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1. Introduction.

This note arose when the following question was asked on the news-
group sci.math:

Question 1.1. Can every polynomial with integer coefficients be fac-
tored into (not necessarily monic) linear terms, each with algebraic
integer coefficients?

The answer is yes, and follows from a version of Gauss’s lemma ap-
plied to number fields. Gauss’s lemma plays an important role in the
study of unique factorization, and it was a failure of unique factor-
ization that led to the development of the theory of algebraic integers.
These developments were the basis of algebraic number theory, and also
of much of ring and module theory. We take the opportunity afforded
by this problem to discuss some of these historical developments, on
the (at times flimsy) excuse of introducing the necessary notions for the
proofs. It will take us some time to get to the answer to Question 1.1,
so we ask for the reader’s patience.

To make for easier reading, we give names to many of the results.
While some of these are standard, others are the inventions of the
authors.

The paper is organized as follows: First we discuss some of the his-
tory of unique factorization. In sections 3 and 4 we discuss how Euler
and Lamé ran afoul of unique factorization when dealing with Fermat’s
Last Theorem. Section 5 relates Kummer’s own struggle with the fail-
ure of unique factorization, and his solution for cyclotomic fields. Sec-
tion 6 deals with Kronecker’s and Dedekind’s extension of Kummer’s
work, setting up the stage for our treatment of Question 1.1. In sec-
tion 7 we recall the basic notions associated with number fields that we
need, and proceed in section 8 to prove Gauss’s lemma and a version of
its corollaries for number fields, providing an answer to Question 1.1.
In section 9 we discuss some related ring theoretic notions and provide
an alternative approach to answering our question. Finally, in sec-
tion 10 we consider the question in the setting of function fields (which
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are closely related to number fields), and give an example to show that
Question 1.1 has a negative answer there.

2. Unique Factorization and Gauss’s Lemma.

Gauss was the first to give a proof of the following fact [9, art. 16]:

Theorem 2.1 (Fundamental Theorem of Arithmetic). Every pos-
itive integer can be factored uniquely into a product of prime numbers.

The proof proceeds in two steps:
Step 1. First, we show that every positive integer can be written

as a product of primes in at least one way. This argument relies on
a kind of “finiteness” that the positive integers exhibit, namely, that
there can be no infinite strictly decreasing sequence of positive integers.
If n = 1, it equals, by definition, the empty product. Otherwise, it is
either a prime, in which case we can write n = n, or it is not a prime, in
which case we can write it as a product of two strictly smaller positive
integers. We can proceed, by applying the same argument to each of
those factors, or alternatively, we can appeal to an induction hypothesis
to assert that each must be a finite product of primes. We conclude
that n itself is a product of primes. (In fact, Gauss skips this step in his
proof, saying merely that “it is clear from elementary considerations
that any composite number can be [factored] into prime factors.”)

Step 2. Once we know that the number can be written as a product
of primes in at least one way, we prove the uniqueness by using the
“prime divisor property”[8, Prop. 30]:

Proposition 2.2 (Prime Divisor Property). If p is a prime number
and p divides the product ab of two integers a and b, then p divides a
or p divides b.

To prove the uniqueness of the factorization, we suppose that

n = p1 · · · pr = q1 · · · qs
are two factorizations of n into primes. From the prime divisor prop-
erty, it follows that, since p1 divides the product q1 · · · qs, it divides at
least one of the qi. Because qi is prime, we must have p1 = qi, at which
point we may cancel them and apply induction.

Although the prime divisor property goes back at least to the time
of Euclid, unique factorization had not been explicitly formulated (nor
proved) until Gauss did so. Gauss points out in the first paragraph
of his proof that “it is often wrongly taken for granted” that factor-
ization is unique. In fact, Euclid himself implicitly invokes this fact:
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in his discussion of Pythagorean triples a key step uses the fact that,
if the product of two relatively prime integers is a square, then each
of the integers must itself be a square, a result which requires unique
factorization.

An argument following the same broad outline as the proof of the
fundamental theorem of arithmetic is used to prove that the ring of
polynomials Q[x] is also a unique factorization domain (UFD), and in
fact that F [x] is a UFD whenever F is a field. First, we replace the
notion of “prime” with that of “irreducible”:

Definition 2.3. Let R be a commutative ring with identity. An el-
ement x of R is irreducible if (1) x is not a unit (i.e., does not have
a multiplicative inverse) and (2) whenever x factors in R as x = yz,
either y is a unit or z is a unit (i.e., either y or z have a multiplicative
inverse).

The finiteness condition necessary to guarantee that every polyno-
mial f(x) in F [x] is a product of irreducibles follows by looking at the
degree function, while the fact that every irreducible satisfies the prime
divisor property is a corollary of the division algorithm:

Theorem 2.4 (Division Algorithm for Polynomials over a Field).
Let F be a field, and let a(x) and b(x) 6= 0 be polynomials with coeffi-
cients in F . Then there exist unique polynomials q(x) and r(x) in F [x]
(the “quotient” and the “remainder”, respectively) such that

a(x) = b(x)q(x) + r(x),

where either r = 0 or deg(r) < deg(b).

(This, of course, establishes that F [x] is a Euclidean domain, a con-
dition that is well known to imply unique factorization.)

In [9] Gauss is mostly concerned with integers, however, and if we
restrict ourselves to polynomials with integer coefficients, the division
algorithm no longer holds. For example, if a(x) = 3x + 2 and b(x) =
2x + 3, we cannot find q(x) and r(x) ∈ Z[x] satisfying the conditions
stipulated by the division algorithm. So unique factorization in Z[x] is
harder to establish.

The degree function, together with the fundamental theorem of arith-
metic, shows that the first step in the proof of unique factorization can
be achieved: every polynomial in Z[x] can be written as a product of
irreducibles, where an irreducible is either a prime integer or a non-
constant irreducible polynomial f(x) in Z[x] (i.e., f(x) cannot be writ-
ten as the product of two nonconstant polynomials) whose coefficients
have no common factor other than 1 and −1 (this condition is known
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as primitivity, and we will have much more to say about it). It is the
prime divisor property that seems a bit more difficult. That is where
Gauss’s lemma comes in.

What we would like to do is make use of the already established facts
that both Z and Q[x] are unique factorization domains. First, we want
to show that the primes from Z remain irreducible in Z[x], which is of
course trivial. It is also clear that if f(x) in Z[x] is irreducible when
we consider it in Q[x], then it will be the product of an integer times a
polynomial that is irreducible in Z[x] (since all nonzero constants have
multiplicative inverses in Q[x], they do not affect irreducibility; this
is not the case in Z[x], where the only constants with multiplicative
inverses are 1 and −1). If we separate out the integer and factor it into
primes, the result will be a factorization into irreducibles in Z[x] for
f(x).

The immediate difficulty, however, lies in the converse: is it possible
that there is a polynomial f(x) in Z[x] that can be factored in Q[x],
but not in Z[x]? And the second issue, which we can perhaps already
see approaching us, is whether the integer primes are actually primes
in Z[x]: if p|g(x)h(x), does it follow that p|g(x) or p|h(x) in Z[x]?

As it happens, both difficulties can be dealt with at the same time.
We deal with the latter first by establishing the contrapositive, which is
nothing other than Gauss’s lemma [9, art. 42]. We then prove unique
factorization by first factoring out any constants that we can, using
Q[x] as a “stepping stone” to factor the polynomial part, and then
“lifting” this factorization back to Z[x].

Definition 2.5. Let f(x) = anx
n+ · · ·+a1x+a0 be a nonzero member

of Z[x]. The content cont(f) of f is the greatest common divisor of
a0, . . . , an.

Definition 2.6. A polynomial f(x) in Z[x] is primitive if cont(f) = 1.

Theorem 2.7 (Gauss’s Lemma). The product of primitive polyno-
mials is itself primitive.

Proof. Let f(x) and g(x) be primitive polynomials in Z[x], and let
h(x) = f(x)g(x). Write

f(x) = anx
n + · · ·+ a1x+ a0,

g(x) = bmx
m + · · ·+ b1x+ b0,

h(x) = cn+mx
n+m + · · ·+ c1x+ c0.

To prove that h(x) is primitive, consider an arbitrary prime p. We
must show p does not divide all the ci.
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Let i0 be the smallest index such that p 6 |ai0 ; such an index exists
since f(x) is primitive. Likewise, let j0 be the smallest index such that
p 6 |bj0 . We consider ci0+j0 . We have:

ci0+j0 = ai0+j0b0 + ai0+j0−1b1 + · · ·+ ai0+1bj0−1

+ai0bj0
+ai0−1bj0+1 + · · ·+ a1bi0+j0−1 + a0bi0+j0 .

Each summand in the first expression is a multiple of p by the choice
of j0, while each summand in the third expression is a multiple of p
by the choice of i0. Furthermore, ai0bj0 is not a multiple of p, ensuring
that p cannot divide ci0+j0 . �

The argument given also shows that if p ∈ Z is a prime and divides
the product, then it must divide one of the two factors, showing that
integer primes are still primes in Z[x]. Two more auxiliary results
demonstrate that Z[x] is a UFD. They establish the connection between
Q[x] and Z[x] that allows us to “lift” factorizations from the former to
the latter. The first uses, implicitly, unique factorization in Z in order
to express an element of Q as the quotient of two relatively prime
integers. The second uses Gauss’s lemma explicitly.

Lemma 2.8 (Factoring Out the Content). If f(x) is a nonzero
polynomial in Q[x], then there exist cf in Q and a primitive polynomial
f ∗(x) in Z[x] such that f(x) = cff

∗(x). Moreover, cf and f ∗(x) are
unique up to sign.

Proof. Write

f(x) =

(
an
bn

)
xn + · · ·+

(
a0

b0

)
,

where ai and bi are relatively prime integers for i = 0, 1, . . . , n. Multi-
plying by b0 · · · bn to clear denominators, we obtain:

(b0 · · · bn)f(x) = anx
n + · · ·+ a0.

Let g(x) = anx
n + · · · + a0, and let c = cont(g). Then g(x) can be

written as

g(x) = cg∗(x),

where g∗(x) is a primitive polynomial. Therefore,

(b0 · · · bn)f(x) = cg∗(x).

Letting cf = c/(b0 · · · bn) and f ∗(x) = g∗(x) proves the existence asser-
tion.
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Uniqueness will follow provided we can prove the following: if g∗(x) =
c · h∗(x), where g∗(x) and h∗(x) in Z[x] are both primitive and c is ra-
tional, then c = ±1. Write c = u/v, with relatively prime integers
u and v. Then vg∗(x) = uh∗(x). Each coefficient of uh∗(x) must be
a multiple of v. As gcd(u, v) = 1 and h∗(x) is primitive, this forces
v = ±1. Similarly, u = ±1, so c = ±1, as desired. �

Theorem 2.9 (Lifting the Factorization). Let f(x) belong to Z[x],
and suppose that f(x) admits the factorization f(x) = G(x)H(x) in
Q[x]. Then there exist polynomials g(x) and h(x) in Z[x] such that
g(x) is a rational multiple of G(x), h(x) is a rational multiple of H(x),
and f(x) = g(x)h(x).

Proof. We can factor out the content to write:

f(x) = cff
∗(x), G(x) = cgg

∗(x), H(x) = chh
∗(x).

Then we have cff
∗(x) = (cgch)g

∗(x)h∗(x). By Gauss’s lemma, the
product g∗(x)h∗(x) is primitive. The uniqueness clause in Lemma 2.8
thus gives cf = cgch or cf = −cgch. In either case, cgch is an integer, so
we let g(x) = (cgch)g

∗(x) and h(x) = h∗(x) to complete the proof. �

Corollary 2.10. The ring Z[x] is a UFD. The irreducibles in Z[x] are
the integer primes and the primitive polynomials that are irreducible
when considered as polynomials in Q[x].

It is not hard to see that the same sequence of results holds if we
replace Z with an arbitrary UFD R and Q with the field of fractions of
R. We must, however, modify the lemma on factoring out the content
(Lemma 2.8) so that uniqueness means “up to units of R” rather than
“up to sign.” Since any witness to the fact that a ring R is not a UFD
will confirm that R[x] is not either, we obtain:

Theorem 2.11. Let R be a ring. Then R is a UFD if and only if R[x]
is a UFD.

Gauss employs his lemma in the study of cyclotomic polynomials
(see, for example, [9, art. 341]), among other places. The study of
cyclotomic polynomials is used in turn to prove Gauss’s celebrated
result that the construction of a regular N -gon using only compass
and straightedge can be achieved if and only if the odd prime factors
of N are all distinct Fermat primes, meaning primes of the form 22m+1.

3. Unique factorization and Euler’s proof of Fermat’s

Last Theorem for n = 3.

Unique factorization had already made a covert appearance in the
study of quadratic forms by Fermat, though it was hard to recognize
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it in that guise. We refer the reader to John Stillwell’s introduction
in [5].

Gauss was very interested in quadratic forms and dedicates section 5
of the Disquisitiones Arithmeticae [9] to their study. In the English edi-
tion, it comprises over 260 pages, compared with only 107 for sections 1
through 4. It is likely that it was through the study of quadratic forms
and their connection to unique factorization that Gauss recognized the
unstated assumption of unique factorization of integers, and so was led
to state explicitly the fundamental theorem of arithmetic.

Perhaps the first overt appearance occurs in the work of Euler, who
ran afoul of unique factorization in his attempt to prove Fermat’s Last
Theorem for n = 3. The idea behind Euler’s attempt was similar to
Fermat’s own proof for the case n = 4: to establish an infinite descent,
by proving that the existence of a nontrivial solution to x3 + y3 = z3,
with x, y, and z positive, pairwise coprime integers, necessarily leads to
the existence of another solution x′3 + y′3 = z′3 with smaller integers
(i.e., z′ < z). Since there can be no infinite descending sequence of
positive integers, no solution could exist in the first place. Note that
the finiteness of the positive integers we discussed earlier is at play here
again.

For n = 3, Euler starts with x3 + y3 = z3, with gcd(x, y, z) = 1. If
both x and y are odd, then x+ y and x− y are both even, say 2p and
2q, respectively, so x = p+ q, y = p− q, and

x3 + y3 = (x+ y)(x2 − xy + y2) = 2p(p2 + 3q2).

Since x and y are odd and coprime, p and q must be of opposite parities
and coprime. And as x3 + y3 = z3, 2p(p2 + 3q2) must be a cube. A
similar argument yields the same conclusion if z is odd and one of x or
y is even.

At this point we want to show that both 2p and p2 + 3q2 are cubes.
If 36 | p, this follows easily by noting that 2p and p2 + 3q2 are relatively
prime and appealing to unique factorization; if 3|p, then we must write
p = 3s, and then rewrite

2p(p2 + 3q2) = 32 · 2s(3s2 + q2),

from which we infer that 32 · 2s and 3s2 + q2 are relatively prime. Each
must therefore be a cube (see [7, sec. 2.2] for the details).

Euler noted that one way in which both 2p and p2 + 3q2 are cubes
is for p and q to have the forms

(3.1) p = a(a− 3b)(a+ 3b), q = 3b(a− b)(a+ b)
7



(a similar expression is found for s and q when p is a multiple of 3). If
this is indeed the case, then a and b must be relatively prime, because
p and q are relatively prime, and must have opposite parities. From
here one shows that 2a, a − 3b, and a + 3b must be pairwise coprime.
Since 2p = 2a(a− 3b)(a + 3b) is a cube, each of 2a, a− 3b and a + 3b
must be a cube. Then (a− 3b) + (a+ 3b) = 2a gives a new solution to
the Fermat equation, one with 2a < z3, setting up the infinite descent
and thus proving the result. A similar argument is used when 3|p.

At this point, of course, we need to show that the only way for 2p
and p2 +3q2 to be both cubes is for p and q to be expressible as in (3.1).
It is here that the argument presented by Euler fails (he had, however,
other results on quadratic forms that he could have used to establish
this claim about p and q).

Euler factors p2 +3q2 = (p+q
√
−3)(p−q

√
−3) and proceeds to work

in Z[
√
−3]. Since

(p+ q
√
−3) + (p− q

√
−3) = 2p

(p+ q
√
−3)− (p− q

√
−3) = 2q

√
−3,

any common divisor of (p+q
√
−3) and (p−q

√
−3) would be a divisor of

2p and of 2q
√
−3. One can show that both 2 and

√
−3 are irreducible

in Z[
√
−3] (see the argument to follow). From the fact that p and q

have opposite parities it follows that 2 does not divide p+ q
√
−3, and

from the fact that 36 |p one deduces that
√
−3 does not divide p+q

√
−3

either. Accordingly, any common divisor of p + q
√
−3 and p − q

√
−3

must in fact be a common divisor of both p and q, which are relatively
prime. Hence p + q

√
−3 and p − q

√
−3 have no common divisors in

Z[
√
−3] other than 1 and −1. Since their product is a cube, Euler

concludes that each must be a cube, so in fact we have:

p+ q
√
−3 = (a+ b

√
−3)3

p− q
√
−3 = (a− b

√
−3)3

for some integers a and b. It now follows that

p+ q
√
−3 = a3 + 3a2b

√
−3− 9ab2 − 3b3

√
−3

= (a3 − 9ab2) + (3a2b− 3b3)
√
−3,

from which the desired equations (3.1) follow.
The problem, of course, is that hidden in that argument is an as-

sumption of unique factorization: we know that p−q
√
−3 and p+q

√
−3

have no common divisors in Z[
√
−3] (other than 1 and −1) and that

their product is a cube. If we have unique factorization into irre-
ducibles in Z[

√
−3], then we are able to conclude that each factor must
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itself be a cube. But in fact we do not have uniqueness:

(1 +
√
−3)(1−

√
−3) = 4 = (2)(2),

and each of the numbers 2, 1 +
√
−3, and 1 −

√
−3 is irreducible in

Z[
√
−3], as we demonstrate shortly. Thus, Euler’s argument breaks

down.
Euler must have realized that there was something wrong with the

argument [7, sec. 2.3], for in a later portion of his Algebra, he noted
that his methods would indicate that 2x2 − 5 cannot be a cube, even
though 2(4)2−5 = 27 = 33. Euler attributed the difficulty to the minus
sign in the equation, however, and so apparently did not feel that his
argument for the n = 3 case of Fermat’s Last Theorem was in danger.

This is probably a good place to establish the asserted irreducibility
of 2, 1 +

√
−3, and 1−

√
−3 in Z[

√
−3]. A central role in the proof is

played by a “norm” function defined from Z[
√
−3] to Z. This function

allows us to translate certain divisibility questions concerning Z[
√
−3]

to questions in the more familiar setting of Z.
Each element α of Z[

√
−3] can be written uniquely as α = a+b

√
−3

with a and b in Z. We define a norm N : Z[
√
−3]→ Z as follows:

N(a+ b
√
−3) = (a+ b

√
−3)(a− b

√
−3) = a2 + 3b2,

that is, N(a + b
√
−3) is the product of all images of a + b

√
−3 under

the distinct embeddings of Q(
√
−3) (the field of fractions of Z[

√
−3])

into C.

Lemma 3.1 (Properties of the Norm). The norm N satisfies:

(1) N(αβ) = N(α)N(β) for all α and β in Z[
√
−3].

(2) If α|β in Z[
√
−3], then N(α)|N(β) in Z.

(3) The element α of Z[
√
−3] is a unit (i.e., has a multiplicative

inverse) if and only if N(α) = 1.

Proof. Statements (2) and (3) follow directly from (1), which can be
established through direct computation. �

The two most important points to observe right now are these: first,
the properties of the norm provide the “finiteness” needed to accom-
plish at least the first step in a proof of unique factorization; namely,
every element of Z[

√
−3] can be expressed as a product of irreducible

elements. This is true because any proper divisor in Z[
√
−3] of an ele-

ment α of Z[
√
−3] will necessarily have a norm that is a proper divisor

of N(α) in Z, ensuring that no infinite descent is possible. And, sec-
ond, that property (2) gives a way to study divisibility in Z[

√
−3] by
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referring to divisibility in Z. Since the implication is not reversible, it
is not a perfect translation, but even so it is extremely useful.

Consider the number
√
−3. Since N(

√
−3) = 3, it follows from the

properties of the norm that
√
−3 is irreducible. Moreover, because

N(2) = N(1 +
√
−3) = N(1−

√
−3) = 4,

each of 2, 1 +
√
−3, and 1 −

√
−3 must also be irreducible (a proper

divisor of any of the three would have norm 2, but 2 = a2 + 3b2 has no
solution with a and b integers).

As the only units of Z[
√
−3] are 1 and −1, we see that even though

(2)(2) = (1 +
√
−3)(1 −

√
−3), the two factorizations are not related

by multiplications by units. In other words, unique factorization does
indeed fail in Z[

√
−3]. This is what Euler failed to take into account.

4. Lamé and a general proof of Fermat’s Last Theorem.

In 1847, G. Lamé announced to the Paris Academy that he had found
a proof of Fermat’s Last Theorem; our account is taken from [7, chap.
4]. His brief sketch consisted in factoring the equation xn + yn = zn as

zn = xn + yn = (x+ y)(x+ ζy) · · · (x+ ζn−1y),

where ζ is a primitive n-th root of unity, say

ζ = cos(2π/n) + i sin(2π/n).

Lamé’s idea was to obtain a contradiction by proving that each of the
factors (x + ζ iy) would necessarily be an nth power. He would prove
this by showing either that no two of the factors had common divisors
in Z[ζ] other than units or that there was a factor m common to all n
factors such that (x+y)/m, (x+ ζy)/m, and so forth had the property
that no two had common divisors other than units, and then use a
similar argument. A sketch of this argument for a prime exponent p
such that p 6 |xyz can be found in [16, chap. 1, Exercises 16–28].

Lamé made a point of mentioning that he had come up with the
idea after a casual conversation with Liouville a few months earlier.
Liouville, for his part, took the floor immediately after Lamé and cast
some doubts on the viability of the latter’s program. He quickly pointed
out the gap in the argument: to conclude that each factor was an
nth power from the fact that there were no common divisors (other
than units) of any two, he needed a property analogous to unique
factorization for the elements of Z[ζ], and this was by no means a given.
Lamé acknowledged the gap, and in the following months attempted
to fill it. It was not thought a hopeless task: two small cases had
already been treated. The case n = 4 had been studied by Gauss, who
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proved in 1831 that Z[i] is a UFD. Gauss had been led to study this
ring through his interest in biquadratic reciprocity. The case p = 3 had
been studied by Eisenstein during his analysis of cubic reciprocity, and
he had demonstrated in 1844 that Z[(−1 +

√
−3)/2] is also a UFD.

However, although neither Liouville nor Lamé were aware, Kum-
mer had three years earlier published a memoir [14] in which he had
shown that the domains Z[ζ] did not always enjoy unique factorization.
Kummer communicated this to Liouville, who passed the news on to
the Academy. Lamé then abandoned his attack on Fermat’s Last The-
orem, defeated by the failure of unique factorization. Kummer’s study
of the rings Z[ζ] had also been fueled by a desire to obtain higher reci-
procity laws, though it is often incorrectly attributed to an interest in
proving Fermat’s Last Theorem (his results could be used to present a
variant of Lamé’s argument; see the next section).

5. Kummer and Ideal Numbers.

Starting in 1837, Kummer had begun to study the arithmetic of cer-
tain cyclotomic fields, extensions ofQ obtained by adjoining a primitive
nth root of unity. Kummer studied divisibility in rings Z[ζp], where ζp
is a primitive pth root of unity for a prime p. He quickly found that
these rings were not in general UFDs. It was only after several years
of effort that he discovered a way to circumvent the difficulties, with
the introduction of “ideal numbers.”

We will borrow from Dedekind’s exposition of ideal numbers in [5].
Dedekind explains the situation skillfully, but rather than consider the
case of a cyclotomic field, he considers the similar situation in the much
simpler ring Z[

√
−5]. This ring has a norm analogous to the one we

introduced earlier for Z[
√
−3]. Here we define N by

N(a+ b
√
−5) = (a+ b

√
−5)(a− b

√
−5) = a2 + 5b2,

the product of all images of (a+b
√
−5) under the different embeddings

of Q(
√
−5) (the field of fractions of Z[

√
−5]) into C. It is now easy to

verify that this map also satisfies the properties in Lemma 3.1, so it
can be used to establish the fact that every element in Z[

√
−5] can be

written as a product of irreducibles.
When trying to proceed to uniqueness, however, we again run into

a problem: not every irreducible has the prime divisor property. Con-
sider, for example, the two factorizations of 6:

6 = 2× 3 = (1 +
√
−5)× (1−

√
−5).

Since N(2) = 4, any proper divisor of 2 would necessarily have norm
equal to 2, but a2 + 5b2 = 2 has no solution for a and b integers, hence
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no element can have norm 2. Thus 2 is irreducible, as are 1+
√
−5 and

1−
√
−5, both of norm 6. Since a2+5b2 = 3 also has no integer solution

and N(3) = 9, we also see that 3 is irreducible in Z[
√
−5]. Furthermore,

the two factorizations are patently distinct, and we cannot pass from
one to the other by multiplication by suitable units (the only units of
Z[
√
−5] again being 1 and −1). Thus, Z[

√
−5] is not a UFD.

However, Kummer realized that one can tell a lot about the prime
factorization of an integer without actually having to factor it into
primes: how it behaves with respect to divisibility can help tell the
complete story. For example, we already know that we can tell that an
integer p greater than 1 is a prime by noting that it has the prime divisor
property. For a slightly more complex result, consider the following two
conditions:

(i) If n divides a2b2, then either n divides a2 or n divides b2.
(ii) There exists an integer m such that n does not divide m, but n

divides m2.

An integer n larger than 1 that satisfies condition (i) must be either
a prime, or the square of a prime. An integer that satisfies condition
(ii) must be divisible by the square of a prime. If we could show that
an integer n satisfies both (i) and (ii), then it would follow immediately
that n is the square of a prime.

Consider the number 2 in Z[
√
−5]. Clearly, 2 divides a number

a+ b
√
−5 if and only if both a and b are even integers. The square of

a+ b
√
−5 is given by

(a+ b
√
−5)2 = (a2 − 5b2) + (2ab)

√
−5.

Thus, 2 divides (a+ b
√
−5)2 if and only if a2−5b2 is even. This occurs

exactly when a and b have the same parity. If a and b are both odd,
then 2 divides (a + b

√
−5)2, despite the fact that it does not divide

a+ b
√
−5. For example, 2 divides

(1 +
√
−5)2 = −4 + 2

√
−5 = 2(−2 +

√
−5)

yet it does not divide 1 +
√
−5. So 2 satisfies condition (ii).

Note next that if 2 divides the product of two squares, say (a +
b
√
−5)2 and (c+ d

√
−5)2, then it must divide(

(a2 − 5b2)(c2 − 5d2)− 20abcd
)

+ 2
(
ab(c2 − 5d2) + cd(a2 − 5b2)

)√
−5,

whence (a2 − 5b2)(c2 − 5d2) must be even. This implies that at least
one of the factors is even, so 2 divides at least one of (a+ b

√
−5)2 and

(c+ d
√
−5)2. Hence 2 satisfies conditions (i) and (ii), and by all rights

should be called the “square of a prime.”
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In fact, one can show that with regards to all divisibility properties in
Z[
√
−5], the number 2 behaves as if it were the square of a prime. But

of course, we know there is no such prime in Z[
√
−5]. So we introduce

an “ideal prime number” α with the property that α2 = 2. Here we are
using ideal in a sense similar to that found in the dictionary: “existing
as a mental image or in fancy or imagination only” (Webster’s Ninth
New College Dictionary). We say that a number a+ b

√
−5 is divisible

by the ideal prime α if and only if its square is divisible by the number
2. More generally, αk is the highest power of α that divides a+ b

√
−5

if and only if 2k is the highest power of 2 that divides (a+ b
√
−5)2.

A similar process leads to the conclusion that the irreducible 3 be-
haves in all respects as the product of two distinct ideal prime numbers,
β and γ, and that the same is true of 1 +

√
−5 and 1 −

√
−5. One

way to establish this is to show that each of them satisfies the following
three conditions:

(iii) There exist x and y such that n divides neither x nor y, but
divides their product.

(iv) If n divides x2, then n divides x.
(v) If n divides the product xyz, then n divides at least one of xy,

xz, or yz.

The first two conditions are easy to establish. The last is a bit more
difficult and lengthy, so we will not prove them here.

We now know that in Z[
√
−5], 2 behaves like the square of an ideal

prime α, and that each of 3, 1 +
√
−5, and 1 −

√
−5 behave like the

product of two distinct ideal primes. If we are to have some kind of
unique factorization in Z[

√
−5], then in light of the fact that

2× 3 = (1 +
√
−5)× (1−

√
−5),

it must be the case that α is one of the prime factors of each of 1+
√
−5

and 1−
√
−5 and that the other factors are the prime factors of 3. That

is, we must have 2 = α2, 3 = βγ, 1 +
√
−5 = αβ, and 1 −

√
−5 = αγ

for distinct ideal primes α, β, and γ. Luckily, as far as divisibility in
Z[
√
−5] is concerned, these identifications do work out perfectly.

Of course, the “ideal prime numbers” α, β, and γ do not actually
exist in Z[

√
−5], which is why we call them ideal primes, after all. But,

in studying divisibility, we can in fact proceed as if they did exist, as if
we had unique factorization into primes, whether actual — numbers in
Z[
√
−5] that have the prime divisor property (for example 11 or 13) —

or ideal (such as α).
We can think of “ideal prime numbers” as analogous to quarks in

the study of matter. Elementary particles (the irreducible numbers) are
13



made up of quarks that combine in different ways. We never observe
isolated quarks, we only observe them in combinations making up cer-
tain particles. Likewise, we never observe these ideal prime numbers as
occurring independently, we only “see” them when they combine with
one another to form actual numbers in the domain.

Kummer does not in fact define what “ideal prime numbers” are but
instead always speaks of them indirectly, in terms of the divisibility
properties of actual numbers. It takes a fair amount of work to make
sure that everything does work out properly (and a certain amount
of luck: if we attempted to proceed analogously in Z[

√
−3], for in-

stance, we would soon encounter unsurmountable difficulties and fail
completely).

For the cyclotomic rings Z[ζp] where ζp is a primitive pth root of
unity, Kummer proved ([15]):

Theorem 5.1 (Unique Factorization into Ideal Primes). Every
element of Z[ζp] factors uniquely as a product of (ideal and actual)
primes.

The finiteness condition can be established once again through a
norm, which maps each element of Z[ζp] to the product of all its images
under the different embeddings of Q(ζp) (the field of fractions of Z[ζp])
into C. Enough of unique factorization is then recaptured to proceed
with the arithmetic almost as usual.

Among other things, Kummer used his ideal prime numbers to es-
tablish a variant of Lamé’s argument for Fermat’s Last Theorem. The
argument does run, however, into certain subtle technical difficulties
and does not work for an arbitrary prime. Kummer listed a set of two
conditions that p would have to satisfy to be able to deduce the n = p
case of Fermat’s Last Theorem using this approach. He even informed
the Berlin Academy that he “had reason to believe” that p = 37 did
not satisfy them (it does not; see [7]). On the other hand, Kummer
considered his proof of Fermat’s Last Theorem for the so-called regular
primes a by-product of his research into higher reciprocity laws, not
the main interest of his development.

6. Kronecker, Dedekind, and algebraic integers.

Kummer’s approach had a number of drawbacks, not the least of
which was the imprecise nature of “ideal numbers.” It was also hard to
see how to extend the notion to extensions of Q other than cyclotomic
fields. Although the ideas worked very well in Z[

√
−5] and some rings

of the form Z[θ], they failed completely when applied to others, like
Z[
√
−3].

14



The first difficulty lies in finding the correct notion of number or
integer with which to work. In general simply taking Z[θ] for the field
Q(θ) will not do. In some cases, a small adjustment is all that is needed
(if one works with Z[(1 +

√
−3)/2] instead of Z[

√
−3], all difficulties

disappear), but in others there is no apparent way of avoiding problems.
The right definition was eventually given by Dedekind (it had also

been discovered independently by Kronecker): the correct generaliza-
tion of integer is that of “algebraic integer.” The concept had already
appeared in the work of Eisenstein and others, although it had received
no special attention.

An algebraic number is a complex number α that satisfies some monic
polynomial with rational coefficients. In contrast, an algebraic integer
is a complex number α which satisfies a monic polynomial with integer
coefficients.

Every integer is an algebraic integer, and in fact the only rational
numbers that are algebraic integers are the integers themselves. This
follows, for example, using the rational root test from precalculus. It is
a bit harder, but not much, to show that the product and sum of any
two algebraic integers is again an algebraic integer, and that the roots
of any monic polynomial with algebraic integer coefficients are again
algebraic integers.

In general, given a domain D and a subring R of D, we say that an
element of D is integral over R if it satisfies a monic polynomial with
coefficients in D. The algebraic integers are the elements of C that are
integral over Z, and if a complex number is integral over the ring of
algebraic integers, then it is an algebraic integer as well.

At this point, it would seem that algebraic integers are too much
trouble to be of use. If A signifies the collection of all algebraic inte-
gers, then we do not even have factorization into irreducibles. For if
α belongs to A and α is not a unit there, then

√
α is also an element

of A and not a unit, so α =
√
α
√
α is not irreducible. In particular,

no element of A is irreducible! What is more, we can find many more
factorizations of α: for instance, α = ρ1ρ2, where ρ1 and ρ2 are the
roots of x2 − x + α. The very first step towards a proof of unique
factorization, which we managed for other rings, breaks down in A.

In order to surmount this difficulty, we restrict ourselves to subrings
of A where we do have a natural finiteness condition. This is accom-
plished by first specifying a finite extension K of Q (called a number
field) and then considering its ring of integers OK = K∩A, the collec-
tion of all algebraic integers that are in K. This has the virtue of also
providing the correct subring of an arbitrary extension Q(θ) in which
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to continue the pursuit of unique factorization. The reason Z[
√
−3]

gives so much trouble is that the collection of all algebraic integers in
Q(
√
−3) is not Z[

√
−3], but Z[(1+

√
−3)/2]: (1+

√
−3)/2 satisfies the

monic polynomial x2 − x+ 1.
Another difficulty lies in trying to establish unique factorization into

ideal numbers. Kummer’s method relied very strongly on properties of
Q(ζp) that are not shared by arbitrary extensions Q(θ). In particular,
the ring of integers of Q(ζp) admits a basis over Z consisting of powers
of the same element (namely, ζp), so it is of the form Z[ζp]. But some

number fields K do not admit such bases: for example, if K = Q(
√

7+√
10), then OK 6= Z[θ] for any θ in OK (see [16, chap. 2, Exercise 30]).
Several attempts had been made to generalize Kummer’s arguments;

in 1865 Selling, a student of Dedekind, produced an argument that in
fact ended up in nonsense (it can be made rigorous by using q-adic
numbers, but these numbers would not be introduced by Hensel until
1897). Dedekind had attempted a different generalization in 1857 (later
redeveloped independently by Zolotareff in 1880), but both Dedekind
and Kronecker were stopped by the difficulties presented by any field
whose ring of integers was not of the form Z[θ]. (For a more detailed
explanation of the difficulties, see [3, chap. 7].)

In order to avoid these difficulties, it was necessary to give some
substance to Kummer’s ideal numbers, to have something tangible to
work with rather than these shadowy constructs that were never ex-
plicitly defined. This was accomplished independently by Kronecker
and Dedekind using two very different techniques.

Kronecker and forms. Kronecker was a student and colleague of
Kummer. His approach generalized Gauss’s theory of forms, the afore-
mentioned subject of section 5 of the Disquisitiones. A form over a
number field K is a homogeneous polynomial in arbitrarily many vari-
ables whose coefficients are algebraic integers in K (Gauss had consid-
ered binary quadratic forms with integer coefficients). Suitably chosen
forms play the role of the ideal prime numbers and ideal numbers of
Kummer. In modern terms, we adjoin the ideal prime numbers to our
field by first adjoining indeterminates and then taking the quotient by
the corresponding (ideal of) relations, in order to create a bigger field
K ′. If we concentrate only on the algebraic integers of K, then each
can be written uniquely as a product of prime elements of OK and cer-
tain elements of OK′ . The former correspond to actual primes, while
the latter play the role of the ideal primes.

Of course, there are now new numbers in OK′ that may not be ex-
pressible uniquely as products of irreducibles of OK′ , but we do not
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worry about them. As long as we only care about the algebraic inte-
gers of K, we can proceed as Kummer does.

Kronecker’s method survives as a major tool in algebraic geome-
try, but it has had a lesser impact in number theory. He was slow
to publish, and he did not have Dedekind’s gift for exposition. Al-
though Dedekind’s work was mostly ignored when it first appeared,
his “theory of ideals” would take center stage in Hilbert’s landmark
Zahlbericht [11] and form the basis of algebraic number theory. Even
today, over a hundred years after its appearance, Dedekind’s exposi-
tion in [5] could still be used as a suitable introduction to the subject
(in itself a great testament to its impact and clarity). Nonetheless,
it should be mentioned that a complete correspondence can be estab-
lished between Kronecker’s approach and Dedekind’s, as Hilbert does
in the Zahlbericht, so the two methods are, in essence, equivalent.

Dedekind and ideals. Dedekind understood the dangers of the some-
what shadowy approach of Kummer. As he writes[5, pp. 57]:

While this introduction of new numbers is entirely legiti-
mate, it is nevertheless to be feared at first that the language
which speaks of ideal numbers being determined by their
products, presumably in analogy with the theory of ratio-
nal numbers, may lead to hasty conclusions and incomplete
proofs. And in fact this danger is not always completely
avoided. On the other hand, a precise definition covering
all the ideal numbers that may be introduced in a particu-
lar numerical domain [OK ], and at the same time a general
definition of their multiplication, seems all the more nec-
essary since the ideal numbers do not actually exist in the
numerical domain [OK ].

Dedekind preferred, if at all possible, to make this definition solely
in terms of objects he already had in hand. Moreover, he wanted a
definition that would “create” all these new objects simultaneously,
rather than through a recursive process, and that would allow for ease
of calculation. His classical construction of the reals as Dedekind cuts
illustrates this general philosophy: assuming we understand the ratio-
nals and all their arithmetic properties, we define the reals as sets of
rational numbers satisfying certain properties and define their opera-
tions in terms of operations of the rational numbers.

What is more, his construction of the reals also illustrates another
very interesting idea, namely, identifying an object with a set that
somehow characterizes it. For the real numbers, constructed with a
view towards their order, a real number a is uniquely determined by
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the collection of all rational numbers less than or equal to a, so it can
be identified with such a set.

Dedekind accomplished a similar program for Kummer’s ideal num-
bers, through the introduction of ideals. Dedekind defines ideals to be
nonempty subsets of the ring of integers OK , satisfying two conditions:

(1) If a and b are in I, then both a+ b and a− b are also in I.
(2) If a is in I and r is in OK , then ra is in I.

Dedekind named such collections “ideals” because they would play the
role of Kummer’s ideal numbers, as we will see shortly.

The motivation for this definition is the observation that the collec-
tion of all multiples of a given number (including all multiples of a given
ideal number in the cyclotomic case) satisfies these two conditions. In
the case of the integers, we can identify a number with the collection of
all its multiples, and since we are dealing with a principal ideal domain,
every collection which satisfies these conditions corresponds to an inte-
ger. (To be more precise, the collections correspond to an equivalence
class of integers, where a ∼ b if a and b differ by a unit, but we are
interested in divisibility; multiplication by units becomes irrelevant).

However, in the case of rings of integers that are not UFDs, there
are collections satisfying these two conditions that do not correspond
to actual numbers. In the case of Z[

√
−5], to consider a now familiar

situation, the collection of all multiples of the ideal prime α, where α2 =
2, satisfies the conditions. We simply identify each such collection with
a number, ideal or actual, since they will correspond to “all multiples”
of that number.

One defines an addition and a multiplication of ideals: the sum I+J
of two ideals I and J is the ideal

I + J = {i+ j | i ∈ I, j ∈ J},
while the product IJ is somewhat more complicated, defined as follows:

IJ =
{∑

ikjk | ik ∈ I, jk ∈ J
}
,

that is, all (finite) sums of products of an element of I by an element
of J . It would have been nice to define IJ as the set of all products ij,
but unfortunately this is not an ideal, so we have to include all finite
sums of such products as well.

Given an element a ∈ R, the principal ideal generated by a, which
is denoted (a), is defined by

(a) = {ra | r ∈ R},
(i.e., it consists of all multiples of a). It is then easy to verify that
a divides b in R if and only if (b) is contained in (a) as sets. We
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generalize this observation and say that the ideal I divides the ideal J
if J is contained in I.

In the case of Z, the division algorithm shows that every ideal is
principal and that (a) + (b) is none other than the ideal generated by
the greatest common divisor of (a) and (b), as can be expected from
the fact that the ideal (a) + (b) is the smallest ideal that contains both
(a) and (b) (hence, is generated by the largest number dividing both
a and b). To mirror all the divisibility properties of Z in its ideals, we
say an ideal P is a prime ideal if whenever P contains a product IJ
of two ideals, either P contains I or P contains J (this is equivalent
to the usual definition: P is a prime ideal if and only if whenever a
product xy lies in P , at least one of x and y must lie in P ). It is now
a nice exercise to verify that an ideal (p) in Z is a prime ideal if and
only if p is a prime number. In short, all the arithmetic theory of Z
may be restated in terms of ideals, ideal multiplication, ideal division,
and prime ideals.

We can then use the ideals of OK to play the role of the ideal num-
bers; rather than defining divisibility by α in terms of divisibility by 2,
we define divisibility by α in terms of belonging to the ideal we have
identified with α. In general, principal ideals correspond to actual num-
bers (up to units) — namely, their generators — while ideals that are
not principal correspond to Kummer’s ideal numbers, with no actual
counterpart.The main difficulty in this approach, as Dedekind candidly
admits, is showing that the notions of divisibility and multiplication of
ideals are connected as we hope. That is, it is easy to verify that if
I and J are ideals of OK , then I and J both divide IJ , in the sense
that they both contain it. More difficult, however, is showing that if
I divides the ideal I ′ (i.e., if I contains I ′), then there exists a unique
ideal J such that IJ = I ′.

This Dedekind succeeded in doing, though only after considerable
effort. Once that was done, the next step was to prove that every ideal
can be factored uniquely as a product of prime ideals. Thus, the ideal
numbers of Kummer are replaced by ideals, and we can rescue for all
rings of integers OK as much of unique factorization as Kummer had
restored to Z[ζp].

7. Properties of rings of integers.

It has been a while since we broached the topic, so it may be appro-
priate to remind our readers of where we were headed when we took
them on the foregoing detour through history. We are interested in
answering the following question:
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Question 1.1. Can every polynomial with integer co-
efficients be factored into (not necessarily monic) linear
terms, each with algebraic integer coefficients?

Rings of integers provide the context in which we can analyze this
question. It seems reasonable to wonder if, with unique factorization
into prime ideals now at our command, we have rescued enough to push
through the results used to establish the UFD property for Z[x]. If we
could do that, then starting with a polynomial f(x) from Z[x], we could
let K be its splitting field and then attempt to lift the factorization of
f(x) into linear terms in K[x] to a factorization in OK [x]. Unfortu-
nately, we do not have quite enough to be able to do this directly, but
a solution suggests itself quickly enough.

First, we recall the necessary definitions and properties of algebraic
integers and rings of integers. Some of the results are not trivial, but
they are classical, so we will simply refer the reader to a standard
textbook in algebraic number theory. What we want to highlight is
how these important classical results combine to give an answer to our
question, in a way that almost parallels the development for Z[x].

Recall that a complex number α is an algebraic number if and only
if there exists a monic polynomial f(x) in Q[x] such that f(α) = 0.
A complex number a is said to be an algebraic integer if and only if
there exists a monic polynomial g(x) in Z[x] such that g(a) = 0. We
denote the collection of all algebraic numbers by Q and the collection
of all algebraic integers by A. A number field is a finite extension of
Q. Given a number field K, its ring of integers is the collection of all
algebraic integers lying in K, and we denote it by OK . It is not hard
to verify that K is the field of fractions of OK , so every element of a
number field can be written as a quotient of two elements of its ring of
integers.

The most important result that we need to know, due to Dedekind,
reads as follows [5, sec. 25, Prop. 4]:

Theorem 7.1 (Unique Factorization of Ideals). Let K be a number
field, and let OK be its ring of integers. Each nonzero ideal of OK can
be factored uniquely as a product of prime ideals, with the trivial ideal
OK corresponding to the empty product.

The general philosophy when working with rings of integers is to
avoid the use of divisibility statements in terms of numbers, resorting
instead to divisibility in terms of ideals. So we work with ideals rather
than elements, translating many (but not all) notions and properties
of divisibility from Z to the ring of integers of a number field.
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We say that an ideal b of OK divides the ideal a if b contains a; this
is in fact equivalent to the existence of an ideal c such that bc = a.
Likewise, we say two ideals a and b are coprime if their factorizations
into prime ideals have no prime ideal factor in common or, equivalently,
if the ideal a + b, the smallest ideal dividing both, is the trivial ideal
OK . We call elements a and b of OK coprime (or relatively prime) if
the ideals (a) and (b) are coprime or, equivalently, if the ideal (a, b) =
(a) + (b) is the trivial ideal OK . Since rings of integers are not, in
general, UFDs, they are also not in general principal ideal domains
(the two conditions are in fact equivalent for rings of integers).

Let K and K ′ be number fields, with K a subfield of K ′. Given an
ideal a of OK , we can extend it to an ideal of OK′ by taking the ideal it
generates in the larger ring, that is, the ideal aOK′ . Conversely, given
an ideal b of OK′ , we can restrict it to OK by taking OK ∩b. If a is not
the trivial ideal in OK , then its extension to OK′ is also nontrivial: if
an element a of a had a multiplicative inverse in OK′ , then this inverse
would be in K and therefore would already lie in OK . We say that the
ideal b of OK′ lies over the ideal a of OK if a = b ∩ OK (we also say
that a lies under b).

Theorem 7.2 (Lying Over). Let K and K ′ be number fields, with K
a subfield of K ′. If p is a prime ideal of OK, then there exists a prime
ideal q of OK′ lying over p.

One way to see this is to look at the ideal of OK′ generated by p,
factor it into prime ideals, and let q be any prime factor. A full proof,
together with other properties, is found in [16, Theorem 20].

Note that if a = (a) is principal, then its extension is also principal,
generated by a. However, it is in general false that an ideal lying under
or over a principal ideal must be principal.

The analogy between ideals and elements is unfortunately not com-
plete. In a UFD, for example, any two elements have a greatest com-
mon divisor that is an element, which among other things allows one
to take a quotient a/b of elements of the domain and rewrite it in low-
est terms (i.e., a/b = c/d, where c and d are elements of the domain
that are relatively prime). With ideals, however, the greatest common
divisor is defined as an ideal and may have no actual counterpart in
the domain. One key difficulty in simply extending Gauss’s lemma
and its associated corollaries to arbitrary number fields is precisely the
absence of greatest common divisors: in a number field K, if we have
a, b ∈ OK , it may be impossible to express a/b in lowest terms. For
example, in K = Q(

√
10), we have OK = Z[

√
10], where

√
10/2 cannot

be expressed in lowest terms. On the other hand, if the ideal (a, b) is
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principal, say, generated by d, then we may write a = dx and b = dy
for x and y in OK , in which case a/b = x/y and (x, y) = OK .

Thus, a final property that we need is the following, which follows
from the finiteness of the class number [16, Corollary 2, p. 132]:

Theorem 7.3 (Extending to a Principal Ideal). Let K be a number
field, and let a be an ideal of OK. Then there exists a positive integer
k > 0 such that ak is principal. In particular, there exists a finite
extension L of K such that aOL is principal.

Our main use of this theorem involves its second clause. To see how
to obtain L from the first clause of the theorem, suppose that ak = (a)
and that L = K(a1/k), where a1/k is any fixed kth root of a, and
consider the principal ideal of OL generated by a1/k. Since

(a1/k)k = (a) = akOL = (aOL)k,

unique factorization into prime ideals shows that aOL = (a1/k), as
needed. Note that one way to interpret the first clause of Theorem 7.3
is that an ideal number (that is, an ideal) can be transformed into
an actual number (principal ideal) by raising it to a sufficiently high
power (i.e., every ideal number is the kth root of an element of OK for
suitable k).

By extending to a principal ideal we conclude that for any given
members a and b of OK there exists a finite extension L of K and ele-
ments x and y of OL such that a/b = x/y and (x, y) = OL. If (a, b) was
already principal, we can take L = K. In the case of

√
10/2 in Q(

√
10),

for example, it suffices to go to the extension L = Q(
√

10,
√

2) =
Q(
√

5,
√

2). In OL, the ideal (
√

10, 2) is principal, generated by
√

2.
Cancelling that factor, we have

√
10/2 =

√
5/
√

2, and the latter frac-
tion expresses this number in lowest terms (relative to OL).

The extension to principal ideals shows that in the ring A of all
algebraic integers every finitely generated ideal is principal. If

(a1, . . . , an) = (a1) + · · ·+ (an),

we let K = Q(a1, ..., an) and extend the ideal generated by a1, . . . , an in
OK to a principal ideal in OL for some extension L of K. The original
ideal in A, which is the extension of this ideal of L, must likewise be
principal.

This means in particular, that for any algebraic integers a and b, the
ideal (a, b) of A is principal, so a and b have a greatest common divisor
d in A. Moreover, d can be written as a linear combination d = αa+βb
with α and β in A. This greatest common divisor is unique only up
to units, however, and we do not have an obvious choice among them,
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as we do in Z. As usual, we will not be overly concerned with this,
for we are interested in divisibility. Dedekind calls the fact that any
two algebraic integers a and b have a greatest common divisor in A
that can be expressed as a linear combination of a and b an “important
theorem,” but he notes that “it is not at all easy to prove” without
first developing finiteness of the class number [5, pp. 106].

Domains in which every finitely generated ideal is principal are some-
times called Bézout domains. The usual proof of Gauss’s lemma and
associated results can be extended to any Bézout domain, or more gen-
erally, to any GCD-domain, meaning an integral domain in which any
pair of elements have a greatest common divisor (which need not be
expressible as a linear combination of them) [13, sec. 1.6, Exercise 8
and Theorem 102].

It is worth noting, however, that A is not a principal ideal domain:
there are ideals which are not even finitely generated. For example, it
is not hard to verify that

(2, 21/2, 21/3, . . . , 21/n, . . .);

cannot be finitely generated.
Although in this discussion we have glossed over the finiteness of

the class number, most number theorists should recognize it as the
arithmetical heart of our argument in the next section. We emphasize
Theorem 7.3 instead because it entails a slightly weaker condition. The
exact analogy is that the finiteness of the class number asserts that a
certain group is finite, whereas Theorem 7.3 asserts merely that the
group is a torsion group (i.e., each element has finite order).

8. Gauss’s Lemma for Number Fields.

This section is patterned after [2, sec. 11.9]. We only sketch some of
the proofs, since they mimic very closely the proof that Z[x] is a UFD.

Suppose that K is a number field. We say that a polynomial f(x) in
Q[x] is defined over K if the coefficients of f(x) lie in K. Now let f(x)
belong to A[x], let K be a number field such that f(x) is defined over
K, and let OK denote the ring of integers of K. Then the coefficients of
f(x) all lie in OK . Accordingly, we can make the following definition:

Definition 8.1. For f(x) in OK [x], the content contK(f) of f(x) in K
is the ideal of OK generated by the coefficients of f(x). The polynomial
f(x) is primitive in K if contK(f) = OK .

This is in fact very similar to the definition of content of a form
given by Kronecker (see [11, chap. 6]). The main difference is that

23



Kronecker considers the norm of this ideal, so the content is a positive
integer rather than just in ideal of OK .

The content of a polynomial clearly depends on K, since it must
be an ideal of OK . However, the property of being primitive does not
depend on the specific K:

Lemma 8.2 (Independence of Primitivity). Let f(x) belong to
A[x], and let K and K ′ be two number fields over which f(x) is defined.
Then f(x) is primitive in K if and only if it is primitive in K ′.

Proof. By looking at the compositum of K and K ′ (i.e., the smallest
field containing both K and K ′), it suffices to establish the result when
K is contained in K ′. If f(x) is not primitive in K, then there is a
prime ideal p of OK such that every coefficient of f(x) lies in p. (To
see this, factor the content into primes, contK(f) = p1 · · · pn, and take
p = pi for any i.) Now let q be a prime of OK′ lying over p. Then every
coefficient of f(x), when considered as a polynomial in OK′ [x], lies in
q, implying that the content of f(x) in K ′ cannot be the trivial ideal
OK′ , since q divides it. Thus, f(x) is not primitive in K ′ either.

Conversely, if f(x) is not primitive in K ′, then there is a prime ideal
q of OK′ such that every coefficient of f(x) lies in q. Let p = q∩OK . As
f(x) is also defined over K, the coefficients of f(x) lie in p, so p divides
the content of f(x) in K. This ensures that f(x) is not primitive in
K. �

Since primitivity does not depend on K, we simply say f(x) is prim-
itive to mean that it has algebraic integer coefficients and is primitive
in any number field K over which it is defined. Gauss’s lemma itself is
now straightforward, provided we remember to use prime ideals instead
of prime numbers:

Theorem 8.3 (Gauss’s Lemma for Number Fields). The product
of two primitive polynomials is primitive.

Proof. Proceeding as in the case of Z[x], consider primitive polynomials
f(x) and g(x) in A[x], and let K be any number field over which both
f(x) and g(x) are defined. Write

f(x) =
∑

aix
i, g(x) =

∑
bjx

j, h(x) = f(x)g(x) =
∑

ckx
k.

Pick an arbitrary prime ideal p of OK , find the smallest indices i0 and
j0 for which neither ai0 nor bj0 lie in p, and observe that

ci0+j0 = a0bi0+j0 + · · ·+ ai0−1bj0+1

+ai0bj0
+ai0+1bj0−1 + · · ·+ ai0+j0b0
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does not lie in p. It follows that h(x) is primitive. �

At this point one might wonder if, with unique factorization of ideals
and Gauss’s lemma in hand, it might be possible to prove that a fac-
torization of a polynomial f(x) in OK [x] lifts from K[x] to OK [x].
Unfortunately, the results at our disposal are not quite strong enough.

Example 8.4. Consider the field K = Q(
√

10). The ring of integers
of K is known to be OK = Z[

√
10], which is not a UFD. For instance,

6 = 2 · 3 = (2 +
√

10)(−2 +
√

10), where all four of 2, 3, 2 +
√

10, and
−2+

√
10 are irreducible. To prove they are indeed irreducible, we once

again rely on a norm N : Z[
√

10]→ Z given by N(a+b
√

10) = a2−10b2.
The norm has the same basic properties as the norms on Z[

√
−3] and

Z[
√
−5] discussed previously (e.g., it is multiplicative), but now we

must expand the characterization of units to those elements of Z[
√

10]
whose norm equals 1 or −1. (For elementary properties of the norm
map for general number fields, see [16, chap. 2].)

Note that N(2) = 4, N(3) = 9, and N(±2 +
√

10) = −6. If any
of these were factorable into a product xy of nonunits x and y of OK ,
then at least one of x or y would have to have norm ±2 or ±3. Since
the equations a2 − 10b2 = ±2 and a2 − 10b2 = ±3 have no solutions
modulo 5, they have no solutions in Z either. Thus, there are no
elements of OK of norm ±2 or ±3. All four of the elements in the
indicated factorizations of 6 must therefore be irreducible, and hence
OK is not a UFD (the two factorizations cannot be transformed into
one another by multiplication by suitable units because the norms do
not match).

Now consider the polynomial p(x) = 2x2 − 5. Its splitting field is
Q(
√

10), for 2x2 − 5 = 2(x−
√

10/2)(x+
√

10/2). But there is no way
to rewrite this factorization so that all the coefficients lie in OK .

To see this, assume that p(x) = (ax + b)(cx + d) with a, b, c, and d
all in OK . We then have ac = 2. Since 2 is irreducible, we may assume
without loss of generality that a = 1 and c = 2 (by possibly switching
a and c and adjusting the factors by a unit). This means that b must
be the negative of a root of p(x), but neither

√
10/2 nor −

√
10/2 are

algebraic integers. Our original assumption must therefore be wrong,
whence p(x) = 2x2 − 5 cannot be factored over OK = Z[

√
10].

To see where things go wrong in Example 8.4, we go back to the
proof that Z[x] is a unique factorization domain in section 2. It is, in
fact, in the step corresponding to the next proposition (factoring out
the content) that we find unique factorization of ideals insufficient for
our purposes, forcing us to modify our result somewhat:
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Proposition 8.5 (Factoring Out the Content in Number Fields).
Let f(x) be a nonzero polynomial in Q[x], and let K be a number field
over which f(x) is defined. Then there exists a finite extension L of K
such that

f(x) = cff
∗(x),

where cf is a constant lying in L, and f ∗(x) is a primitive polynomial
defined over L. Moreover, cf and f ∗(x) are unique up to multiplication
by units of OL.

Proof. We begin just as before: we write f(x) as

f(x) =
an
bn
xn + · · ·+ a0

b0

with the ai and bi in OK . We multiply by b0 · · · bn to clear denomina-
tors, and we have

(b0 · · · bn)f(x) = g(x),

with g(x) ∈ OK . We cannot simply write g(x) as a constant times a
primitive polynomial, however, because contK(g) is only an ideal, and
may not be principal. Of course, there is a finite extension L of K
such that we can extend contK(g) to a principal ideal in OL. Since
contK(g)OL is the same as contL(g), we have contL(g) = (c) with c
in OL. We can then write g(x) = c · g∗(x), with g∗(x) primitive and
defined over L. We thus take cf = c/(b0 · · · bn), an element of L, and
f ∗(x) = g∗(x).

For uniqueness up to a unit of L, it is again enough to consider the
case of f ∗(x) = cg∗(x), with both f ∗(x) and g∗(x) primitive and defined
over L. Write c = u/v with u and v in OL. Going to a finite extension
of L if necessary, we may assume that u and v are relatively prime by
the remarks following Theorem 7.3. We now proceed as in the case of
Z[x] to conclude that both u and v are units, making u/v a unit in OL,
as claimed. �

It is worth noting that if OK is a unique factorization domain (or if
contK(g) is principal), then in the proof of this proposition we may use
L = K, since we can factor out the content in K itself.

Although we cannot simply lift factorizations from K[x] to OK [x],
as we saw in Example 8.4, by factoring out the content we are able to
lift a factorization from K[x] to OL[x], where L is a finite extension
of K. This is the message of the following result:

Theorem 8.6 (Lifting a Factorization). Let K be a number field,
and let f(x) belong to OK [x]. If f(x) = g(x)h(x) for polynomials g(x)
and h(x) in K[x], then there is a finite extension L of K such that
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f(x) = G(x)H(x), where G(x) is an L-multiple of g(x), H(x) an L-
multiple of h(x), and both G(x) and H(x) have coefficients in OL.

Proof. In view of Proposition 8.5, we can go to a finite extension L of
K where we can write

f(x) = cff
∗(x), g(x) = cgg

∗(x), h(x) = chh
∗(x),

with f ∗(x), g∗(x), and h∗(x) primitive, cf in OL, and cg and ch in L.
We then have

cff
∗(x) = f(x) = g(x)h(x) = (cgch)g

∗(x)h∗(x),

and Gauss’s lemma for number fields tells us that g∗(x)h∗(x) is primi-
tive. By the uniqueness of the representation, cf = ucgch for some unit
u of OL. In particular cgch lies in OL, permitting us to write

f(x) =
(
cgchg

∗(x)
)
h∗(x),

completing the proof. �

Remark 8.7. It is very important to note that in Theorem 8.6 it is
typically necessary to pass to an extension L of K. Of course, if we
can factor out the content of f(x), g(x), and h(x) in OK (as happens if
OK is a UFD), then we may again set L = K and get the usual result.

Corollary 8.8 (Complete Factorization in A[x]). Every noncon-
stant polynomial f(x) in A[x] can be factored into a product of (not nec-
essarily monic) linear factors, each with algebraic integer coefficients.

Proof. Let f(x) be a nonconstant polynomial in A[x], and let K be
the splitting field of f(x). We can now lift the factorization in K[x]
to a factorization in OL[x] for a finite extension L of K. Since we are
lifting a factorization into linear terms, the factorization in OL[x], a
subdomain of A[x], is a factorization into linear factors as well, and we
are done. �

Specializing to integer coefficients we finally obtain the affirmative
answer to Question 1.1:

Corollary 8.9. Every polynomial f(x) in Z[x] can be factored into a
product of (not necessarily monic) linear factors with algebraic integer
coefficients.

Example 8.10. Let us go back to Example 8.4, and find a factorization
with algebraic integer coefficients. Recall that p(x) = 2x2 − 5. Any
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factorization of p(x) over Q must be equivalent to

2x2 − 5 = 2

(
x+

√
10

2

)(
x−
√

10

2

)
up to multiplication by elements of Q. We want to factor 2 = ab in A
in such a manner that the two elements a

√
10/2 and −b

√
10/2 also lie

in A.
In Z[

√
10], the greatest common divisor of

√
10 and 2 is defined as

the ideal (
√

10, 2), which is not principal since 2 is irreducible and does
not divide

√
10. On the level of ideals, we have (2) = (

√
10, 2)2. To see

this, note that

(
√

10, 2)2 = (10, 2
√

10, 4),

and since all generators are multiples of 2, it is clear that (
√

10, 2)2 is
contained in (2). Because it is also true that 2 = 10 − 2(4), it follows
that 2 lies in (

√
10, 2)2, so we have equality.

As (2) is the square of the greatest common divisor of 2 and
√

10,
it would suffice to choose a = b, doing it in such a way that a is a
generator of the ideal (

√
10, 2) in some extension of K. We adjoin

√
2

to K to obtain the number field L = Q(
√

10,
√

2) = Q(
√

5,
√

2), and
in OL we have (

√
10, 2) = (

√
2). Taking a = b =

√
2, we then have in

OL:

p(x) = 2

(
x+

√
10

2

)(
x−
√

10

2

)

=
√

2

(
x+

√
10

2

)
√

2

(
x−
√

10

2

)
=

(√
2x+

√
5
)(√

2x−
√

5
)
,

which is a factorization into linear polynomials with algebraic integer
coefficients. It is not hard to verify that OL = Z[(1 +

√
5)/2,

√
2] (see

[16, chap. 2, Exercise 42(c)]), although the factorization may in fact be
achieved over the smaller subring Z[

√
5,
√

2].

9. Some ring theory.

Dedekind’s ideas and exposition, as found in [5], are surprisingly
modern. Modulo a few edits (what Dedekind calls a “module” we would
nowadays call a “Z-module”, for example), it would be right at home in
a modern algebra text. Unfortunately, his ideas were not immediately
recognized or adopted. For one thing, there was great resistance at
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the time to dealing with infinite sets, such as Dedekind’s ideals, as
completed objects that one could manipulate. Moreover, those who
opposed such infinite constructions had a powerful spokesperson in
Kronecker.

It was probably not until Hilbert’s landmark Zahlbericht that the
theory came fully into its own. Hilbert brought together several strands
and approaches, and he presented a unified treatment for the algebraic
theory of numbers as it had been developed up to that point. Hilbert
passes effortlessly between Dedekind’s theory of ideals and Kronecker’s
theory of forms but finds in the unique factorization of ideals into
prime ideals one of the “foundation pillars” of algebraic number theory.
Indeed, these notions are the very language in which we described our
answer to Question 1.1.

Dedekind’s approach to the problem of unique factorization in num-
ber fields did much more than extend Kummer’s work and provide
the basic framework on which algebraic number theory would later be
built. The notions of modules and ideals were taken up by Emil Artin
and Emmy Noether in the 1920s, and generalized into what we now
call ring theory. Dedekind’s influence was powerful. Indeed, according
to Stillwell [5, pp. 3]:

But even then, Emmy Noether used to say “Es steht schon
bei Dedekind” (It’s already in Dedekind), and urged her stu-
dents to read all of Dedekind’s work in ideal theory.

When we first encountered Question 1.1, our minds naturally turned
to algebraic number theory, which explains the solution we found. One
can think of that solution as a sort of “bottoms up” solution, in which
we proceed by taking finite extensions of number fields to get the ap-
propriate greatest common divisors, and thus mimic the proof of lifting
the factorization. As noted earlier, this is very much in the spirit of
Kummer, Kronecker, and Dedekind.

However, much can be said as well for a “top down” approach, which
would proceed instead by asking:

Question 9.1. For which integral domains D does the analogue of
Theorem 2.9 (lifting the factorization) hold?

This question had already been asked and answered from a purely
ring-theoretic point of view, though we were unaware of it. We would
be remiss if we did not also take the opportunity to discuss here some
of the notions involved. Many deserve to be better known, and they
again revolve around ideas of factorization, treading close to the origins
of algebraic number theory.
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We will need a few considerations before coming back to this ques-
tion. We again beg the reader’s indulgence.

Uniqueness of the factorization. We know that a domain D is a
UFD if and only if the polynomial ring D[x] is a UFD. The “only if”
direction follows because any witness to the fact that D is not a UFD
will show that D[x] is not a UFD either. On the other hand, even
though A[x] is not a UFD, it comes very close to being one, as we see
in the following two results:

Theorem 9.2. Let f(x) be a primitive polynomial in A[x]. If

f(x) = g1(x) · · · gn(x) = h1(x) · · ·hn(x),

where the gi(x) and hj(x) are polynomials in A[x] of degree 1, then up
to a reordering of the hj(x) there exist units u1, . . . , un of A such that∏
ui = 1 and uihi(x) = gi(x). In particular, each ui is a unit in OK

for any number field K containing it.

Proof. Note that if a product of polynomials in A[x] is primitive, then
each of the factors must be primitive. Thus, each of the gi(x) and hj(x)
is primitive.

Let K be a number field over which the gi(x) and hj(x) are defined.
Consider both factorizations in K[x], which is a UFD. The two fac-
torizations must be equivalent up to multiplication by elements of K.
Up to a reordering of the hj(x), we may assume that each gi(x) is a
K-multiple of hi(x).

Fix an index i. Write gi(x) = ax + b and hi(x) = cx + d, with a, b,
c, and d in OK and ac 6= 0. Since gi(x) and hi(x) are both primitive,
it follows that each of the ideals (a, b) and (c, d) is the trivial ideal
OK . We also have an element ui of K such that gi(x) = uihi(x). By
passing to an extension of K if necessary, we may write ui = vi/wi with
vi and wi algebraic integers and (vi, wi) the trivial ideal. Therefore,
wigi(x) = vihi(x), hence (wi)(a, b) = (vi)(c, d) as ideals. Since both
(a, b) and (c, d) are trivial, and since (wi) and (vi) are relatively prime,
by the unique factorization of ideals it follows that both (wi) and (vi)
reduce to the unit ideal. We infer that wi and vi are algebraic integer
units, as then is ui. A substitution and cancellation now establishes
that

∏
ui = 1. �

Theorem 9.3. Let f(x) be a nonzero polynomial in A[x]. Then we
can write

f(x) = cfg1(x) · · · gn(x),

where cf belongs to A, and each gi(x) is a primitive polynomial in A[x]
of degree 1. Moreover, the factorization is unique up to units of A.
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Proof. This follows by combining Proposition 8.5 (factoring out the
content in number fields) and Theorem 9.2. �

In short, even though A[x] is not a UFD, we have a certain “unique-
ness up to constants” in factorizations. It is “merely” the fact that the
constants cannot be factored into a product of irreducibles (uniquely
or otherwise) that prevents A[x] from being a UFD.

We restate this unique factorization up to constants in the following
corollary in a way that is more amenable to generalization for other
domains. Recall that Q is the field of fractions of A.

Corollary 9.4 (Unique Factorization up to Constants). Let f(x)
be a polynomial in A[x] of positive degree. Then we can factor f(x)
into a product of nonconstant polynomials with coefficients in A[x],

f(x) = g1(x) · · · gn(x),

such that no gi(x) can be factored as a product of two nonconstant poly-
nomials. Moreover, any two such factorizations of f(x) are equivalent,
in the sense that if

f(x) = g1(x) · · · gn(x) = h1(x) · · ·hm(x),

then n = m and up to a reordering of the hi(x) there exist constants
u1, . . . , un in Q such that gi(x) = uihi(x) and

∏
ui = 1.

Compare this with what happens in a ring of integers that is not a
UFD:

Example 9.5. Let D = Z[
√

10]. We saw in Example 8.4 that the
polynomial p(x) = 2x2 − 5 cannot be written as the product of two
linear polynomials in D[x]. The same argument shows that q(x) =
5x2 − 2 cannot be written as a product of two linear polynomials in
D[x] either. Consider now the two polynomials in D[x]:

r(x) =
√

10x2 − 7x+
√

10,

s(x) =
√

10x2 + 7x+
√

10.

We have:

p(x)q(x) = (2x2 − 5)(5x2 − 2)

= 10x4 − 29x2 + 10

=
(√

10x2 − 7x+
√

10
)(√

10x2 + 7x+
√

10
)

= r(x)s(x).

.
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We claim that neither r(x) nor s(x) can be written as a product of
two linear polynomials in D[x]. Indeed, if

√
10x2 − 7x+

√
10 = (ax+ b)(cx+ d),

with a, b, c, and d in D, then ab =
√

10. By looking at the norms, and
remembering that no element has norm 2, we see that up to multipli-
cation by a unit we may assume that a = 1 and c =

√
10. But then −b

must be a root of
√

10x2− 7x+
√

10, whereas neither of its roots lie in
D. We conclude that no such factorization exists. A similar argument
shows that the same is true of the other factor.

Example 9.5 shows that in D[x] for D = Z[
√

10] we do not have
unique factorization up to constants: the factorizations of 10x4−29x2+
10 as p(x)q(x) and as r(x)s(x) are not related by multiplication by con-
stants. When do we get this kind of uniqueness of factorization? Now
is the time to get back to Question 9.1: since the ring of polynomials
over a field is a UFD, if D is a domain in which we can lift factorizations
from K[x] to D[x], then in D[x] we will have unique factorization up
to constants. Perhaps somewhat surprisingly, the converse also holds:

Lemma 9.6. Let D be a domain, and let K be its field of fractions.
The following statements are equivalent:

(a) Any polynomial f(x) in D[x] of degree at least two that can
be factored in K[x] can also be factored as a product of two
nonconstant polynomials with coefficients in D[x].

(b) The analogue of Theorem 2.9 holds for D.
(c) There is unique factorization up to constants in D[x].

Proof. The fact that (a) and (b) are equivalent is clear. That (c) follows
from (a) is the observation that K[x] is a UFD whose units are the
nonzero constants. Finally, to see that (c) implies (a), assume that
f(x) is a polynomial in D[x] that cannot be written as a product of two
nonconstant polynomials in D[x], but is nevertheless not irreducible in
K[x], say f(x) = G(x)H(x) with G(x) and H(x) of positive degrees.
Multiplying by a suitable constant from D to clear denominators, we
have cf(x) = g(x)h(x), where g(x) and h(x) are polynomials of positive
degrees with coefficients in D. Therefore, we have cxf(x) = xg(x)h(x).
The assumption on f(x) means that the polynomial cxf(x) can be
factored in D[x] as (cx)f(x), and each term is of positive degree, and
cannot be written as the product of nonconstant polynomials in D[x].
On the other hand, we have x · g(x) · h(x) with at least three terms
(more if either g(x) or h(x) is further reducible), so D[x] does not have
unique factorization up to constants. �
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Lifting factorizations and the Schreier property. Most students
are familiar with the hierarchy of domains that is presented in most
upper division abstract algebra courses:

Fields ⊂ Euclidean Domains ⊂ PIDs ⊂ UFDs ⊂ Domains,

and all of the inclusions are proper. (Note that PID stands for prin-
cipal ideal domain.) However, there are other important properties of
domains that are in turn closely related to factorizations and that are
not nearly so well known.

We have already mentioned a few in passing. The Bézout prop-
erty (that every finitely generated ideal is principal), and the greatest
common divisor property (that every pair of elements has a greatest
common divisor) are two of these. The latter gives us the ability to lift
factorizations. Notions that are closely related to the foregoing prop-
erties have been investigated. In [1], there is a list of twelve conditions
for domains that are linked with the concept of unique factorization,
existence and behavior of greatest common divisors, and polynomial
factorizations (including, for example, the “Gauss’s Lemma Property,”
which requires that products of primitive polynomials be primitive).
Three of these conditions were considered in detail by P. M. Cohn in
his wonderful paper [4]. Once again, they revolve around the notions
of divisibility, factorizations, and integral elements. We present these
three notions here.

Definition 9.7. A domain D is a pre-Schreier domain if the following
holds for every a, b, and c in D: if a|bc, then there exist β and γ in
D such that a = βγ, β|b, and γ|c. Equivalently, D is a pre-Schreier
domain if and only if any two factorizations of an element have common
refinements.

Definition 9.8. A domain D is a Schreier domain if it is a pre-Schreier
domain that is integrally closed in its field of fractions (i.e., any element
of the field of fractions of D that satisfies a monic polynomial with
coefficients in D already lies in D).

Definition 9.9. We say that a domain D has the AP-property (atoms
are primes) if every irreducible element a of D satisfies the prime divisor
property (i.e., for any elements b and c of D satisfying a|bc, either a|b
or a|c).

We have the following implications among these properties:

PID ⊂ UFD
∩ ∩

Bézout ⊂ GCD ⊂ Schreier ⊂ pre-Schreier ⊂ AP.
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All inclusions are known to be proper (see [1]). One connection between
these notions and unique factorization is the following[4, Theorem 2.3]:

Theorem 9.10. A domain D is a UFD if and only if it is a Schreier
domain such that each nonunit of D can be factored into a product of
irreducible elements in at least one way.

The Schreier property is exactly the missing link between being able
to factor into irreducibles in at least one way and being able to do so
(modulo units) in exactly one way. Since in rings of integers we always
have factorization in at least one way, the Schreier property for a given
OK is equivalent to the UFD property.

The Bézout property, a consequence of the finiteness of the class
number, implies that the ring A of all algebraic integers is a Schreier
domain. It is precisely the Schreier property that characterizes the
domain in which the analogue of lifting the factorization holds, thus
answering Question 9.1. One of the key ingredients in the proof of this
result once again brings us close to the very foundations of algebraic
number theory. It is a generalization of Dedekind’s “Prague Theorem,”
which Hilbert used in the Zahlbericht as the key step in establishing
the unique factorization of ideals into prime ideals. We quote it here
in its original version for algebraic integers:

Theorem 9.11 (Dedekind’s Prague Theorem). Let f(x) and g(x)
be polynomials with algebraic integer coefficients,

f(x) = arx
r + ar−1x

r−1 + · · ·+ a0,

g(x) = bsx
2 + bs−1x

s−1 + · · ·+ b0.

If every coefficient of the product f(x)g(x) is divisible by the integer
m, then each of the numbers a0b0, a0b1, . . . , a0bs, a1b0, . . . , arbs is also
divisible by m.

A proof of this result, together with the classical proof of unique fac-
torization into prime ideals, can be found in [18, Lemma 8.12].

Through suitable definitions, one can interpret the Prague theorem
as saying that the content of a product of polynomials is the product of
the contents. To make this precise, however, requires a modification of
our definition of content to something akin to Kronecker’s definition,
which makes the content of such a polynomial a positive integer rather
than an ideal. We will not go into it here. Viewed in that light, the
Prague theorem is itself a generalization of Gauss’s lemma, so we are
still circling the same notions with which we began.

Using a generalization of the Prague theorem for more general rings,
P. M. Cohn proved the following theorem:
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Theorem 9.12 (P. M. Cohn). If D is a Schreier domain and x is
an indeterminate, then D[x] is a Schreier domain.

This result gives the top-down answer to our question (see [17]):

Theorem 9.13. Let D be a domain, and let K be its field of fractions.
The analogue of Theorem 2.9 (lifting of factorization) holds for D[x] if
and only if D is a Schreier domain.

Proof. First suppose that D is a Schreier domain. By Theorem 9.12
D[x] is a Schreier domain as well. Let f(x) = G(x)H(x) be a fac-
torization of a polynomial f(x) from D[x] in K[x]. Multiplying by
suitable constants to clear denominators, we obtain c in D such that
cf(x) = g(x)h(x), with g(x) and h(x) in D[x], g(x) a D-multiple of
G(x), and h(x) a D-multiple of H(x).

Since f(x)|g(x)h(x), the Schreier property implies the existence of
a(x) and b(x) in D[x] such that f(x) = a(x)b(x), a(x)|g(x), and
b(x)|h(x). By considering the degrees of a(x), g(x), G(x), b(x), h(x),
and H(x), we see that deg(a) = deg(G) and deg(b) = deg(H). Accord-
ingly, we can lift factorizations from K[x] to D[x].

Conversely, suppose that the analogue of Theorem 2.9 holds for D[x].
We must prove that D is integrally closed and satisfies the pre-Schreier
property. Consider an element k of K that is integral over D, and let

f(x) = xn + an−1x
n−1 + · · ·+ a0

be a monic polynomial in D[x] such that f(k) = 0. In K[x], we have
f(x) = (x − k)g(x) for some g(x); lifting this factorization, we find
that f(x) = a(x)b(x) for polynomials a(x) and b(x) in D[x], and such
that a(x) is linear and has k as a root. Multiplying by suitable units
if necessary, we may assume that both a(x) and b(x) are monic. Then
a(x) = x− k, which implies that k belongs to D. Thus D is integrally
closed.

To see that D satisfies the pre-Schreier property, let a, b, and c be
elements of D such that a|bc. If either b = 0 or c = 0, then to verify
the pre-Schreier property we simply factor a as a = a · 1 or as a = 1 · a,
respectively. If a = 0, then we must have b = 0 or c = 0, so we may
assume that abc 6= 0. Let r in D be such that ar = bc. Consider the
polynomial

f(x) = a

(
x− b

a

)(
x− c

a

)
= ax2 − (b+ c)x+ r

which has coefficients in D[x] and has been factored in K[x]. Since
we can lift factorizations, we must have f(x) = g(x)h(x), with g(x) =
αx − β, h(x) = δx − γ, and α, β, γ, and δ in D. Exchanging g(x)
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and h(x) if necessary, we may assume that β/α = b/a, so aβ = bα;
and γ/δ = c/a, so aγ = cδ. We also have a = αδ and r = βγ. Thus
we see that bc = ar = aβγ = cβδ, implying that b = βδ. Similarly,
bc = aβγ = bαγ, whence c = αγ. Thus we have factored a = αδ, where
α|c and δ|b, confirming that D satisfies the pre-Schreier property. We
conclude that if we can lift factorizations, then D is a Schreier domain,
as claimed. �

It is not hard to verify that we can lift factorizations of monic poly-
nomials in D[x] if and only if D is integrally closed, so the notion
of integral closure is also closely tied to factorizations. Theorem 9.13
provides a “top-down” answer to Question 1.1: invoke Theorem 7.3
(extending to a principal ideal) to show that A is a Schreier domain,
note that its field of fractions is algebraically closed, and lift the fac-
torization from Q[x] to A[x].

We also obtain:

Corollary 9.14. Let K be a number field, and let OK be its ring of
integers. The analogue of Theorem 2.9 holds for OK if and only if OK
is a UFD.

10. Dedekind Domains and Function Fields.

Before finishing, we exhibit a situation that closely parallels the case
of number fields, but in which Question 1.1 has a negative answer. Most
of the details require, unfortunately, some heavy technical machinery,
so we merely assert many of the necessary results and point the reader
to suitable references.

The ring of integers in a number field is an example of a Dedekind
domain, which is an integral domain in which ideals can be uniquely
factored into prime ideals. (There are many equivalent definitions of
a Dedekind domain; see [12, sec. 10.2]) The other main example of a
Dedekind domain is the coordinate ring of a nonsingular curve over an
algebraically closed field. These two cases are referred to by their fields
of fractions, as “the number field case” and “the function field case,”
respectively.

There is a strong general theory of Dedekind domains. The close
connection between the number field and function field cases was in
fact noted by Dedekind, who together with Weber applied these ideas
to develop an arithmetic theory of Riemann surfaces [6], which marks
the beginning of modern algebraic and arithmetic geometry. The fact
that they are analogous was made even clearer when Dedekind devel-
oped the notions of ideals and ideal multiplication. His first proofs of
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unique factorization were very computational, and relied throughout
on the exact nature of the elements in the rings in question.1 Later
on he abstracted the key properties of the ideals, and he proved most
of his results in terms of those properties rather than in a computa-
tional manner. For any specific setting, the exact nature of the rings in
question would be used to show that ideals satisfied those key proper-
ties, but after that all further results would follow automatically. Once
again, a very modern approach.

Thus, many of our results so far hold for general Dedekind domains:
unique factorization of ideals, the lying over theorem for prime ideals,
Lemma 8.2, and Gauss’s lemma can all be proved in the general set-
ting. Unfortunately, the key property we used to prove the factoriza-
tion result, Theorem 7.3, fails to hold in general: if a is an ideal in the
function field analogue of the ring of integers, it is possible that ak is
not principal for any positive integer k and that there is no extension
of the underlying field in whose ring of integers a becomes principal.
Because of this failure, the proof of an analogue of the complete factor-
ization theorem for function fields breaks down. We exhibit an explicit
counterexample here.

A precise definition of “function field” would take us too far away
from the main discussions on this paper. Thus, we discuss only the
two specific examples necessary to answer Question 1.1 for general
Dedekind domains. The easiest example of a function field is the field
C(x) of rational functions of a single variable x; this is the analogue of
the field of rational numbers Q. Inside C(x) is the ring of polynomials
C[x], which is the function field analogue of Z.

Since C[x] is a unique factorization domain, it will certainly not
furnish the counterexample we seek. This motivates us to find a sec-
ond example of a function field. We consider the larger ring A =
C[x, y]/(p(x, y)), where p(x, y) is a nonconstant polynomial in two vari-
ables, satisfying an additional technical hypothesis.2 We consider the
following polynomial:

p(x, y) = y2 − x3 + 3x− 49

1In his exposition of ideals published in 1871, for example, Dedekind does not
even define multiplication of ideals until after he has proven the unique factorization
theorem. Though this sounds paradoxical, recall that divisibility was defined in
terms of inclusion of ideals, not in terms of multiplication. Dedekind proved that
every ideal was the intersection of all prime ideal powers that divide it.

2The technical hypothesis is that there should be no solutions (x, y) in complex
numbers x and y to the equations px(x, y) = py(x, y) = p(x, y) = 0, where px and
py denote partial derivatives.
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For this choice of p(x, y), the ring A is a Dedekind domain. If we denote
its field of fractions by K = C(x)[y]/(p(x, y)), then K is a function field,
and A is the analogue of the ring of integers OK in the number field
setting. Just as in the number field case, the ring A is precisely the set
of elements α of K which satisfy a monic polynomial with coefficients
in C[x]:

αn + qn−1α
n−1 + · · ·+ q1α + q0 = 0,

where qi = qi(x) in C[x] for each i. In other words, A is the set of
C[x]-integers in K.

Notice that A is closely associated with the following elliptic curve
C:

y2 = x3 − 3x+ 49

The nonzero prime ideals of A correspond naturally to points lying on
C, via the following one-to-one correspondence:

(a, b) ∈ C ←→ p = (x− a, y − b)
For example, the prime ideal (x, 7+y) corresponds to the point (0,−7).
The ideal (x − a, y − b) is precisely the set of polynomials in A which
vanish at the point (a, b).3 If the point (a, b) does not lie on C, then
the ideal (x−a, y− b) will be the unit ideal of A, and in particular will
not be prime. It is not at all obvious that every nonzero prime ideal
of A has the form (x − a, y − b) for some point (a, b) in C, but it is
nevertheless true.

This correspondence also sheds some light on prime factorization.
For instance, the ideal (7 + y) can be factored in A as:

(7 + y) = (x, 7 + y)(x−
√

3, 7 + y)(x+
√

3, 7 + y)

which reflects the fact that the three points (0,−7), (
√

3,−7), and
(−
√

3,−7) are precisely the points of the curve C such that 7 + y = 0.
Another factorization, which will be a key player in our counterex-

ample, is the factorization of the ideal (x): namely,

(x) = (x, 7 + y)(x, 7− y),

again corresponding to the fact that (0,±7) are the only two points in
C with x-component equal to 0. This is a factorization of (x) into two
distinct prime ideals of A; if the two ideals were the same, then they
would both contain (7 + y) + (7 − y) = 14, which is obviously untrue
because 14 is a unit of A.

3Technically, the elements of A are equivalence classes of polynomials, but if
f(x, y) and g(x, y) are congruent modulo (p(x, y)), then they have the same value
at a point (a, b) of C.
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The important feature of A, for our purposes, is the failure of the
analogue of Theorem 7.3. In fact, for most prime ideals p of the ring
A, the ideal pk is not principal for any positive integer k. In particular,
we have the following result:

Theorem 10.1. For every positive integer k, the ideal (x, 7 + y)k is
not principal.

A proof of Theorem 10.1 is well beyond the scope of this paper,
unfortunately.4 Taking it for granted, however, we are now able to de-
scribe the promised counterexample to the analogue of Question 1.1 for
function fields. Let f(T ) be the following polynomial, with coefficients
in A:

f(T ) = xT 2 + 14T + (3− x2)

= x

(
T +

7 + y

x

)(
T +

7− y
x

)
(10.1)

Any factorization of f(T ) over K (the algebraic closure of K) will be
equivalent to Equation 10.1 up to multiplication by elements of K. To
show that we cannot factor f(T ) into linear factors with C[x]-integer
coefficients, it suffices to show that we cannot factor x as x = ab with
a and b integral over C[x], and such that the following two elements of
K are also integral over C[x]:

a(7 + y)

x
and

b(7− y)

x
.

If a(7+y)/x is an integral element, the ideal (x) must divide the ideal
(a)(7+y). From the factorizations of (x) and (7+y) already computed,
this means that (a) contains (x, 7 + y). Similarly, we must also have
that (b) contains (x, 7 − y). As (x) = (a)(b) = (x, 7 + y)(x, 7 − y),
this implies that (a) = (x, 7 + y) and (b) = (x, 7− y), where the ideals
should now be interpreted in the ring of C[x]-integers in some finite
extension L of K.

Thus, in order to prove that f(T ) cannot factor into linear factors
with integral coefficients, it suffices to prove that the ideal (7 + y, x) is
not principal in the ring of C[x]-integers of any finite extension of K.

4The multiplication of ideals in A turns out to be closely related to the group
of points of C, described in much more generality in [19] and [20]. In particular, if
a prime ideal p corresponds to a point P on C, then pk is principal if and only if
the order of P divides k in the group of points. Since only countably many of the
uncountably many points on C have finite order, pk is almost always not principal.
In particular, using techniques of arithmetic geometry, it is a straightforward matter
to confirm that the point (0,−7) has infinite order in the group of points on C, and
therefore that the ideals (x, 7 + y)k are not principal for any k > 0.
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Just as in the number field case, it turns out that this is equivalent to
showing that (7 + y, x)k is not principal in A, which is precisely the
content of Theorem 10.1. Thus, f(T ) cannot be factored into linear
factors with integral coefficients.

In fact, notice that even though x divides the product (7 + y)(7− y)
(since 49 − y2 = 3x − x3 in A), we cannot factor x into a product
of an element that divides 7 + y and one that divides 7 − y, even in
the integral closure of A in K. In other words, the integral closure
of A in K is not a pre-Schreier domain, and so we cannot always lift
factorizations from K, as noted in Theorem 9.13.

11. Final remarks.

Question 1.1 goes to the very heart of Dedekind’s vision of algebraic
number theory: exploring not only the parallels between the rationals
and number fields and between the integers and rings of integers, but
also the circumstances under which those parallels break down. Our
answer has taken us on a tour of the history of some of the fundamental
building blocks of ring theory and algebraic number theory, and even
when we thought we were leaving number theory behind for the wider
field of ring theory, we found ourselves drawn back to the notions of
factorizations and to Dedekind’s work. It is easy to understand, then,
Emmy Noether’s dictum: Es steht schon bei Dedekind.
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