
Convex Optimization — Boyd & Vandenberghe

12. Interior-point methods

• inequality constrained minimization

• logarithmic barrier function and central path

• barrier method

• feasibility and phase I methods

• complexity analysis via self-concordance

• generalized inequalities
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Inequality constrained minimization

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b
(1)

• fi convex, twice continuously differentiable

• A ∈ Rp×n with rankA = p

• we assume p⋆ is finite and attained

• we assume problem is strictly feasible: there exists x̃ with

x̃ ∈ dom f0, fi(x̃) < 0, i = 1, . . . ,m, Ax̃ = b

hence, strong duality holds and dual optimum is attained
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Examples

• LP, QP, QCQP, GP

• entropy maximization with linear inequality constraints

minimize
∑n

i=1 xi log xi

subject to Fx � g
Ax = b

with dom f0 = Rn
++

• differentiability may require reformulating the problem, e.g.,
piecewise-linear minimization or ℓ∞-norm approximation via LP

• SDPs and SOCPs are better handled as problems with generalized
inequalities (see later)
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Logarithmic barrier

reformulation of (1) via indicator function:

minimize f0(x) +
∑m

i=1 I−(fi(x))
subject to Ax = b

where I−(u) = 0 if u ≤ 0, I−(u) = ∞ otherwise (indicator function of R−)

approximation via logarithmic barrier

minimize f0(x) − (1/t)
∑m

i=1 log(−fi(x))
subject to Ax = b

• an equality constrained problem

• for t > 0, −(1/t) log(−u) is a
smooth approximation of I−

• approximation improves as t→ ∞

u
−3 −2 −1 0 1

−5

0

5

10

Interior-point methods 12–4



logarithmic barrier function

φ(x) = −
m

∑

i=1

log(−fi(x)), domφ = {x | f1(x) < 0, . . . , fm(x) < 0}

• convex (follows from composition rules)

• twice continuously differentiable, with derivatives

∇φ(x) =

m
∑

i=1

1

−fi(x)
∇fi(x)

∇2φ(x) =

m
∑

i=1

1

fi(x)2
∇fi(x)∇fi(x)

T +

m
∑

i=1

1

−fi(x)
∇2fi(x)
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Central path

• for t > 0, define x⋆(t) as the solution of

minimize tf0(x) + φ(x)
subject to Ax = b

(for now, assume x⋆(t) exists and is unique for each t > 0)

• central path is {x⋆(t) | t > 0}

example: central path for an LP

minimize cTx
subject to aT

i x ≤ bi, i = 1, . . . , 6

hyperplane cTx = cTx⋆(t) is tangent to
level curve of φ through x⋆(t)

c

x⋆ x⋆(10)
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Dual points on central path

x = x⋆(t) if there exists a w such that

t∇f0(x) +

m
∑

i=1

1

−fi(x)
∇fi(x) +ATw = 0, Ax = b

• therefore, x⋆(t) minimizes the Lagrangian

L(x, λ⋆(t), ν⋆(t)) = f0(x) +

m
∑

i=1

λ⋆
i (t)fi(x) + ν⋆(t)T (Ax− b)

where we define λ⋆
i (t) = 1/(−tfi(x

⋆(t)) and ν⋆(t) = w/t

• this confirms the intuitive idea that f0(x
⋆(t)) → p⋆ if t→ ∞:

p⋆ ≥ g(λ⋆(t), ν⋆(t))

= L(x⋆(t), λ⋆(t), ν⋆(t))

= f0(x
⋆(t)) −m/t
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Interpretation via KKT conditions

x = x⋆(t), λ = λ⋆(t), ν = ν⋆(t) satisfy

1. primal constraints: fi(x) ≤ 0, i = 1, . . . ,m, Ax = b

2. dual constraints: λ � 0

3. approximate complementary slackness: −λifi(x) = 1/t, i = 1, . . . ,m

4. gradient of Lagrangian with respect to x vanishes:

∇f0(x) +

m
∑

i=1

λi∇fi(x) +ATν = 0

difference with KKT is that condition 3 replaces λifi(x) = 0
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Force field interpretation

centering problem (for problem with no equality constraints)

minimize tf0(x) −
∑m

i=1 log(−fi(x))

force field interpretation

• tf0(x) is potential of force field F0(x) = −t∇f0(x)
• − log(−fi(x)) is potential of force field Fi(x) = (1/fi(x))∇fi(x)

the forces balance at x⋆(t):

F0(x
⋆(t)) +

m
∑

i=1

Fi(x
⋆(t)) = 0
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example
minimize cTx
subject to aT

i x ≤ bi, i = 1, . . . ,m

• objective force field is constant: F0(x) = −tc
• constraint force field decays as inverse distance to constraint hyperplane:

Fi(x) =
−ai

bi − aT
i x
, ‖Fi(x)‖2 =

1

dist(x,Hi)

where Hi = {x | aT
i x = bi}

−c

−3c
t = 1 t = 3
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Barrier method

given strictly feasible x, t := t(0) > 0, µ > 1, tolerance ǫ > 0.

repeat

1. Centering step. Compute x⋆(t) by minimizing tf0 + φ, subject to Ax = b.

2. Update. x := x⋆(t).

3. Stopping criterion. quit if m/t < ǫ.

4. Increase t. t := µt.

• terminates with f0(x) − p⋆ ≤ ǫ (stopping criterion follows from
f0(x

⋆(t)) − p⋆ ≤ m/t)

• centering usually done using Newton’s method, starting at current x

• choice of µ involves a trade-off: large µ means fewer outer iterations,
more inner (Newton) iterations; typical values: µ = 10–20

• several heuristics for choice of t(0)
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Convergence analysis

number of outer (centering) iterations: exactly

⌈

log(m/(ǫt(0)))

logµ

⌉

plus the initial centering step (to compute x⋆(t(0)))

centering problem

minimize tf0(x) + φ(x)

see convergence analysis of Newton’s method

• tf0 + φ must have closed sublevel sets for t ≥ t(0)

• classical analysis requires strong convexity, Lipschitz condition

• analysis via self-concordance requires self-concordance of tf0 + φ
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Examples

inequality form LP (m = 100 inequalities, n = 50 variables)

Newton iterations
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• starts with x on central path (t(0) = 1, duality gap 100)

• terminates when t = 108 (gap 10−6)

• centering uses Newton’s method with backtracking

• total number of Newton iterations not very sensitive for µ ≥ 10
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geometric program (m = 100 inequalities and n = 50 variables)

minimize log
(

∑5
k=1 exp(aT

0kx+ b0k)
)

subject to log
(

∑5
k=1 exp(aT

ikx+ bik)
)

≤ 0, i = 1, . . . ,m

Newton iterations
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family of standard LPs (A ∈ Rm×2m)

minimize cTx
subject to Ax = b, x � 0

m = 10, . . . , 1000; for each m, solve 100 randomly generated instances
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number of iterations grows very slowly as m ranges over a 100 : 1 ratio
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Feasibility and phase I methods

feasibility problem: find x such that

fi(x) ≤ 0, i = 1, . . . ,m, Ax = b (2)

phase I: computes strictly feasible starting point for barrier method

basic phase I method

minimize (over x, s) s
subject to fi(x) ≤ s, i = 1, . . . ,m

Ax = b
(3)

• if x, s feasible, with s < 0, then x is strictly feasible for (2)

• if optimal value p̄⋆ of (3) is positive, then problem (2) is infeasible

• if p̄⋆ = 0 and attained, then problem (2) is feasible (but not strictly);
if p̄⋆ = 0 and not attained, then problem (2) is infeasible
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sum of infeasibilities phase I method

minimize 1Ts
subject to s � 0, fi(x) ≤ si, i = 1, . . . ,m

Ax = b

for infeasible problems, produces a solution that satisfies many more
inequalities than basic phase I method

example (infeasible set of 100 linear inequalities in 50 variables)

bi − aT
i xmax

n
u
m

b
er

−1 −0.5 0 0.5 1 1.5
0

20

40

60

n
u
m

b
er

−1 −0.5 0 0.5 1 1.5
0

20

40

60

bi − aT
i xsum

left: basic phase I solution; satisfies 39 inequalities
right: sum of infeasibilities phase I solution; satisfies 79 solutions
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example: family of linear inequalities Ax � b+ γ∆b

• data chosen to be strictly feasible for γ > 0, infeasible for γ ≤ 0

• use basic phase I, terminate when s < 0 or dual objective is positive
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number of iterations roughly proportional to log(1/|γ|)
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Complexity analysis via self-concordance

same assumptions as on page 12–2, plus:

• sublevel sets (of f0, on the feasible set) are bounded

• tf0 + φ is self-concordant with closed sublevel sets

second condition

• holds for LP, QP, QCQP

• may require reformulating the problem, e.g.,

minimize
∑n

i=1 xi log xi

subject to Fx � g
−→ minimize

∑n
i=1 xi log xi

subject to Fx � g, x � 0

• needed for complexity analysis; barrier method works even when
self-concordance assumption does not apply
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Newton iterations per centering step: from self-concordance theory

#Newton iterations ≤ µtf0(x) + φ(x) − µtf0(x
+) − φ(x+)

γ
+ c

• bound on effort of computing x+ = x⋆(µt) starting at x = x⋆(t)

• γ, c are constants (depend only on Newton algorithm parameters)

• from duality (with λ = λ⋆(t), ν = ν⋆(t)):

µtf0(x) + φ(x) − µtf0(x
+) − φ(x+)

= µtf0(x) − µtf0(x
+) +

m
∑

i=1

log(−µtλifi(x
+)) −m logµ

≤ µtf0(x) − µtf0(x
+) − µt

m
∑

i=1

λifi(x
+) −m−m logµ

≤ µtf0(x) − µtg(λ, ν) −m−m logµ

= m(µ− 1 − logµ)
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total number of Newton iterations (excluding first centering step)

#Newton iterations ≤ N =

⌈

log(m/(t(0)ǫ))

logµ

⌉(

m(µ− 1 − logµ)

γ
+ c

)

µ

N

1 1.1 1.2
0

1 104

2 104

3 104

4 104

5 104

figure shows N for typical values of γ, c,

m = 100,
m

t(0)ǫ
= 105

• confirms trade-off in choice of µ

• in practice, #iterations is in the tens; not very sensitive for µ ≥ 10

Interior-point methods 12–21



polynomial-time complexity of barrier method

• for µ = 1 + 1/
√
m:

N = O

(√
m log

(

m/t(0)

ǫ

))

• number of Newton iterations for fixed gap reduction is O(
√
m)

• multiply with cost of one Newton iteration (a polynomial function of
problem dimensions), to get bound on number of flops

this choice of µ optimizes worst-case complexity; in practice we choose µ
fixed (µ = 10, . . . , 20)
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Generalized inequalities

minimize f0(x)
subject to fi(x) �Ki

0, i = 1, . . . ,m
Ax = b

• f0 convex, fi : Rn → Rki, i = 1, . . . ,m, convex with respect to proper
cones Ki ∈ Rki

• fi twice continuously differentiable

• A ∈ Rp×n with rankA = p

• we assume p⋆ is finite and attained

• we assume problem is strictly feasible; hence strong duality holds and
dual optimum is attained

examples of greatest interest: SOCP, SDP
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Generalized logarithm for proper cone

ψ : Rq → R is generalized logarithm for proper cone K ⊆ Rq if:

• domψ = intK and ∇2ψ(y) ≺ 0 for y ≻K 0

• ψ(sy) = ψ(y) + θ log s for y ≻K 0, s > 0 (θ is the degree of ψ)

examples

• nonnegative orthant K = Rn
+: ψ(y) =

∑n
i=1 log yi, with degree θ = n

• positive semidefinite cone K = Sn
+:

ψ(Y ) = log detY (θ = n)

• second-order cone K = {y ∈ Rn+1 | (y2
1 + · · · + y2

n)1/2 ≤ yn+1}:

ψ(y) = log(y2
n+1 − y2

1 − · · · − y2
n) (θ = 2)
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properties (without proof): for y ≻K 0,

∇ψ(y) �K∗ 0, yT∇ψ(y) = θ

• nonnegative orthant Rn
+: ψ(y) =

∑n
i=1 log yi

∇ψ(y) = (1/y1, . . . , 1/yn), yT∇ψ(y) = n

• positive semidefinite cone Sn
+: ψ(Y ) = log detY

∇ψ(Y ) = Y −1, tr(Y∇ψ(Y )) = n

• second-order cone K = {y ∈ Rn+1 | (y2
1 + · · · + y2

n)1/2 ≤ yn+1}:

ψ(y) =
2

y2
n+1 − y2

1 − · · · − y2
n









−y1
...

−yn

yn+1









, yT∇ψ(y) = 2
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Logarithmic barrier and central path

logarithmic barrier for f1(x) �K1 0, . . . , fm(x) �Km 0:

φ(x) = −
m

∑

i=1

ψi(−fi(x)), domφ = {x | fi(x) ≺Ki
0, i = 1, . . . ,m}

• ψi is generalized logarithm for Ki, with degree θi

• φ is convex, twice continuously differentiable

central path: {x⋆(t) | t > 0} where x⋆(t) solves

minimize tf0(x) + φ(x)
subject to Ax = b
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Dual points on central path

x = x⋆(t) if there exists w ∈ Rp,

t∇f0(x) +

m
∑

i=1

Dfi(x)
T∇ψi(−fi(x)) +ATw = 0

(Dfi(x) ∈ Rki×n is derivative matrix of fi)

• therefore, x⋆(t) minimizes Lagrangian L(x, λ⋆(t), ν⋆(t)), where

λ⋆
i (t) =

1

t
∇ψi(−fi(x

⋆(t))), ν⋆(t) =
w

t

• from properties of ψi: λ
⋆
i (t) ≻K∗

i
0, with duality gap

f0(x
⋆(t)) − g(λ⋆(t), ν⋆(t)) = (1/t)

m
∑

i=1

θi
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example: semidefinite programming (with Fi ∈ Sp)

minimize cTx
subject to F (x) =

∑n
i=1 xiFi +G � 0

• logarithmic barrier: φ(x) = log det(−F (x)−1)

• central path: x⋆(t) minimizes tcTx− log det(−F (x)); hence

tci − tr(FiF (x⋆(t))−1) = 0, i = 1, . . . , n

• dual point on central path: Z⋆(t) = −(1/t)F (x⋆(t))−1 is feasible for

maximize tr(GZ)
subject to tr(FiZ) + ci = 0, i = 1, . . . , n

Z � 0

• duality gap on central path: cTx⋆(t) − tr(GZ⋆(t)) = p/t
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Barrier method

given strictly feasible x, t := t(0) > 0, µ > 1, tolerance ǫ > 0.

repeat

1. Centering step. Compute x⋆(t) by minimizing tf0 + φ, subject to Ax = b.

2. Update. x := x⋆(t).

3. Stopping criterion. quit if (
P

i θi)/t < ǫ.

4. Increase t. t := µt.

• only difference is duality gap m/t on central path is replaced by
∑

i θi/t

• number of outer iterations:

⌈

log((
∑

i θi)/(ǫt
(0)))

logµ

⌉

• complexity analysis via self-concordance applies to SDP, SOCP
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Examples

second-order cone program (50 variables, 50 SOC constraints in R6)

Newton iterations
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semidefinite program (100 variables, LMI constraint in S100)

Newton iterations
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family of SDPs (A ∈ Sn, x ∈ Rn)

minimize 1Tx
subject to A+ diag(x) � 0

n = 10, . . . , 1000, for each n solve 100 randomly generated instances
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Primal-dual interior-point methods

more efficient than barrier method when high accuracy is needed

• update primal and dual variables at each iteration; no distinction
between inner and outer iterations

• often exhibit superlinear asymptotic convergence

• search directions can be interpreted as Newton directions for modified
KKT conditions

• can start at infeasible points

• cost per iteration same as barrier method
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