
WEIL PAIRING

LALIT JAIN

1. Weil Reciprocity

This article will discuss the Weil Pairing as presented in [1]. Throughout the
following we will adopt the notation in the reference given above. Our goal will
be to equate the definition of the Weil Pairing given in exercise 3.16. with the
definition give in section 8 of chapter 3.

One of the key tools we will use in our study of the Weil pairing is that of Weil
reciprocity.

First we need to define the tame pairing :

Definition 1.1. Given an elliptic curve E, the tame pairing of f, g ∈ K̄(E) at
point P ∈ E is

〈f, g〉P = (−1)ordP fordP g fordP g(P )
gordP f (P )

.

It is easy to see that the tame symbol satisfies the following properties
(1) Unless f, g have a zero or pole at P , 〈f, g〉P = 1.
(2) If ordP f = 0 then 〈f, g〉P = f(P )ordP g.
(3) Similarly if ordP g = 0 then 〈f, g〉P = g(P )−ordP f .

Theorem 1.2 (Strong Weil Reciprocity). Let E be an elliptic curve and let f, g ∈
K̄(E) then ∏

R∈E

〈f, g〉R = 1.

The proof of this result is rather involved so we refer the reader to [2].
For a function f ∈ K̄(E) and a divisor D =

∑
np (P ), such that f has no zeros

or poles on the support of D define

f(D) =
∏

P∈E

f(P )nP .

Then strong Weil reciprocity implies the following

Theorem 1.3 (Weak Weil Reciprocity). Let E be an elliptic curve and let f, g ∈
K̄(E) whose divisors have disjoint support. Then

f(div (g)) = g(div (f))

Proof. By strong Weil reciprocity∏
R∈E

〈f, g〉R = 1.

The terms in this product are 1 except when f or g has a pole. If f has a pole
or zero at R then 〈f, g〉R = g(R)−ordRf and if g has a pole or zero at R then
〈f, g〉R = f(R)ordRg since the divisors of f and g have disjoint supports.
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Thus we see that by taking the product over all points in E,∏
R∈E

g(R)ordRf =
∏

R∈E

f(R)ordRg.

Dividing by the left hand side yields the result. �

For an algebraiuc number theory analogy, Weil reciprocity is a statement about
the decomposition of the norm map under extensions of valuations. Ask David
about this....

2. Definition of Weil Pairing

In the following we will make extensive use of the following theorem:

Theorem 2.1. Let E be an elliptic curve and D =
∑

np (P ) ∈ Div(E). Then D
is principal if and only if

∑
np = 0 and

∑
[np]P = 0.

Given P,Q ∈ E [m] choose degree zero divisors Dp ∼ (P )−(0) and Dq ∼ (Q)−(0)
with disjoint support. By the theorem above we can find fp, fq ∈ K̄(E) such that
div (fp) = mDp and similarly div (fq) = mDq. Note that div (fq) and div (fp) have
disjoint support.

Definition 2.2 (First Weil Pairing). In the situation above let

em (P,Q) =
fP (Dq)
fP (Dp)

.

To see that this pairing is well defined choose another divisor of degree zero,
D ∼ Dp which has disjoint support from DQ. Then for some f ∈ K̄(E), D =
Dp+div (f) . In the construction of em (P,Q) we need to construct a function f ′P such
that div (f ′P ) = mD so with some easy calculation we see that div (f ′P ) = div (fP fm).
Thus up to scaling by a constant f ′P = fmfP and

f ′P (Dq)
fP (D)

=
fm(Dq)fP (Dq)

fQ(D)

=
f(mDq)fP (Dq)
fQ(Dp + div (f))

=
f(div (fQ))fP (Dq)
fQ(Dp)fQ(div (f))

=
f(div (fQ))fP (Dq)
fQ(Dp)f(div (fQ))

=
fP (Dq)
fQ(Dp)

= em (P,Q)

so we see em (P,Q) is well defined due to weak Weil reciprocity. The constant
appearing in f ′P = fmfP does not matter since for any divisor of degree zero,
D =

∑
np (P ), and any constant c ∏

P∈E

cnp = 1.
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The Weil pairing produces m-th roots of unity, indeed

em (P,Q)m =
fP (Dq)m

fQ(Dp)m

=
fP (mDq)
fQ(mDp)

=
fP (div (fQ))
fQ(div (fp))

=
fP (div (fQ))
fP (div (fQ))

= 1

where we have employed weak Weil reciprocity.
To justify the use of the word ’pairing’ [1] shows that em (P,Q) is bilinear,

alternating, non-degenerate, Galois invariant, and compatible with multiplication
by m maps.

We now give an alternate definition of the Weil pairing. Given P ∈ E [m]
by employing theorem above, we can find a function f ∈ K̄(E) with div (f) =
m (P ) − m (O) and a point P ′ such that [m]P ′ = P. Again employing theorem
blah, we can find a function g ∈ K̄(E) so that

div (g) = [m]∗ (P )− [m]∗ (O) =
∑

R∈E[m]

(P ′ + R)− (R) .

(This simplify follows from the definition of [m]∗.) Now

div (f ◦ [m]) = div
(
[m]∗ f

)
= [m]∗ div (f)
= [m]∗ (m (P )−m (O)
= div (gm)

so we can assume that up to a constant f ◦ [m] = gm.
Now given some other point S ∈ E [m], for any point X ∈ E,

g(X + S)m = f([m]X + [m]S) = f([m]X) = g(X)m.

Since this is true for all X we see that we the following definition is well defined:

Definition 2.3 (Second Weil Pairing). In the situation above let

ẽm (P,Q) =
g(X + P )

g(X)
.

Note that the dependence on Q came from g, also even though g was defined
relative to f ◦ [m] up to a constant, that constant is irrelevant due to the quotient.

3. Equivalence of First and Second Weil Pairing

To prove the equivalence of the first and second definitions of Weil pairing we
will make heavy use of theorem 1.2. In particular we will demonstrate the following:

Theorem 3.1. Given an elliptic curve E and P,Q ∈ E [m],

ẽm (P,Q) = (−1)mem (P,Q) .
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In [1], the factor of (−1)m is missing. Exercise 3. 16 also suggests that there is
a proof of the result using weak Weil reciprocity. We were unable to find such a
proof, thus an argument using strong Weil reciprocity which is presented in [2] is
given. However an erroneous proof (possibly modifiable to prove the theorem? ) of
the result is also given.

Now to the races.

Proof of Theorem 1. First we will show that

ẽm (P,Q) = (−1)m fP (Q)
fQ(P )

fQ(O)
fP (0)

.

Let gP be the function such that

div (gP ) = [m]∗ (P )− [m]∗ (O)

respectively we construct gQ for Q. Let h be the function such that

div (h) = (m− 1) (Q′) + (Q′ −Q)−m (O)

where [m]Q′ = Q. Recall that gm
P = fP ◦ [m] and gm

Q = fQ ◦ [m] .
By strong Weil reciprocity ∏

R∈E

〈gP , h〉R = 1.

However by the properties of the tame symbol given above the only nontrivial
contributions to this product come from zeros and poles of gP and h namely Q′, Q′−
Q and R,P ′ −R where [m]P ′ = P and R varies over all elements of E [m]. Again
using the properties of the tame symbol we can immediately see,

〈gP , h〉Q′ = gm−1
P (Q′)

and

〈gP , h〉Q′−Q = gP (Q′ −Q).

Thus

〈gP , h〉Q′〈gP , h〉Q′−Q = gP (Q′ −Q)gm−1
P (Q′)

=
gP (Q′ −Q)

gP (Q′)
gm

P (Q′)

=
fP (Q)

ẽm (P,Q)

where we have used X = Q′ + Q in the second definition of the Weil pairing.
To proceed we analyze the function

Ω(X) =
∏

R∈E[m]

h(R + X).
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Firstly note that

div (Ω) =
∑

R∈E[m]

τ∗R(div (h))

=
∑

R∈E[m]

τ∗R((m− 1) (Q′) + (Q′ −Q)−m (O))

=
∑

R∈E[m]

(m− 1) (Q′ −R) + (Q′ −Q−R)−m (−R)

=
∑

R∈E[m]

m (Q′ + R)−m (R)

= div (gQ) = div (fQ ◦ [m]) .

To go from step 3 to step 4 we used the fact that Q′−R and Q′−Q−R range over
the same sets as R ranges over E [m] . Thus we can see ( again up to a constant
that is ignorable) Ω = gm

Q = fQ ◦ [m] . By using the properties of the tame symbol
we are now in a position where we can consider the zeros and poles of gP .∏

RzeroofgP

〈gP , h〉S =
∏

R∈E[m]

1
h(P ′ + T )

=
1

Ω(P ′)
=

1
fQ(P )

∏
RpoleofgP

〈gP , h〉S =

 ∏
R∈E[m]\O

h(T )

 〈gP , h〉O

=

 ∏
R∈E[m]\O

h(T )

 (−1)m g−m
P (0)

h−1(P )

= H(0)(−1)mg−m
P (0)

= (−1)m fQ(O)
fP (O)

.

Combining this all together gives that,

1 = 〈gP , h〉Q′〈gP , h〉Q′−Q

∏
R∈E

〈gP , h〉R
∏

R zero of gP

〈gP , h〉S

=
∏

R pole of gP

〈gP , h〉S

=
fP (Q)

ẽm (P,Q)
1

fQ(P )
(−1)m fQ(O)

fP (O)
.

To finish proving the theorem we need the following result:

Lemma 3.2. For T ∈ E [m]

em (P,Q) =
fP (Q− T )fQ(T )

fQ(P + T )fP (−T )
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Proof. It suffices to note that (P )−(O) ∼ (P + T )−(T ). Then (Q)−(O) is disjoint
from (P + T )− (T ) and if f1 is such that div (f1) = m((P + T )− (T )) then

em (P,Q) =
f1(Q)fQ(T )

fQ(P + T )fP (O)

however div (f1) = div (f1 ◦ τT ) from which the result follows. �

So for fixed P,Q ∈ E [m]

F (T ) =
fP (Q− T )fQ(T )

fQ(P + T )fP (−T )
is constant for all but finitely many T ∈ E. In particular F is simply a rational
function, thus if char K = 0 we see that as T → O, F (T ) → F (O) and in particular

em (P,Q) =
fP (Q)fQ(O)
fQ(P )fP (O)

.

From this we see that the result follows. If char K 6= 0 then we have to make
use of the formal group of the Elliptic curve. A proof using the Tate curve should
also be possible, however we simply refer the reader to [3].

�

To conclude we will outline a possible erroneous proof of exercise 3.16 in [1]. Let
gP and h be defined as in the above proof. If we erroneously assume that we can
apply weak Weil reciprocity (div (gP ) and div (h) do not have disjoint divisors) then

gP (Q′)m−1gP (Q′ −Q)gP (O)−m =
∏

R∈mgp

h(R + P ′)h(R)−1.

These are quantities which have been computed above, so substituting gives

ẽm (P,Q) =
fP (Q)fQ(O)
fQ(P )fP (O)

= em (P,Q, .)

There might be a way to alter this proof by considering the divisor of τT ◦ gP by
some T ∈ E [m] which has disjoint support from div (h) . However the computations
become rather complicated and careful consideration of the norm map is required.
However it is an avenue for further exploration.
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