11. Equality constrained minimization

- equality constrained minimization
- eliminating equality constraints
- Newton's method with equality constraints
- infeasible start Newton method
- implementation

Equality constrained minimization

minimize $f(x)$ subject to $Ax = b$

- \bullet f convex, twice continuously differentiable
- $\bullet\;A\in\mathbf{R}^{p}$ $^{\times n}$ with $\mathbf{rank}\,A=p$
- $\bullet\,$ we assume p^\star is finite and attained

 $\mathop{\mathsf{optimality}}\limits$ conditions: x^\star is optimal iff there exists a ν^\star such that

$$
\nabla f(x^*) + A^T \nu^* = 0, \qquad Ax^* = b
$$

equality constrained quadratic minimization (with $P\in\textbf{\textsf{S}}_{+}^{n}$ $\genfrac{}{}{0pt}{}{n}{+}$

minimize
$$
(1/2)x^T P x + q^T x + r
$$

subject to $Ax = b$

optimality condition:

$$
\left[\begin{array}{cc} P & A^T \\ A & 0 \end{array}\right] \left[\begin{array}{c} x^* \\ \nu^* \end{array}\right] = \left[\begin{array}{c} -q \\ b \end{array}\right]
$$

- coefficient matrix is called KKT matrix
- KKT matrix is nonsingular if and only if

$$
Ax = 0, \quad x \neq 0 \qquad \Longrightarrow \qquad x^T P x > 0
$$

 $\bullet\,$ equivalent condition for nonsingularity: $P+A^T$ ${}^{T}A\succ 0$

Eliminating equality constraints

represent solution of $\{x \mid Ax = b\}$ as

$$
\{x \mid Ax = b\} = \{Fz + \hat{x} \mid z \in \mathbf{R}^{n-p}\}
$$

- $\bullet\,\,\hat{x}$ is (any) particular solution
- $\bullet\,$ range of $F\in{\mathbf R}^n$ $n\times(n)$ $^{-p)}$ is nullspace of A $(\mathbf{rank}\, F=n-p$ and $AF=0)$

reduced or eliminated problem

minimize $f(F z + \hat{x})$

- \bullet an unconstrained problem with variable $z \in \mathbf{R}^n$ $-p$
- from solution z^* , obtain x^* and ν^* as

$$
x^* = Fz^* + \hat{x}, \qquad \nu^* = -(AA^T)^{-1}A\nabla f(x^*)
$$

example: optimal allocation with resource constraint

minimize
$$
f_1(x_1) + f_2(x_2) + \cdots + f_n(x_n)
$$

subject to $x_1 + x_2 + \cdots + x_n = b$

eliminate $x_n = b - x_1 - \cdots - x_{n-1}$, $i.e.,$ choose

$$
\hat{x} = be_n
$$
, $F = \begin{bmatrix} I \\ -\mathbf{1}^T \end{bmatrix} \in \mathbf{R}^{n \times (n-1)}$

reduced problem:

minimize
$$
f_1(x_1) + \cdots + f_{n-1}(x_{n-1}) + f_n(b - x_1 - \cdots - x_{n-1})
$$

(variables x_1, \ldots, x_{n-1})

Newton step

Newton step of f at feasible x is given by $({\sf 1st}$ block) of solution of

$$
\left[\begin{array}{cc} \nabla^2 f(x) & A^T \\ A & 0 \end{array}\right] \left[\begin{array}{c} \Delta x_{\rm nt} \\ w \end{array}\right] = \left[\begin{array}{c} -\nabla f(x) \\ 0 \end{array}\right]
$$

interpretations

 \bullet Δx_{nt} solves second order approximation (with variable v)

minimize
$$
\widehat{f}(x+v) = f(x) + \nabla f(x)^T v + (1/2)v^T \nabla^2 f(x)v
$$

subject to $A(x+v) = b$

• equations follow from linearizing optimality conditions

$$
\nabla f(x + \Delta x_{\rm nt}) + A^T w = 0, \qquad A(x + \Delta x_{\rm nt}) = b
$$

Newton decrement

$$
\lambda(x) = \left(\Delta x_{\rm nt}^T \nabla^2 f(x) \Delta x_{\rm nt}\right)^{1/2} = \left(-\nabla f(x)^T \Delta x_{\rm nt}\right)^{1/2}
$$

properties

 $\bullet\,$ gives an estimate of $f(x)-p^{\star}$ using quadratic approximation \widehat{f} : :

$$
f(x) - \inf_{Ay=b} \widehat{f}(y) = \frac{1}{2}\lambda(x)^2
$$

• directional derivative in Newton direction:

$$
\left. \frac{d}{dt} f(x + t \Delta x_{\text{nt}}) \right|_{t=0} = -\lambda(x)^2
$$

• in general, $\lambda(x) \neq (\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x))^{1/2}$

Newton's method with equality constraints

given starting point $x \in \textbf{dom} f$ with $Ax = b$, tolerance $\epsilon > 0$.

repeat

- 1. Compute the Newton step and decrement $\Delta x_{\rm nt}$, $\lambda(x).$
- 2. Stopping criterion. ${\mathsf q}$ uit if $\lambda^2/2 \leq \epsilon$.
- 3. *Line search.* Choose step size t by backtracking line search.
- 4. Update. $x:=x+t\Delta x_{\text{nt}}$.

- \bullet a feasible descent method: $x^{(k)}$ feasible and $f(x^{(k+1)}) < f(x^{(k)})$
- affine invariant

Newton's method and elimination

Newton's method for reduced problem

$$
\text{minimize} \quad \tilde{f}(z) = f(Fz + \hat{x})
$$

- variables $z \in \mathbf{R}^{n-p}$
- \bullet \hat{x} satisfies $A\hat{x} = b$; $\textbf{rank}\,F = n-p$ and $AF = 0$
- $\bullet\,$ Newton's method for \tilde{f} , started at $z^{(0)}$, generates iterates $z^{(k)}$

Newton's method with equality constraints

when started at $x^{(0)}=$ $F = F z^{(0)} + \hat{x}$, iterates are

$$
x^{(k+1)} = Fz^{(k)} + \hat{x}
$$

hence, don't need separate convergence analysis

Newton step at infeasible points

2nd interpretation of page 11–6 extends to infeasible x $\left(i.e.,\ Ax\neq b\right)$ linearizing optimality conditions at infeasible x (with $x\in\mathbf{dom}\, f)$ gives

$$
\begin{bmatrix}\n\nabla^2 f(x) & A^T \\
A & 0\n\end{bmatrix}\n\begin{bmatrix}\n\Delta x_{\rm nt} \\
w\n\end{bmatrix} = -\begin{bmatrix}\n\nabla f(x) \\
Ax - b\n\end{bmatrix}
$$
\n(1)

primal-dual interpretation

 $\bullet\,$ write optimality condition as $r(y)=0$, where

$$
y = (x, \nu), \qquad r(y) = (\nabla f(x) + A^T \nu, Ax - b)
$$

• linearizing $r(y) = 0$ gives $r(y + \Delta y) \approx r(y) + Dr(y)\Delta y = 0$:

$$
\begin{bmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x_{\rm nt} \\ \Delta \nu_{\rm nt} \end{bmatrix} = - \begin{bmatrix} \nabla f(x) + A^T \nu \\ Ax - b \end{bmatrix}
$$

same as (1) with $w=\nu + \Delta\nu_{\rm nt}$

Infeasible start Newton method

given starting point $x \in \textbf{dom } f$, ν , tolerance $\epsilon > 0$, $\alpha \in (0, 1/2)$, $\beta \in (0, 1)$. repeat

- 1. Compute primal and dual Newton steps $\Delta x_{\rm nt}$, $\Delta \nu_{\rm nt}$.
- 2. Backtracking line search on $\lVert r \rVert_2$. $t := 1$. while $\|r(x+t\Delta x_{\text{nt}}, \nu+t\Delta\nu_{\text{nt}})\|_2>(1$ \sim \sim \sim \sim $+ \Lambda_{\alpha}$ μ . Update. $x:=x+t\Delta x_{\rm nt}$, $\nu:=\nu+t\Delta \nu_{\rm nt}$. −while $||r(x + t\Delta x_{nt}, \nu + t\Delta \nu_{nt})||_2 > (1 - \alpha t) ||r(x, \nu)||_2$, $t := \beta t$.
3. Update. $x := x + t\Delta x_{nt}$, $\nu := \nu + t\Delta \nu_{nt}$. **until** $Ax=b$ and $||r(x, \nu)||_2 \leq \epsilon$.
- $\bullet\,$ not a descent method: $f(x^{(k+1)})>f(x^{(k)})$ is possible
- $\bullet\,$ directional derivative of $\|r(y)\|_2^2$ 2 $\frac{2}{2}$ in direction $\Delta y = (\Delta x_{\text{nt}}, \Delta \nu_{\text{nt}})$ is

$$
\frac{d}{dt} ||r(y + \Delta y)||_2\bigg|_{t=0} = -||r(y)||_2
$$

Solving KKT systems

$$
\left[\begin{array}{cc} H & A^T \\ A & 0 \end{array}\right] \left[\begin{array}{c} v \\ w \end{array}\right] = -\left[\begin{array}{c} g \\ h \end{array}\right]
$$

solution methods

- •• LDL^T factorization
- $\bullet\,$ elimination (if H nonsingular)

$$
AH^{-1}A^Tw = h - AH^{-1}g, \qquad Hv = -(g + A^Tw)
$$

 $\bullet\,$ elimination with singular $H\colon$ write as

$$
\left[\begin{array}{cc} H + A^T Q A & A^T \\ A & 0 \end{array}\right] \left[\begin{array}{c} v \\ w \end{array}\right] = - \left[\begin{array}{c} g + A^T Q h \\ h \end{array}\right]
$$

with $Q \succeq 0$ for which $H + A^T Q A \succ 0$, and apply elimination

Equality constrained analytic centering

primal problem: minimize $\sum_{i:}^n$ $i=1$ $\log x_i$ subject to $Ax = b$ **dual problem:** maximize $-b^T$ ${}^T\nu+\sum_{i=1}^n$ $i=1$ $\log(A^T)$ $(T\nu)_i + n$

three methods for an example with $A\in{\mathbf R}^{100\times500}$, different starting points

1. Newton method with equality constraints (requires $x^{(0)}\succ 0$, $Ax^{(0)}$ $= b)$

2. Newton method applied to dual problem (requires A^T ${}^{T}\nu^{(0)}\succ 0)$

3. infeasible start Newton method (requires $x^{(0)}\succ 0)$

complexity per iteration of three methods is identical

1. use block elimination to solve KKT system

$$
\left[\begin{array}{cc} \mathbf{diag}(x)^{-2} & A^T \\ A & 0 \end{array}\right] \left[\begin{array}{c} \Delta x \\ w \end{array}\right] = \left[\begin{array}{c} \mathbf{diag}(x)^{-1} \mathbf{1} \\ 0 \end{array}\right]
$$

reduces to solving $A\mathop{\bf diag}(x)^2$ $^2A^T$ ${}^Tw=b$

- 2. solve Newton system $A\mathop{\bf diag}(A^T)$ $({}^T\nu)^{-2}$ $^2A^T$ ${}^{\displaystyle T}\Delta\nu=-b+A\, \textbf{diag}(A^{T}%)\Delta\nu=\mathcal{J}(A^{T}\mathcal{I}_{\Delta}\cdot\mathcal{J}_{\Delta})\Delta^{T}\Delta^{T}$ $({}^T\nu)^{-1}$ 11
- 3. use block elimination to solve KKT system

$$
\begin{bmatrix} \mathbf{diag}(x)^{-2} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta \nu \end{bmatrix} = \begin{bmatrix} \mathbf{diag}(x)^{-1} \mathbf{1} \\ Ax - b \end{bmatrix}
$$

reduces to solving $A\mathop{\bf diag}(x)^2$ $^{2}A^{T}$ $T w = 2Ax$ $-\ b$

conclusion: in each case, solve ${ADA^T}$ ${}^T w = h$ with D positive diagonal

Network flow optimization

minimize $\sum_{i=1}^n$ $\sum\limits_{i=1}^n\phi_i(x_i)$ subject to $Ax = b$

- $\bullet\,$ directed graph with n arcs, $p+1$ nodes
- \bullet x_i : flow through arc $i;$ ϕ_i : cost flow function for arc i (with $\phi''_i(x)>0)$
- $\bullet\,$ node-incidence matrix $\tilde{A}\in{\mathbf R}^{(p+1)\times n}\,$ defined as

$$
\tilde{A}_{ij} = \begin{cases}\n1 & \text{arc } j \text{ leaves node } i \\
-1 & \text{arc } j \text{ enters node } i \\
0 & \text{otherwise}\n\end{cases}
$$

- $\bullet\,$ reduced node-incidence matrix $A\in{\bf R}^p$ $^{\times n}$ is \tilde{A} with last row removed
- $\bullet\,\, b\in\mathbf{R}^{p}$ is (reduced) source vector
- $\bullet \ {\bf rank}\, A=p$ if graph is connected

KKT system

$$
\left[\begin{array}{cc} H & A^T \\ A & 0 \end{array}\right] \left[\begin{array}{c} v \\ w \end{array}\right] = -\left[\begin{array}{c} g \\ h \end{array}\right]
$$

 $\bullet \ \ H = \mathbf{diag}(\phi_1''(x_1), \ldots, \phi_n''(x_n))$, positive diagonal

• solve via elimination:

$$
AH^{-1}A^Tw = h - AH^{-1}g, \qquad Hv = -(g + A^Tw)
$$

sparsity pattern of coefficient matrix is ^given by grap^h connectivity

$$
(AH^{-1}A^{T})_{ij} \neq 0 \iff (AA^{T})_{ij} \neq 0
$$

$$
\iff \text{nodes } i \text{ and } j \text{ are connected by an arc}
$$

Analytic center of linear matrix inequality

$$
\begin{array}{ll}\text{minimize} & -\log \det X\\ \text{subject to} & \text{tr}(A_i X) = b_i, \quad i = 1, \dots, p \end{array}
$$

variable $X\in\mathbf{S}^n$

optimality conditions

$$
X^* > 0
$$
, $-(X^*)^{-1} + \sum_{j=1}^p \nu_j^* A_i = 0$, $tr(A_i X^*) = b_i$, $i = 1,...,p$

Newton equation at feasible X :

$$
X^{-1}\Delta X X^{-1} + \sum_{j=1}^{p} w_j A_i = X^{-1}, \qquad \mathbf{tr}(A_i \Delta X) = 0, \quad i = 1, \dots, p
$$

- $\bullet\,$ follows from linear approximation $(X + \Delta X)^{-1}$ $^1 \approx X^{-1}$ $1-X^{-1}$ $^1 \Delta X X^{-1}$
- $\bullet~~n(n+1)/2+p$ variables ΔX , w

Equality constrained minimization

solution by block elimination

- $\bullet\,$ eliminate ΔX from first equation: $\Delta X=X-\sum_{j=1}^p w_j X A_j X$
- \bullet substitute ΔX in second equation

$$
\sum_{j=1}^{p} \mathbf{tr}(A_i X A_j X) w_j = b_i, \quad i = 1, \dots, p
$$
 (2)

a dense positive definite set of linear equations with variable $w \in \mathbf{R}^p$

flop count (dominant terms) using Cholesky factorization $X = LL^T$:

- \bullet form p products L^TA_jL : $(3/2)pn^3$
- form $p(p+1)/2$ inner products $\mathbf{tr}((L^TA_iL)(L^TA_jL))$: $(1/2)p^2n^2$
- $\bullet\,$ solve (2) via Cholesky factorization: $(1/3)p^3$