4. Convex optimization problems

- optimization problem in standard form
- convex optimization problems
- quasiconvex optimization
- linear optimization
- quadratic optimization
- geometric programming
- generalized inequality constraints
- semidefinite programming
- vector optimization

Optimization problem in standard form

minimize
$$
f_0(x)
$$

subject to $f_i(x) \le 0$, $i = 1,..., m$
 $h_i(x) = 0$, $i = 1,..., p$

- $\bullet\,\,x\in\mathbf{R}^n$ is the optimization variable
- \bullet f_0 : \mathbf{R}^n n \rightarrow **R** is the objective or cost function
- $\bullet\ f_i: \mathbf{R}^n$. $\mathbf{R}^n \rightarrow \mathbf{R}, \ i=1,\ldots,m,$ are the inequality constraint functions
- $\bullet\;h_i:{\mathbf{R}}^n$ $\mathbf{F}^n\rightarrow\mathbf{R}$ are the equality constraint functions

optimal value:

$$
p^* = \inf\{f_0(x) \mid f_i(x) \le 0, \ i = 1, \dots, m, \ h_i(x) = 0, \ i = 1, \dots, p\}
$$

- $\bullet \; p^{\star}$ $^{\star}=\infty$ if problem is infeasible (no x satisfies the constraints)
- $\bullet \; p^{\star}$ $\alpha^* = -\infty$ if problem is unbounded below

Optimal and locally optimal points

- x is **feasible** if $x \in \textbf{dom}\, f_0$ and it satisfies the constraints
- a feasible x is **optimal** if $f_0(x) = p^*$ * ; X_{opt} is the set of optimal points ;
- x is locally optimal if there is an $R>0$ such that x is optimal for

minimize (over z)
$$
f_0(z)
$$

subject to $f_i(z) \le 0$, $i = 1,...,m$, $h_i(z) = 0$, $i = 1,...,p$
 $||z - x||_2 \le R$

examples (with $n = 1$, $m = p = 0$)

- $\bullet\,\, f_0(x) = 1/x,\, {\rm\, dom}\, f_0 = {\sf R}_{++}\colon\, p^\star = 0,\,$ no optimal point
- $f_0(x) = -\log x$, $-\log x$, dom $f_0 = \mathbf{R}_{++}: p^*$ $\hat{z} = -\infty$
- $f_0(x) = x \log x$, $\textbf{dom} f_0 = \textbf{R}_{++}: p^* = -1$ =− $1/e,\,x=1/e$ is optimal
- $f_0(x) = x^3 3x$, p^* ^3-3x , p^* $x^* = -\infty$, local optimum at $x=1$

Convex optimization problems

Implicit constraints

the standard form optimization problem has an **implicit constraint**

$$
x \in \mathcal{D} = \bigcap_{i=0}^{m} \textbf{dom} f_i \ \cap \ \bigcap_{i=1}^{p} \textbf{dom} h_i,
$$

- $\bullet\,$ we call ${\cal D}$ the **domain** of the problem
- the constraints $f_i(x) \leq 0$, $h_i(x) = 0$ are the explicit constraints
- $\bullet\,$ a problem is ${\sf unconstrained}$ if it has no explicit constraints $(m=p=0)$

example:

$$
\text{minimize} \quad f_0(x) = -\sum_{i=1}^k \log(b_i - a_i^T x)
$$

is an unconstrained problem with implicit constraints $a_i^T x < b_i$

Feasibility problem

find	x
subject to	$f_i(x) \leq 0, \quad i = 1, \ldots, m$
$h_i(x) = 0, \quad i = 1, \ldots, p$	

can be considered a special case of the general problem with $f_0(x) = 0$:

minimize 0
subject to
$$
f_i(x) \le 0
$$
, $i = 1,..., m$
 $h_i(x) = 0$, $i = 1,..., p$

- $\bullet\,\,p^{\star}=0$ if constraints are feasible; any feasible x is optimal
- $p^\star = \infty$ if constraints are infeasible

Convex optimization problem

standard form convex optimization problem

minimize
$$
f_0(x)
$$

subject to $f_i(x) \le 0$, $i = 1,..., m$
 $a_i^T x = b_i$, $i = 1,..., p$

- \bullet $f_0,~f_1,~\ldots~,~f_m$ are convex; equality constraints are affine
- $\bullet\,$ problem is *quasiconvex* if f_0 is quasiconvex (and $f_1,\,\ldots\,,\,f_m$ convex)

often written as

minimize
$$
f_0(x)
$$

subject to $f_i(x) \le 0$, $i = 1,..., m$
 $Ax = b$

important property: feasible set of ^a convex optimization problem is convex

example

minimize
$$
f_0(x) = x_1^2 + x_2^2
$$

subject to $f_1(x) = x_1/(1 + x_2^2) \le 0$
 $h_1(x) = (x_1 + x_2)^2 = 0$

- f_0 is convex; feasible set $\{(x_1,x_2) | x_1 = -x_2 \le 0\}$ is convex
- $\bullet\,$ not a convex problem (according to our definition): f_1 is not convex, h_1 is not affine
- equivalent (but not identical) to the convex problem

minimize
$$
x_1^2 + x_2^2
$$

subject to $x_1 \le 0$
 $x_1 + x_2 = 0$

Local and ^global optima

any locally optimal point of ^a convex problem is (globally) optimal **proof**: suppose x is locally optimal and y is optimal with $f_0(y) < f_0(x)$ x locally optimal means there is an $R>0$ such that

z feasible,
$$
||z-x||_2 \le R \implies f_0(z) \ge f_0(x)
$$

consider $z = \theta y + (1 - \theta)x$ with $\theta = R/(2||y - x||_2)$

•
$$
||y - x||_2 > R
$$
, so $0 < \theta < 1/2$

- \bullet z is a convex combination of two feasible points, hence also feasible
- $\bullet \parallel \hspace{-0.2em} |z-x| \vert_2 = R/2$ and

$$
f_0(z) \le \theta f_0(x) + (1 - \theta)f_0(y) < f_0(x)
$$

which contradicts our assumption that x is locally optimal

Optimality criterion for differentiable $f_{\rm 0}$

 \overline{x} is optimal if and only if it is feasible and

 $\nabla f_0(x)^T$ $T(y-x) \geq 0$ for all feasible y

if nonzero, $\nabla f_0(x)$ defines a supporting hyperplane to feasible set X at x

• unconstrained problem: x is optimal if and only if

 $x \in \text{dom } f_0, \quad \nabla f_0(x) = 0$

• equality constrained problem

minimize $f_0(x)$ subject-to $Ax = b$

 x is optimal if and only if there exists a ν such that

 $x \in \text{dom } f_0, \qquad Ax = b, \qquad \nabla f_0(x) + A^T \nu = 0$

• minimization over nonnegative orthant

minimize $f_0(x)$ subject-to $x \succeq 0$

 x is optimal if and only if

$$
x \in \text{dom } f_0,
$$
 $x \succeq 0,$ $\begin{cases} \nabla f_0(x)_i \geq 0 & x_i = 0 \\ \nabla f_0(x)_i = 0 & x_i > 0 \end{cases}$

Convex optimization problems

Equivalent convex problems

two problems are (informally) **equivalent** if the solution of one is readily obtained from the solution of the other, and vice-versa

some common transformations that preserve convexity:

• eliminating equality constraints

minimize
$$
f_0(x)
$$

subject to $f_i(x) \le 0$, $i = 1,..., m$
 $Ax = b$

is equivalent to

$$
\begin{array}{ll}\text{minimize (over z)} & f_0(Fz+x_0) \\ \text{subject to} & f_i(Fz+x_0) \leq 0, \quad i=1,\ldots,m \end{array}
$$

where F and x_0 are such that

$$
Ax = b \iff x = Fz + x_0 \text{ for some } z
$$

• introducing equality constraints

minimize
$$
f_0(A_0x + b_0)
$$

subject to $f_i(A_ix + b_i) \le 0$, $i = 1,...,m$

is equivalent to

minimize (over x, y_i)
$$
f_0(y_0)
$$

subject to $f_i(y_i) \le 0, \quad i = 1, ..., m$
 $y_i = A_i x + b_i, \quad i = 0, 1, ..., m$

• introducing slack variables for linear inequalities

minimize
$$
f_0(x)
$$

subject to $a_i^T x \le b_i$, $i = 1,...,m$

is equivalent to

minimize (over *x*, *s*)
$$
f_0(x)
$$

subject to $a_i^T x + s_i = b_i, \quad i = 1, ..., m$
 $s_i \ge 0, \quad i = 1, ..., m$

• epigraph form: standard form convex problem is equivalent to

minimize (over *x*, *t*)
$$
t
$$

subject to $f_0(x) - t \le 0$
 $f_i(x) \le 0, \quad i = 1,..., m$
 $Ax = b$

• minimizing over some variables

minimize
$$
f_0(x_1, x_2)
$$

subject to $f_i(x_1) \le 0$, $i = 1,..., m$

is equivalent to

$$
\begin{array}{ll}\text{minimize} & \tilde{f}_0(x_1) \\ \text{subject to} & f_i(x_1) \leq 0, \quad i = 1, \dots, m \end{array}
$$

where
$$
\tilde{f}_0(x_1) = \inf_{x_2} f_0(x_1, x_2)
$$

Quasiconvex optimization

minimize
$$
f_0(x)
$$

subject to $f_i(x) \le 0$, $i = 1,..., m$
 $Ax = b$

with $f_0 : \mathbf{R}^n \to \mathbf{R}$ quasiconvex, f_1 , $\mathbf{F}^n \rightarrow \mathbf{R}$ quasiconvex, f_1, \ldots, f_m convex

can have locally optimal points that are not (globally) optimal

$$
\left\langle x, f_0(x) \right\rangle
$$

convex representation of sublevel sets of $f_{\rm 0}$

if f_0 is quasiconvex, there exists a family of functions ϕ_t such that:

- \bullet $\phi_t(x)$ is convex in x for fixed t
- \bullet *t*-sublevel set of f_0 is 0 -sublevel set of ϕ_t , $i.e.,$

$$
f_0(x) \le t \quad \Longleftrightarrow \quad \phi_t(x) \le 0
$$

example

$$
f_0(x) = \frac{p(x)}{q(x)}
$$

with p convex, q concave, and $p(x)\geq0$, $q(x)>0$ on $\bf{dom} \, f_0$

can take $\phi_t(x) = p(x)$ $-tq(x)$:

- $\bullet\,$ for $t\geq0,\ \phi_t$ convex in x
- $\bullet \,\, p(x)/q(x) \leq t$ if and only if $\phi_t(x) \leq 0$

quasiconvex optimization via convex feasibility problems

$$
\phi_t(x) \le 0, \qquad f_i(x) \le 0, \quad i = 1, \dots, m, \qquad Ax = b \tag{1}
$$

- $\bullet\,$ for fixed t , a convex feasibility problem in x
- $\bullet\,$ if feasible, we can conclude that $t\geq p^{\star};$ if infeasible, $t\leq p^{\star}$

Bisection method for quasiconvex optimization

```
given l\leq p^{\star}^{\star}, u\geq p^{\star}, tolerance \epsilon>0.repeat1. t := (l + u)/2.
   2. Solve the convex feasibility problem \left( 1\right).
   3. if (1) is feasible, u := t; lelse l := t.
until u - l \leq \epsilon.
```
requires exactly $\lceil \log_2((u-\varepsilon))\rceil$ $\big\{ (l) \neq 0 \big\} \big\}$ iterations (where $u, \ l$ are initial values)

Linear program (LP)

$$
\begin{array}{ll}\text{minimize} & c^T x + d\\ \text{subject to} & Gx \leq h\\ & Ax = b \end{array}
$$

- convex problem with affine objective and constraint functions
- feasible set is ^a polyhedron

Examples

diet problem: choose quantities x_1, \ldots, x_n of n foods

- $\bullet\,$ one unit of food j costs c_j , contains amount a_{ij} of nutrient i
- $\bullet\,$ healthy diet requires nutrient i in quantity at least b_i

to find cheapest healthy diet,

minimize $c^T x$ subject to $Ax \succeq b$, $x \succeq 0$

piecewise-linear minimization

$$
\text{minimize} \quad \max_{i=1,\dots,m} (a_i^T x + b_i)
$$

equivalent to an LP

minimize
$$
t
$$

subject to $a_i^T x + b_i \le t, \quad i = 1, ..., m$

Convex optimization problems

Chebyshev center of ^a polyhedron

Chebyshev center of

$$
\mathcal{P} = \{x \mid a_i^T x \le b_i, \ i = 1, \dots, m\}
$$

is center of largest inscribed ball

$$
\mathcal{B} = \{x_c + u \mid ||u||_2 \le r\}
$$

•
$$
a_i^T x \le b_i
$$
 for all $x \in \mathcal{B}$ if and only if
\n
$$
\sup \{ a_i^T (x_c + u) \mid ||u||_2 \le r \} = a_i^T x_c + r ||a_i||_2 \le b_i
$$

 $\bullet\,$ hence, $x_c,\,r$ can be determined by solving the <code>LP</code>

$$
\begin{array}{ll}\text{maximize} & r\\ \text{subject to} & a_i^T x_c + r \|a_i\|_2 \le b_i, \quad i = 1, \dots, m \end{array}
$$

(Generalized) linear-fractional program

$$
\begin{array}{ll}\text{minimize} & f_0(x) \\ \text{subject to} & Gx \preceq h \\ & Ax = b \end{array}
$$

linear-fractional program

$$
f_0(x) = \frac{c^T x + d}{e^T x + f}, \qquad \text{dom } f_0(x) = \{x \mid e^T x + f > 0\}
$$

- ^a quasiconvex optimization problem; can be solved by bisection
- $\bullet\,$ also equivalent to the LP (variables $y,\,z)$

minimize
$$
c^T y + dz
$$

\nsubject to $Gy \leq hz$
\n $Ay = bz$
\n $e^T y + fz = 1$
\n $z \geq 0$

generalized linear-fractional program

$$
f_0(x) = \max_{i=1,\dots,r} \frac{c_i^T x + d_i}{e_i^T x + f_i}, \qquad \text{dom } f_0(x) = \{x \mid e_i^T x + f_i > 0, \ i = 1,\dots,r\}
$$

^a quasiconvex optimization problem; can be solved by bisection

example: Von Neumann model of ^a growing economy

maximize (over
$$
x
$$
, x^+) $\min_{i=1,...,n} x_i^+/x_i$
subject to $x^+ \succeq 0$, $Bx^+ \preceq Ax$

- \bullet $x,x^+\in\mathbf{R}^n$: activity levels of n sectors, in current and next period
- \bullet $(Ax)_i$, $(Bx^+)_i$: produced, resp. consumed, amounts of good i
- $\bullet \; x^+$ i_{i}^{+}/x_{i} : growth rate of sector i

allocate activity to maximize growth rate of slowest growing sector

Quadratic program (QP)

minimize
$$
(1/2)x^T P x + q^T x + r
$$

subject to $Gx \leq h$
 $Ax = b$

- $\bullet\;P\in\mathbf{S}^n_{\bot}$ $\frac{n}{+}$, so objective is convex quadratic
- minimize ^a convex quadratic function over ^a polyhedron

Examples

least-squares

minimize $\|Ax - b\|_2^2$

- $\bullet\,$ analytical solution $x^{\star}=A^{\dagger}b$ $(A^{\dagger}\,$ is pseudo-inverse)
- $\bullet\,$ can add linear constraints, $\,e.g.,\;l \preceq x \preceq u\,$

linear program with random cost

minimize
$$
\bar{c}^T x + \gamma x^T \Sigma x = \mathbf{E} c^T x + \gamma \mathbf{var}(c^T x)
$$

subject to $Gx \preceq h$, $Ax = b$

- \bullet $\,c$ is random vector with mean $\bar c$ and covariance Σ
- • $\bullet\,$ hence, $c^T x$ is random variable with mean $\bar c^T x$ and variance $x^T \Sigma x$
- $\gamma > 0$ is risk aversion parameter; controls the trade-off between expected cost and variance (risk)

Quadratically constrained quadratic program (QCQP)

$$
\begin{array}{ll}\text{minimize} & (1/2)x^T P_0 x + q_0^T x + r_0\\ \text{subject to} & (1/2)x^T P_i x + q_i^T x + r_i \le 0, \quad i = 1, \dots, m\\ & Ax = b \end{array}
$$

- \bullet $\ P_i \in \mathsf{S}_+^n$ $\frac{n}{+}$; objective and constraints are convex quadratic
- $\bullet\,$ if $P_1,\ldots,P_m\in\mathbf{S}_+^n$ an affine set $\stackrel{n}{_+}{_+},$ feasible region is intersection of m ellipsoids and

Second-order cone programming

minimize
$$
f^T x
$$

subject to $||A_i x + b_i||_2 \le c_i^T x + d_i$, $i = 1,..., m$
 $Fx = g$

 $(A_i \in \mathbf{R}^{n_i \times n}$ $^{n},\ F\in\mathbf{R}^{p}$ $\times n$ $\left(\begin{matrix} n \end{matrix} \right)$

• inequalities are called second-order cone (SOC) constraints:

 $(A_ix+b_i, c_i^T$ $\frac{T}{i}x+d_i)\in \text{second-order cone in } \mathbf{R}^{n_i+1}$

- \bullet for $n_i=0$, reduces to an LP; if $c_i=0$, reduces to a QCQP
- more genera^l than QCQP and LP

Robust linear programming

the parameters in optimization problems are often uncertain, $e.g.,$ in an LP

minimize
$$
c^T x
$$

subject to $a_i^T x \le b_i$, $i = 1,...,m$,

there can be uncertainty in $c,\ a_i,\ b_i$

two common approaches to handling uncertainty (in a_i , for simplicity)

 \bullet deterministic model: constraints must hold for all $a_i \in \mathcal{E}_i$

minimize
$$
c^T x
$$

subject to $a_i^T x \le b_i$ for all $a_i \in \mathcal{E}_i$, $i = 1, ..., m$,

 \bullet stochastic model: a_i is random variable; constraints must hold with probability η

minimize
$$
c^T x
$$

subject to $\text{prob}(a_i^T x \le b_i) \ge \eta, \quad i = 1, ..., m$

deterministic approach via SOCP

 $\bullet\,$ choose an ellipsoid as \mathcal{E}_i :

$$
\mathcal{E}_i = \{ \bar{a}_i + P_i u \mid ||u||_2 \le 1 \} \qquad (\bar{a}_i \in \mathbf{R}^n, \quad P_i \in \mathbf{R}^{n \times n})
$$

center is \bar{a}_i , semi-axes determined by singular values/vectors of P_i

• robust LP

minimize
$$
c^T x
$$

subject to $a_i^T x \leq b_i \quad \forall a_i \in \mathcal{E}_i, \quad i = 1, ..., m$

is equivalent to the SOCP

minimize
$$
c^T x
$$

subject to $\bar{a}_i^T x + ||P_i^T x||_2 \le b_i, \quad i = 1, ..., m$

(follows from $\sup_{\|u\|_2\leq 1}(\bar a_i+P_iu)^T$ $T x = \bar{a}_i^T$ $\sum_i x + ||P_i^T$ $\frac{d}{i}x\Vert_{2})$

stochastic approach via SOCP

- \bullet assume a_i is Gaussian with mean \bar{a}_i , covariance Σ_i $(a_i \sim \mathcal{N}(\bar{a}_i))$ $,\Sigma_i))$
- $\bullet\,\ a^T_{\cdot}$ \bar{x}_i^Tx is Gaussian r.v. with mean \bar{a}_i^T $_{i}^{T}x$, variance x^{T} ${}^T \Sigma_i x$; hence

$$
\mathbf{prob}(a_i^T x \le b_i) = \Phi\left(\frac{b_i - \bar{a}_i^T x}{\|\Sigma_i^{1/2} x\|_2}\right)
$$

where $\Phi(x)=(1/\sqrt{2\pi})\int_{-}^{x}$ $-\infty$ e $^$ t $\frac{2}{ }$ 2 dt is CDF of $\mathcal{N}(0,1)$

• robust LP

minimize
$$
c^T x
$$

subject to $\textbf{prob}(a_i^T x \le b_i) \ge \eta, \quad i = 1, ..., m,$

with $\eta\geq1/2$, is equivalent to the <code>SOCP</code>

minimize
$$
c^T x
$$

subject to $\bar{a}_i^T x + \Phi^{-1}(\eta) ||\Sigma_i^{1/2} x||_2 \le b_i$, $i = 1, ..., m$

Geometric programming

monomial function

$$
f(x) = cx_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}
$$
, dom $f = \mathbf{R}_{++}^n$

with $c >0$; exponent α_i can be any real number

posynomial function: sum of monomials

$$
f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}, \quad \text{dom } f = \mathbf{R}_{++}^n
$$

geometric program (GP)

minimize
$$
f_0(x)
$$

subject to $f_i(x) \le 1$, $i = 1,..., m$
 $h_i(x) = 1$, $i = 1,..., p$

with f_i posynomial, h_i monomial

Geometric program in convex form

change variables to $y_i = \log x_i$, and take logarithm of cost, constraints

• monomial
$$
f(x) = cx_1^{a_1} \cdots x_n^{a_n}
$$
 transforms to

$$
\log f(e^{y_1}, \dots, e^{y_n}) = a^T y + b \qquad (b = \log c)
$$

• posynomial
$$
f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}
$$
 transforms to

$$
\log f(e^{y_1}, \dots, e^{y_n}) = \log \left(\sum_{k=1}^K e^{a_k^T y + b_k} \right) \qquad (b_k = \log c_k)
$$

• geometric program transforms to convex problem

minimize
$$
\log \left(\sum_{k=1}^{K} \exp(a_{0k}^T y + b_{0k}) \right)
$$

subject to $\log \left(\sum_{k=1}^{K} \exp(a_{ik}^T y + b_{ik}) \right) \le 0, \quad i = 1, ..., m$

$$
Gy + d = 0
$$

Design of cantilever beam

- $\bullet~~N$ segments with unit lengths, rectangular cross-sections of size $w_i\times h_i$
- $\bullet\,$ given vertical force F applied at the right end

design problem

minimize total weightsubject to $\;$ upper $\&$ lower bounds on $w_i,\,h_i$ upper bound & lower bounds on aspect ratios h_i/w_i upper bound on stress in each segmentupper bound on vertical deflection at the end of the beam

variables: $w_i,~h_i$ for $i=1,\ldots,N$

objective and constraint functions

- $\bullet\,$ total weight $w_1h_1+\cdots+w_Nh_N$ is posynomial
- $\bullet\,$ aspect ratio h_i/w_i and inverse aspect ratio w_i/h_i are monomials
- $\bullet\,$ maximum stress in segment i is given by $6iF/(w_ih_i^2)$ $\binom{2}{i}$, a monomial
- $\bullet\,$ the vertical deflection y_i and slope v_i of central axis at the right end of segment i are defined recursively as

$$
v_i = 12(i - 1/2) \frac{F}{E w_i h_i^3} + v_{i+1}
$$

$$
y_i = 6(i - 1/3) \frac{F}{E w_i h_i^3} + v_{i+1} + y_{i+1}
$$

for $i=N, N$ $1,\ldots,1$, with $v_{N+1}=y_{N+1}=0$ $\left(E$ is Young's modulus) v_i and y_i are posynomial functions of $w,\,h$

formulation as ^a GP

minimize
$$
w_1 h_1 + \cdots + w_N h_N
$$

\nsubject to $w_{\text{max}}^{-1} w_i \le 1$, $w_{\text{min}} w_i^{-1} \le 1$, $i = 1, ..., N$
\n $h_{\text{max}}^{-1} h_i \le 1$, $h_{\text{min}} h_i^{-1} \le 1$, $i = 1, ..., N$
\n $S_{\text{max}}^{-1} w_i^{-1} h_i \le 1$, $S_{\text{min}} w_i h_i^{-1} \le 1$, $i = 1, ..., N$
\n $6i F \sigma_{\text{max}}^{-1} w_i^{-1} h_i^{-2} \le 1$, $i = 1, ..., N$
\n $y_{\text{max}}^{-1} y_1 \le 1$

note

• we write
$$
w_{\min} \leq w_i \leq w_{\max}
$$
 and $h_{\min} \leq h_i \leq h_{\max}$

 $w_{\min}/w_i \le 1$, $w_i/w_{\max} \le 1$, $h_{\min}/h_i \le 1$, $h_i/h_{\max} \le 1$

• we write
$$
S_{\min} \leq h_i/w_i \leq S_{\max}
$$
 as

$$
S_{\min} w_i / h_i \le 1, \qquad h_i / (w_i S_{\max}) \le 1
$$

Convex optimization problems

Minimizing spectral radius of nonnegative matrix

Perron-Frobenius eigenvalue $\lambda_\mathrm{pf}(A)$

- $\bullet\,$ exists for (elementwise) positive $A\in{\mathbf R}^n$ \times n
- $\bullet\,$ a real, positive eigenvalue of A , equal to spectral radius $\max_i|\lambda_i(A)|$
- $\bullet\,$ determines asymptotic growth (decay) rate of A^k k . A^k : ${}^k \sim \lambda^k_{\text{n}}$ $_{\rm pf}^k$ as $k\to\infty$
- \bullet alternative characterization: $\lambda_{\rm pf}(A)=\inf\{\lambda \mid Av\preceq \lambda v$ for some $v\succ 0\}$

minimizing spectral radius of matrix of posynomials

- $\bullet\,$ minimize $\lambda_\mathrm{pf}(A(x))$, where the elements $A(x)_{ij}$ are posynomials of x
- equivalent geometric program:

minimize
$$
\lambda
$$

subject to $\sum_{j=1}^{n} A(x)_{ij} v_j/(\lambda v_i) \leq 1, \quad i = 1, ..., n$

variables $\lambda, \, v, \, x$

Generalized inequality constraints

convex problem with generalized inequality constraints

minimize
$$
f_0(x)
$$

subject to $f_i(x) \leq K_i, 0, i = 1,..., m$
 $Ax = b$

- \bullet f_0 : \mathbf{R}^n $\mathbf{R}^n \to \mathbf{R}$ convex; $f_i: \mathbf{R}^n$ $\mathbf{R}^n \rightarrow \mathbf{R}^{k_i}$ K_i -convex w.r.t. proper cone K_i
- • same properties as standard convex problem (convex feasible set, local optimum is ^global, etc.)

conic form problem: special case with affine objective and constraints

minimize
$$
c^T x
$$

subject to $Fx + g \preceq_K 0$
 $Ax = b$

extends linear programming $(K=\mathbf{R}_{+}^{m})$ $\, + \,$ $\genfrac{}{}{0pt}{}{m}{+}$ to nonpolyhedral cones

Semidefinite program (SDP)

minimize
$$
c^T x
$$

subject to $x_1F_1 + x_2F_2 + \cdots + x_nF_n + G \preceq 0$
 $Ax = b$

with $F_i, \, G \in \mathbf{S}^k$

- $\bullet\,$ inequality constraint is called linear matrix inequality (LMI)
- includes problems with multiple LMI constraints: for example,

$$
x_1\tilde{F}_1 + \dots + x_n\tilde{F}_n + \hat{G} \preceq 0, \qquad x_1\tilde{F}_1 + \dots + x_n\tilde{F}_n + \tilde{G} \preceq 0
$$

is equivalent to single LMI

$$
x_1 \begin{bmatrix} \hat{F}_1 & 0 \\ 0 & \tilde{F}_1 \end{bmatrix} + x_2 \begin{bmatrix} \hat{F}_2 & 0 \\ 0 & \tilde{F}_2 \end{bmatrix} + \dots + x_n \begin{bmatrix} \hat{F}_n & 0 \\ 0 & \tilde{F}_n \end{bmatrix} + \begin{bmatrix} \hat{G} & 0 \\ 0 & \tilde{G} \end{bmatrix} \preceq 0
$$

LP and SOCP as SDP

LP and equivalent SDP

LP: minimize $c^T x$
subject to $Ax \preceq b$ $\mathsf{SDP:}\quad\mathsf{minimize}\quad c^T x\ \mathsf{subject\ to}\quad\mathbf{dia}.$ o diag $(Ax - b) \preceq 0$

(note different interpretation of generalized inequality $\preceq)$

SOCP and equivalent SDP

- SOCP: minimize $f^T x$ subject to $||A_ix + b_i||_2 \le c_i^Tx + d_i, \quad i = 1, \ldots, m$
- SDP: minimize $f^T x$ subject to**o** $\begin{bmatrix} (c_i^T x + d_i)I & A_ix + b_i \ (A_ix + b_i)^T & c_i^T x + d_i \end{bmatrix} \succeq 0, \quad i = 1, ..., m$

Eigenvalue minimization

minimize $\lambda_{\text{max}}(A(x))$

where $A(x) = A_0 + x_1A_1 + \cdots + x_nA_n$ $_n$ (with given $A_i \in \mathbf{S}^k$ κ)

equivalent SDP

minimize $\quad t$ subject to $A(x) \preceq tI$

- variables $x \in \mathbb{R}^n$ $^{\prime\prime}$, $t\in\textsf{R}$
- follows from

$$
\lambda_{\max}(A) \le t \quad \Longleftrightarrow \quad A \preceq tI
$$

Matrix norm minimization

minimize
$$
||A(x)||_2 = (\lambda_{\max}(A(x)^T A(x)))^{1/2}
$$

where $A(x) = A_0 + x_1 A_1 + \cdots + x_n A_n$ (with given $A_i \in \mathbf{S}^{p \times q}$)
equivalent SDP

minimize
$$
t
$$

subject to
$$
\begin{bmatrix} tI & A(x) \\ A(x)^T & tI \end{bmatrix} \succeq 0
$$

- variables $x \in \mathbb{R}^n$ $^{\prime\prime}$, $t\in\textsf{R}$
- constraint follows from

$$
||A||_2 \le t \iff A^T A \preceq t^2 I, \quad t \ge 0
$$

$$
\iff \left[\begin{array}{cc} tI & A \\ A^T & tI \end{array}\right] \succeq 0
$$

Vector optimization

genera^l vector optimization problem

minimize (w.r.t. K)
$$
f_0(x)
$$

subject to $f_i(x) \le 0$, $i = 1,..., m$
 $h_i(x) \le 0$, $i = 1,..., p$

vector objective $f_0: \mathbf{R}^n \to \mathbf{R}^q$, minimized w.r.t. proper cone $K \in \mathbf{R}^q$

convex vector optimization problem

minimize (w.r.t. K)
$$
f_0(x)
$$

subject to $f_i(x) \le 0, \quad i = 1,..., m$
 $Ax = b$

with f_0 K -convex, $f_1, \, \ldots, \, f_m$ convex

Optimal and Pareto optimal points

set of achievable objective values

 $\mathcal{O} = \{f_0(x) \mid x \text{ feasible}\}$

- \bullet feasible x is **optimal** if $f_0(x)$ is a minimum value of $\mathcal O$
- \bullet feasible x is Pareto optimal if $f_0(x)$ is a minimal value of ${\cal O}$

Multicriterion optimization

vector optimization problem with $K=\mathsf{R}_+^q$

$$
f_0(x)=(F_1(x),\ldots,F_q(x))
$$

- \bullet q different objectives F_i ; roughly speaking we want all F_i 's to be small
- \bullet feasible x^{\star} is optimal if

y feasible
$$
\implies
$$
 $f_0(x^*) \preceq f_0(y)$

if there exists an optimal point, the objectives are noncompeting

 \bullet feasible $x^{\rm po}$ is Pareto optimal if

y feasible,
$$
f_0(y) \preceq f_0(x^{po}) \implies f_0(x^{po}) = f_0(y)
$$

if there are multiple Pareto optimal values, there is ^a trade-off betweenthe objectives

Regularized least-squares

minimize (w.r.t. ${\sf R}_+^2$ $_{+}^{2})$ (||Ax $-\,b\|_2^2$ $\frac{2}{2},\|x\|_2^2$ $\left(\frac{2}{2}\right)$

example for $A\in{\mathbf{R}^{100\times 10}}$; heavy line is formed by Pareto optimal points

Risk return trade-off in portfolio optimization

minimize (w.r.t.
$$
\mathbf{R}_+^2
$$
) $(-\bar{p}^T x, x^T \Sigma x)$
subject to $\mathbf{1}^T x = 1, x \succeq 0$

- $\bullet\,\,x\in\textbf{R}^n$ is investment portfolio; x_i is fraction invested in asset i
- $\bullet\,~p\in\mathbf{R}^n$ is vector of relative asset price changes; modeled as a random variable with mean \bar{p} , covariance Σ
- $\bullet~~\bar{p}^T$ ${}^{\displaystyle T}x={\bf E}\,r$ is expected return; x^T ${}^{T}\Sigma x = \mathbf{var} \, r$ is return variance

example

Scalarization

to find Pareto optimal points: choose $\lambda \succ_{K^*} 0$ and solve scalar problem

minimize
$$
\lambda^T f_0(x)
$$

subject to $f_i(x) \le 0$, $i = 1,..., m$
 $h_i(x) = 0$, $i = 1,..., p$

if x is optimal for scalar problem, then it is Pareto-optimal for vectoroptimization problem

for convex vector optimization problems, can find (almost) all Paretooptimal points by varying $\lambda \succ_{K^*} 0$

Scalarization for multicriterion problems

to find Pareto optimal points, minimize positive weighted sum

$$
\lambda^T f_0(x) = \lambda_1 F_1(x) + \dots + \lambda_q F_q(x)
$$

examples

• regularized least-squares problem of page 4–43

take
$$
\lambda = (1, \gamma)
$$
 with $\gamma > 0$
minimize $||Ax - b||_2^2 + \gamma ||x||_2^2$
for fixed γ , a LS problem

• risk-return trade-off of page 4–44

minimize
$$
-\bar{p}^T x + \gamma x^T \Sigma x
$$

subject to $\mathbf{1}^T x = 1, \quad x \succeq 0$

for fixed $\gamma > 0$, a quadratic program