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Hypersurfaces

Let f ∈ C[z1, . . . , zn] be a generic polynomial in n variables. We can define
the hypersurface Zf ⊂ (C∗)n cut out by f = 0.
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A combinatorial invariant of f is its Newton polytope, the convex hull of
its exponent set in R

n. We can ask for a description of the cohomology of
a generic f with a given Newton polytope.
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Hypersurfaces

Let f ∈ C[z1, . . . , zn] be a generic polynomial in n variables. We can define
the hypersurface Zf ⊂ (C∗)n cut out by f = 0.

Question: What can we say about H∗(Z ,C)?

Importantly: We can look at the mixed Hodge structure on Z .

A combinatorial invariant of f is its Newton polytope, the convex hull of
its exponent set in R

n. We can ask for a description of the cohomology of
a generic f with a given Newton polytope.

A description of Hodge-theoretic invariants was given by
Danilov-Khovanskii and then refined by Batyrev-Borisov much later.
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Degenerating Hypersurfaces

Now, we ask a related question involving families of hypersurfaces.
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Degenerating Hypersurfaces

Now, we ask a related question involving families of hypersurfaces.

We add an auxiliary parameter t and look at f ∈ C((t))[x1, . . . , xn]. Here,
we think of t as the coordinate on a punctured disc around 0 and we have
a family of hypersurfaces Zt = V (ft).
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We add an auxiliary parameter t and look at f ∈ C((t))[x1, . . . , xn]. Here,
we think of t as the coordinate on a punctured disc around 0 and we have
a family of hypersurfaces Zt = V (ft).

Then you have the cohomology of the fibers together with the monodromy
around the disc. This refines the Hodge theory considerably.
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Degenerating Hypersurfaces

Now, we ask a related question involving families of hypersurfaces.

We add an auxiliary parameter t and look at f ∈ C((t))[x1, . . . , xn]. Here,
we think of t as the coordinate on a punctured disc around 0 and we have
a family of hypersurfaces Zt = V (ft).

Then you have the cohomology of the fibers together with the monodromy
around the disc. This refines the Hodge theory considerably.

Question: What is a combinatorial description of algebraic geometric
invariants of the degenerating hypersurface?
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Polytopes

Before we address degenerating hypersurfaces, let’s back up and discuss
the work that’s really behind the modern approach to this subject.
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d be a simplicial polytope, that is, every face is a simplex. Let fi

be the number of i -dimensional faces where we set f−1 = 1.
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Before we address degenerating hypersurfaces, let’s back up and discuss
the work that’s really behind the modern approach to this subject.

Let P ⊂ R
d be a simplicial polytope, that is, every face is a simplex. Let fi

be the number of i -dimensional faces where we set f−1 = 1.

We can package the face data in the f -polynomial

f (x) = fd−1 + fd−2x + . . . f0x
d−1 + f−1x

d .

Definition The h-polynomial is

h(x) = f (x − 1) =

d
∑

i=0

hix
d−i .
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Polytopes

Before we address degenerating hypersurfaces, let’s back up and discuss
the work that’s really behind the modern approach to this subject.

Let P ⊂ R
d be a simplicial polytope, that is, every face is a simplex. Let fi

be the number of i -dimensional faces where we set f−1 = 1.

We can package the face data in the f -polynomial

f (x) = fd−1 + fd−2x + . . . f0x
d−1 + f−1x

d .

Definition The h-polynomial is

h(x) = f (x − 1) =

d
∑

i=0

hix
d−i .

So fk−1 =
∑k

i=0 hi
(

d−i
k−i

)

.
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Dehn-Sommerville and Unimodality

Theorem (Dehn-Sommerville) hk = hd−k for k = 0, 1, . . . , d .
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Thie Dehn-Sommerville equations were known in the 1920’s They can be
proved by elementary methods.
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Dehn-Sommerville and Unimodality

Theorem (Dehn-Sommerville) hk = hd−k for k = 0, 1, . . . , d .

Thie Dehn-Sommerville equations were known in the 1920’s They can be
proved by elementary methods.

Theorem (part of McMullen’s conjecture, Stanley ’80) hk−1 ≤ hk for
1 ≤ k ≤ d

2 .

The full conjecture involves a more detailed description of hk .
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Stanley’s Theorem

Stanley’s theorem is proved using algebraic geometry. Perturb the
polytope so that all of its vertices are rational. Since P is simplicial, this
will not change the face lattice. Translate so 0 ∈ P̊. Let ∆ be the fan
consisting of cones on the faces. Then the h-polynomial is the Poincaré
polynomial of the intersection cohomology.
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It obeys the Dehn-Sommerville relations by Poincaré-duality. The
unimodality condition follows from the hard Lefschetz theorem.
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Stanley’s Theorem

Stanley’s theorem is proved using algebraic geometry. Perturb the
polytope so that all of its vertices are rational. Since P is simplicial, this
will not change the face lattice. Translate so 0 ∈ P̊. Let ∆ be the fan
consisting of cones on the faces. Then the h-polynomial is the Poincaré
polynomial of the intersection cohomology.

It obeys the Dehn-Sommerville relations by Poincaré-duality. The
unimodality condition follows from the hard Lefschetz theorem.

It makes sense that h and f should be related in that way. There are
models for the cohomology of a toric variety involving counting a certain
number of “interesting” cones and then getting all the other cones by
looking at faces. The binomial coefficients were counting faces.
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Non-simplicial polytopes

This machinery works for rational non-simplicial polytopes. What breaks
down is the identification of the h-vector with the cohomology. So let’s
throw it out and work with the coefficients of the Poincare polynomial
which we will call H, toric h-vector.
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Non-simplicial polytopes

This machinery works for rational non-simplicial polytopes. What breaks
down is the identification of the h-vector with the cohomology. So let’s
throw it out and work with the coefficients of the Poincare polynomial
which we will call H, toric h-vector.

Consider the poset B̂ of faces of the polytope ordered under inclusion and
graded by dimension. It is Eulerian. Let 0 be the empty face and 1 be the
polytope. Let B = B̂ \ {1}.
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Generalized H-vector

We define two polynomials G ,H for Eulerian posets by
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2 If B̂ has rank d + 1, set

G (B , t) = τ≤d/2((1− t)H(B , t))

3 If B̂ has rank d + 1, set

H(B , t) =
∑

x

G ([0, x), t)(t − 1)d−ρ(x).
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Generalized H-vector

We define two polynomials G ,H for Eulerian posets by

1 H(0,t)=G(0,t)=1,

2 If B̂ has rank d + 1, set

G (B , t) = τ≤d/2((1− t)H(B , t))

3 If B̂ has rank d + 1, set

H(B , t) =
∑

x

G ([0, x), t)(t − 1)d−ρ(x).

This is very opaque, but the formula for H is doing inclusion/exclusion on
toric open affine Uσ (the t − 1-factors are just splitting off tori). The
formula for G is computing the Poincaré polynomial of Uσ in terms of a
quotient toric variety Uσ/C

∗.
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Generalized H-vector

Now Poincaré-duality and hard Lefschetz apply. So algebraic geometry
told us the right invariants in a non-simplicial situation. You should think
of simplicial as being smooth over the rationals, the non-simplicial case is
very not smooth.
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Generalized H-vector

Now Poincaré-duality and hard Lefschetz apply. So algebraic geometry
told us the right invariants in a non-simplicial situation. You should think
of simplicial as being smooth over the rationals, the non-simplicial case is
very not smooth.

A purely combinatorial definition of intersection cohomology was given in
this case by Karu. So the rationality hypothesis is no longer necessary.
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Mixed Hodge structure

We now review the approach of Danilov-Khovanskii (’78) to the
cohomology of Zf ⊂ (C∗)n for f a polynomial. Since Z is not compact, we
have to work with cohomology with compact supports, H∗

c (Z ). This
cohomology has a mixed Hodge structure.
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More concretely, we compactify Z to Z such that Z \ Z is a simple normal
crossings divisor. Then we do a sort of inclusion/exclusion which is
accomplished by the Deligne spectral sequence.
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We now review the approach of Danilov-Khovanskii (’78) to the
cohomology of Zf ⊂ (C∗)n for f a polynomial. Since Z is not compact, we
have to work with cohomology with compact supports, H∗

c (Z ). This
cohomology has a mixed Hodge structure.

More concretely, we compactify Z to Z such that Z \ Z is a simple normal
crossings divisor. Then we do a sort of inclusion/exclusion which is
accomplished by the Deligne spectral sequence.

There is an increasing filtration W and a decreasing filtration F on Hk

such that the associated gradeds with respect to W have a pure Hodge
structure. We define

hp,q(Hk (Z )) = dimGrpF GrWp+q(H
k
c (Z )).
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Mixed Hodge structure

We now review the approach of Danilov-Khovanskii (’78) to the
cohomology of Zf ⊂ (C∗)n for f a polynomial. Since Z is not compact, we
have to work with cohomology with compact supports, H∗

c (Z ). This
cohomology has a mixed Hodge structure.

More concretely, we compactify Z to Z such that Z \ Z is a simple normal
crossings divisor. Then we do a sort of inclusion/exclusion which is
accomplished by the Deligne spectral sequence.

There is an increasing filtration W and a decreasing filtration F on Hk

such that the associated gradeds with respect to W have a pure Hodge
structure. We define

hp,q(Hk (Z )) = dimGrpF GrWp+q(H
k
c (Z )).

Warning: Note that we may have hp,q(Hk(Z )) 6= 0 even though
p + q 6= k . So there’s a lot more data.
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Danilov-Khovanskii’s approach

To throw out some of the excess data, we take the Hodge-Deligne numbers

ep,q(Z ) =
∑

k

(−1)khp,q(Hk
c (Z )).

We want to find ep,q.

Eric Katz (Waterloo) Hodge theory of degenerating hypersurfaces October 20, 2013 11 / 28



Danilov-Khovanskii’s approach

To throw out some of the excess data, we take the Hodge-Deligne numbers

ep,q(Z ) =
∑

k

(−1)khp,q(Hk
c (Z )).
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First, ep,q(Z ) is motivic: if U is an open subset of Z then
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We want to find ep,q.

First, ep,q(Z ) is motivic: if U is an open subset of Z then

ep,q(Z ) = ep,q(U) + ep,q(Z \ U).

Therefore one may compactify (C∗)n to the toric variety XP given by the
Newton polytope of f . Let Z be the closure of Z in XP . One can remove
the stuff that we added later. Now, we can define the genericity of f
which means that f is generic among polynomials with Newton polytope
P so that the strata of Z are smooth.
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Danilov-Khovanskii’s approach

To throw out some of the excess data, we take the Hodge-Deligne numbers

ep,q(Z ) =
∑

k

(−1)khp,q(Hk
c (Z )).

We want to find ep,q.

First, ep,q(Z ) is motivic: if U is an open subset of Z then

ep,q(Z ) = ep,q(U) + ep,q(Z \ U).

Therefore one may compactify (C∗)n to the toric variety XP given by the
Newton polytope of f . Let Z be the closure of Z in XP . One can remove
the stuff that we added later. Now, we can define the genericity of f
which means that f is generic among polynomials with Newton polytope
P so that the strata of Z are smooth.

Secondly, one has a Lefschetz hyperplane theorem: for p, q > n − 1,

ep,q(Z ) = ep+1,q+1((C∗)n).
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Danilov-Khovanskii’s approach (cont’d)

Now, we can form the Hodge-Deligne polynomial,

E (Z ; u, v) =
∑

p,q

ep,qupvq
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Danilov-Khovanskii’s approach (cont’d)

Now, we can form the Hodge-Deligne polynomial,

E (Z ; u, v) =
∑

p,q

ep,qupvq

It is multiplicative

E (Z1 × Z2; u, v) = E (Z1; u, v)E (Z2; u, v).
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Danilov-Khovanskii’s approach (cont’d)

Now, we can form the Hodge-Deligne polynomial,

E (Z ; u, v) =
∑

p,q

ep,qupvq

It is multiplicative

E (Z1 × Z2; u, v) = E (Z1; u, v)E (Z2; u, v).

It obeys Poincaré duality for Z ,

E (Z ; u, v) = (uv)n−1E (Z ; u−1, v−1).
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Danilov-Khovanskii’s approach (cont’d)

Now, we can form the Hodge-Deligne polynomial,

E (Z ; u, v) =
∑

p,q

ep,qupvq

It is multiplicative

E (Z1 × Z2; u, v) = E (Z1; u, v)E (Z2; u, v).

It obeys Poincaré duality for Z ,

E (Z ; u, v) = (uv)n−1E (Z ; u−1, v−1).

The specialization E (Z ; u, 1) can be computed by taking the Euler
characteristic of an ideal sheaf sequence (twisted by differentials) together
with an adjunction exact sequence.
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Danilov-Khovanskii’s approach (cont’d)

We end up getting

uE (V (P)◦; u, 1) = (u − 1)dimP + (−1)dimP+1h∗P(u).

where h∗P(u) is defined by

h∗P(u) = (1− u)dimP+1 EhrP(u)

where EhrP(u) is the Ehrhart series of the Newton polytope P

EhrP(u) =
∑

m≥0

|mP |um.

h∗P is a polynomial by Ehrhart’s theorem.

Eric Katz (Waterloo) Hodge theory of degenerating hypersurfaces October 20, 2013 13 / 28



Danilov-Khovanskii’s approach (cont’d)

We end up getting

uE (V (P)◦; u, 1) = (u − 1)dimP + (−1)dimP+1h∗P(u).

where h∗P(u) is defined by

h∗P(u) = (1− u)dimP+1 EhrP(u)

where EhrP(u) is the Ehrhart series of the Newton polytope P

EhrP(u) =
∑

m≥0

|mP |um.

h∗P is a polynomial by Ehrhart’s theorem.

Danilov-Khovanskii provide an algorithm for finding ep,q by using
inclusion/exclusion along the faces of P .
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Batyrev-Borisov formula

Much later, Batyrev-Borisov gave an explicit formula (inspired by
intersection cohomology) in terms of the face-poset of P :

E (Z ; u, v) = (1/uv)[(uv − 1)d+1

+(−1)d
∑

Q⊆P

udimQ+1S̃(Q, u−1v)G ([Q,P ]∗, uv)].

Eric Katz (Waterloo) Hodge theory of degenerating hypersurfaces October 20, 2013 14 / 28



Batyrev-Borisov formula
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intersection cohomology) in terms of the face-poset of P :

E (Z ; u, v) = (1/uv)[(uv − 1)d+1

+(−1)d
∑

Q⊆P

udimQ+1S̃(Q, u−1v)G ([Q,P ]∗, uv)].

Here S̃(Q, t) is a polynomial defined by

S̃(Q, t) =
∑

Q′⊆Q

(−1)dimQ−dimQ′

h∗Q′(t)G ([Q ′,Q], t).
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Batyrev-Borisov formula

Much later, Batyrev-Borisov gave an explicit formula (inspired by
intersection cohomology) in terms of the face-poset of P :

E (Z ; u, v) = (1/uv)[(uv − 1)d+1

+(−1)d
∑

Q⊆P

udimQ+1S̃(Q, u−1v)G ([Q,P ]∗, uv)].

Here S̃(Q, t) is a polynomial defined by

S̃(Q, t) =
∑

Q′⊆Q

(−1)dimQ−dimQ′

h∗Q′(t)G ([Q ′,Q], t).

So observe that the first term in the formula for E comes from the
ambient space. The second term is an inclusion/exclusion along the poset
of faces and where each term has been factored into a poset-combinatorial
term multiplied by an Ehrhart term.
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Batyrev-Borisov formula

Much later, Batyrev-Borisov gave an explicit formula (inspired by
intersection cohomology) in terms of the face-poset of P :

E (Z ; u, v) = (1/uv)[(uv − 1)d+1

+(−1)d
∑

Q⊆P

udimQ+1S̃(Q, u−1v)G ([Q,P ]∗, uv)].

Here S̃(Q, t) is a polynomial defined by

S̃(Q, t) =
∑

Q′⊆Q

(−1)dimQ−dimQ′

h∗Q′(t)G ([Q ′,Q], t).

So observe that the first term in the formula for E comes from the
ambient space. The second term is an inclusion/exclusion along the poset
of faces and where each term has been factored into a poset-combinatorial
term multiplied by an Ehrhart term.

Naive Question: Is the machinery of S̃ a combinatorial abstraction of the
resolution of singularities for the dual fan of P which is equivalent to
finding a normal crossings compactification?
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Degenerating hypersurfaces

Let’s return to degenerating hypersurfaces to look at
f ∈ C((t))[x1, . . . , xn].
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Degenerating hypersurfaces

Let’s return to degenerating hypersurfaces to look at
f ∈ C((t))[x1, . . . , xn].

Silly example: Let f (x1, x2) = 1 + x1 + x2 + tx1x2.

For t 6= 0, this is a conic that naturally compactifies to a (1, 1)-curve in
P
1 × P

1, so a four-times punctured P
1.
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Silly example: Let f (x1, x2) = 1 + x1 + x2 + tx1x2.

For t 6= 0, this is a conic that naturally compactifies to a (1, 1)-curve in
P
1 × P

1, so a four-times punctured P
1.

At t = 0, we get f1(x1, x2) = 1 + x1 + x2, so a line in P
2
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Degenerating hypersurfaces

Let’s return to degenerating hypersurfaces to look at
f ∈ C((t))[x1, . . . , xn].

Silly example: Let f (x1, x2) = 1 + x1 + x2 + tx1x2.

For t 6= 0, this is a conic that naturally compactifies to a (1, 1)-curve in
P
1 × P

1, so a four-times punctured P
1.

At t = 0, we get f1(x1, x2) = 1 + x1 + x2, so a line in P
2

If we make a change of variables, tf (t−1x1, t
−1x2) = t + x1 + x2 + x1x2

and set t = 0, we get f2(x1, x2) = x1+ x2+ x1x2, so a line in a different P2.
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Degenerating hypersurfaces

Let’s return to degenerating hypersurfaces to look at
f ∈ C((t))[x1, . . . , xn].

Silly example: Let f (x1, x2) = 1 + x1 + x2 + tx1x2.

For t 6= 0, this is a conic that naturally compactifies to a (1, 1)-curve in
P
1 × P

1, so a four-times punctured P
1.

At t = 0, we get f1(x1, x2) = 1 + x1 + x2, so a line in P
2

If we make a change of variables, tf (t−1x1, t
−1x2) = t + x1 + x2 + x1x2

and set t = 0, we get f2(x1, x2) = x1+ x2+ x1x2, so a line in a different P2.

Now, the ambient P1 × P
1 degenerates to two P

2’s joined along a line.
Our curve degenerates into two twice-punctured lines joined along a node.
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Newton subdivision

There’s a combinatorial object associated to degenerating hypersurfaces,
the Newton subdivision.
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Newton subdivision

There’s a combinatorial object associated to degenerating hypersurfaces,
the Newton subdivision.

Let f ∈ C((t))[x1, . . . , xn]. Write

f =
∑

aux
u.

For au ∈ C((t)), let val(au) be the smallest exponent of t with non-zero
coefficient. Consider the function

u 7→ val(au).
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There’s a combinatorial object associated to degenerating hypersurfaces,
the Newton subdivision.

Let f ∈ C((t))[x1, . . . , xn]. Write

f =
∑

aux
u.

For au ∈ C((t)), let val(au) be the smallest exponent of t with non-zero
coefficient. Consider the function

u 7→ val(au).

The upper hull is the convex hull of all points lying above the graph of this
function. Its lower faces induce a subdivision of P . Subdivisions that arise
in this fashion are called regular.
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Newton subdivision

There’s a combinatorial object associated to degenerating hypersurfaces,
the Newton subdivision.

Let f ∈ C((t))[x1, . . . , xn]. Write

f =
∑

aux
u.

For au ∈ C((t)), let val(au) be the smallest exponent of t with non-zero
coefficient. Consider the function

u 7→ val(au).

The upper hull is the convex hull of all points lying above the graph of this
function. Its lower faces induce a subdivision of P . Subdivisions that arise
in this fashion are called regular.

Regular subdivisions can be studied as an object like Newton polytopes.
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Example of Newton subdivision

Example: Let us consider f (x1, x2) = 1 + x1 + x2 + tx1x2. Here is the
function and its associated subdivision.
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Example of Newton subdivision

Example: Let us consider f (x1, x2) = 1 + x1 + x2 + tx1x2. Here is the
function and its associated subdivision.

0

0

0

1

Here you can see the ambient P1 × P
1 degenerating into two P

2’s joined
along a P

1.
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Monodromy Filtration

In general, if we have a family Zt , there is an additional filtration on the
cohomology. View the family over the punctured disc. The cohomology
H∗(Zt) gives a locally trivial fiber bundle over the punctured disc.
Consequently, one can parallel transport around the puncture. This gives a
monodromy operation T : H∗(Zt) → H∗(Zt). By possibly replacing T by
Tm for some m ∈ Z≥1, we can suppose T is unipotent. Set N = log(T )
which is nilpotent. There is an additional filtration coming from the
Jordan decomposition of N.
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Monodromy Filtration

In general, if we have a family Zt , there is an additional filtration on the
cohomology. View the family over the punctured disc. The cohomology
H∗(Zt) gives a locally trivial fiber bundle over the punctured disc.
Consequently, one can parallel transport around the puncture. This gives a
monodromy operation T : H∗(Zt) → H∗(Zt). By possibly replacing T by
Tm for some m ∈ Z≥1, we can suppose T is unipotent. Set N = log(T )
which is nilpotent. There is an additional filtration coming from the
Jordan decomposition of N.

If Zt were compact, then one could put an increasing monodromy
filtration M on Hk(Zt),

0 ⊆ M0 ⊆ M1 ⊆ · · · ⊆ M2k = Hk(Z ),

with associated graded pieces GrMl := Ml/Ml−1, satisfying the following
properties for any non-negative integer l ,

1 N(Ml ) ⊆ Ml−2,

2 the induced map N l : GrMk+l → GrMk−l is an isomorphism.
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Mixed Monodromy Filtration

Since Zt is not compact, we can have several filtrations. Let’s use
pre-Saito technology.
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Mixed Monodromy Filtration

Since Zt is not compact, we can have several filtrations. Let’s use
pre-Saito technology.

By results of Steenbrink-Zucker, there is an increasing monodromy
filtration M on Hk

c (Zt) and an increasing weight filtration W and a
decreasing Hodge filtration F . Note that the original construction used a
normal-crossings degeneration of the family and looked at log forms on
components of that degeneration.
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pre-Saito technology.

By results of Steenbrink-Zucker, there is an increasing monodromy
filtration M on Hk

c (Zt) and an increasing weight filtration W and a
decreasing Hodge filtration F . Note that the original construction used a
normal-crossings degeneration of the family and looked at log forms on
components of that degeneration.

(A twist of) the monodromy filtration has the above properties on the
W -associated gradeds.
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Mixed Monodromy Filtration

Since Zt is not compact, we can have several filtrations. Let’s use
pre-Saito technology.

By results of Steenbrink-Zucker, there is an increasing monodromy
filtration M on Hk

c (Zt) and an increasing weight filtration W and a
decreasing Hodge filtration F . Note that the original construction used a
normal-crossings degeneration of the family and looked at log forms on
components of that degeneration.

(A twist of) the monodromy filtration has the above properties on the
W -associated gradeds.

This gives us tons of structure. We can refine the Hodge numbers even
further:

hp,q,r(Z )k = dim(GrpF Gr
M(r)
p+q GrWr Hk(Z )).

and form refined Hodge-Deligne numbers:

ep,q,r (Z ) =
∑

(−1)khp,q,r(Z )k .
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Specializations

We can play lots of different games with these refined Hodge numbers.
We can forget the monodromy filtration or the weight filtration. And it’s
always fun to have decompositions of non-negative numbers into smaller
non-negative numbers.
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Specializations

We can play lots of different games with these refined Hodge numbers.
We can forget the monodromy filtration or the weight filtration. And it’s
always fun to have decompositions of non-negative numbers into smaller
non-negative numbers.

Definition: Let E (Zgen; u, v) be the Hodge-Deligne polynomial of Zt with
the mixed Hodge structure coming from (F ,W ). Weight mixed Hodge

structure.
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Specializations

We can play lots of different games with these refined Hodge numbers.
We can forget the monodromy filtration or the weight filtration. And it’s
always fun to have decompositions of non-negative numbers into smaller
non-negative numbers.

Definition: Let E (Zgen; u, v) be the Hodge-Deligne polynomial of Zt with
the mixed Hodge structure coming from (F ,W ). Weight mixed Hodge

structure.

Definition: Let E (Z∞; u, v) be the Hodge-Deligne polynomial of Zt with
the mixed Hodge structure coming from (F ,M). Limit mixed Hodge

structure.
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Specializations

We can play lots of different games with these refined Hodge numbers.
We can forget the monodromy filtration or the weight filtration. And it’s
always fun to have decompositions of non-negative numbers into smaller
non-negative numbers.

Definition: Let E (Zgen; u, v) be the Hodge-Deligne polynomial of Zt with
the mixed Hodge structure coming from (F ,W ). Weight mixed Hodge

structure.

Definition: Let E (Z∞; u, v) be the Hodge-Deligne polynomial of Zt with
the mixed Hodge structure coming from (F ,M). Limit mixed Hodge

structure.

Observation: E (Zgen; u, 1) = E (Z∞; u, 1) since this forgets both M and
W .
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Degeneration formula

There’s a degeneration formula for E (Z∞; u, v).
Observation: For generic f , E (Z ; u, 1) only depends on the Newton
polytope of Z . So we may write ZP
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Degeneration formula

There’s a degeneration formula for E (Z∞; u, v).
Observation: For generic f , E (Z ; u, 1) only depends on the Newton
polytope of Z . So we may write ZP

Now, we have the following degeneration formula which follows from the
spectral sequence of Steenbrink or the motivic nearby fiber of Bittner.
Theorem (K-Stapledon)

E ((ZP)∞; u, v) =
∑

Int(Q)⊆Int(P)

E (ZQ ; u, v)(1 − uv)codimQ .

where the sum is over the faces in the subdivision.
The proof involves picking a normal crossings degeneration, applying
Bittner’s results, and showing that it agrees with the above.
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Degeneration formula

There’s a degeneration formula for E (Z∞; u, v).
Observation: For generic f , E (Z ; u, 1) only depends on the Newton
polytope of Z . So we may write ZP

Now, we have the following degeneration formula which follows from the
spectral sequence of Steenbrink or the motivic nearby fiber of Bittner.
Theorem (K-Stapledon)

E ((ZP)∞; u, v) =
∑

Int(Q)⊆Int(P)

E (ZQ ; u, v)(1 − uv)codimQ .

where the sum is over the faces in the subdivision.
The proof involves picking a normal crossings degeneration, applying
Bittner’s results, and showing that it agrees with the above.

This gives the specialization

E (ZP ; u, 1) =
∑

Int(Q)⊆Int(P)

E (ZQ ; u, 1)(1 − u)codimQ .
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Application 1: Determining E (ZP ; u, 1)

This formula lets us identify E (ZP ; u, 1)
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Application 1: Determining E (ZP ; u, 1)

This formula lets us identify E (ZP ; u, 1)
Definition: Let PZn be the set of convex lattice polytopes in Z

n. A regular
unimodular valuation on PZn is a map φ : PZn → R satisfying

1 φ obeys inclusion/exclusion over faces in a regular subdivsion,

2 φ(∅) = 0, and

3 φ(P) = φ(UP + u) for P ∈ PZn , U ∈ Sln(Z), u ∈ Z
n.

It can be shown that valuations are determined by their values on
unimodular simplices.
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Application 1: Determining E (ZP ; u, 1)

This formula lets us identify E (ZP ; u, 1)
Definition: Let PZn be the set of convex lattice polytopes in Z

n. A regular
unimodular valuation on PZn is a map φ : PZn → R satisfying

1 φ obeys inclusion/exclusion over faces in a regular subdivsion,

2 φ(∅) = 0, and

3 φ(P) = φ(UP + u) for P ∈ PZn , U ∈ Sln(Z), u ∈ Z
n.

It can be shown that valuations are determined by their values on
unimodular simplices.

The degeneration formula gives
Lemma The following function is a regular unimodular valuation

P 7→
E (ZP ; u, 1)

(u − 1)dimP+1
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Application 1: Determining E (ZP ; u, 1)

This formula lets us identify E (ZP ; u, 1)
Definition: Let PZn be the set of convex lattice polytopes in Z

n. A regular
unimodular valuation on PZn is a map φ : PZn → R satisfying

1 φ obeys inclusion/exclusion over faces in a regular subdivsion,

2 φ(∅) = 0, and

3 φ(P) = φ(UP + u) for P ∈ PZn , U ∈ Sln(Z), u ∈ Z
n.

It can be shown that valuations are determined by their values on
unimodular simplices.

The degeneration formula gives
Lemma The following function is a regular unimodular valuation

P 7→
E (ZP ; u, 1)

(u − 1)dimP+1

We obtain Danilov-Khovanskii’s formula by checking that the right-hand
side is a unimodular valuation and showing that the formula is true for
unimodular simplices by (easy) explicit computation.
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Application 2: Refining S̃(P)

We may also use this machinery to refine S̃(P , t). By Batyrev-Borisov’s
formula, we have the following formula for coefficients of S̃(P , t):

S̃(P)p+1 = hp,n−1−p(Hn−1
c,na ((ZP)gen))

where na refers to the non-ambient cohomology, the kernel of the map

H∗
c (ZP) → H∗

c ((C
∗)n).
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Application 2: Refining S̃(P)

We may also use this machinery to refine S̃(P , t). By Batyrev-Borisov’s
formula, we have the following formula for coefficients of S̃(P , t):

S̃(P)p+1 = hp,n−1−p(Hn−1
c,na ((ZP)gen))

where na refers to the non-ambient cohomology, the kernel of the map

H∗
c (ZP) → H∗

c ((C
∗)n).

We have
S̃(P)p+1 =

∑

q

hp,q,n−1(Hn−1
c,na (Zf )).

Note that the right-hand side depends on the Newton subdivision of P .
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Structure of S̃(P)

Now, by the structure of the monodromy filtration, the sequence
{hl+i ,i ,k(Hn−1

c,na (ZP))|0 ≤ i ≤ k − l} is symmetric and unimodal. This

decomposes the coefficients of S̃(P) into the sum of symmetric and
unimodal sequences. If we can show that some of them vanish, then we
can get inequalities for S̃.
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Structure of S̃(P)

Now, by the structure of the monodromy filtration, the sequence
{hl+i ,i ,k(Hn−1

c,na (ZP))|0 ≤ i ≤ k − l} is symmetric and unimodal. This

decomposes the coefficients of S̃(P) into the sum of symmetric and
unimodal sequences. If we can show that some of them vanish, then we
can get inequalities for S̃.

For example, if P admits a regular, unimodular lattice triangulation, then
the refined limit mixed Hodge numbers are concentrated in (p, p). This is
because the hypersurface is degenerating into a union of hyperplanes. In
this case S̃(P) is symmetric and unimodal.
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Structure of S̃(P)

Now, by the structure of the monodromy filtration, the sequence
{hl+i ,i ,k(Hn−1

c,na (ZP))|0 ≤ i ≤ k − l} is symmetric and unimodal. This

decomposes the coefficients of S̃(P) into the sum of symmetric and
unimodal sequences. If we can show that some of them vanish, then we
can get inequalities for S̃.

For example, if P admits a regular, unimodular lattice triangulation, then
the refined limit mixed Hodge numbers are concentrated in (p, p). This is
because the hypersurface is degenerating into a union of hyperplanes. In
this case S̃(P) is symmetric and unimodal.

A more novel result is the following:
Theorem: The coefficients {S̃(P)i}{i=1,...,n} are bounded below by the
number of interior lattice points of P .
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Structure of S̃(P)

Now, by the structure of the monodromy filtration, the sequence
{hl+i ,i ,k(Hn−1

c,na (ZP))|0 ≤ i ≤ k − l} is symmetric and unimodal. This

decomposes the coefficients of S̃(P) into the sum of symmetric and
unimodal sequences. If we can show that some of them vanish, then we
can get inequalities for S̃.

For example, if P admits a regular, unimodular lattice triangulation, then
the refined limit mixed Hodge numbers are concentrated in (p, p). This is
because the hypersurface is degenerating into a union of hyperplanes. In
this case S̃(P) is symmetric and unimodal.

A more novel result is the following:
Theorem: The coefficients {S̃(P)i}{i=1,...,n} are bounded below by the
number of interior lattice points of P .

This is proven by picking a regular, lattice triangulation of P , showing that
some refined mixed Hodge numbers vanish and using the unimodality
properties of the rest.
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Application 3: Computing the refined limit mixed Hodge

polynomial

Now, we believe that we (well, Alan) has a formula for the refined limit
mixed Hodge polynomial. This is done by applying Danilov-Khovanskii’s
method.
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Application 3: Computing the refined limit mixed Hodge

polynomial

Now, we believe that we (well, Alan) has a formula for the refined limit
mixed Hodge polynomial. This is done by applying Danilov-Khovanskii’s
method.

1 Initially, we forget about the weight filtration and use our
degeneration formula to write down the limit mixed Hodge
polynomial. We know the terms coming from the faces of the
subdivision by applying Batyrev-Borisov’s formula.
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Now, we believe that we (well, Alan) has a formula for the refined limit
mixed Hodge polynomial. This is done by applying Danilov-Khovanskii’s
method.

1 Initially, we forget about the weight filtration and use our
degeneration formula to write down the limit mixed Hodge
polynomial. We know the terms coming from the faces of the
subdivision by applying Batyrev-Borisov’s formula.

2 We complete our hypersurface to a hypersurface in a complete toric
variety. A similar degeneration formula holds. The Hodge structure is
now pure with respect to the weight filtration. So we know the
degrees in which the filtration is concentrated.
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Application 3: Computing the refined limit mixed Hodge

polynomial

Now, we believe that we (well, Alan) has a formula for the refined limit
mixed Hodge polynomial. This is done by applying Danilov-Khovanskii’s
method.

1 Initially, we forget about the weight filtration and use our
degeneration formula to write down the limit mixed Hodge
polynomial. We know the terms coming from the faces of the
subdivision by applying Batyrev-Borisov’s formula.

2 We complete our hypersurface to a hypersurface in a complete toric
variety. A similar degeneration formula holds. The Hodge structure is
now pure with respect to the weight filtration. So we know the
degrees in which the filtration is concentrated.

3 We break the terms into ambient and non-ambient contributions and
apply inclusion/exclusion along the faces of the polytope.
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Philosophy

Two themes of this talk are the following:
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Philosophy

Two themes of this talk are the following:

1 Some situations are best understood when they are combinatorially
simple: simplicial polytopes, normal crossing compactifications and
degenerations. However, algebraic geometry can handle the bad cases
and tells us what the right answer is. This should involve
subdividing/resolving singularities and picking out what is invariant of
choices.
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Philosophy

Two themes of this talk are the following:

1 Some situations are best understood when they are combinatorially
simple: simplicial polytopes, normal crossing compactifications and
degenerations. However, algebraic geometry can handle the bad cases
and tells us what the right answer is. This should involve
subdividing/resolving singularities and picking out what is invariant of
choices.

2 A lot of invariants are motivic and are given by summing over strata
or components of the central fiber. This involves inclusion/exclusion.
So we should look for ways to decouple the combinatorics of the
inclusion/exclusion from the algebraic geometry of the pieces.
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Questions

Question: Can we develop a combinatorial understanding of these
interesting polynomials?
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Questions

Question: Can we develop a combinatorial understanding of these
interesting polynomials?

Stanley has introduced local h-vectors as a way of decomposing h-vectors
along faces or along a subdivision. The Ehrhart analogues are local
h∗-vectors, investigated by Karu, Nill, and Schepers.
Question: Is the decomposition coming from Hodge theory the same?
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Questions

Question: Can we develop a combinatorial understanding of these
interesting polynomials?

Stanley has introduced local h-vectors as a way of decomposing h-vectors
along faces or along a subdivision. The Ehrhart analogues are local
h∗-vectors, investigated by Karu, Nill, and Schepers.
Question: Is the decomposition coming from Hodge theory the same?

Question: Are local h-vectors a combinatorial abstraction of semistable
reduction?
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Thanks!

Vladimir Danilov and Askold Khovanskii, Newton polyhedra and an

algorithm for calculating Hodge-Deligne numbers.

K. and Alan Stapledon, The tropical motivic nearby fiber and the Hodge

theory of hypersurfaces. in preparation.
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