime}$ such that $\operatorname{End}\left(E^{\prime}\right) \cong \mathcal{O}_{k}([\mathrm{Koh}]$, [Galb]). Assuming that E and E^{\prime} have good reduction at some prime p, \tilde{E}_{p} is supersingular if and only if \tilde{E}_{p}^{\prime} is supersingular by Lemma 1.3 . So we can restate Theorem 1.1 as

Theorem 1.4. Let E / \mathbb{Q} be an elliptic curve which has complex multiplication by the maximal order \mathcal{O}_{k} in a quadratic imaginary field k. Suppose that E has a good reduction at prime p. Then \tilde{E}_{p} is supersingular if and only if p ramifies or remains prime in k.

Proof. Suppose first that p remains prime in k. Let $\operatorname{End}(\tilde{E}) \cong \mathcal{O}$ for some order \mathcal{O} in k and let $\theta: \mathcal{O} \rightarrow \operatorname{End}(\tilde{E})$ be the corresponding isomorphism. Take $\alpha \in \mathcal{O}$ such that $\theta(\alpha)=\pi$ is the p-power Frobenius map. The characteristic polynomial of π gives $\theta(\alpha) \circ \widehat{\theta(\alpha)}=[p]$. Now, setting $\widehat{\theta(\alpha)}=\theta(\beta)$ we get $\alpha \beta=p$. That is, α is an element in \mathcal{O} with norm p (note that α and β are nonunits). However, we observe that if \mathcal{O}_{k} is the maximal order in k and p remains prime in k then \mathcal{O}_{k} cannot contain any element of order p as otherwise if a is an element of order p with its conjugate a^{\prime} then $a a^{\prime}=p$
and $p \mathcal{O}_{k}=\mathfrak{a \mathfrak { a } ^ { \prime }}$, contradiction. Hence, \mathcal{O} must be an order in a quaternion algebra and so \tilde{E} is supersingular.

Now, suppose p ramifies in $k=\mathbb{Q}(\sqrt{d})$. Then $p=\mathfrak{p p}=\langle p, \sqrt{d}\rangle^{2}$. If α is the element in the order $\mathcal{O} \cong \operatorname{End}(\tilde{E})$ which corresponds to π then the norm of α is p and so $\mathfrak{p}=\langle\alpha\rangle$. Then $\pi+\hat{\pi}=\operatorname{trace}(\alpha)=m p$ for some integer m and by Lemma $1.2, \tilde{E}$ is supersingular.

Next assuming that p splits in k we prove \tilde{E} contains a nontrivial point of order p, that is \tilde{E} is not supersingular. First note that there is a unique isomorphism $\theta: \mathcal{O}_{k} \rightarrow \operatorname{End}(E)$ such that for any invariant differential w on E we have $\theta(\alpha)^{*} w=\alpha w$ for all $\alpha \in \mathcal{O}_{k}$ (p.97, [Sil2]). Let $p \mathcal{O}_{k}=\mathfrak{p p}$. Choose an integer m such that $\mathfrak{p}^{m}=\mu \mathcal{O}_{k}$ and $\mathfrak{p}^{\prime m}=\mu^{\prime} \mathcal{O}_{k}$. If θ is a as above and w is a differential such that its reduction modulo p, say \tilde{w}, is not zero then ${\widetilde{\theta\left(\mu^{\prime}\right)}}^{*} \tilde{w}=\tilde{\mu}^{\prime} \tilde{w} \neq 0$ as $\mu^{\prime} \notin \mathfrak{p}$, and so $\widetilde{\theta\left(\mu^{\prime}\right)}$ is separable (Proposition 4.2, p.35, [Sil]). On the other hand, since $\mu \mu^{\prime}=p^{m}$ we have $\theta(\mu) \theta\left(\mu^{\prime}\right)=\left[p^{m}\right]$, that is $\theta\left(\mu^{\prime}\right)$ has degree a power of p and so $\widetilde{\theta\left(\mu^{\prime}\right)}$ has degree a power of p. Finally, since $\widetilde{\theta\left(\mu^{\prime}\right)}$ is separable, we conclude that $p \mid \operatorname{deg}_{s}\left(\widetilde{\left.\theta\left(\mu^{\prime}\right)\right)}\right.$ and \tilde{E} has a nontrivial point of order p.

References

[Galb] S. Galbraith, Constructing isogenies betweeen elliptic curves Over Finite Fields, London Math. Soc., Journal of Computational Mathematics, Vol. 2, p. 118-138 (1999).
[Koh] D. Kohel, Endomorphism rings of elliptic curves over finite fields, Berkeley PhD thesis, (1996).
[Ser] S. Lang, Elliptic Functions, Springer- Verlag, (1987).
[Sil] J. H. Silverman, The Arithmetic of Elliptic Curves, SpringerVerlag, (1986).
[Sil2] J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer- Verlag, (1994).

