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The trust region (TR) subproblem (the minimization of a quadratic objective subject to one quadratic constraint and
denoted TRS) has many applications in diverse areas, e.g., function minimization, sequential quadratic programming,
regularization, ridge regression, and discrete optimization. In particular, it determines the step in TR algorithms
for function minimization. Trust region algorithms are popular for their strong convergence properties. However, a
drawback has been the inability to exploit sparsity as well as the difficulty in dealing with the so-called hard case.
These concerns have been addressed by recent advances in the theory and algorithmic development. In particular, this
has allowed Lanczos techniques to replace Cholesky factorizations.

This article provides an in depth study of TRS and its properties as well as a survey of recent advances. We
emphasize large scale problems and robustness. This is done using semidefinite programming (SDP) and the modern
primal–dual approaches as a unifying framework. The SDP framework arises naturally and solves TRS efficiently. In
addition, it shows that TRS is always a well-posed problem, i.e., the optimal value and an optimum can be calculated to
a given tolerance. We provide both theoretical and empirical evidence to illustrate the strength of the SDP and duality
approach. In particular, this includes new insights and techniques for handling the hard case, as well as numerical
results on large test problems.
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1 INTRODUCTION

We are concerned with the following quadratic minimization problem:

(TRS) q∗ = min q(x) := xT Ax − 2aTx

s.t. ‖x‖ ≤ s.

Here, A is an n × n symmetric (possibly indefinite) matrix, a is an n-vector, s is a positive
scalar and x is the n-vector of unknowns. All matrix and vector entries are real. This problem is
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referred as the trust region (TR) subproblem (TRS). This problem has many applications in e.g.,
forming subproblems for constrained optimization [2], regularization of ill-posed problems [3],
and regularization for ill-conditioned linear regression problems (called ridge regression, [4]).
In particular, it is important in a class of optimization methods called trust region methods
for minimization where, at each iteration of the method, the algorithm determines a step by
(approximately) finding the minimum of a quadratic function (a local quadratic model of a
given function f ) restricted to a given ball of radius s. (This is called the spherical TR. We do not
discuss scaled, ellipsoidal, box, or other TRs.) The radius s increases or decreases depending
on how well the decrease in the quadratic model predicts the true decrease in f . The data,
A and a, respectively, represent the Hessian and the gradient of the modeled function. These
methods have advantages over, e.g., quasi-Newton methods. Under mild assumptions, they
produce a sequence of iterates with an accumulation point that satisfies both first and second
order necessary optimality conditions [e.g., Ref. 5]. Furthermore, if the accumulation point
satisfies the second order sufficient optimality conditions, the method reduces to Newton’s
method locally and convergence is q-quadratic. [For more details see, e.g., Refs. 2,6.]

However, the popularity of TR methods for unconstrained minimization has lagged behind
quasi-Newton methods. Numerical difficulties in standard algorithms for TRS can arise when
a is (approximately) perpendicular to the eigenspace of the smallest eigenvalue of A. This is
referred to as the (near) hard case in the literature. In addition, algorithms for TRS were based
on the Cholesky factorization of the Hessian of the Lagrangian, thus sparsity could not always
be exploited efficiently. On the other hand, algorithms such as limited memory quasi-Newton
methods proved to be successful, e.g., Refs. [7,8].

Though TRS appears to be a simple problem, there is a long history of elegant theory and
algorithms. (The recent books [2,9] contain extensive bibliographies. See also the bibliographi-
cal database for Ref. [2] at URL www.fundp.ac.be/˜phtoint/pht/trbook.bib.) In this article, we
emphasize the modern primal–dual approaches. In particular, we study three methods that con-
sider the above mentioned concerns, i.e., the dual based algorithm of Moré–Sorensen (MS) [10],
the semidefinite programming (SDP) based algorithm of Rendl–Wolkowicz (RW) [11], and the
generalized Lanczos trust region (GLTR or coincidently GLRT) method of Gould et al. [12].

The classical (MS) algorithm [10] was the first algorithm able to handle the hard case
efficiently. (The algorithm of Gay [13] also treats the hard case.) We revisit and modify the RW
primal–dual algorithm [11] which is based on a parametric eigenvalue problem using a Lanczos
technique, SDP, and duality. It is designed specifically to handle large sparse problems; it also
handles the hard case efficiently. The GLTR is the last algorithm we look at, see Ref. [12]. This
algorithm uses the Lanczos procedure to obtain a restricted TRS problem with a tridiagonal
matrix. This subproblem can be solved quickly using the MS algorithm.

Several other recent approaches deserve mention. The method by Sorensen [14] is similar
to the RW algorithm in that it uses a parametric eigenvalue approach. The difference of convex
functions (DC) method of Tao and An [15] and the method of Hager [16] are both designed
to exploit sparsity. The method in Ref. [16] is similar in spirit to GLTR, i.e., they both solve a
sequence of subproblems where TRS is restricted to a special Krylov subspace. The method
of Ye [17] exploits a new efficient line search technique.

The main contribution of this article is the use of SDP and the modern primal–dual approach
to motivate, view, and modify existing algorithms for TRS. In addition, we present a novel
approach to handle the hard case using a shift of the eigenvalues and deflation. We also include
numerical comparisons between the algorithms and specific examples that illustrate the per-
formance on the hard case. In particular, we try to answer questions posed in Ref. [12] about
the desired accuracy in solving the TRS within a TR minimization algorithm. We include
numerical tests, completely in a MATLAB framework, on problems with dimensions of order
n = 105 for the TR method, and order n = 106 for TRS problems.
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1.1 Outline

We continue in Section 2 with the optimality conditions and definitions of the easy and hard
cases for TRS. In particular, Section 2.1 describes the shift process that yields an equivalent
well-posed convex program. That TRS is well-posed also follows using SDP, and is shown in
Theorem 5.2 and Remark 5.1. In Section 3, we use duality to motivate and describe the MS
algorithm. The GLTR algorithm is described in Section 4. In Section 5, we present several
dual programs to TRS exploiting the strong Lagrangian duality for TRS. These provide the
unifying framework for the different algorithms outlined in Section 6. The RW algorithm, with
our modifications, is presented in detail in Section 7. The numerical tests appear in Section 8.
Concluding remarks are given in Section 9.

2 OPTIMALITY CONDITIONS

It is known [see Refs. 18,19] that x∗ is a solution to TRS if and only if

(A − λ∗ I )x∗ = a

A − λ∗ I � 0, λ∗ ≤ 0

}
dual feasibility

‖x∗‖2 ≤ s2 primal feasibility

λ∗(s2 − ‖x∗‖) = 0, complementary slackness

(1)

for some (Lagrange multiplier) λ∗. These conditions are surprising in two respects. First, the
conditions characterize optimality of a possibly nonconvex problem, i.e., they are necessary
and sufficient. Second, the usual second order positive semidefinite necessary conditions hold
on all of R

n rather than just the tangent plane at the optimal point.
We have added the descriptive three phrases in Eq. (1), since this coincides with the frame-

work in Ref. [11] and with the modern primal–dual optimization approach, though no dual
program appeared in the earlier papers [18,19].

2.1 The Hard Case

If A − λ∗ I � 0 in Eq. (1), then x∗ is the unique solution to TRS (this is true generically), i.e.,
x∗ = (A − λ∗ I )−1a. In general, we denote

x(λ) = (A − λI )†a, (2)

where (·)† denotes the Moore–Penrose generalized inverse. Singularity (or near singularity)
of A − λI can result in difficulties in using x(λ) as a solution, see Table I.

2.1.1 Shift, Deflation, and Robustness

First, we note that λ1(A) > 0 implies that λ∗ ≤ 0 < λ1(A), i.e., the hard case (case 2) cannot
hold. Second, if λ∗ = 0, then A � 0 and ‖x∗‖ = ‖A†a‖ ≤ s. These two situations can be
handled by our algorithm in a standard way. The following deflation technique forms the basis
for our approach to handle the hard case. It shows that we can deflate and/or shift eigenspaces
that are orthogonal to the linear term a and, thus, avoid the hard case. For example, we could
first use Lemma 2.1 Part 3 to ensure that A � 0. Then, if the possible hard case is detected,
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TABLE I The three different cases for the trust region subproblem. We include two subcases (i)
and (ii) for the hard case (case 2)

1. Easy case 2. (a) Hard case (case 1) 2. (b) Hard case (case 2)

a �⊥ N (A− λ1(A)I ) a ⊥ N (A− λ1(A)I ) a ⊥ N (A− λ1(A)I )
(implies λ∗ < λ1(A)) and λ∗ < λ1(A) and λ∗ = λ1(A)

(i) ‖(A− λ∗ I )†a‖ = s or λ∗ = 0
(ii) ‖(A− λ∗ I )†a‖ < s, λ∗ < 0

we can use the shift in Lemma 2.1 (Part 2). Lemma 2.1 (Part 1) shows that performing the
shift when the hard case did not exist does not cause harm. In many of our numerical tests, our
heuristics detected an unconstrained problem after the shifts. This latter problem was solved
using preconditioned conjugate gradients (PCG).

LEMMA 2.1 Let A =∑n
i=1 λi (A)viv

T
i = P�PT be the spectral decomposition of A, with vi

orthonormal eigenvectors and P = [v1 v2 · · · vn] an orthogonal matrix. Set the vector ā :=
PTa and the sets

S1 = {i : āi �= 0, λi (A) > λ1(A)}
S2 = {i : āi = 0, λi (A) > λ1(A)}
S3 = {i : āi �= 0, λi (A) = λ1(A)}
S4 = {i : āi = 0, λi (A) = λ1(A)}.

For k = 1, 2, 3, 4: the matrices Ak :=∑i∈Sk
λi (A)viv

T
i ; and the (A-invariant subspace)

orthogonal projections Pk :=∑i∈Sk
viv

T
i , where Ak = Pk = 0, if Sk = ∅. Then the following

holds.

1. Suppose S3 �= ∅ (easy case), α > 0, and i ∈ S2 ∪ S4. Then

(x∗, λ∗) solves TRS

iff

(x∗, λ∗) solves TRS when A is replaced by A + αviv
T
i .

2. Let u∗ = (A − λ∗ I )†a with ‖u∗‖ < s and suppose that i ∈ S2 ∪ S4 and α > 0. Then

(x∗ = u∗ + z, λ∗), z ∈ N (A − λ∗ I ) solves TRS

iff

(x∗ = u∗ + z, λ∗), z ∈ N (A + αviv
T
i − λ∗ I ) solves TRS when

A is replaced by A + αviv
T
i .

3. Let u∗ = (A − λ∗ I )†a. Then

there exists z ∈ N (A − λ∗ I ) such that (x∗, λ∗), with x∗ = u∗ + z, solves TRS

iff

(u∗, λ∗ − λ1(A)) solves TRS when A is replaced by A − λ1(A)I.
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4.

x∗ solves TRS and vT
i x∗ �= 0, for some i ∈ S4

iff

the hard case (case 2(ii)) holds.

Proof The set S3 can be used to define the hard case, i.e., S3 �= ∅ if and only if a is not
orthogonal to N (A − λ1(A)I ) if and only if the easy case holds. Note that S3 = ∅ ⇒ S4 �= ∅.

Consider the equivalent problem to TRS obtained after the rotation by PT and diagonaliza-
tion of A:

(TRSP) q∗ = min (PTx)T�(PTx)− 2āT(PTx) = wT�w − 2āTw

s.t. ‖w‖ ≤ s, w = PTx .
(3)

Note that the Pk form a resolution of the identity, I =∑4
k=1 Pk . Moreover, x∗ solves TRS

if and only if w∗ = PTx∗ solves (TRSP ), Eq. (3). We set w∗ = PTx∗ and, for k = 1, 2, 3, 4,
Ek =∑i∈Sk

ei eT
i ,�k =∑i∈Sk

λi ei eT
i , x∗k := Pk x∗, w∗k := Ekw

∗, where the ei are unit vectors,
and Ek = �k = 0, xk = wk = 0, if Sk = ∅. In addition,

� =
4∑

i=1

�k, w∗ =
4∑

i=1

wk, I =
4∑

i=1

Ek, Ek = PT Pk P, w∗k = PTx∗k .

For simplification, we prove the results for this diagonalized equivalent program.

1. Since S3 �= ∅, the definitions imply that the easy case holds and

w∗ = (�− λ∗ I )−1ā = (�+ αei e
T
i − λ∗ I )−1ā,

i.e., the optimality conditions are unchanged after the replacement. Thiscompletes the proof
of Item 1.

2. As in the above proof, the definitions imply

PTu∗ = (�− λ∗ I )†ā = (�+ αei e
T
i − λ∗ I )†ā,

In this case, the optimality conditions are unchanged except for the change in the conditions
for z. This completes the proof of Item 2.

3. Note that u∗ ∈ R(A − λ∗ I ) ⊥ N (A − λ∗ I ).
Necessity: Assume that (x∗, λ∗) with x∗ = u∗ + z, z ∈ N (A − λ∗ I ) solves TRS. Then
w∗ = (�− λ∗ I )†ā + PTz, PTz ∈ N (�− λ∗ I ). It follows from the optimality conditions
that

w∗ = (�− λ∗ I )†ā + PTz = PTu∗ + PTz,

λ∗(‖PTu∗‖2 + ‖PTz‖2 − s2) = 0, (�− λ∗ I ) � 0.
(4)

By adding and subtracting λ1(A), we see that (PTu∗, λ∗ − λ1(A)) is optimal for TRSP if
we replace � by�− λ1(A)I .

Conversely, suppose that (u∗, λ∗ − λ1(A)) solves TRS when A is replaced by
A − λ1(A)I . Then

PTu∗ = (�− λ∗ I )†ā, ‖u∗‖ ≤ s, (�− λ1(A)I ) � 0. (5)
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We can find an appropriate z ∈ N (A − λ1(A)I ) if needed so that ‖u∗‖2 + ‖z‖2 = s2, i.e.,
(x∗ = u∗ + z, λ∗) solves TRS. This completes the proof of Item 3.

4. Assume that x∗ = Pw∗ solves TRS andvT
i x∗ �= 0, for some i ∈ S4. Equivalently, eT

i w
∗ �=

0, for some i ∈ S4. From the definitions, āi = 0,∀i ∈ S2 ∪ S4. Therefore w∗ = (�−
λ∗ I )†ā + E4v, for some v ∈ Rn . The assumption implies that E4v �= 0.

Conversely, suppose that the hard case (case 2(ii)) holds. Then w∗ = (�− λ∗ I )†ā +
E4v, for some v ∈ Rn with E4v �= 0. This completes the proof of Item 4. �

Numerically, we cannot distinguish between the hard case and the near hard case. This is
handled using the following.

LEMMA 2.2 Suppose that x∗ solves TRS and ‖x∗‖ = s. Let ε > 0 and v ∈ R
n with ‖v‖ = 1.

Let µ∗(ε) be the optimal value of TRS when a is perturbed to a + εv. Then

−2sε ≤ µ∗ − µ∗(ε) ≤ 2sε.

Proof

µ∗(ε) = min‖x‖=s
q(x)− 2εvTx

≥ min
‖x‖=s

q(x)+ min
‖x‖=s

−2εvTx

= µ∗ − 2εs.

This proves the right-hand-side inequality.
Since x∗ is optimal for TRS and on the boundary of the ball, we get

µ∗(ε) ≤ µ∗ − 2εvTx∗

≤ µ∗ + 2εs.

�

The literature often labels the hard case (case 2) as an ill-posed or degenerate problem, e.g.,
Refs. [12,16]. Adding a norm constraint to an ill-posed problem is a well-known regularization
technique, e.g., Ref. [3]. Thus, it would appear to be contradictory for TRS to be an ill-posed
problem. In fact, we can orthogonally diagonalize the quadratic form; and, we note that the
symmetric eigenvalue problem has a condition number of 1 [20]. Then, TRS can be shown to
be equivalent to a linearly constrained convex programming problem, see Ref. [21], a problem
that can be solved efficiently and robustly.

The following lemma and example illustrate that TRS is always a stable convex program.
This also follows from the equivalent SDP dual pair in Theorem 5.2.

LEMMA 2.3 Suppose that the hard case (case 2 (ii)) holds for TRS. Let u∗ = (A − λ∗ I )†a,
and x∗ = u∗ + z be a solution of TRS with z ∈ N (A − λ∗ I ). Then z �= 0, λ1(A) ≤ 0 and TRS
is equivalent to the following stable convex program

(TRSs) q∗s := min qs(x) := xT(A − λ1(A)I )x − 2aTx + s2λ1(A)

s.t. ‖x‖ ≤ s.
(6)
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The equivalence is in the sense that the optimal values satisfy q∗ = q∗s ; and (x∗, λ∗) solves
TRS if and only if (x∗, 0) solves TRSs.

Proof Since the hard case (case 2 (ii)) holds, we get z �= 0 and λ1(A) = λ∗ ≤ 0. From
Lemma 2.1, Item 3, we get (u∗, 0) solves TRSs . We can then add z ∈ N (A − λ∗ I ) to get
‖u∗ + z‖ = s. �

Convex programs for which Slater’s constraint qualification holds are called stable, e.g.,
Refs. [22,23]. They are equivalent to convex programs for which the optimal dual solutions
form a convex compact set which further implies that the perturbation function (optimal value
function subject to linear perturbations in the data) is convex and Lipschitz continuous. In our
case we have the additional strong linear independence CQ, which implies that the optimal
dual solution is unique and the perturbation function is differentiable. We also have a compact
convex feasible set [see e.g., Refs. 22,23].

Example 2.1 (Hard Case, Case 2(ii)) Let

A =
[

1+ γ 0

0 −1+ δ

]
, a =

[
2 + α
β

]
, s = √2,

where α, β, γ, δ are perturbations in the data. First suppose that the perturbations are all 0.
Then the hard case (case 2(ii)) holds; the optimal Lagrange multiplier is λ∗ = λ1(A) = −1;
and the best least squares solution is

x̄ = (A − λ∗ I )†a =
[

1

0

]

with ‖x̄‖ = 1 < s. The optimal solution is obtained from

x∗ = x∗(0) = x̄ +
[

0

±1

]
=
[

1

±1

]
. (7)

For (small) nonzero perturbations, the optimal Lagrange multiplier λ∗ is still unique and
−1+ δ is the smallest eigenvalue. If β = 0, then the hard case still holds; the optimum is
obtained from λ∗ = −1+ δ; and

x∗ = x∗(α, γ, δ) =

 2+ α

1+ γ − λ∗
0


+

[
0

ε ± 1

]
,

where ε is chosen to obtain ‖x∗‖ = s, e.g., with +1

(1+ ε)2 +
(

2+ α
2 + γ − δ

)2

= s2 = 2.

Depending on the choice of sign, these solutions converge to a solution in Eq. (7), as the pertur-
bations converge to 0. Moreover, a Taylor series expansion shows that ‖x∗(0)− x∗(α, γ, δ)‖ ≤
2(|α| + |γ | + |δ|) for small perturbations, i.e., we have a bounded condition number.
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If β �= 0, then we have the easy case. The unique optimal Lagrange multiplier λ∗ < −1+ δ
and the unique optimum is obtained from

x∗ =




2 + α
1+ γ − λ∗

β

−1+ δ − λ∗


 ,

where λ∗ satisfies the positive definiteness condition as well as ‖x∗‖ = s. This implies that

(
2+ α

1+ γ − λ∗
)2

+
(

β

−1+ δ − λ∗
)2

= 2.

Since λ∗ → −1 and (2+ α)/(1+ γ − λ∗)→ 1, as the perturbations go to 0, we see that the
optimal solutions converge appropriately again, i.e., x∗(α, β, γ, δ)→ x∗(0, 0, 0, 0).

3 A DUAL ALGORITHM: THE MORÉ–SORENSEN ALGORITHM

We motivate the MS algorithm using duality and illustrate how SDP arises naturally from this
setting. The Lagrangian dual of TRS is

q∗ = ν∗ := max
λ≤0

min
x

xT(A − λI )x − 2aTx + λs2

= max
λ≤0

h(λ)

where the Lagrangian is L(x, λ) := xT(A − λI )x − 2aTx + λs2 and the dual functional is
h(λ) := minx L(x, λ). Strong duality (q∗ = ν∗ and dual attainment [24]) holds. Since the
inner minimization is unconstrained, we have a hidden semidefinite constraint that the Hessian,
∇2 L(x, λ) � 0, is positive definite. The dual functional h is concave with domain within the
semidefinite constraint.

Therefore, we can replace TRS with the simpler root finding problem

h′(λ) = 0 (8)

(if h is differentiable), with the restrictions:

λ ≤ 0, ∇2 L(x, λ) = A − λI � 0. (9)

We see that semidefiniteness (convexity of the Lagrangian) arises naturally from the duality
setting. Note that h′(λ) = s2 − x(λ)Tx(λ), when it exists. If we use the optimality conditions
in Eq. (1) with the descriptive phrases, then the MS algorithm maintains dual feasibility and
complementary slackness, while trying to attain primal feasibility (cf. the dual simplex method
for linear programming).

Though Newton’s method has asymptotic q-quadratic convergence, the Newton step does
not take into account the semidefinite restrictions, which can result in many backtracking steps.
This illustrates the weakness of a dual method compared to a primal–dual method.

The main work in the iterations is a Cholesky factorization used in the evaluation of the
derivatives and the Newton step for λ, as well as in the safeguarding and updating scheme that
produces either a point λ from which quadratic convergence ensues, or reduces the interval of
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uncertainty for the optimal λ. If the possible hard case is detected, optimality is reached by
taking primal steps to the boundary of the ball. In both cases, given two parameters σ1 and σ2

in (0, 1), the algorithm terminates in a finite number of iterations with an approximate solution
x̄ which satisfies

q(x̄)− q∗ ≤ σ1(2− σ1)max{‖q∗‖, σ2}, ‖x̄‖ ≤ (1+ σ1)
. (10)

One additional innovation makes the MS algorithm fast. Assume A − λI � 0. There are
disadvantages in applying Newton’s method to find a root of the function h or equivalently of
ψ(λ) := ‖x(λ)‖ − s. For λ < λ1(A) and close to λ1(A), the orthogonal diagonalization of A
shows that

ψ(λ) = ‖Q(� − λI )−1 QTa‖ − s ≈ c1

λ1(A)− λ + d,

for some constants c1 > 0, d . This function is highly nonlinear for values of λ near λ1(A),
which equates to slow convergence for Newton’s method. Moré–Sorensen solve the equivalent
so-called secular equation

φ(λ) := 1

s
− 1

‖x(λ)‖ = 0. (11)

[See e.g., Refs. 25–28]. The rational structure of ‖x(λ)‖2, shows that this function is less
nonlinear, i.e.,

φ(λ) ≈ 1

s
− λ1(A)− λ

c2
,

for some c2 > 0. Therefore, Newton’s method applied to this function will be more efficient.
One can also show φ(λ) is a convex function strictly increasing on (−∞, λ1(A)) [see Ref. 10,
p. 562 for the details].

3.1 Handling the Hard Case in Moré–Sorensen Algorithm

From Fig. 1, we get the following indicator of the easy case for TRS.

FIGURE 1 Newton’s method with the secular function, φ(λ).
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LEMMA 3.1 Suppose that λ0 ≤ min{0, λ1(A)} and φ(λ0) > 0 (equivalently ‖x(λ0)‖ > s).
Then the hard case (case 2) cannot occur for TRS, i.e. λ∗ < λ1(A).

However, Fig. 1 also shows that Newton’s method can provide a poor prediction for λ∗ if
φ(λ) < 0 and λ∗ is close to 0 and/or λ1(A). This would result in many backtracking steps
to find the above λ0 (each of which involves an attempted Cholesky factorization) and would
make the algorithm inefficient. As discussed above in Section 2.1, in the hard case (case 2), a
solution to TRS can be obtained by first finding a solution x(λ1(A)) to the system

(A − λ1(A)I )x = a (12)

with ‖x‖ ≤ s. If strict inequality holds, ‖x‖ < s, then we need an eigenvector z ∈ N (A −
λ1(A)I ), and τ ∈ R, such that ‖x(λ1(A))+ τ z‖ = s, i.e.,

x∗ = x(λ1(A))+ τ z (13)

satisfies the optimality conditions. The following lemma by MS [25] is the key to implementing
this idea numerically.

LEMMA 3.2 (Primal step to the boundary) Let 0 < σ < 1 be given and suppose that

A − λI = RT R, (A − λI )x = a, λ ≤ 0. (14)

Let z ∈ R
n satisfy

‖x + z‖2 = s2 (15)

and

‖Rz‖2 ≤ σ(‖Rx‖2 − λs2). (16)

Then

|q(x + z)− q(x∗)| ≤ σ |q(x∗)| (17)

where x∗ is optimal for TRS.

We will get back to this lemma in Section 6.1, where we show that this lemma is measuring
a duality gap in a primal–dual pair of SDPs. Note that Eqs. (14) and (15) guarantee the dual
and primal feasibility constraints in the optimality conditions (1). Comparisons with the RW
algorithm are included in Section 7.

4 THE GENERALIZED LANCZOS TRUST REGION ALGORITHM

As mentioned above, current attempts to solve TRS focus on exploiting sparsity. The Cholesky
factorization can be a bottleneck in the MS algorithm for sparse problems without special
structure. The GLTR algorithm involves a Lanczos tridiagonalization of the matrix A, which
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then allows for fast Cholesky factorizations. The method requires only matrix–vector mul-
tiplications (MVM) and exploits sparsity in A. The method solves a sequence of restricted
problems

min q(x)

s.t. ‖x‖ ≤ s

x ∈ S ≡ Kk,

(18)

whereKk : = span{a, Aa, A2a, A3a, . . . , Aka} are specially chosen (Krylov) subspaces of R
n .

(A similar approach based on Krylov subspaces is presented in Ref. [16].) The way S is chosen
is inspired by the Steihaug algorithm of Ref. [29] [see also Refs. 12,30]. The authors use
heuristics for the MS algorithm that find a starting value of λ on the correct side of λ∗ to ensure
asymptotic q-quadratic convergence of the Newton iteration λ∗.

4.1 Handling the Near Hard Case in Generalized Lanczos Trust Region Algorithm

If the near hard case (case 2) occurs for the tridiagonal subproblem, then finding a λ that
guarantees the q-quadratic convergence may be difficult and time consuming. (The GLTR
algorithm fails if the hard case (case 2) occurs.) In addition, ill-conditioning will slow down
both the MS algorithm and therefore the GLTR method [see Ref. 12, p. 515].

Further details are included within the semidefinite framework in Section 6.2.
As mentioned above, the method in Ref. [16] is similar in spirit to GLTR. The main difference

is the choice of Krylov subspacesKk . The vectors include the direction found from a sequential
quadratic programming (SQP) model for TRS.

5 DUALITY AND A SEMIDEFINITE FRAMEWORK FOR
THE TRUST REGION SUBPROBLEM

Duality plays a central role in designing optimization algorithms, as illustrated in our motivation
for the MS algorithm in Section 3. In this section, we focus our attention on different dual
programs associated with TRS. We will further see below the role played by duality in both the
MS and GLTR algorithms, i.e., they are both dual based, and so they exhibit slow convergence
and lack of robustness, characteristics of dual algorithms.

For simplicity, we restrict ourselves to the equality TRS, i.e., we minimize over the sphere
rather than the ball. (To extend to the standard TRS we would need to add the dual constraint
λ ≤ 0.) Precisely, consider the slightly different problem

(TRS=) q∗ = min q(x)

s.t. ‖x‖ = s.
(19)

5.1 Lagrangian Duality and Semi Definite Programming

From Ref. [24], we know that strong Lagrangian duality holds for TRS=, i.e.,

q∗ = ν∗ := max
λ

min
x

L(x, λ). (20)

Since L(x, λ) is a quadratic, the inner min problem is unbounded below unless the hidden
constraints,

A − λI � 0, a ∈ R(A − λI ), (21)
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hold. (This can be seen by moving in a direction of an eigenvector corresponding to a negative
eigenvalue or, if A − λI � 0, a /∈ R(A − λI ), then moving in a direction d ∈ N (A − λI )
such that dTa > 0.) This yields the equivalent dual problem

q∗ = max
A−λI�0,

a∈R(A−λI )

min
x

L(x, λ).

The inner minimum is attained if bounded. We get the following.

THEOREM 5.1 [24] The Lagrangian dual for TRS= is

(D) q∗ = sup
A−λI�0

h(λ), (22)

where

h(λ) := λs2 − aT(A − λI )†a,

where h is a concave function on the feasible set. In the easy case and hard case (case 1), the
sup can be replaced by a max.

COROLLARY 5.1 The Lagrangian dual for TRS is equivalent to

(D) q∗ = sup
A−λI�0
λ≤0

h(λ). (23)

In the easy case and hard case (case 1), the sup can be replaced by a max.

5.2 Unconstrained and Linear Duals

We now present an unconstrained concave maximization problem and a pair of linear SDPs,
all of which are equivalent to TRS=, see Ref. [11] for the details. Define

D(t) =
(

t −aT

−a A

)
, k(t) := (s2 + 1)λ1(D(t)) − t . (24)

Then we have the following unconstrained dual problem for TRS=:

q∗ = max
t

k(t). (25)

It is well known that λ1(D(·)) is a concave function, and therefore k(·) is concave as well.
Thus, using duality, TRS= is equivalent to an unconstrained concave maximization problem
in one variable. We can also rewrite Eq. (25) in the following way so that it becomes a linear
semidefinite program:

max
D(t)�λI

(s2 + 1)λ− t . (26)

Equivalently,

q∗ = max (s2 + 1)λ− t

s.t. λI − t E00 � D(0),
(27)
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where E00 is the zero matrix except for 1 in the top left corner. Because Slater’s constraint
qualification holds for this problem, one can take the Lagrangian dual and get a semidefinite
equivalent for TRS=

q∗ = min trace D(0)Y

s.t. trace Y = s2 + 1

− Y00 = −1

Y � 0.

(28)

THEOREM 5.2 The three programs: (25), (27), (28), are equivalent to TRS=. Moreover,
the Slater constraint qualification and strict complementarity hold for the primal–dual SDP
pair (27) and (28).

Proof The equivalence with TRS= was already shown above.
That Slater’s constraint qualification holds is clear, i.e., choose λ and Y appropriately.
Now suppose that λ, t,Y are optimal for the SDP pair (27) and (28). Then Z := D(t)− λI

is positive semidefinite and singular. Let k be the multiplicity of λ1(D(t)) and y1, . . . , yk be
an orthonormal basis for its eigenspace. Set V = [y1 · · · yk] and redefine Y ← Y + V V T.
We can scale DYD using a diagonal matrix D to guarantee that Y is feasible for Eq. (28). By
construction

ZY = 0, Z + Y � 0.

COROLLARY 5.2 The SDP (28) has a rank one optimal solution Y ∗.

Proof Let x∗ be an optimum for TRS and

y∗ =
(

1

x∗

)
, Y ∗ = y∗(y∗)T.

Remark 5.1 The primal–dual linear SDP pair can be solved to any desired accuracy in
polynomial time, see e.g. Ref. [31]. This emphasizes that TRS is a well-posed problem.

6 SEMIDEFINITE FRAMEWORK

From above (Theorem 5.2), we saw that TRS= is equivalent to a primal–dual pair of SDPs which
could be solved using primal–dual interior-point methods. These methods have revolutionized
our view of optimization during the last 15 years. In particular, path-following methods have
proven to be an efficient approach for many classes of optimization problems. The main idea
for these methods is to apply Newton’s method to a perturbation of the primal–dual optimality
conditions. Using both the primal and dual equations and variables makes for efficient, robust
algorithms. (The recent books [32,33] describe this approach for both linear and semidefinite
programming.) Often, compromises have to be made to deal with large sparse problems. In
particular, for SDP one often uses a dual based method to exploit sparsity, since the primal
variable is often large and dense, see e.g., Refs. [34,35].

We previously motivated the MS algorithm using duality. We now describe the MS and
GLTR algorithms using SDP and the modern primal–dual approach. We see that compromises
are made and a full primal–dual path-following method is not used.
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6.1 A Semidefinite Framework for the Moré–Sorensen Algorithm

For simplicity, we consider the case a �= 0. We follow Section 5.2 [see also Ref. 11] and use
the following pair of SDP dual programs. (D) is the dual of TRS and (DD) is the dual of (D):

(D) q∗ = sup
A−λI�0

h(λ) (29)

(DD) q∗ = inf h(λ)+ trace(X (A − λI ))

s.t. s2 − aT((A − λI )†)2a − trace X = 0

λ < λl(A) (30)

trace X ≤ s2

X � 0,

where λl(A) is the smallest eigenvalue such that a �⊥ N (A − λl(A)I ).
In the easy case and the hard case (case 1), we use the dual program (D). The supremum in

Eq. (29) is attained at the stationary point λ∗ ∈ (−∞, λ1(A)),

h′(λ∗) = −aT((A − λ∗ I )−1)2a + s2 = −‖(A − λ∗ I )−1a‖2 + s2 = 0.

Newton’s method is applied to the equivalent root finding problem φ(λ) = 0. Safeguarding
guarantees thatλ∗ stays in the proper interval. Though Newton’s method guarantees q-quadratic
convergence, this may only happen after many Newton and backtracking steps. The semidefi-
nite constraint is not used explicitly in choosing the Newton direction or the step length.

Things are different in the hard (or near hard) case (case 2), i.e., this is the case when the
current estimates satisfy primal feasibility ‖x(λ)‖ < s. In this case, MS uses a dual–primal
approach. Given such a λ, we now use (DD) to reduce the duality gap, trace(X (A − λI )),
between (D),(DD); and we simultaneously reduce the objective value of TRS. To do this we
find z to move to the boundary (i.e., the primal step is ‖x + z‖2 = s2). The SDP (30) suggests
how such a z should be chosen.

q(x + z) = (x + z)T A(x + z)− 2aT(x + z)+ λs2 − λ‖x + z‖2

= λs2 + xT(A − λI )x + 2xT(A − λI )z + zT(A − λI )z − 2aTx − 2aTz

= h(λ)+ zT(A − λI )z

= h(λ)+ trace(zzT(A − λI )).

To summarize, note that in the MS algorithm, ‖Rz‖2 = zT(A − λI )z. Therefore, when a z is
found such that ‖x + z‖2 = s2 and ‖Rz‖ is small, the algorithm is trying to reduce the duality
gap between Eqs. (29) and (30), while maintaining feasibility for Eq. (30).

6.2 A Semidefinite Framework for the Generalized Lanczos Trust Region Method

As in the MS algorithm, we now show that the GLTR algorithm can also be explained using the
Lagrangian dual Eq. (29). Here, we outline how their stopping criterion is measuring the duality
gap between TRS= and this Lagrangian dual. (A detailed discussion is given in Ref. [1].)

Each iteration of the algorithm returns a feasible point xk for TRS and a corresponding
Lagrange multiplier λk which are optimal for the subproblem (18). The algorithm stops when
stationarity is satisfied up to a tolerance, i.e., when

‖(A − λk I )xk − a‖ (31)
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becomes small. When the λk are feasible for Eq. (29) and bounded, then it is possible to show

q(xk)− h(λk) = O(‖(A − λk I )xk − a‖2),

i.e., the duality gap is bounded by a quantity proportional to the square of Eq. (31). Therefore,
convergence of Eq. (31) to zero implies a zero duality gap.

Though the GLTR algorithm is a primal algorithm, since simpler primal problems are solved
to approximate the solution to TRS, the strength of the approximation is directly linked to the
duality gap between TRS and the dual problem (29).

7 THE RENDL–WOLKOWICZ ALGORITHM, MODIFIED

This algorithm both exploits the sparsity of A and handles the hard case. The algorithm is
based on using various primal and dual steps to reduce the interval of uncertainty for the
optimum (maximum) of the unconstrained dual program (25). We exploit the properties of
the eigenvalues and eigenvectors of the parametric matrix D(t). Many ideas from the MS
algorithm are transformed to the large sparse case, e.g., the primal step to the boundary and the
secular function. We also exploit information from the primal–dual pair of linear SDPs (27)
and (29). We outline the algorithm with a flowchart in Section 7.2. In Section 7.3 we list new
heuristics that take advantage of the structure of k(·), accelerate convergence, and facilitate the
handling of the hard case.

7.1 Three Useful Functions

Graphs, illustrating the properties of these functions, appear in Ref. [13].

7.1.1 k(t) = (s2 + 1)λ1(D(t)) − t

This is the function that we (implicitly) maximize to solve TRS, see Eq. (25).
Since

lim
t→∞ λ1(D(t)) = λ1(A) and lim

t→−∞(λ1(D(t)) − t) = 0,

the asymptotic behavior of k(t) is

k(t) ∼ (s2 + 1)λ1(A)− t , as t →∞ (linear with slope −1),

k(t) ∼ s2t , as t → −∞ (linear with slope s2),

i.e., k(t) is linear as |t| → ∞. Since λ1(D(t)) is concave, so is k(t). In the easy case, the
function is differentiable and strictly concave. In the hard case, loss of differentiability occurs
when the multiplicity of the smallest eigenvalue for λ1(D(t)) changes. The following theorem,
based on Ref. [11, Proposition 8, Lemmas 9 and 15], tells us when this happens.

THEOREM 7.1 Let A = P�PT be an orthogonal diagonalization of A. Let λ1(A) have mul-
tiplicity i and define

t0 := λ1(A)+
∑

j∈{k|(PT a)k �=0}

(PTa)2j
λj (A)− λ1(A)

.
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Then:

1. In the easy case, for all t ∈ R, λ1(D(t)) < λ1(A) and λ1(D(t)) has multiplicity 1.
2. In the hard case:

(a) for t < t0, λ1(D(t)) < λ1(A) and λ1(D(t)) has multiplicity 1;
(b) for t = t0, λ1(D(t)) = λ1(A) and λ1(D(t)) has multiplicity 1+ i ;
(c) for t > t0, λ1(D(t)) = λ1(A) and λ1(D(t)) has multiplicity i .

COROLLARY 7.1 In the hard case, for t ≥ t0, k(t) = (s2 + 1)λ1(A)− t .

Note that the maximum t∗ ≤ t0. Difficulties with differentiability arise when t∗ is close to t0.

7.1.2 k′(t) = (s2 + 1)y0(t)2 − 1

Maximizing the concave function k(t) is equivalent to finding 0 ∈ ∂k(t) (subgradient). Recall
that y(t) is a normalized eigenvector for λ1(D(t)) and y0(t) is its first component. If

y(t) =
(

y0(t)

x(t)

)
,

then, in the differentiable case,

1

y0(t)2
‖x(t)‖2 = 1− y0(t)2

y0(t)2
= s2 if and only if k ′(t) = 0,

i.e., this is equivalent to primal feasibility (cf. h′(λ) = 0 in MS algorithm). To obtain conditions
for y0(t) �= 0, we use the following from Ref. [11, Lemma 12, Lemma 15].

THEOREM 7.2 Let y(t) be a normalized eigenvector for λ1(D(t)) and let y0(t) be its first
component. Then:

1. In the easy case: for t ∈ R, y0(t) �= 0.
2. In the hard case:

(a) for t < t0: y0(t) �= 0;
(b) for t > t0: there exists a basis of eigenvectors for the eigenspace of λ1(D(t)) such that

each eigenvector in the basis has a zero first component (y0(t) = 0) and the vector
composed of the last n components is an eigenvector for λ1(A);

(c) for t = t0: there exists a basis of eigenvectors for the eigenspace of λ1(D(t0)), such
that one eigenvector of this basis, ω, has a nonzero first component (ω0 �= 0) and each
of the other eigenvectors in the basis has a zero first component (y0(t) = 0) and the
vector composed of the last n components is an eigenvector for λ1(A).

It is known that the function λ1(D(t)) is differentiable at points where the multiplicity of
the eigenvalue is 1. Its derivative is given by y0(t)2, where y(t) is a normalized eigenvector for
λ1(D(t)), i.e., ‖y(t)‖ = 1 [see Ref. 36]. Therefore, Theorems 7.1 and 7.2 yield the following.

COROLLARY 7.2

1. In the easy case: k(·) is differentiable and k ′(t) = (s2 + 1)y0(t)2 − 1.
2. In the hard case:

(a) for t < t0, k(·) is differentiable and k ′(t) = (s2 + 1)y0(t)2 − 1;
(b) for t = t0, k(·) is nondifferentiable and the directional derivatives from the left and right

are, respectively, k ′−(t0) = (s2 + 1)ω2
0 − 1 and k ′+(t0) = −1;

(c) for t > t0, k(·) is differentiable and k ′(t) = −1.
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The structure of the eigenvectors along with the shift and deflation Lemma 2.1 can be used
to avoid the hard case, i.e., if y0(t) is small, then we can deflate using the corresponding
eigenvector. Lemma 2.2 shows that the deviation from the original problem is small.

7.1.3 ψ(t) = √s2 + 1 − 1/y0(t)

Solvingψ(t) = 0 is equivalent to solving k ′(t) = 0. The advantage is thatψ(t) is less nonlinear
(cf. replacing h′ with φ in the MS algorithm). It can be shown that ψ(t) is strictly decreasing
and converges to

√
s2 + 1− 1 as t → −∞. In the easy case, ψ(t) goes to −∞ as t →∞. In

the hard case, ψ(t) is undefined for t > t0.

7.2 Flowchart

In the sequel, the set of {t: k ′(t) < 0} is referred to as the easy side and its complement as the
hard side. The details in the flowchart follow in Section 7.3.

• INITIALIZATION:
1. Compute λ1 = λ1(A) and corresponding eigenvector v1. If λ1(A) < 0, shift A← A −
λ1(A)I . (λ1(A)‖x∗‖2 is added back to the objective value at the end.)

If aTv1 is small (near hard case), then deflate, i.e., set

Y = {y1} =
{(

0

v1

)}
.

.
2. Obtain bounds on q∗, λ∗, and t∗.

If λ1 > 0, EXIT if the optimum is an unconstrained minimizer.
3. Initialize parameters and the stopping criteria; this is based on the optimality conditions,

duality gap, and intervals of uncertainty.
• ITERATION LOOP: (until convergence to the desired tolerance or until we find the solution

is the unconstrained minimizer)
1. FIND a NEW VALUE of t .

(a) Set t using Newton’s method on k(t)− Mt = 0 if the iterate falls into the interval
of uncertainty for t; otherwise set it to the the midpoint (default) of the interval of
uncertainty.

(b) If points from the hard and easy side are available:
i. Do TRIANGLE INTERPOLATION (Update upper bound on q∗ and set t , if

possible.)
ii. Do VERTICAL CUT (Update lower or upper bound for interval of uncertainty

for t .)
(c) Do INVERSE INTERPOLATION (Set t , if possible)

2. UPDATE
(a) With new t , compute (with restarts using a previous eigenvector) λ = λ1(D(t)) and

corresponding eigenvector y with y0 ≥ 0. (Use y orthogonal to the vectors in Y , if
possible.)

(b) If λ > 0 and y2
0 > 1/(s2 + 1) then the solution is the unconstrained minimizer. Use

Conjugate Gradients and EXIT.
(c) Update bounds on interval of uncertainty of q∗.
(d) i. If y0 is small, then deflate, i.e., add y to Y .
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ii. elseif t is on the easy side, update parameters. Take a primal step to the boundary
if a hard side point exists.

iii. elseif t is on the hard side, update parameters. Take a primal step to the boundary
from this hard side point.

(e) Save new bounds and update stopping criteria.
• END LOOP

7.3 Techniques Used in the Algorithm

7.3.1 Newton’s Method on k(t) − Mt = 0

We use the upper and lower bounds on k(t) and the Newton type method presented in Ref. [37].
Note that Newton’s method applied to k(t)− Mt = 0 at tc yields

t+ = tc − k(tc)− Mt

k ′(tc)
= (s2 + 1)(tcy2

0(tc)− λ1(D(tc)))+ Mt

(s2 + 1)y0(tc)2 − 1
.

One advantage of this method over solving k ′ = 0 is that the second derivative k ′′ is not needed.
We use this iteration for appropriate choices of Mt in cases where the inverse iteration on ψ
fails, i.e., if the hard case holds.

7.3.2 Triangle Interpolation

Given k(t), if we have values of t from the easy and hard sides, te and th, then we try to
find a better approximation tnew to the maximum of k(t) using a technique we call triangle
interpolation, i.e., we find the coordinate of the point where the secant lines intersect. (We use
a tangent line on the side where there is only one point.) In addition, we also obtain upper
bounds qup to q∗ := k(t∗) from the point where the secant lines intersect.

7.3.3 Vertical Cut

Suppose we have two values of t , te, and th, with k(te) < k(th). (A similar argument holds for
the reverse inequality.) Then we can use the concavity of k to reduce the interval of uncertainty
for t . We find the intersection of the horizontal line through (th, k(th)) with the tangent line at
the point (te, k(te)), i.e.,

thigh = te + k(th)− k(te)

k ′(te)
,

where thigh is the upper bound on t∗.

7.3.4 Inverse Interpolation

We use (quadratic or linear) inverse interpolation onψ(t) = 0, in the case that y0(t) �= 0. Since
ψ(t) is a strictly decreasing function, we can consider its inverse function, say t (ψ). We use
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(concave) quadratic interpolation when possible, i.e., suppose the points (ψi , ti ), i = 1, 2, 3.
Then we solve the system



ψ2

1 ψ1 1

ψ2
2 ψ2 1

ψ2
3 ψ3 1






a

b

tnew


 =




t1

t2

t3




and get the new estimate tnew. We use the top right 2 × 2 system in the linear interpolation
case.

In the hard case (case 2), inverse interpolation is not well defined. To avoid an erroneous
step, we maintain λ on the correct side of λ1(A).

7.3.5 Recognizing an Unconstrained Minimum

Problem (TRS) has an inequality constraint, but generally the optimum lies on the boundary
and we can solve the same problem with the equality constraint to get the optimum. This does
not hold if and only if the matrix A is positive definite and the unconstrained minimum lies
inside the TR. The following theorem is the key to recognizing this case.

THEOREM 7.3 Let x̄ be a solution to (A − λI )x = a with (A − λI ) positive semidefinite. If
λ ≤ 0, then x̄ is a solution to min{xT Ax − 2aTx : ‖x‖ ≤ ‖x̄‖}. If λ ≥ 0, then x̄ is a solution
to min{xT Ax − 2aTx : ‖x‖ ≥ ‖x̄‖}.

Proof The first part follows from the necessary and sufficient optimality conditions and the
second part follows easily knowing that the sign of λ plays no role in the positive semidefi-
niteness of the matrix A − λI when proving these optimality conditions. �

In our algorithm, we successively obtain solutions xk to (A − λk I )xk = a with A−λk I � 0.
Therefore each xk is a solution to min{xT Ax − 2aTx : ‖x‖ = ‖xk‖}. Checking the sign of
the multiplier λk tells us whether xk is a solution to min{xT Ax − 2aTx : ‖x‖ ≤ ‖xk‖} or
min{xT Ax − 2aTx : ‖x‖ ≥ ‖xk‖}. If the latter case holds and ‖xk‖ ≤ s, then we know the
unconstrained minimum lies in the TR.

7.3.6 Shift and Deflate

Let us consider the case when the optimum is on the boundary of the ball. Once the smallest
eigenvalue λ1(A) is found in the initialization step, we can use the shift in Lemma 2.1, Item 3
and Lemma 2.3. Therefore, for simplicity, we can assume that λ1(A) = 0.

During the algorithm we deflate eigenvectors y = (y0v
T)T if y0 is small (essentially 0). This

indicates that aTv is small. We perturb a ← a − aTvv and deflate using A← A + αvvT.

7.3.7 Taking a Primal Step to the Boundary

The interpolation and heuristics are used to find a new point t and then a corresponding λ for
the dual problem, i.e., they are used to take a dual step. Once the λ is found, we can find a
corresponding primal point x(λ) for the primal problem. This point will be primal feasible if
t (equivalently λ) is on the hard side and it will be primal infeasible on the other (easy) side.
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In either case, we now show that we can take an inexpensive primal step, i.e., move to the
boundary and improve the objective value. Thus, we get a primal–dual algorithm.

In the easy case, the step is motivated by the following lemma (for a proof see Refs. [1]
or [38]).

LEMMA 7.1 Let 0 < s1 < s < s2 and

xh ∈ argmin{q(x): ‖x‖ ≤ s2
1 }, xe ∈ argmin{q(x): ‖x‖ ≤ s2

2 }.

Suppose that ‖xh‖ = s1, ‖xe‖ = s2, xT
h (xe − xh) �= 0 and the Lagrange multiplier λh for xh

satisfies A − λh I � 0. Furthermore, let m(α) := q(xh + α(xe − xh)). Then m ′(α) ≤ 0, for
α ∈ [0, 1].

Thus, we find ᾱ so that ‖xh + ᾱ(xe − xh)‖ = s. We use two values, th and te, respectively on
the hard side and the easy side, with

xh := 1

y0(th)
x(th), xe := 1

y0(te)
x(te).

Then if xT
h (xe − xh) �= 0 and ᾱ is defined as in the above lemma, taking a step to the boundary

from xh to xh + ᾱ(xe − xh) will decrease the objective function. We assumed the easy case
so that y0(te) �= 0. However, in the hard case (case 2) y0(te) = 0. As in the MS algorithm, we
take a step to the boundary. From xh, we use an eigenvector z for the eigenvalue λ1(A) as the
direction to the boundary. This choice is motivated by Lemma 3.2 and the desire to make the
quadratic form zT(A − λ1(D(th))I )z small. We take the step xh + τ z with τ chosen to reduce
the objective function and satisfy ‖xh + τ z‖ = s. The explicit expression for τ is

τ = s2 − ‖xh‖2

xT
h z + sgn(xT

h z)
√
(xT

h z)2 + (s2 − ‖xh‖2)

,

where sgn(·) equals 1 if its argument is nonnegative and −1 otherwise. Given a direction z,
there are two values of τ for which xh + τ z reaches the boundary. Reference [10] proves that
to improve the objective, we should pick the one with smallest magnitude.

8 NUMERICAL EXPERIMENTS

8.1 The Hard Case

We now provide numerical evidence that our modified RW algorithm is better suited to handle
the hard case (case 2) than the MS algorithm. It is stated in Ref. [10] that the latter algorithm
requires few iterations (2–3) in the hard case. However, this appears to hold only when the
desired accuracy is low. Many more iterations are required when higher accuracy is desired.
Our tests were done using MATLAB 6.1 on a SUNW Ultra−5 10 with 1 GIG RAM.

Let q∗ be the optimal objective value of TRS and q̃ be an approximation for q∗. The MS
algorithm returns an approximate solution that satisfies q̃ ≤ (1− σ)2q∗, where 0 ≤ σ < 1
is an input to the algorithm, and the approximate solution of the RW algorithm satisfies
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q̃ ≤ 1/(1+ 2dgaptol)q∗, where dgaptol is the desired relative duality gap tolerance. Hence,
to get equivalent accuracy, we choose σ = 1−√1/(1+ 2dgaptol).

We used randomly generated sparse hard case (case 2(ii)) TR subproblems, where the
density is order 1/(20n log n). The tolerance parameter dgaptol was set to 10−12. Each row
in Table II gives the average number of iterations (iter) and computation time (cpu) for 10
problems of size n. We could not go beyond n = 640 for the MS algorithm due to the large
cpu that arise. The results, given in Table II illustrate the improved performance in both the
iter and the cpu.

Note that the GLTR algorithm does not appear in the above comparison since the algorithm
was not designed to handle this case.

8.2 Rendl–Wolkowicz and Generalized Lanczos Trust Region Algorithms in
Trust Region Framework

In Ref. [12], the GLTR method is stopped early after a limited extra number of iterations, say
N , once the solution is known to lie on the boundary of the TR. More precisely, the algorithm
stops if the subspace S in Eq. (18) is increased in dimension by N once the solution is known to
be on the boundary of the TR and problems of the type (18) are solved. The reason for limiting
the size of the subspaces S once the boundary has been reached is motivated by the fact that
the authors in Ref. [12] question whether high accuracy is needed for the TRS within a TR
framework. We argue that increased accuracy is needed for TRS just as for the solution of the
Newton equation when using inexact Newton methods, as the iterates approach a stationary
point, see e.g. Refs. [7,39].

For the upcoming test problems, we used N = 2, 6, and n, where n is the problem dimension.
Our test problems are of the following form

min
x∈Rn

f (x) := xT Ax

xT Bx
, (32)

where B is a positive definite matrix and A and B are generated randomly. The minimum
is attained at x∗, a generalized eigenvector corresponding to the smallest eigenvalue of the
generalized eigenvalue problem

Ax = λBx .

The optimal value is equal to λ1(B−1/2 AB−1/2).
To solve each problem we used the TR method described by Algorithm 8.1 on the same

machine as in Section 8.1. In this algorithm, f represents the function to be minimized, xj is
an approximation of a minimizer after j iterations and sj is the radius of the TR at iteration j .

TABLE II Modified-RW and MS algorithms; hard case (case 2(ii))

Dim. (n) MS iters RW iters MS cpu RW cpu

40 36.4 6.4 0.79 0.55
80 34.4 7.6 1.0 0.57

160 39.2 7.2 6.49 0.61
320 33.8 7.4 23.36 0.77
640 37.8 5.0 149.36 0.78

1280 – 7.6 – 2.06
2560 – 5.0 – 3.18
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ALGORITHM 8.1 Trust Region Method

1. Given xj and sj , calculate ∇ f (xj) and ∇2 f (xj). Stop if

‖∇ f (xj)‖
1+ | f (xj)| < gradtol. (33)

2. Find δj to a given tolerance in the TRS

δj ∈ argmin qj(δ) := ∇ f (xj)
Tδ + 1

2
δT∇2 f (xj)δ

s.t. ‖δ‖2 ≤ s2
j .

(34)

3. Evaluate rj = ( f (xj)− f (xj + δj))/(qj(0)− qj(δj)).

4. (a) If rj > 0.95, set sj+1 = 2sj and xj+1 = xj + δj .
(b) If 0.01 ≤ rj < 0.95, set sj+1 = sj and xj+1 = xj + δj .
(c) If rj < 0.01, set sj+1 = 0.5sj and xj+1 = xj .

Except for the stopping criteria (33) which has been scaled here, this algorithm isAlgorithm 6.1
in Ref. [12]. We chose x0 randomly and have fixed s0 = 1, gradtol = 10−2. We ran five random
problems for each problem size n = 20, 25, and 30, where n is the size of the square matrices
A and B . If the RW algorithm solves Eq. (34) and the solution is on the boundary of the TR,
we stop if the duality gap, dgaptol, (between TRS and Eq. (25)) satisfies√

dgaptol ≤ min{0.1,max{10−8, 10−5‖∇ f (xj)‖}}. (35)

Otherwise, the solution is in the interior and we stop with an approximate solution δj which
satisfies

‖∇ f (xj)+∇2 f (xj)δj‖ ≤ min{0.1,max{10−8, 10−5‖∇ f (xj)‖}}, (36)

If the GLTR algorithm is used, we stop within this algorithm if N iterations have been done
after knowing the solution lies on the boundary of the TR (see Ref. [12]) or if

‖(A − λk I )xk − a‖ < min{0.1,max{10−8, 10−5‖∇ f (xj)‖}} (37)

(see Eq. (30)) or Eq. (36) is satisfied, depending if the solution is on the boundary of the TR
or not.

Equations (35) and (37) yields approximately the same accuracy in terms of the duality gap.
Recall from Section 6.2 that ‖(A − λk I )xk − a‖ is an approximation for the square root of the
duality gap between TRS and its dual (28). The stopping criteria (35) and (37) are set to reflect
this relationship.

For each problem, we give the number of iterations (iter) taken by the TR method (32). If
the GLTR algorithm is used to solve the TRS (34), we give as well the number of iterations
within Algorithm 8.1 where the GLTR algorithm failed to solve Eq. (34) because it was unable
to solve the restricted problem (18). This last output (hc2) is an indicator of the (almost) hard
case (case 2).

The results given in Tables III–V, show that the (almost) hard case (case 2) occurs in many
problems and Algorithm 8.1, using the RW algorithm for Eq. (34), takes fewer iterations
to converge compared to the GLTR algorithm. This is independent of N . This suggests that
handling the hard case (case 2) should be an essential feature for a robust TR method. However,
we reach the same conclusions mentioned in Ref. [12] when the hard case (case 2) does not
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TABLE III The RW and GLTR; TR framework; size n = 20

Algorithm used for solving the TRS (34)

GLTR with N = 2 GLTR with N = 6 GLTR with N = n
RW

Problem iter iter hc2 iter hc2 iter hc2

1 16 36 5 25 0 16 0
2 33 22 0 55 19 48 16
3 50 21 0 15 0 52 16
4 41 39 8 45 16 32 3
5 25 45 10 19 0 25 0

occur. We observe the surprising fact that inexact solutions may indeed lead to less iterations
in some cases. This may be due to the fact that the TR becomes inactive early and Newton’s
method takes over. This clearly requires more study.

As we may expect, when the hard case (case 2) does not occur and N = n, a TR method,
using either the RW algorithm or the GLTR algorithm to solve the TRS (34), takes more or less
the same iter. This should be the case since we are asking for the same accuracy in Eqs. (35)
and (37).

8.3 Accuracy of Trust Region Subproblem in a Trust Region Method

Inexact Newton methods can obtain q-superlinear and even q-quadratic convergence rates if the
accuracy of the Newton equation increases appropriately as the iterates approach a stationary
point, e.g., Ref. [6]. Trust region methods such as Algorithm 8.1 are expected to reduce to
Newton’s method asymptotically, i.e., the TR constraint is expected to become inactive for most
problems. This happens for example when the second order sufficient optimality conditions
(positive definite Hessian) holds at the limit point. In either case, i.e., whether or not the TR
constraint becomes inactive, the accuracy for solving TRS must increase as we approach the
stationary point. We now investigate the number of iterations the TR Algorithm 8.1 takes to
solve an unconstrained minimization problem as the accuracy of the solutions of the TRS (34)
varies using MATLAB 6.5 on a Sun Fire 280R (UltraSPARC-III) with 2 GIGs RAM.

We solve the problem minx∈Rn f (x) to accuracy given by varying values of gradtol in the
inequality Eq. (33). The TRS (34) is solved using the modified RW algorithm to accuracy

dgaptol = max

{
tol, 10−6 min

{
1,
‖∇ f (xj)‖

1+ | f (xj)|
}1/2

}
, (38)

TABLE IV The RW and GLTR; TR framework; size n = 25

Algorithm used for solving the TRS (34)

GLTR with N = 2 GLTR with N = 6 GLTR with N = nRW
Problem iter iter hc2 iter hc2 iter hc2

1 31 48 17 34 5 32 2
2 38 26 0 27 1 32 2
3 22 25 0 22 0 22 0
4 20 39 4 31 1 20 0
5 25 26 0 22 0 22 0
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TABLE V The RW and GLTR; TR framework; size n = 30

Algorithm used for solving the TRS (34)

GLTR with N = 2 GLTR with N = 6 GLTR with N = n
RW

Problem iter iter hc2 iter hc2 iter hc2

1 61 14 0 36 7 57 24
2 38 50 17 35 2 37 6
3 34 22 0 27 1 45 17
4 34 19 14 25 0 36 8
5 36 38 7 26 0 32 3

TABLE VI The TR on f (x) = sin(x1 − 1)+∑1000
i=2 100 sin(xi − x2

i−1) [see Ref. 40]

gradtol

tol 10−3 10−4 10−5 10−6 10−7 10−8 10−9

10−1 42 117 ≥1000 ≥1000 ≥1000 ≥1000 ≥1000
10−3 15 21 50 s ∼= 0 s ∼= 0 s ∼= 0 s ∼= 0
10−5 12 16 18 88 s ∼= 0 s ∼= 0 s ∼= 0
10−7 12 22 38 52 67 s ∼= 0 s ∼= 0
10−9 12 16 18 22 24 50 s ∼= 0
10−11 12 22 38 53 68 83 96

for varying values of tol. We also terminate Algorithm 8.1 if more than 1000 iterations are
necessary or if the TR radius sj becomes smaller than 10−10 (this case is indicated by s ∼= 0).
The results for our two examples are given in Tables VI and VII, where the entries are the iter
taken by Algorithm 8.1.

From these results we observe two things. First, as the accuracy on the norm of the gradient
is decreasing, the TR method (32) using low accuracy solutions for the TRS is eventually
outperformed by higher accuracy solutions. Second, the results of Table VI indicate, for a fixed
tolerance gradtol on the norm of the gradient, that more accurate solution of the TRS does
not necessarily imply fewer iterations. Therefore, for robustness and as for inexact Newton
methods, it is beneficial to use increased accuracy for the TRS when approaching the minimum
of the objective function f .

TABLE VII The TR on f (x) =∑1000
i=1 6x2

i +
∑n

i=503 xi +∑998
i=1(xi xi+2 − 4xi xi+1)− 3x1+

x2 + x499 − 3x500 + 4x501 [see Ref. 41]

gradtol

tol 10−3 10−4 10−5 10−6 10−7 10−8 10−9

10−1 9 10 s ∼= 0 s ∼= 0 s ∼= 0 s ∼= 0 s ∼= 0
10−3 4 5 s ∼= 0 s ∼= 0 s ∼= 0 s ∼= 0 s ∼= 0
10−5 4 5 6 s ∼= 0 s ∼= 0 s ∼= 0 s ∼= 0
10−7 4 5 6 7 8 s ∼= 0 s ∼= 0
10−9 4 5 6 7 8 s ∼= 0 s ∼= 0
10−11 4 5 6 7 8 s ∼= 0 s ∼= 0
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TABLE VIII Modified RW algorithm on TRS; n = 100,000

dgaptol

Density 10−12 10−10 10−8

10−8 cpu: 18.2 cpu: 14.5 cpu: 13.5
mvm: 185.6 mvm: 150.0 mvm: 140.0

iter: 6.2 iter: 5.4 iter: 4.8
10−6 cpu: 21.1 cpu: 19.2 cpu: 20.0

mvm: 210.0 mvm: 196.0 mvm: 204.0
iter: 6.4 iter: 5.4 iter: 5.6

10−4 cpu: 91.7 cpu: 78.8 cpu: 76.0
mvm: 341.6 mvm: 294.0 mvm: 276.0

iter: 5.8 iter: 5.0 iter: 5.6

TABLE IX Modified RW algorithm on TRS; n = 1,000,000

dgaptol

10−2 10−4 10−6 10−8 10−10 10−12

cpu 985.1 985.1 1082.8 1082.8 1183.6 1282.9
mvm 240 240 260 260 280 300
iter 3 3 4 4 5 6

8.4 Large Sparse Trust Region Subproblem

The results of Table VIII show how we used the RW algorithm to solve problems of size
n = 100,000 of different density. Precisely, each row in this table corresponds to the density
of the problems (for example, if the density is 10−6, then at most n2 × 10−6 entries in the
matrix A are nonzero) and each column to the value of the parameter dgaptol. In each entry of
the table we give the average taken over five random TR subproblems of the cpu seconds, the
number of matrix-vector multiplications (mvm) and the number of iterations taken by the RW
algorithm to find an approximate solution. We have been using for this section MATLAB 6.1
on a Pentium III with 4 GIGs RAM.

As we may expect, the cpu and the mvm increase as the density increases and the duality
gap tolerance decreases. Furthermore, considering the reasonable length of the cpu taken to
solve such TRS, we conclude that it is now within our reach to use TR methods to minimize
functions with hundreds of thousands of variables assuming the Hessian has a sparse structure.
In Table IX, we considered a TRS of size n = 106 with 11 million nonzeros in the sparse
matrix A. The results show that higher accuracy solutions require minimal extra iterations of
the RW algorithm.

9 CONCLUSION

In this article, we have studied the TRS with emphasis on robustness and solving large sparse
problems. We focused on three dual based algorithms: the classical MS algorithm and the
recent RW and GLTR algorithms, designed to solve large and sparse TRS.

We also studied many duals to TRS which can be formulated as semidefinite programs. We
have seen how SDP arises naturally for TRS and provides a clear and simple unifying analysis
between the different algorithms. In addition, this framework provides insights to the strengths
and weaknesses of the algorithms.
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In addition, we presented a modified/enhanced RW algorithm with new heuristics and tech-
niques, in particular for taking a primal step to the boundary. However, the main improvement
came from a new way of treating the (near) hard case based on Lemma 2.1. Surprisingly, the
lemma shows that for each TRS, it is possible to consider an equivalent TRS where the hard
case (case 2) does not occur.

Our final section included numerics which showed the advantage of using the modified RW
algorithm over the MS algorithm in treating the hard case when high accuracy approximations
are needed. We have also shown that handling the hard case in the TRS within a TR method may
have an impact on the total iter if the hard case occurs frequently enough. Thus, the robustness
of a TRS algorithm is indeed an important feature, in particular when the TR constraint stays
active close to the optimal solution. Finally, we showed it is possible to solve large sparse TRS
to high accuracy with hundreds of thousands of variables in a small number of iterations.
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