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This note was written to answer the question “What is tropical geometry?” That question
can be interpreted in two ways: “Would you tell me something about this research area?”;
and “What’s with the name ‘tropical geometry?’ ” To address the second question, tropical
geometry is named in honor of Brazilian computer scientist Imre Simon. This naming is
complicated by the fact that he lived in Sao Paolo and commuted across the Tropic of
Capricorn. Whether or not his work is tropical depends on whether or not he preferred to
do his research at home or in the office.

To address the first question, there’s the rest of this note. This note is excerpted from
an old research statement and is meant to be an advertisement for tropical geometry as it
relates to my research. I make no claims to be complete or even-handed here.

The main theme of tropical geometry is transforming questions about algebraic varieties
into questions about polyhedral complexes. One begins with an algebraic variety X, the
common zero set of a system of polynomial equations in an algebraic torus (K∗)n defined
over a valued field K. Here, an algebraic torus is the Cartesian product of finitely many
copies of K∗ = K \ {0} and should be thought of as analogous to (S1)n. By the operation of
tropicalization, one can define a tropical variety, Trop(X), which is a polyhedral complex, as
a combinatorial shadow of X. The combinatorics of Trop(X) reflects the algebraic geometry
of X.

Tropical geometry originally arose from a quite different point of view in which one con-
siders algebraic geometry over the tropical semifield (R ∪ {∞},⊕,⊗) with operations given
by

a⊕ b = min(a, b), a⊗ b = a+ b.

One can then find tropical analogues of classical mathematics and define tropical polyno-
mials, tropical hypersurfaces, and tropical varieties. These objects do not look like their
classical counterparts and instead are polyhedral complexes of differing combinatorial types.
A number of researchers have developed tropical geometry by defining the appropriate ana-
logues of notions from algebraic geometry and then proving the analogous theorems. Other
results show that enumerative questions have the same answers tropically and classically. A
spectacular early result of Mikhalkin [Mi03] established that the number of plane curves of
degree d and genus g passing through 3d−1+g points in general position could be computed
using tropical geometry. With collaborators, he found tropical analogues of theorems about
algebraic curves and further developed the enumerative geometry of curves [Mi06, MZ08].
Gathmann, H. Markwig, and collaborators have transferred much of Gromov-Witten theory
over to tropical geometry [Ga06, Mar07].

Another approach to tropical geometry, which originated in an idea of Kapranov, is to
define a tropical variety as a shadow of an algebraic variety [EKL06]. Let K = C{{t}} be
the field of formal Puiseux series, that is, the field of Laurent series whose exponents may
be fractions but with bounded denominator (one may use other algebraically closed non-
Archimedean fields instead). This field has a valuation v : K∗ → Q ⊂ R. One considers a
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subvariety of an algebraic torus, X ⊂ (K∗)n, and defines its tropical variety as Trop(X) =

v(X), the closure of the image of X under the product of valuation maps v : (K∗)n → Rn.
This process of constructing Trop(X) from X is called tropicalization. It is known from the
work of Bergman and Bieri-Groves that Trop(X) is a polyhedral complex of dimension equal
to that of X. The affine span of each polyhedral cell is a rational affine subspace. It was
shown by Speyer [Sp05] that the resulting complex has natural weights and satisfies a certain
balancing condition. If X is defined over C, then Trop(X) (defined by base-changing to K)
is a fan. We use the term tropical varieties to refer to balanced weighted rational polyhedral
complexes. Those that arise from algebraic varieties by the operation of tropicalization are
called tropicalizations. This approach to tropical geometry is tied to the theory of Gröbner
bases in combinatorial algebraic geometry.

Trop(X) is very closely related to the dual complex of a degeneration of X over a DVR
when X is defined over a valued field K. When X is defined over C, by a result of Tevelev
[Te07], Trop(X) is instead related to the dual complex of a compactification of X. Therefore,
Trop(X) captures the combinatorics of stratifications (in the C case) and of degenerations (in
the K case). In the complex case, tropical geometry is a combinatorial theory of subvarieties
of a toric variety with stratification induced by the toric strata. In that sense, tropical geom-
etry is an enlargement of the theory of toric varieties. In the valued field case, understanding
Trop(X) comes down to understanding the combinatorics of a degeneration of X. There is
a certain tension between algebraic geometry and combinatorics in tropical geometry: if the
combinatorics of Trop(X) are simple, the algebraic geometry of the components is likely to
be complicated and rich; if the components of the degeneration are simple, the combinatorics
of Trop(X) are rich and capture the geometry of X.

The tropicalization of X reflects many of the properties of X. Trop(X) contains a lot of
information about the intersection theory of X which is why enumerative tropical geometry
has been successful. Moreover, Trop(X) captures properties of the monodromy of X, con-
sidered as a family over a punctured disc. It is a subtle question to determine whether a
polyhedral complex is the tropicalization of an algebraic variety.

Tropical varieties are novel because they encode degenerations with much more compli-
cated combinatorics than previously studied. For example, Cools, Draisma, Payne, and
Robeva [CFPR] were able to give a new proof of the Brill-Noether theorem by degenerating
a high genus curve into a union of rational curves with complicated dual graph and then
bounding the dimension of a linear system on the smooth curve using the specialization
lemma of Baker [Ba08]. This is orthogonal to the approach using limit linear series where
the dual graphs are all trees [EH86]. Moreover, tropical geometry gives an explicit way of
approaching Berkovich spaces which are a certain type of analytic space: it is a theorem of
Payne [P09] that the Berkovich analytification Xan of an affine variety X is homeomorphic
to a certain inverse limit of tropicalizations lim←− Trop(X, ι). In a certain sense, any given
tropicalization can be viewed as an approximation of the Berkovich space.

There are many applications of tropical geometry. The work of Hacking, Keel, and Tevelev
[HKT09] constructs compactifications of moduli spaces of del Pezzo surfaces using tropical
geometry. Tillmann [Ti05] has used tropical geometry to study ideal points in the space of
hyperbolic structures on 3-manifolds. Recent work by Gubler [Gu07a, Gu07b] and Rabinoff
[R09] have applied tropical techniques to answering questions about the arithmetic of abelian
varieties. Tropical intersection theory [AR10] generalizes Newton polytope techniques in
number theory [R10] and is likely to have many applications there in the future. Tropical
geometry is used in the approaches to mirror symmetry taken by Kontsevich-Soibelman
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[KS06] and Gross-Siebert [GS06, GS07], and it is related to numerical homotopy methods
[HS95] in scientific computing. It has also been applied to phylogenetics in mathematical
biology [PS08] and to integrable systems [IT08].

Since this note was originally written, there have been a number of exciting developments.
I will only mention a few, as I am limited by space as well as by my research interests and
expertise. The topology of non-Archimedean spaces has grown into an area of study in its
own right [P15]. There have been significant contributions to the theory of degenerations
of linear systems [BJ15]. In particular, Jensen and Payne have resolved the maximal rank
conjecture for quadrics [JP15] and given a new proof of the Gieseker-Petri theorem [JP14].
Cartwright [C13] has introduced abstract tropical complexes which, in the two-dimensional
case [C13], have a rich theory mirroring that of algebraic surfaces. Jeffrey Giansiracusa and
Noah Giansiracusa [GG13] have developed a scheme-theoretic approach for doing algebraic
geometry over semifields. Babaee and Huh [BH15] have used ideas from tropical geometry
and several complex variables to disprove Demailly’s strongly positive Hodge conjecture.
Abramovich, Chen and collaborators [ACMUW15] have made significant connections be-
tween log structures and fans giving new applications and providing the technical ground-
work for degeneration formulas [ACGS] for Gross and Siebert’s logarithmic Gromov-Witten
invariants which are expected to encompass and extend tropical curve counting. Rabinoff,
Zureick-Brown, and the author [KRZB15] have used Berkovich curves and the theory of
linear systems on metric graphs to give uniform bounds for the number of rational points on
curves of small Mordell-Weil rank, extending a result of Stoll [St13] on hyperelliptic curves.
Adiprasito, Huh, and the author [AHK15] have used tropical ideas to put a Hodge structure
on matroidal Stanely-Reisner rings and in doing so have proved a long-standing conjecture
of Rota on the log-concavity of the characteristic polynomial of matroids.
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