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Rational points on curves

Given an algebraic variety (a system of polynomial equations in many
variables), one can ask how many rational points it has. The most
significant theorem in this direction is Faltings’s theorem that tells us:

Theorem (Faltings)

Let C be a curve defined over Q. If g(C ) ≥ 2 then C has finitely many
rational points.

This theorem is not effective. It does not tell how many rational points
there are. However, there is an effective special case:

Theorem (Coleman)

Let C be a curve defined over Q. Let J be the Jacobian of C , and let
r = rankZ J(Q) be its Mordell-Weil rank. If r < g then for p > 2g, a
prime of good reduction of C ,

|C (Q)| ≤ |C (Fp)|+ 2g − 2.
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Rational points on curves (cont’d)

Theorem (Coleman)

Let C be a curve defined over Q. Let J be the Jacobian of C , and let
r = rankZ J(Q) be its Mordell-Weil rank. If r < g then for p > 2g, a
prime of good reduction of C ,

|C (Q)| ≤ |C (Fp)|+ 2g − 2.

For p ≤ 2g , there is a small correction term.

Note that this bound depends on the first prime of good reduction.
However, |C (Fp)| can be controlled by the Hasse-Weil bounds.

The Mordell-Weil rank is very computable. There are a large number of
implemented algorithms.

This bound does not tell you the height of the rational points, so if the
bound is not sharp, it does not let you know if you’ve found all the
rational points.
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Today’s Goal

Today’s goal: Tighter bounds coming from primes of bad reduction.

Let p be some prime. Let C be a regular minimal model of C over Zp.
This implies that the total space is regular. They can be worse than nodes.
Our main result is a combination of improvements due to Stoll,
McCallum-Poonen, and Lorenzini-Tucker.

Theorem (K-Zureick-Brown)

Let p be a prime with p > 2g(C ). Suppose r < g then

|C (Q)| ≤ |Csm
0 (Fp)|+ 2r

This bound can be sharp! Here, the proof depends on the number of
smooth points of the closed fiber of regular minimal model. This bound
depends on the curve and can be arbitrarily large.

However, next week David Zureick-Brown will talk about making this
bound uniform in genus for a more restrictive class of curves.
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Outline of Chabauty’s proof

Coleman’s approach is based on an earlier ineffective method of Chabauty.
If C has a rational point x0 , use it for the base-point of the Abel-Jacobi
map i : C → J. So the identity of J corresponds to a rational point of C .
Now, intuitively, we have a

Naive hope: If r < g , then the rational point J(Q) are contained in an
Abelian subvariety A ⊂ J.

If this were true, we could intersect C with A in J. We know that C is not
contained in a proper Abelian subvariety of J. So, as algebraic
subvarieties, C and A can only intersect in finitely many points.

Unfortunately, the naive hope does not hold.
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Outline of Chabauty’s proof (cont’d)

Fortunately, the naive hope holds p-adically.

There is a globally defined p-adic logarithm,

Log : J(Qp)→ Lie(J)(Qp) = Qg
p .

This is very strange if you think about it.

By arguments involving p-adic Lie groups, Log(J(Q)) is contained in a
proper subspace V of Lie(J). By a p-adic analysis argument, C ∩ J(Q) is
finite.
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Coleman’s proof

To make this proof effective, Coleman needed a genuinely new idea.

Coleman’s amazing insight: the composition of Abel-Jacobi and logarithm
Log ◦i can be computed locally on the curve.

Specifically, we note Lie(J) = Ω(C )∨. We pick a 1-form ω ∈ Ω(C )
vanishing on the subspace V containing the logarithms of the rational
points of J. Then the composition

C (Qp)
i // J(Qp)

Log // Lie(J)
ω // Qp

vanishes on C (Q).

It turns out that this composition can be written as a p-adic integral

fω : x 7→
∫ x

x0

ω.
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Coleman’s proof (cont’d)

The function fω is a p-adic integral as defined by Coleman. It is
characterized by two properties:

1 in residue discs, it can be computed by antidifferentiating a power
series for ω, and

2 it obeys a change of variables formula with respect to any lift of
Frobenius (the Dwork principle).

Here, a residue disc means ρ−1(Q) for the specialization map
ρ : C (Qp)→ C0(Fp) given by

ρ(x) = {x} ∩ C0(Fp)

and Q ∈ C0(Fp). In other words, all points specializing to the same point.
Around a smooth point in C0(Fp), they look like open discs p-adically.

Now, to bound the number of rational points, we work residue disc by
residue disc. For each residue point Q ∈ C (Fp), we concede that there
might be one rational point xQ with ρ(xQ) = Q. Could there be more?
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Coleman’s proof (cont’d)

We pick a uniformizer t at xQ and write

ω =
∞∑
n=0

antndt

in the residue disc. Then,

fω =
∞∑
n=0

an
n + 1

tn+1.

The Newton polygon for fω is very similar to that of ω. In fact, fω has at
most one more zero in ρ−1(Q) than ω does. To get a handle on the
number of zeroes, we restrict ω to the closed fiber. By multiplying by a
power of p, can suppose that ω does not vanish on the closed fiber C0.
Then the number of zeroes of ω in ρ−1(Q) is equal to the order of
vanishing of ω|C0 at Q.
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Coleman’s proof (concluded)

Summing over residue classes Q ∈ C0(Fp), we get

|C (Q)| ≤ |f −1
ω (0)| =

∑
Q∈C0(Fp)

(1 + ordQ(ω|C0))

= |C0(Fp)|+ deg(ω)

= |C0(Fp)|+ 2g − 2.
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Stoll’s improvement

Coleman’s bound was improved by Stoll:

Theorem (Stoll)

If r < g then |C (Q)| ≤ |C0(Fp)|+ 2r .

This improvement is important! A sharper bound means less searching for
a rational point that may not exist.
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Proof of Stoll’s improvement

Stoll improved the bound by picking a good choice of ω for each residue
disc.

Let Λ ⊂ Γ(JQp ,Ω
1) be the 1-forms vanishing on J(Q). For each residue

class Q ∈ C0(Fp), let

n(Q) = min{ordQ(ω|C0)|0 6= ω ∈ Λ}.
Let the Chabauty divisor on C0 be

D0 =
∑
Q

n(Q)(Q).

Note that by Coleman’s argument,

|C (Q) ∩ ρ−1(Q)| ≤ 1 + n(Q).

By summing over residue classes, one gets

|C (Q)| ≤ |C0(Fp)|+ deg(D0).
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Proof of Stoll’s improvement (concluded)

Now, we just need to bound deg(D0). Every ω ∈ Λ extends (up to a
multiple by a power of p) to a regular 1-form vanishing on D0.

By a semi-continuity argument and using Clifford’s theorem, one gets

dim Λ ≤ dim H0(C0,KC0 − D0) ≤ g − deg(D0)

2
.

Since dim Λ = g − r , deg(D0) ≤ 2r .

Therefore, we get
|C (Q)| ≤ |C0(Fp)|+ 2r .

Eric Katz (Waterloo) Rank functions April 22, 2015 13 / 30



Proof of Stoll’s improvement (concluded)

Now, we just need to bound deg(D0). Every ω ∈ Λ extends (up to a
multiple by a power of p) to a regular 1-form vanishing on D0.

By a semi-continuity argument and using Clifford’s theorem, one gets

dim Λ ≤ dim H0(C0,KC0 − D0) ≤ g − deg(D0)

2
.

Since dim Λ = g − r , deg(D0) ≤ 2r .

Therefore, we get
|C (Q)| ≤ |C0(Fp)|+ 2r .

Eric Katz (Waterloo) Rank functions April 22, 2015 13 / 30



Proof of Stoll’s improvement (concluded)

Now, we just need to bound deg(D0). Every ω ∈ Λ extends (up to a
multiple by a power of p) to a regular 1-form vanishing on D0.

By a semi-continuity argument and using Clifford’s theorem, one gets

dim Λ ≤ dim H0(C0,KC0 − D0) ≤ g − deg(D0)

2
.

Since dim Λ = g − r , deg(D0) ≤ 2r .

Therefore, we get
|C (Q)| ≤ |C0(Fp)|+ 2r .

Eric Katz (Waterloo) Rank functions April 22, 2015 13 / 30



Proof of Stoll’s improvement (concluded)

Now, we just need to bound deg(D0). Every ω ∈ Λ extends (up to a
multiple by a power of p) to a regular 1-form vanishing on D0.

By a semi-continuity argument and using Clifford’s theorem, one gets

dim Λ ≤ dim H0(C0,KC0 − D0) ≤ g − deg(D0)

2
.

Since dim Λ = g − r , deg(D0) ≤ 2r .

Therefore, we get
|C (Q)| ≤ |C0(Fp)|+ 2r .

Eric Katz (Waterloo) Rank functions April 22, 2015 13 / 30



Bad reduction case

The bad reduction case of Coleman’s bound was proved independently by
Lorenzini-Tucker and McCallum-Poonen. The bad reduction case of the
Stoll bound was proved for hyperelliptic curves by Stoll and the general
case was posed as a question in a paper of McCallum-Poonen.

The set-up for the bad reduction case is where C is a regular minimal
model over Zp. This means that the total space is regular, but there are
no conditions on the types of singularities on the closed fiber. They can be
worse than nodes.

Theorem:(Lorenzini-Tucker,McCallum-Poonen) Suppose r < g then

|C (Q)| ≤ |Csm
0 (Fp)|+ 2g − 2.

The reason why we only need to look at the smooth points is that any
rational point of C specializes to a smooth point of C0. Therefore, we
need only consider residue classes in Csm

0 (Fp).
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Extending Stoll’s bound

Stoll’s proof does not extend to the bad reduction case! It breaks in a way
that a lot of semicontinuity arguments break. We can proceed as before to
get

dim Λ ≤ dim H0(C0,KC0 − D0).

Unfortunately, Clifford’s theorem does not hold and we do not get a bound
on the right-hand side. This should probably be expected because the
divisor KC0 − D0 could be really negative on a component of the closed
fiber and then the section just vanishes on the component. But there
could be lots of sections on other components. The space of sections is
just too big and cannot be bounded in the usual way.
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A new question

We need to do something different. Perhaps we want to think in the
following direction. Let D be a divisor on C supported on C (Qunr

p ). Let F0

be a divisor on Csm
0 (Fp). Let

|D|F0 = {D ′ ∈ |D|
∣∣ F0 ⊂ D ′}

where |D| means the set of all divisors linearly equivalent to D.

Definition: We say the rank r(D,F0) is greater than or equal to r if for
any rank r effective divisor E supported on C (K), |D − E |F0 6= ∅.

For Stoll’s bounds, we immediately have dim Λ− 1 < r(KC ,D0) because
we can assign dim Λ− 1 base-points on the 1-forms in V . We would need
to prove r(KC ,D0) < g − 1− deg(D0)

2

Question: Can we bound r(D,F0) in terms of C0, deg(D) and F0?

By the way, it suffices to consider only semistable curves, and we shall do
so for the rest of the talk.
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A more general framework

Let K be a discretely valued field with valuation ring O and residue field k.
Let C be a curve with semistable reduction over K. In other words, C can
be completed to a family of curves C over O such that the total space is
regular and that the closed fiber C0 has ordinary double-points as
singularities.

Here’s a semistable curve and its dual graph.

Let D be a divisor on C , supported on C (K). Would like to bound the
dimension of H0(C ,O(D)) by using the closed fiber.
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Baker-Norine linear systems on graphs

The Baker-Norine theory of linear systems on graphs gives such bounds.
Let the multi-degree deg of a divisor D to be the formal sum

deg(D) =
∑
v

deg(O(D)|Cv )(v)

where Cv are the components of C0.

Baker-Norine define a rank r(deg(D)) in terms of the combinatorics of the
dual graph Γ of C0. I’ll explain it in a minute.

The bound obeys the specialization lemma:

dim(H0(C ,O(D)))− 1 ≤ r(deg(D)).

These bounds are particularly nice in the case where all components of C0

are rational (the maximally degenerate case). Not so good in general.
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Extension hierarchy for linear equivalence problem

To make sense of more interesting degenerations, we apply a certain
extension hierarchy to this question. The steps have technical names
which are inspired by the Néron model. Suppose I am given two divisors
D1 and D2 of the same degree on C. I want to know if they are linearly
equivalent on C . In other words, does there exist a rational function s of
O(D1 −D2)|C? Write D1,D2 for the generic fibers of D1,D2.

1 Try to construct s0 on the closed fiber such that
(s0) = (D1)0 − (D2)0.

1 numerical: Is there an extension L of O(D1 − D2) to C that has degree
0 on every component of the closed fiber?

2 Abelian: For each component Cv of the closed fiber, is there a section
sv on Cv of L|Cv with (sv ) = ((D1)0 − (D2))|Cv ?

3 toric: Can the sections sv be chosen to agree on nodes?

2 Use deformation theory to extend the glued together section s0 to C.

We will concentrate on the first step.
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The rank hierarchy

This hierarchy lets us define new rank functions following Baker-Norine by
asking how many base-points we can assign. We say a divisor D on C has
i-rank ≥ r if for any effective divisor E on C (K) of degree r , steps
(1)− (i) are satisfied for D = D, E = E :

1 numerical: there is a divisor ϕ =
∑

v avCv supported on the closed
fiber such that

deg(O(D − E)(ϕ)|Cv ) ≥ 0

for all v .

2 Abelian: For each component Cv of the closed fiber, there is a
non-vanishing section sv on Cv of O(D − E)(ϕ)|Cv .

3 toric: The sections sv be chosen to agree across nodes.
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New rank functions

So we have rank functions rnum, rAb, rtor.

1 rnum(D) depends only on the multi-degree of D, that is deg(D|Cv ) for
all v

2 rAb, rtor depend only on D0.

The rank functions rAb, rtor are sensitive to the residue field k since bigger
k allows for more divisors E . But they eventually stabilize.
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Numerical rank and Baker-Norine rank

But rnum(D) is not new. In fact, it is the Baker-Norine rank of deg(D).
What is called here a multi-degree is what Baker and Norine call a divisor
on a graph.

One observes that for ϕ =
∑

v avCv , treated as a function on V (Γ), we
have

deg(ϕ) = −∆(ϕ)

where ∆ is the graph Laplacian on the dual graph:

∆(ϕ)(v) =
∑
e=vw

(ϕ(v)− ϕ(w))

where the sum is over edges containing v .

This statement makes use of the fact that

deg(O(Cw )|Cv ) =

{
|{edges between v and w}| if v 6= w

−|{non-loop edges at v}| if v = w .
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Numerical rank and Baker-Norine rank (cont’d)

Also, after possible unramified field extension of K for any multi-degree,
E =

∑
av (v), there is a divisor E on C with deg(E ) = E .

Consequently, unpacking the definition of rnum, we see that it says
rnum(D) ≥ r if and only if for any multi-degree E ≥ 0 with deg(E ) = r ,
there is a ϕ : V (Γ)→ Z with

D − E −∆(ϕ) ≥ 0.
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Specialization lemma

These rank functions satisfy a specialization lemma. For D, a divisor
supported on C (K), set

rC (D) = dim H0(C ,O(D))− 1.

Then
rC (D) ≤ rtor(D) ≤ rAb(D) ≤ rnum(D).

We have examples where the inequalities are strict.

Eric Katz (Waterloo) Rank functions April 22, 2015 24 / 30



Specialization lemma

These rank functions satisfy a specialization lemma. For D, a divisor
supported on C (K), set

rC (D) = dim H0(C ,O(D))− 1.

Then
rC (D) ≤ rtor(D) ≤ rAb(D) ≤ rnum(D).

We have examples where the inequalities are strict.

Eric Katz (Waterloo) Rank functions April 22, 2015 24 / 30



Specialization lemma

These rank functions satisfy a specialization lemma. For D, a divisor
supported on C (K), set

rC (D) = dim H0(C ,O(D))− 1.

Then
rC (D) ≤ rtor(D) ≤ rAb(D) ≤ rnum(D).

We have examples where the inequalities are strict.

Eric Katz (Waterloo) Rank functions April 22, 2015 24 / 30



Proof of Specialization lemma

The proof is essentially the same as Baker’s specialization lemma.

First by definition, we have

rtor(D) ≤ rAb(D) ≤ rnum(D),

so it suffices to show rC (D) ≤ rtor(D).

One can characterize rC (D) by saying rC (D) ≥ r if and only if for any
effective divisor E of degree r supported on C (K) that

H0(C ,O(D − E )) 6= {0}.

Consequently, there’s a section s of O(D − E ). The section can be
extended to a rational section of O(D − E) on C. The associated divisor
can be decomposed as

(s) = H − V

where H is the closure of a divisor in C and V is supported on C0.
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Proof of Specialization lemma (cont’d)

Consequently, we can write

ϕ ≡ V =
∑
v

avCv .

Now, s can be viewed as a regular section of O(D − E)(ϕ). Set sv = s|Cv .
These are the desired sections on components.

It follows that rtor(D) ≥ r .
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Clifford’s theorem for rAb

Let KC0 be the relative dualizing sheaf of the closed fiber. This is
characterized by being the natural extension of the canonical bundle on C
to C, restricted to the closed fiber. Note
deg(KC0) =

∑
v (2g(Cv )− 2 + deg(v))(v) = KΓ +

∑
v 2g(Cv )(v).

(No longer as much of a) Question: Is Riemann-Roch true for rAb and rtor?

ri (D0)− ri (KC0 − D0) = 1− g + deg(D0)?

Yes for rAb! By Amini-Baker.

Theorem: (Clifford-K-Zureick-Brown) Let D0 be a divisor supported on
smooth k-points of C0 then

rAb(KC0 − D0) ≤ g − deg D0

2
− 1.

Note that Clifford Brown a.k.a. “Brownie” does not appear to have had a
middle name. If he did, it certainly wasn’t “K-Zureick.”

Eric Katz (Waterloo) Rank functions April 22, 2015 27 / 30



Clifford’s theorem for rAb

Let KC0 be the relative dualizing sheaf of the closed fiber. This is
characterized by being the natural extension of the canonical bundle on C
to C, restricted to the closed fiber. Note
deg(KC0) =

∑
v (2g(Cv )− 2 + deg(v))(v) = KΓ +

∑
v 2g(Cv )(v).

(No longer as much of a) Question: Is Riemann-Roch true for rAb and rtor?

ri (D0)− ri (KC0 − D0) = 1− g + deg(D0)?

Yes for rAb! By Amini-Baker.

Theorem: (Clifford-K-Zureick-Brown) Let D0 be a divisor supported on
smooth k-points of C0 then

rAb(KC0 − D0) ≤ g − deg D0

2
− 1.

Note that Clifford Brown a.k.a. “Brownie” does not appear to have had a
middle name. If he did, it certainly wasn’t “K-Zureick.”

Eric Katz (Waterloo) Rank functions April 22, 2015 27 / 30



Clifford’s theorem for rAb

Let KC0 be the relative dualizing sheaf of the closed fiber. This is
characterized by being the natural extension of the canonical bundle on C
to C, restricted to the closed fiber. Note
deg(KC0) =

∑
v (2g(Cv )− 2 + deg(v))(v) = KΓ +

∑
v 2g(Cv )(v).

(No longer as much of a) Question: Is Riemann-Roch true for rAb and rtor?

ri (D0)− ri (KC0 − D0) = 1− g + deg(D0)?

Yes for rAb! By Amini-Baker.

Theorem: (Clifford-K-Zureick-Brown) Let D0 be a divisor supported on
smooth k-points of C0 then

rAb(KC0 − D0) ≤ g − deg D0

2
− 1.

Note that Clifford Brown a.k.a. “Brownie” does not appear to have had a
middle name. If he did, it certainly wasn’t “K-Zureick.”

Eric Katz (Waterloo) Rank functions April 22, 2015 27 / 30



Clifford’s theorem for rAb

Let KC0 be the relative dualizing sheaf of the closed fiber. This is
characterized by being the natural extension of the canonical bundle on C
to C, restricted to the closed fiber. Note
deg(KC0) =

∑
v (2g(Cv )− 2 + deg(v))(v) = KΓ +

∑
v 2g(Cv )(v).

(No longer as much of a) Question: Is Riemann-Roch true for rAb and rtor?

ri (D0)− ri (KC0 − D0) = 1− g + deg(D0)?

Yes for rAb! By Amini-Baker.

Theorem: (Clifford-K-Zureick-Brown) Let D0 be a divisor supported on
smooth k-points of C0 then

rAb(KC0 − D0) ≤ g − deg D0

2
− 1.

Note that Clifford Brown a.k.a. “Brownie” does not appear to have had a
middle name. If he did, it certainly wasn’t “K-Zureick.”

Eric Katz (Waterloo) Rank functions April 22, 2015 27 / 30



Outline of proof of Clifford’s theorem

The theorem follows by Amini-Baker’s Riemann-Roch theorem which uses
a version of reduced divisors, but we gave another proof.

To prove Clifford’s theorem, given D0 supported on Csm
0 (k), we must cook

up a divisor E0 of degree at most g − deg D0
2 such that for any ϕ, there is

some component Cv such that the line bundle

O(D0 − E0)(ϕ)|Cv

on Cv has no non-zero sections.

The idea is to choose E0 to vandalize any possible section on any
component as efficiently as possible. It’s a piece of combinatorics that
uses the classical Clifford’s theorem, Clifford’s theorem for linear systems
on graphs, and a general position argument.
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Further Questions

1 What can we say about the number of rational points specializing to
different components of the closed fiber? This probably involves more
global data, not just expanding in residue discs. Our more recent
work is a first step in that direction.

2 What about rtor? Does that help us improve the bounds?

3 What about passing from the special fiber to the generic fiber? This
should give even better bounds. We can use deformation-theoretic
obstructions from tropical lifting here.

4 r(D,F0)?
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Thanks!
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