12. Interior-point methods

- inequality constrained minimization
- logarithmic barrier function and central path
- barrier method
- feasibility and phase ^I methods
- complexity analysis via self-concordance
- generalized inequalities

Inequality constrained minimization

minimize
$$
f_0(x)
$$

subject to $f_i(x) \le 0$, $i = 1,...,m$
 $Ax = b$ (1)

- \bullet f_i convex, twice continuously differentiable
- $\bullet\;A\in\mathbf{R}^{p}$ × n with $\mathbf{rank}\,A=p$
- $\bullet\,$ we assume p^\star is finite and attained
- $\bullet\,$ we assume problem is strictly feasible: there exists \tilde{x} with

$$
\tilde{x} \in \text{dom } f_0, \qquad f_i(\tilde{x}) < 0, \quad i = 1, \dots, m, \qquad A\tilde{x} = b
$$

hence, strong duality holds and dual optimum is attained

Examples

- LP, QP, QCQP, GP
- entropy maximization with linear inequality constraints

minimize
$$
\sum_{i=1}^{n} x_i \log x_i
$$

subject to
$$
Fx \preceq g
$$

$$
Ax = b
$$

with $\textbf{dom} f_0 = \mathbf{R}_{++}^n$

- \bullet differentiability may require reformulating the problem, $e.g.,$ piecewise-linear minimization or ℓ_∞ -norm approximation via LP
- SDPs and SOCPs are better handled as problems with generalizedinequalities (see later)

Logarithmic barrier

reformulation of (1) via indicator function:

minimize
$$
f_0(x) + \sum_{i=1}^m I_{-}(f_i(x))
$$

subject to $Ax = b$

where $I_-(u)=0$ if $u\leq 0$, $I_-(u)=\infty$ otherwise (indicator function of ${\sf R}_-$)

approximation via logarithmic barrier

minimize
$$
f_0(x) - (1/t) \sum_{i=1}^m \log(-f_i(x))
$$

subject to $Ax = b$

- an equality constrained problem
- for $t > 0$, $-(1/t) \log(-u)$ is a smooth approximation of $I_$
- $\bullet\,$ approximation improves as $t\to\infty$

logarithmic barrier function

$$
\phi(x) = -\sum_{i=1}^{m} \log(-f_i(x)), \quad \text{dom}\,\phi = \{x \mid f_1(x) < 0, \dots, f_m(x) < 0\}
$$

- convex (follows from composition rules)
- twice continuously differentiable, with derivatives

$$
\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla f_i(x)
$$

$$
\nabla^2 \phi(x) = \sum_{i=1}^{m} \frac{1}{f_i(x)^2} \nabla f_i(x) \nabla f_i(x)^T + \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla^2 f_i(x)
$$

Central path

• for $t > 0$, define $x^*(t)$ as the solution of

minimize
$$
tf_0(x) + \phi(x)
$$

subject to $Ax = b$

(for now, assume $x^\star(t)$ exists and is unique for each $t>0)$

• central path is $\{x^\star(t) \mid t > 0\}$

example: central path for an LP

minimize $c\frac{T}{x}$ subject to $a_i^T x \leq b_i$, $i = 1, \ldots, 6$

hyperplane $c^T x = c^T x^\star(t)$ is tangent to level curve of ϕ through $x^\star(t)$

Dual points on central path

 $x=x^{\star}$ $^\star(t)$ if there exists a w such that

$$
t\nabla f_0(x) + \sum_{i=1}^m \frac{1}{-f_i(x)} \nabla f_i(x) + A^T w = 0, \qquad Ax = b
$$

 \bullet therefore, x^{\star} $^\star(t)$ minimizes the Lagrangian

$$
L(x, \lambda^*(t), \nu^*(t)) = f_0(x) + \sum_{i=1}^m \lambda_i^*(t) f_i(x) + \nu^*(t)^T (Ax - b)
$$

where we define λ_i^\star $\dot{f}_i(t) = 1/(-t f_i(x^\star))$ $^\star(t))$ and ν^\star $t(t) = w/t$

 $\bullet\,$ this confirms the intuitive idea that $f_0(x^{\star}$ $\star(t))\to p^{\star}$ if $t\to\infty$:

$$
p^* \geq g(\lambda^*(t), \nu^*(t))
$$

= $L(x^*(t), \lambda^*(t), \nu^*(t))$
= $f_0(x^*(t)) - m/t$

Interpretation via KKT conditions

$$
x = x^*(t), \lambda = \lambda^*(t), \nu = \nu^*(t)
$$
 satisfy

- $1.$ primal constraints: $f_i(x) \leq 0, \ i=1,\ldots,m, \ Ax=b$
- 2. dual constraints: $\lambda \succeq 0$
- 3. approximate complementary slackness: $\lambda_i f_i(x) = 1/t, \: i = 1, \ldots, m$
- 4. gradient of Lagrangian with respect to x vanishes:

$$
\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + A^T \nu = 0
$$

difference with KKT is that condition 3 replaces $\lambda_i f_i(x) = 0$

Force field interpretation

centering problem (for problem with no equality constraints)

$$
\text{minimize} \quad tf_0(x) - \sum_{i=1}^m \log(-f_i(x))
$$

force field interpretation

- \bullet $tf_0(x)$ is potential of force field $F_0(x) =$ $-t\nabla f_0(x)$
- $\bullet \log($ − $f_i(x))$ is potential of force field $F_i(x) = (1/f_i(x))\nabla f_i(x)$

the forces balance at x^\star $^\star(t)$:

$$
F_0(x^*(t)) + \sum_{i=1}^m F_i(x^*(t)) = 0
$$

example

minimize
$$
c^T x
$$

subject to $a_i^T x \le b_i$, $i = 1,...,m$

- $\bullet\,$ objective force field is constant: $F_0(x) = -tc$
- constraint force field decays as inverse distance to constraint hyperplane:

$$
F_i(x) = \frac{-a_i}{b_i - a_i^T x}, \qquad ||F_i(x)||_2 = \frac{1}{\text{dist}(x, \mathcal{H}_i)}
$$

where $\mathcal{H}_i = \{x \mid a_i^T x = b_i\}$

Barrier method

given strictly feasible $x, \, t := t^{(0)} > 0, \, \mu > 1,$ tolerance $\epsilon > 0.$ repeat

- 1. *Centering step.* Compute $x^*(t)$ by minimizing $tf_0 + \phi$, subject to $Ax = b$.
2. Update. $x := x^*(t)$.
- U pdate. $x :=$
- 2. Update. $x:=x^\star(t)$.
3. *Stopping criterion.* **quit** if $m/t < \epsilon$.
- 4. $\textit{Increase } t. \ t := \mu t.$
- terminates with $f_0(x) p^* \le \epsilon$ (stopping criterion follows from $f_0(x^\star(t))$ — $-p^* \leq m/t$
- $\bullet\,$ centering usually done using Newton's method, starting at current x
- $\bullet\,$ choice of μ involves a trade-off: large μ means fewer outer iterations, more inner (Newton) iterations; typical values: $\mu=10\text{--}20$
- • $\bullet\,$ several heuristics for choice of $t^{(0)}$

Convergence analysis

number of outer (centering) iterations: exactly

$$
\left\lceil \frac{\log(m/(\epsilon t^{(0)}))}{\log \mu} \right\rceil
$$

plus the initial centering step (to compute $x^\star(t^{(0)}))$

centering problem

minimize $tf_0(x) + \phi(x)$

see convergence analysis of Newton's method

- \bullet $tf_0 + \phi$ must have closed sublevel sets for $t \geq t^{(0)}$
- classical analysis requires strong convexity, Lipschitz condition
- $\bullet\,$ analysis via self-concordance requires self-concordance of $tf_0 + \phi$

Examples

- \bullet starts with x on central path $(t^{(0)}=1,$ duality gap $100)$
- $\bullet\,$ terminates when $t=10^8\;(\textsf{gap}\;10^{-6})$
- centering uses Newton's method with backtracking
- $\bullet\,$ total number of Newton iterations not very sensitive for $\mu\geq 10$

 ${\bf geometric \,\, program} \,\, (m=100 \,\, \mathsf{inequalities} \,\, \mathsf{and} \,\, n=50 \,\, \mathsf{variables})$

minimize
$$
\log \left(\sum_{k=1}^{5} \exp(a_{0k}^T x + b_{0k}) \right)
$$

subject to $\log \left(\sum_{k=1}^{5} \exp(a_{ik}^T x + b_{ik}) \right) \le 0, \quad i = 1, ..., m$

family of standard LPs $(A \in \mathbf{R}^{m \times 2m})$

minimize
$$
c^T x
$$

subject to $Ax = b$, $x \succeq 0$

 $m=10,\ldots,1000;$ for each m , solve 100 randomly generated instances

number of iterations grows very slowly as m ranges over a $100:1$ ratio

Feasibility and phase ^I methods

feasibility problem: find x such that

$$
f_i(x) \le 0, \quad i = 1, \dots, m, \qquad Ax = b \tag{2}
$$

phase ^I: computes strictly feasible starting point for barrier methodbasic phase ^I method

minimize (over *x*, *s*) *s*
subject to
$$
f_i(x) \le s, \quad i = 1,...,m
$$
 (3)
 $Ax = b$

- \bullet if x , s feasible, with $s < 0$, then x is strictly feasible for (2)
- $\bullet\,$ if optimal value \bar{p}^{\star} of (3) is positive, then problem (2) is infeasible
- $\bullet\,$ if $\bar{p}^{\star}=0$ and attained, then problem (2) is feasible (but not strictly); if $\bar{p}^{\star}=0$ and not attained, then problem (2) is infeasible

sum of infeasibilities phase ^I method

minimize
$$
\mathbf{1}^T s
$$

subject to $s \succeq 0$, $f_i(x) \leq s_i$, $i = 1,..., m$
 $Ax = b$

for infeasible problems, produces ^a solution that satisfies many moreinequalities than basic phase ^I method

example (infeasible set of ¹⁰⁰ linear inequalities in ⁵⁰ variables)

left: basic phase ^I solution; satisfies ³⁹ inequalitiesright: sum of infeasibilities phase ^I solution; satisfies ⁷⁹ solutions **example:** family of linear inequalities $Ax \preceq b + \gamma \Delta b$

- $\bullet\,$ data chosen to be strictly feasible for $\gamma>0,$ infeasible for $\gamma\leq0$
- \bullet $\bullet\,$ use basic phase I, terminate when $s < 0$ or dual objective is positive

number of iterations roughly proportional to $\log(1/|\gamma|)$

Complexity analysis via self-concordance

same assumptions as on page 12–2, plus:

- $\bullet\,$ sublevel sets (of f_0 , on the feasible set) are bounded
- \bullet $\,t f_{0}+\phi$ is self-concordant with closed sublevel sets

second condition

- holds for LP, QP, QCQP
- $\bullet\,$ may require reformulating the problem, $\it e.g.,$

minimizee \sum $\, n \,$ $i=1$ x_i log minimize $\sum_{i=1} x_i \log x_i$
subject to $Fx\preceq g$ \longrightarrow minimize $\sum_{\text{subject to}}$ $\, n$ i =1 x_i log minimize $\sum_{i=1} x_i \log x_i$
subject to $Fx \preceq g, \quad x \succeq 0$

• needed for complexity analysis; barrier method works even whenself-concordance assumption does not apply

Newton iterations per centering step: from self-concordance theory

#Newton iterations
$$
\leq \frac{\mu t f_0(x) + \phi(x) - \mu t f_0(x^+) - \phi(x^+)}{\gamma} + c
$$

- $\bullet\,$ bound on effort of computing $x^+=x^{\star}$ $^\star(\mu t)$ starting at $x=x^\star$ $^\star(t)$
- $\bullet\,$ $\gamma,\,c$ are constants (depend only on Newton algorithm parameters)
- $\bullet\,$ from duality (with $\lambda=\lambda^\star$ $^\star(t)$, $\nu=\nu^\star$ $^{\star}(t))$:

$$
\mu t f_0(x) + \phi(x) - \mu t f_0(x^+) - \phi(x^+)
$$

= $\mu t f_0(x) - \mu t f_0(x^+) + \sum_{i=1}^m \log(-\mu t \lambda_i f_i(x^+)) - m \log \mu$
 $\leq \mu t f_0(x) - \mu t f_0(x^+) - \mu t \sum_{i=1}^m \lambda_i f_i(x^+) - m - m \log \mu$
 $\leq \mu t f_0(x) - \mu t g(\lambda, \nu) - m - m \log \mu$
= $m(\mu - 1 - \log \mu)$

total number of Newton iterations (excluding first centering step)

$$
\# \text{Newton iterations} \leq N = \left\lceil \frac{\log(m/(t^{(0)}\epsilon))}{\log \mu} \right\rceil \left(\frac{m(\mu - 1 - \log \mu)}{\gamma} + c \right)
$$
\n
$$
\approx \frac{3 \cdot 10^4}{2 \cdot 10^4}
$$
\n
$$
\approx \frac{3 \cdot 10^4}{2 \cdot 10^4}
$$
\n
$$
m = 100, \qquad \frac{m}{t^{(0)}\epsilon} = 10^5
$$
\nfigure shows *N* for typical values of γ , *c*, $m = 100$, $\frac{m}{t^{(0)}\epsilon} = 10^5$

- $\bullet\,$ confirms trade-off in choice of μ
- $\bullet\,$ in practice, $\#$ iterations is in the tens; not very sensitive for $\mu\geq 10$

polynomial-time complexity of barrier method

• for
$$
\mu = 1 + 1/\sqrt{m}
$$
:

$$
N = O\left(\sqrt{m} \log\left(\frac{m/t^{(0)}}{\epsilon}\right)\right)
$$

- $\bullet\,$ number of Newton iterations for fixed gap reduction is $O(\sqrt{m})$
- multiply with cost of one Newton iteration (a polynomial function ^o fproblem dimensions), to get bound on number of flops

this choice of μ optimizes worst-case complexity; in practice we choose μ fixed $(\mu = 10, \ldots, 20)$

Generalized inequalities

minimize
$$
f_0(x)
$$

subject to $f_i(x) \preceq_{K_i} 0$, $i = 1,..., m$
 $Ax = b$

- f_0 convex, $f_i : \mathbf{R}^n \to \mathbf{R}^{k_i}$, $i = 1, \ldots, m$, convex with respect to proper cones $K \in \mathbf{R}^{k_i}$ cones $K_i \in \mathbf{R}^{k_i}$
- \bullet f_i twice continuously differentiable
- $A \in \mathbf{R}^{p \times n}$ with $\operatorname{rank} A = p$
- $\bullet\,$ we assume p^{\star} is finite and attained
- we assume problem is strictly feasible; hence strong duality holds anddual optimum is attained

examples of greatest interest: SOCP, SDP

Generalized logarithm for proper cone

 $\psi: \mathbf{R}^q \to \mathbf{R}$ is generalized logarithm for proper cone $K \subseteq \mathbf{R}^q$ if:

- $\bullet \; {\bf dom \,} \psi = {\bf int \,} K$ and ∇^2 $^{2}\psi(y)\prec0$ for $y\succ_K0$
- $\bullet \hspace{0.1cm} \psi(sy) = \psi(y) + \theta \log s$ for $y \succ_K 0, \: s > 0 \; \big(\theta \text{ is the degree of } \psi \big)$

examples

- $\bullet\,$ nonnegative orthant $K=\boldsymbol{\mathsf{R}}^n_+$ $\stackrel{n}{+}\cdot\ \psi(y)=\sum_{i=1}^n$ $i=1$ $\log y_i$, with degree $\theta=n$
- $\bullet\,$ positive semidefinite cone $K={\bf S}^n_+$ +:

$$
\psi(Y) = \log \det Y \qquad (\theta = n)
$$

 $\bullet\,$ second-order cone $K=\{y\in{\bf R}^{n+1}\mid (y_1^2)$ $y_1^2 + \cdots + y_n^2$ $\binom{2}{n}$ $\frac{1}{\sqrt{2}}$ 2 $x^2 \leq y_{n+1}$:

$$
\psi(y) = \log(y_{n+1}^2 - y_1^2 - \dots - y_n^2) \qquad (\theta = 2)
$$

properties (without proof): for $y \succ_K 0$,

$$
\nabla \psi(y) \succeq_{K^*} 0, \qquad y^T \nabla \psi(y) = \theta
$$

• nonnegative orthant \mathbf{R}_{+}^{n} : $\psi(y) = \sum_{i=1}^{n} \log y_{i}$

$$
\nabla \psi(y) = (1/y_1, \dots, 1/y_n), \qquad y^T \nabla \psi(y) = n
$$

 $\bullet\,$ positive semidefinite cone ${\bf S}^n_+\colon\psi(Y)=\log\det Y$

$$
\nabla \psi(Y) = Y^{-1}, \qquad \mathbf{tr}(Y \nabla \psi(Y)) = n
$$

• second-order cone $K = \{y \in \mathbf{R}^{n+1} \mid (y_1^2 + \cdots + y_n^2)^{1/2} \leq y_{n+1}\}$:

$$
\psi(y) = \frac{2}{y_{n+1}^2 - y_1^2 - \dots - y_n^2} \begin{bmatrix} -y_1 \\ \vdots \\ -y_n \\ y_{n+1} \end{bmatrix}, \qquad y^T \nabla \psi(y) = 2
$$

Logarithmic barrier and central path

logarithmic barrier for $f_1(x)\preceq_{K_1} 0$, \dots , $f_m(x)\preceq_{K_m} 0$:

$$
\phi(x) = -\sum_{i=1}^{m} \psi_i(-f_i(x)), \qquad \mathbf{dom}\,\phi = \{x \mid f_i(x) \prec_{K_i} 0, \ i = 1, \dots, m\}
$$

- $\bullet \hspace{0.1cm} \psi_{i}$ is generalized logarithm for K_{i} , with degree θ_{i}
- $\bullet\hspace{1mm} \phi$ is convex, twice continuously differentiable

central path: $\{x^{\star}% (\theta)\}_{\theta\in\mathbb{R}_{+}^{d},\left| \mathcal{H}% \right| \leq\tau\}$ $\star(t) \mid t > 0$ } where x^{\star} $^\star(t)$ solves

> minimize $tf_0(x) + \phi(x)$ subject to $Ax = b$

Dual points on central path

$$
x = x^*(t)
$$
 if there exists $w \in \mathbf{R}^p$,

$$
t\nabla f_0(x) + \sum_{i=1}^m Df_i(x)^T \nabla \psi_i(-f_i(x)) + A^T w = 0
$$

 $(Df_i(x)\in\mathbf{R}^{k_i\times}$ n is derivative matrix of $f_i)$

 \bullet therefore, x^{\star} $^\star(t)$ minimizes Lagrangian $L(x,\lambda^\star)$ $^\star(t),\nu^\star$ $^{\star}(t))$, where

$$
\lambda_i^{\star}(t) = \frac{1}{t} \nabla \psi_i(-f_i(x^{\star}(t))), \qquad \nu^{\star}(t) = \frac{w}{t}
$$

 \bullet from properties of $\psi_i\colon \lambda_i^\star$: $\boldsymbol{\dot{X}_i^{*}}(t)\succ_{K_{i}^{*}}$ $_{i}^{\ast}$ 0 , with duality gap

$$
f_0(x^*(t)) - g(\lambda^*(t), \nu^*(t)) = (1/t) \sum_{i=1}^m \theta_i
$$

example: semidefinite programming (with $F_i \in \mathbf{S}^p)$

minimize
$$
c^T x
$$

subject to $F(x) = \sum_{i=1}^n x_i F_i + G \preceq 0$

- $\bullet\,$ logarithmic barrier: $\,\phi(x)=\log\det($ $-F(x)^{-1}$ $\left(\frac{1}{2} \right)$
- \bullet central path: x^{\star} $^\star(t)$ minimizes tc^T $\frac{1}{x} -\log \det ($ $-F(x))$; hence

$$
tc_i - \mathbf{tr}(F_i F(x^*(t))^{-1}) = 0, \quad i = 1, \dots, n
$$

 \bullet dual point on central path: Z^{\star} $\star(t) = -(1/t)F(x\star)$ $^{\star}(t))^{-1}$ is feasible for

maximize
$$
\mathbf{tr}(GZ)
$$

subject to $\mathbf{tr}(F_iZ) + c_i = 0, \quad i = 1, ..., n$
 $Z \succeq 0$

 \bullet duality gap on central path: c^T ${}^{\scriptscriptstyle I}x^{\star}$ $^\star(t)$ $-$ tr (GZ^{\star}) $t^*(t)) = p/t$

Barrier method

given strictly feasible $x, \, t := t^{(0)} > 0, \, \mu > 1,$ tolerance $\epsilon > 0.$ repeat

- 1. *Centering step.* Compute $x^*(t)$ by minimizing $tf_0 + \phi$, subject to $Ax = b$.
2. Update. $x := x^*(t)$.
- U pdate. $x :=$
- 2. Update. $x:=x^\star(t)$.
3. Stopping criterion. **quit** if $(\sum_i \theta_i)/t < \epsilon$.
- 4. Increase $t.$ $t := \mu t.$
- $\bullet\,$ only difference is duality gap m/t on central path is replaced by $\sum_i\theta_i/t$
- number of outer iterations:

$$
\left\lceil \frac{\log((\sum_i \theta_i)/(\epsilon t^{(0)}))}{\log \mu} \right\rceil
$$

• complexity analysis via self-concordance applies to SDP, SOCP

Examples

second-order cone program $(50$ variables, 50 SOC constraints in $\mathbf{R}^6)$

 ${\sf semidefinite}$ program $(100$ variables, <code>LMI</code> constraint in ${\sf S}^{100})$

family of SDPs $(A \in \mathbf{S}^n, x \in \mathbf{R}^n)$

minimize $\mathbf{1}^T x$ subject to $A + diag(x) \succeq 0$

 $n=10,\ldots,1000$, for each n solve 100 randomly generated instances

Primal-dual interior-point methods

more efficient than barrier method when high accuracy is needed

- update primal and dual variables at each iteration; no distinctio nbetween inner and outer iterations
- often exhibit superlinear asymptotic convergence
- search directions can be interpreted as Newton directions for modifiedKKT conditions
- can start at infeasible points
- cost per iteration same as barrier method