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Summary: This paper presents a backward stable preprocessing tgehifor
(nearly) ill-posed semidefinite programming, SDP, proldeie., programs for
which the Slater constraint qualification, existence aé#yrfeasible points, (nearly)
fails.

Current popular algorithms for semidefinite programmingoa primal-dual interior-
point, p-d i-pmethods. These algorithms require the Slater constraglifapation
for both the primal and dual problems. This assumption guaes the existence
of Lagrange multipliers, well-posedness of the problerd, stability of algorithms.
However, there are many instances of SDPs where the Slatstramt qualification
fails or nearlyfails. Our backward stable preprocessing technique ischaseap-
plying the Borwein-Wolkowicz facial reduction process tadfia finite numbel, of
rank-revealing orthogonal rotationsf the problem. After an appropriate truncation,
this results in a smaller, well-posetkarbyproblem that satisfies the Robinson con-
straint qualification, and one that can be solved by stan8bBxd solvers. The case
k = 1 is of particular interest and is characterized by strichpementarity of an
auxiliary problem.

Introduction

The aim of this paper is to develop a backward stable prepsitg technique to
handle (nearly) ill-posed semidefinite programming, SDBbfems, i.e., programs
for which the Slater constraint qualification (Slater CQ,S£Q), the existence
of strictly feasible points, (nearly) fails. The technigisebased on applying the
Borwein-Wolkowiczfacial reductionprocess [11, 12] to find a finite numbleiof
rank-revealing orthogonal rotatiosteps. Each step is based on solving an auxiliary
problem (AP) where it and its dual satisfy the Slater CQ. Adte appropriate trun-
cation, this results in a smaller, well-poseéarbyproblem for which the Robinson
constraint qualification (RCQ) [52] holds; and one that carsblved by standard
SDP solvers. In addition, the calse- 1 is of particular interest and is characterized
by strict complementarity of the (AP).

In particular, we study SDPs of the following form

(P) vp :=sup{b'y : &7*y<C}, (1.1)
y

where the optimal values is finite,b € R™, C € S", and.# : S" — RMis an onto
linear transformation from the spa@ of n x nreal symmetric matrices ™. The
adjoint of & is &*y = ZirilyiAi' whereA € S",i = 1,...,m. The symbol= de-
notes the Lowner partial order induced by the cBheof positive semidefinite ma-
trices, i.e.,7*y < Cif and only if C— .&7*y € S'} . (Note that the cone optimization
problem (1.1) is commonly used as the dual problem in the $@Rdure, though

it is often the primal in the Linear Matrix Inequality (LMljtérature, e.g., [13].)

If (P) is strictly feasible then one can use standard solution techniques; if (P) is
strongly infeasiblethen one can sep = —o, e.g., [38, 43, 47, 62, 66]. If neither
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of these two feasibility conditions can be verified, then wplg our preprocessing
technique that finds a rotation of the problem that is akiratik-revealingmatrix
rotations. (See e.g., [58, 59] for equivalent matrix resyIThis rotation finds an
equivalent (nearly) block diagonal problem which allowsgonple strong dualiza-
tion by solving only the most significant block of (P) for whithe Slater CQ holds.
This is equivalent to restricting the original problem tcead ofS", i.e., the pre-
processing can be considered daeial reductionof (P) . Moreover, it provides a
backward stablapproach for solving (P) when it is feasible and the SCQ;faitsl
it solves a nearby problem when (Pweakly infeasible
The Lagrangian dual to (1.1) is

(D) Vp = ir>1<f{<C,X> 1/ (X) =b,X >0}, (1.2)

where(C,X) = traceCX = > 7;; Gij X;j denotes the trace inner product of the sym-
metric matrice<C andX; and, </ (X) = ((Ai, X)) € R™. Weak dualityvp > vp fol-
lows easily. The usual constraint qualification (CQ) usedR) is SCQ, i.e., strict
feasibility o7y < C (orC — .«/*y € S, , the cone of positive definite matrices). If
we assume the Slater CQ holds and the primal optimal valugits,fthen strong
duality holds, i.e., we have a zero duality gap and attairtroéthe dual optimal
value. Strong duality results for (1.1) without any conistrgualification are given

in [10, 11, 12, 72] and [48, 49], and more recently in [50, 6&lated closure con-
ditions appear in [44]; and, properties of problems whewenst duality fails appear
in [45].

General surveys on SDP are in e.g., [4, 63, 68, 74]. Furtheergé results on
SDP appear in the recent survey [31].

Many popular algorithms for (P) are based on Newton’s metiudl aprimal-
dual interior-point, p-d i-papproach, e.g., the codes (latest at the URLSs in the cita-
tions) CSDP, SeDuMi, SDPT3, SDPA [9, 60, 67, 76]; see also the
SDP URL: www-user.tu-chemnitz.de/"helmberg/sdytware.html.

To find the search direction, these algorithms apply symeation in combination
with block elimination to find the Newton search directiohelsymmetrization and
elimination steps both result in ill-conditioned linearssms, even for well con-
ditioned SDP problems, e.g., [19, 73]. And, these methodwary susceptible to
numerical difficulties and high iteration counts in the cadeen SCQ nearly fails,
see e.g., [21, 22, 23, 24]. Our aim in this paper is to providtahle regularization
process based on orthogonal rotations for problems whece fetasibility (nearly)
fails. Related papers on regularization are e.g., [30,8%];papers on high accuracy
solutions for algorithms SDPA-GMP,-QD,-DD are e.g., [AA]addition, a popular
approach uses a selfdual embedding e.g., [16, 17]. Thisapprresults in SCQ
holding by using homogenization and increasing the numbegaables. In con-
trast, our approach reduces the size of the problem in agrepsing step in order
to guarantee SCQ.
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Outline

We continue in Section 1 with preliminary notation and ré&stbr cone program-
ming. In Section 1 we recall the history and outline the samities and differences of
what facial reduction means first for linear programming)(l&d then for ordinary
convex programming (CP), and finally for SDP, which has el@smé&om both LP
and CP. Instances and applications where the SCQ fails\aer b Section 1. Then,
Section 1 presents the theoretical background and toottedder the facial reduc-
tion algorithm for SDP. This includes results on strong dyah Section 1; and,
various theorems of the alternative, with cones having lnathempty and empty
interior, are given in Section 1. A stable auxiliary probléil 8) for identifying the
minimal face containing the feasible set is presented amtledd in Section 1; see
e.g., Theorem 1.13. In particular, we relate the questidnamisforming the unsta-
ble problem of finding the minimal face to the existence of impt-dual optimal
pair satisfying strict complementarity and to the numbesteps in the facial reduc-
tion. See Remark 1.12 and Section 1. The resulting infoondtom the auxiliary
problem for problems where SCQ (nearly) fails is given inditeen 1.17 and Propo-
sitions 1.18, 1.19. This information can be used to cons&gaivalent problems.
In particular, a rank-revealing rotation is used in Sectidio yield two equivalent
problems that are useful in sensitivity analysis, see Téradk.22. In particular, this
shows the backwards stability with respect to perturbationthe paramete8 in
the definition of the con@&g for the problem. Truncating the (near) singular blocks
to zero yields two smaller equivalent, regularized protdémSection 1.

The facial reduction is studied in Section 1. An outline of facial reduction
using a rank-revealing rotation process is given in SectioBackward stability
results are presented in Section 1.

Preliminary numerical tests, as well as a technique for geimg instances with
a finite duality gap useful for numerical tests, are given @tton 1. Concluding
remarks appear in Section 1. (An index is included to help¢heer, see page 50.)

Preliminary definitions

Let (¥,(-,-),) be a finite-dimensional inner product space, #te a (closed)
convex conen ¥, i.e., AK CK,VA >0, andK + K C K. K is pointedif KN (—K) =
{0}; K is properif K is pointed and ir # 0; thepolar or dual coneof K is K* :=
{p:(p,k) >0,Vk € K}. We denote by<k the partial order with respect 4.
That is, x; <k X2 means thak, — x; € K. We also writex; <k X2 to mean that
X2 — X1 € intK. In particular with?” = S", K =S} yields the partial order induced
by the cone of positive semidefinite matriceSii.e., the so-called Lowner partial
order. We denote this simply witk <Y for Y —X € S"l. congS) denotes the
convex cone generated by the &t In particular, for any non-zero vectar the
ray generated by is defined by cong). The ray generated bye K is called an
extreme rayf 0 <k u <k simplies thatu € cong(s). The subseF C K is aface of
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the cone Kdenoted- <K, if
(se F,0=<k u=ks) = (coneu) CF). (1.3)

Equivalently,F <K if F is a cone andx,y € K, 3(x+y) € F) = ({x,y} CF).
If F <K butis not equal td, we writeF <K. If {0} # F <K, thenF is aproper
faceof K. ForSC K, we let facéS) denote the smallest face Kfthat containsS.
A face F <K is anexposed faceif it is the intersection oK with a hyperplane.
The coneK is facially exposedf every faceF <K is exposed. I <K, then the
conjugate facés F¢:= K* N {F }*. Note that the conjugate fa€¢ is exposedising
anys € relintF (where relinS denotes theelative interior of the setS), i.e.,F¢ =
K*N{s}+,Vse relintF. In addition, note tha$" is self-dual (i.e.(S7)* =S") and
is facially exposed.

For the general conic programming problem, the constrimiaal transformation
o/ .V — W maps between two Euclidean spaces. The adjointofs denoted
by o* . W — ¥, and the Moore-Penrose generalized inverseZo denoted by
AR 8

A linear conic program may take the form

(Peonic) V"= sup{(b,y) : C— /"y =k 0}, (1.4)
y

with b € # andC € 7. Its dual is given by
(Deonio) vEenic inf{(C.X) : /(X) =b.X =+ O}. (1.5)

Note that the Robinson constraint qualification (RCQ) isl $aihold for the linear
conic program (Bynic) if 0 € int(C — .&7*(R™) —S1 ); see [53]. As pointed out in
[61], the Robinson CQ is equivalent to the Mangasarian-notn constraint qual-
ification in the case of conventional nonlinear programmikgo, it is easy to see
that the Slater CQ, strict feasibility, implies RCQ.

Denote the feasible solution and slack sets of (1.4) and by.57p = 3“,%’ ={y:
Ay =k C}, FE={Z: Z=C—a/*y ¢ 0}, andFp = {X: &/ (X) =b, X =« 0},
respectively. Theninimal faceof (1.4) is the intersection of all faceslkéfcontaining
the feasible slack vectors:

fp = 5 :=facgC — .&/*(Fp)) =N{H <IK : C—.&/*(Fp) CH}.

Here,«7*(.%p) is the linear image of the sefp under.s7*.

We continue with the notation specifically fof = S", K =Sl and# = R™.
Then (1.4) (respectively, (1.5)) is the same as (1.1) (tspay, (1.2)). We letg de-
note thei-th unit vector, andjj := %Z(e,ejT +eje") are the unit matrices if". for
specificA; € S",i =1,...,m. We let||.</ || denote the spectral norm of and de-

fine the Frobenius norm (Hilbert-Schmidt norm)@fas||.« /g := /> " [|Al|2.

Unless stated otherwise, all vector norms are assumed tenben2, and all ma-
trix norms in this paper are Frobenius norms. Then, e.g,, (3®&pter 5], for any
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Xesn,
[« (X)|l2 < (| |2l X[[r < [|</ || ][X]]e- (1.6)

We summarize our assumptions in the following.
Assumption 1.1 .%p # 0; <7 is onto.

Framework for Regularization/Preprocessing

The case of preprocessing for linear programming is welldmdrhe situation for
general convex programming is not. We now outline the pregssing and facial
reduction for the cases of: linear programming, (LP); cadjrconvex programming,
(CP); and SDP. We include details on motivation involvingnauical stability and
convergence for algorithms. In all three cases, the fae@liction can be regarded
as a Robinson type regularization procedure.

The case of linear programming, LP

Preprocessing is essential for LP, in particular for theliappion of interior point
methods. Suppose that the constraint in (1.4¥1y <k ¢ with K =R, the non-
negative orthant, i.e., it is equivalent to the elementiisgualityATy < c¢,c € R",
with the (full row rank) matrixA beingm x n. Then (Rgnic) and (Qxonic) form the
standard primal-dual LP pair. Preprocessing is an es$etdip in algorithms for
solving LP, e.g., [20, 27, 35]. In particular, interior-pbimethods require strictly
feasible points for both the primal and dual LPs. Under tiseiamption that¥p # 0,
lack of strict feasibility for the primal is equivalent todkexistence of an unbounded
set of dual optimal solutions. This results in convergenodiems, since current
primal-dual interior point methods follow theentral pathand converge to the ana-
lytic center of the optimal set. From a standard Farkas’ Lenmargument, we know
that the Slater CQ, the existence of a strictly feasible pafry < ¢, holds if and
only if

the syster+ ®d>0Ad=0,c"d=0 ‘ is inconsistent a.7)

In fact, after a permutation of columns if needed, we cantpartboth A c as

<
A= [A< A7], with A~ sizemxt, c= (E) ,

so that we have

A<y <c<, A Ty=c", forsomeycR™,  andATy<c = A=Ty=c",
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i.e. the constraintd=Ty < ¢~ are theimplicit equality constraintswith indices
givenin

2:={1,...,n}, 2= :={1,....n—t}, 2 ={n-t+1...,n}

Moreover, the indices foc™ (and columns ofA~) correspond to the indices in
a maximal positivesolutiond in (1.7); and, the nonnegative linear dependence in
(1.7) implies that there are redundant implicit equalitpsiwaints that we can dis-
card, yielding the smallefAz)Ty = cg with A full column rank. Therefore, an
equivalent problem to (Bnic) is

(Preg) vp:=max{by : A<y <c<, ATy =cx}. (1.8)

And this LP satisfies the Robinson constraint qualificati®CQ); see Corol-
lary 1.17, Item 2, below. In this case RCQ is equivalent to kf@ngasarian-
Fromovitz constraint qualification (MFCQ), i.e., therestzia feasiblg Which satis-
fies the inequality constraints strictl@(fT)? < ¢<, and the matriXA= for the equality
constraints is full row rank, seee.g.,[8, 40]. The MFCQ eletrizes stability with
respect to right-hand side perturbations and is equivédemaving a compact set of
dual optimal solutions. Thus, recognizing and changingittiy@icit equality con-
straints to equality constraints and removing redundaum bty constraints provides
a simpleregularization of LP

Let fp denote the minimal face of the LP. Then note that we can rewvhi¢
constraint as

ATy < ¢, with fp:={z€ R} :z =0,ic 2~}

Therefore, rewriting the constraint using the minimal facevides a regularization
for LP. This is followed by discarding redundant equalitynstraints to obtain the
MFCQ. This reduces the number of constraints and thus therdiian of the dual

variables. Finally, the dimension of the problem can benerteduced by eliminat-
ing the equality constraints completely using the nullggapresentation. However,
this last step can result in loss of sparsity and is usualtyloae.

We can similarly use a theorem of the alternative to recagfadure of strict
feasibility in the dual, i.e., the (in)consistency of thestgm 0# ATv > 0,b"v =
0. This corresponds to identifying which variabbgsare identically zero on the
feasible set. The regularization then simply discardseivasiables along with the
corresponding columns & c.

The case of ordinary convex programming, CP

We now move from LP to nonlinear convex programming. We atersheordinary
convex program (CP)
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(CP) vep :=sup{b’y : g(y) <0}, (1.9)

whereg(y) = (gi(y)) € R", andg; : R™ — R are convex functions, for aill (Without
loss of generality, we let the objective functibfy) = b"y be linear. This can always
be achieved by replacing a concave objective function witeva variable sup and
adding a new constraint f (y) < —t.) The quadratic programming case has been
well studied, [28, 28, 42]. Some preprocessing resultsHergeneral CP case are
known, e.g., [15]. However, preprocessing for general Cioisas well known as
for LP. In fact, see [6], as for LP there is a setiwiplicit equality constraints for
CP, i.e. we can partition the constraint index sét= {1,...,n} into two sets

P~ ={ie P :yfeasible = ¢gi(y) =0}, P*=2\P". (1.10)

Therefore, as above for LP, we can rewrite the constrain®Hrusing the minimal
face fp to getg(y) =1, 0. However, this is not a true convex program since the new
equality constraints are not affine. However, surprisitilgé/corresponding feasible
set for the implicit equality constraints is convex, e.g], We include the result and

a proof for completeness.

Lemma 1.2.Let the convex program (CP) be given, and $8t be defined as in
(1.10). Then the se# = := {y: gi(y) = 0,Vi € 2=} satisfies
F-={y:aly)<0Vie 7},

and thus is a convex set.

Proof. Let g=(y) = (0i(Y))icp- andg=(y) = (0i(Y))ic»<- By definition of 2=,
there exists a feasiblec< % with g<(y) < 0; and, suppose that there exigtaith
g=(y) <0, andgi,(y) < 0, for somep € #=. Then for smallx > 0 the pointyy :=
ay+ (1—-a)ye .# andgi,(ya) < 0. This contradicts the definition a#~.

This means that we can regularize CP by replacing the inhjgligiality constraints
as follows

(CPreg) vep i=sup{b'y :g=(y) <0,ye Z~}. (1.12)
The generalized Slater CQ holds for tlegularized convex prografCPg). Let

®(A)= supb'y—ATg=(y)
yeF=

denote theegularized dual functional for CPThen strong duality holds for CP with
theregularized dual programi.e.

Vcp = VcpD = Jgfofp()\)

= @(A7),

for some (dual optimal) * > 0. The Karush-Kuhn-Tucker (KKT) optimality condi-
tions applied to (1.11) imply that
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y* is optimal for CReg

if and only if
y e (primal feasibility)
b—Og=~(y")A* € (= —y*)", for someA* > 0 (dual feasibility)
g<(y)TA*=0 (complementary slackness)

This differs from the standard KKT conditions in that we néeel polar set

(F~—y") =cone(Z- —y) =(D"(y"))", (1.12)

whereD=(y*) denotes theone of directions of constanof the implicit equality
constraints#=, e.g., [6]. Thus we need to be able to find this cone numeyicall
see, [71]. A backward stable algorithm for the cone of dioet of constancy is
presented in [37].

Note that a convex functiofis faithfully convex if f is affine on a line segment
only if it is affine on the whole line containing that segmesgte [54]. Analytic con-
vex functions are faithfully convex, as are strictly convemctions . For faithfully
convex functions, the se = is an affine manifold, 7= = {y: Vy=Vy}, where
y € # is feasible, and the nullspace of the mawigives the intersection of the
cones of directions of constanby~. Without loss of generality, & be chosen full
row rank. Then in this case we can rewrite the regularizellpro as

(CPreg) vep :=sup(b’y :g=(y) <0,Vy=Vy}, (1.13)

which is a convex program for which the MFCQ holds. Thus byntdging the

implicit equalities and replacing them with the linear elifiess that represent the

cone of directions of constancy, we obtain the regularizearex program. If we let
<

gR(y) = (v%,_()@y) , then writing the constrairg(y) < 0 usingg® and the minimal

conefp asgR(y) <y, O results in the regularized CP for which MFCQ holds.

The case of semidefinite programming, SDP

Finally, we consider our case of interest, the SDP given.ih)(In this case, the cone
for the constraint partial order &}, anonpolyhedratone. Thus we have elements
of both LP and CP. Significant preprocessing is not done irectipublic domain
SDP codes. Theoretical results are known, see e.g., [34k&uits on redundant
constraints using a probabilistic approach. However, ,[18 notion of minimal
face can be used to regularize SDP. Surprisingly, the albesdtrfor LP in (1.8)
holds. A regularized problem for (P) for which strong dualiblds has constraints
of the form.er*y <, C without the need for an extra polar set as in (1.12) that
is used in the CP case, i.e., changing the cone for the partlar regularizes the
problem. However, as in the LP case where we had to discarchdaeht implicit
equality constraints, extra work has to be done to ensutghbaRCQ holds. The
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details for the facial reduction now follow in Section 1. Aquivalent regularized
problem is presented in Corollary 1.24, i.e., rather thammmpitation of columns
needed in the LP case, we perform a rotation of the problerstraint matrices, and
then we get a similar division of the constraints as in (1a8), setting the implicit
equality constraints to equality results in a regularizeabfem for which the RCQ
holds.

Instances where the Slater CQ fails for SDP

Instances where SCQ fails for CP are given in [6]. It is knohet the SCQ holds
generically for SDP, e.g., [3]. However, there are surpghi many SDPs that arise
from relaxations of hard combinatorial problems where S&i@.fin addition, there
are many instances where the structure of the problems afiomexact facial re-
duction. This was shown for the quadratic assignment prolite[80] and for the
graph partitioning problem in [75]. For these two instandbe barycenter of the
feasible set is found explicitly and then used to projectgtablem onto the mini-
mal face; thus we simultaneously regularize and simplig/ghoblems. In general,
the affine hull of the feasible solutions of the SDP are foumdi ased to find Slater
points. This is formalized and generalized in [64, 66]. Inticalar, SDP relaxations
that arise from problems with matrix variables that hayvk €onstraints along with
row and column constraints result in SDP relaxations wheseSiater CQ fails.

Important applications occur in the facial reduction aitjon for sensor net-
work localization and molecular conformation problemsegivn [36]. Cliques in
the graph result in corresponding dimension reduction efrttinimal face of the
problem resulting in efficient and accurate solution teghas. Another instance is
the SDP relaxation of the side chain positioning problendistli in [14]. Further
Applications that exploit the failure of the Slater CQ for BBelaxations appear in
e.g,[1, 2,5, 69].

Theory

We now present the theoretical tools that are needed forattielfreduction algo-

rithm for SDP. This includes the well known results for sgatuality, the theorems
of the alternative to identify strict feasibility, and, idldition, a stable subproblem
to apply the theorems of the alternative. Note that wekuserepresent the cor

to emphasize that many of the results hold for more geneyakd convex cones.
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Strong duality for cone optimization

We first summarize some results sttong dualityfor the conic convex program
in the form (1.4). Strong duality for (1.4) means that therezero duality gap
VEPNIC — \EONiC and the dual optimal value, (1.5) is attained. However, it is easy to
construct examples where strong duality fails, see e.§,,49, 74] and Section 1,
below.

It is well known that for a finite dimensional LP, strong diyalails only if the
primal problem and/or its dual are infeasible. In fact, intkd®h problems are feasi-
ble and both of the optimal values are attained (and equalyd only if, the optimal
value of one of the problems is finite. In general (conic) @negptimization, the
situation is more complicated, since the underlying conélse primal and dual op-
timization problems need not be polyhedral. Consequesun if a primal problem
and its dual are feasible, a nonzero duality gap and/or tamanent of the optimal
values may ensue unless soaoastraint qualificatiornolds; see e.g., [7, 55]. More
specific examples for our cone situations appear in e.dl, [38, Section 3.2], and
[63, Section 4].

Failure of strong duality is problematic, since many classfep-d i-p algorithms
require not only that a primal-dual pair of problems possessro duality gap, but
also that the (generalized) Slater CQ holds for both primdl@ual, i.e., that strict
feasibility holds for both problems. In [10, 11, 12], an eqléntstrongly dualized
primal problemcorresponding to (1.4), given by

(SP) vaRe:= sup{(b,y) : @y =<, C}, (1.14)

where fp <K is the minimal face oK containing the feasible region of (1.4), is
considered. The equivalence is in the sense that the feasbls unchanged

Ay =<k C <= "y =1, C.
This means that for any fadewe have
fpdF K = {&"y =2k C <= &'y = C}.
The Lagrangian dual of (1.14) is given by
(DSP) B8 = inf{(C,X) : & (X)=b, X =; 0}. (1.15)

We note that the linearity of the constraint means that amlggset of the type in
(1.12) is not needed.

Theorem 1.3 ([10]). Suppose that the optimal valwg®"® in (1.4) is finite. Then
strong duality holds for the pair (1.14) and (1.15), or eglently, for the pair (1.4)
and (1.15); i.e.yg?"¢ = vép" = VE¥IX and the dual optimal valuegdl is attained.
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Theorems of the alternative

In this section, we state some theorems of the alternativéhoSlater CQ of the
conic convex program (1.4), which are essential to our réoli@rocess. We first
recall the notion of recession direction (for the dual (L&)d its relationship with
the minimal face of the primal feasible region.

Definition 1.4. The convex cone akcession directionfor (1.5) is
%p:={De ¥ :4/(D)=0, (C,D) =0, D =k~ 0}. (1.16)

The coneZp consists of feasible directions for the homogeneous probleng
which the dual objective function is constant.

Lemma 1.5.Suppose that the feasible s&b # 0 for (1.4), and let G4 D € %p.
Then the minimal face of (1.4) satisfies

fp<<KN{D}* <K.
Proof. We have
0= (C.D) — (Fp, /(D)) = (C— /" (Fp).D).

HenceC — .o7*(%p) C {D}*+NK, which is a face oK. It follows thatfp C {D}* N
K. The required result now follows from the fact thfatis (by definition) a face of
K, andD is nonzero.

Lemma 1.5 indicates that if we are able to find an eleni®rt #Zp\ {0}, thenD
gives us a smaller face &t that contains#5. The following lemma shows that
the existence of such a directi@nis equivalento the failure of the Slater CQ for
a feasible program (1.4). The lemma specializes [12, Timedtd] and forms the

basis of our reduction process.

Lemma 1.6 ([12]). Suppose that i€ # 0 and.%p # 0. Then exactly one of the
following two systems is consistent:

1.4/(D)=0,(C,D)=0,and 0£ D >+ 0 (Zp\{0})
2.9y =<k C (Slater CQ)

Proof. Suppose thab satisfies the system in Iltem 1. Then forwlt .%p, we have

(C— a/*y,D) = (C,D) — (y,(«/(D))) = 0. Hence#5 C KN {D}+. But {D}*+ N

intk =0 as O£ D =k~ 0. This implies that the Slater CQ (as in Item 2) fails.
Conversely, suppose that the Slater CQ in Item 2 fails. We @K # 0 and

0¢ (o/*(R™) —C) +intK.

Therefore, we can fin® # 0 to separate the open ger*(R™) — C) + intK from
0. Hence we have
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<sz> > <D,C—J27*y>,

forall Z € K andy € #'. This implies thaD € K* and(D,C) < (D, /"y, for all
y € # . Thisimplies tha{.<7(D),y) = 0 forally € #; hences/ (D) = 0. To see that
(C,D) =0, fix anyy'€ .%p. Then 0> (D,C) = (D,C — &7*y) > 0, so(D,C) = 0.

We have an equivalent characterization for the generalitettr CQ for the dual
problem. This can be used to extend our results tg{b) .

Corollary 1.7. Suppose that ilK* £ 0 and.%p # 0. Then exactly one of the fol-
lowing two systems is consistent:

1. 0# &/*v =« 0, and(b,v) = 0.
2./(X)=b,X ¢~ 0 (generalized Slater CQ).

Proof. Let .#" be a one-one linear transformation with rang¢.z") = .4 (),
and letX satisfy.«7(X) = b. Then, Item 2 is consistent if, and only if, there exists
G such thatX = X — .# 0 - 0. This is equivalent to# ( <k~ X. Therefore,#", X
play the roles ofe*,C, respectively, in Lemma 1.6. Therefore, an alternative sys
tem is.# *(Z) = 0,0 # Z =« 0, and(X,Z) = 0. Since.¥ (% *) = Z(</*), this is
equivalentto G4 Z = &/*v =¢ O, and<)2,2> =0, or 0#£ &/*v =« 0, and(b,v) = 0.

We can extend Lemma 1.6 to problems with additional equeditystraints.

Corollary 1.8. Consider the modification of the primal (1.4) obtained byiadd
equality constraints:

(Ps) vp, ==sup{(b,y) : &y < C,By=f}, (2.17)

whereZ: % — ¥ is an onto linear transformation. Assume thakint 0 and (R)
is feasible. LeC = C — .o7* %" f. Then exactly one of the following two systems is
consistent:

1.4/(D)+ #*v=0, (C,D) =0, 0% D = 0.
2.y <k C, By = f.

Proof. Lety= %" f be the particular solution (of minimum norm) &y = f. Since
4 is onto, we conclude thaBy = f if, and only if,y = y+ %*v, for somev, where
the range of the linear transformati@ti is equal to the nullspace &8. We can now
substitute foly and obtain the equivalent constraint (y+ 4*v) <k C; equivalently
we geta*¢*v X C— &/*y. Therefore, Item 2 holds gt=y = y+ ¢*V, for some
v, if, and only if, &*¢*V <k C — &/*y. The result now follows immediately from
Lemma 1.6 by equating the linear transformatigiig™* with .<7* and the right-hand
sideC— /*ywith C. Then the systemin ltem 1in Lemma 1.6 becofédés? (D)) =
0,((C— &*y),D) = 0. The result follows since the nullspace#fis equal to the
range of#*.

We can also extend Lemma 1.6 to the important case whefe+@. This occurs
at each iteration of the facial reduction.
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Corollary 1.9. Suppose that il = 0, #p # 0, andC < spar{K). Then the linear
manifold
Sy:={ye# :C— "y e sparK)}

is a subspace. Moreover, 6% be a one-one linear transformation with
R(P) = ()" spariK).

Then exactly one of the following two systems is consistent:

1. 7*4/(D) =0, (C,D) =0, D € sparfK), and 0z D - 0.
2.C— oy e relintK.

Proof. SinceC € sparfK) = K — K, we get that G Sy, i.e.,Sy is a subspace.

Let 7 denote an onto linear transformation acting’orsuch that the nullspace
N () = sparfK)*, and.7* is a partial isometry, i.e.7* = 7. Therefore,7 is
one-to-one and is onto sp@). Then

*y <k C < &/*y 3¢ C and&*y € sparfK), sinceC e K —K
— (F*P)w =k C, y= Lw, for somew, by definition of &
= (TA*P)W=7x) 7 (C), y=Tw, for somew, by definition of 7,

i.e., (1.1) is equivalent to
Vp i=sup{(Z*b,w) 1 (7 P)W = 7k) 7 (C)}.
The corresponding dual is
vp :=inf{(.7(C),D) : 2*%/.7*(D) = 2*b, D = (7x)) 0} .

By construction, inf7 (K) # 0, so we may apply Lemma 1.6. We conclude that
exactly one of the following two systems is consistent:

2. (74 P)W =<7« 7 (D) (Slater CQ).

The required result follows, since we can now identify (D) with D € spar{K),
and.7 (C) with C.

Remark 1.10.Ideally, we would like to find € relint(#3)° = relint((C+ %(<7*)) NK)S,
since then we have found the minimal fage= {D}* NK. This is difficult to

do numerically. Instead, Lemma 1.6 compromises and findsra jpoa larger set

D € (' («)N{C}+ NK*)\{0}. This allows for the reduction df + KN {D}+.
Repeating to find anothdD is difficult without the subspace reduction usigg

in Corollary 1.9. This emphasizes the importance of the matisubspace form
reduction as an aid to the minimal cone reduction, [65].

A similar argument applies to the regularization of the dasagjiven in Corollary
1.7. LetZp = (X + .4 (/) NK*, where/ (X) = b. We note that a compromise to
finding Z € relint(.73)° = relint((X + A4 (7)) NK*), fp = {Z} NK* is finding
Z e (#(*)N{X}+NK)\{0}, where 0= (Z,X) = (o/*v,X) = (v, b).
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Stable auxiliary subproblem

From this section on we restrict the application of facialuetion to the SDP in
(1.2). (Note that the notion of auxiliary problem as well &edrems 1.13 and 1.17,
below, apply to the more general conic convex program (LE3ch iteration of
the facial reduction algorithm involves two steps. Firsg apply Lemma 1.6 and
find a pointD in the relative interior of the recession cogg,. Then, we project
onto the span of the conjugate fa@}+ NS O fp. This yields a smaller dimen-
sional equivalent problem. The first step to fibds well-suited for interior-point
algorithms if we can formulate a suitable conic optimizatwoblem. We now for-
mulate and present the properties of a stable auxiliarylpnolfor findingD. The
following is well-known, e.g., [41, Theorems 10.4.1,1G}4.

Theorem 1.11.If the (generalized) Slater CQ holds for both primal problgm)
and dual problem (1.2), then as the barrier parameter 0", the primal-dual cen-
tral path converges to a poifX,y,Z), whereZ = C — o7*y, such thatX is in the
relative interior of the set of optimal solutions of (1.2)da(y, 2) is in the relative
interior of the set of optimal solutions of (1.1

Remark 1.12.Many polynomial time algorithms for SDP assume that the New-
ton search directions can be calculated accurately. Hawdifeiculties can arise

in calculating accurate search directions if the corredpanJacobians become in-
creasingly ill-conditioned. This is the case in most of therent implementations
of interior point methods due to symmetrization and blodklation steps, see
e.g., [19]. In addition, the ill-conditioning arises if tlkacobian of the optimality
conditions is not full rank at the optimal solution, as is tase if strict complemen-
tarity fails for the SDP. This key question is discussedHertin Section 1, below.

According to Theorem 1.11, if we can formulate a pair of aaxyl primal-dual
cone optimization problems, each with generalized Sladantp such that the rel-
ative interior ofZp coincides with the relative interior of the optimal solutieet
of one of our auxiliary problems, then we can design an iatgubint algorithm for
the auxiliary primal-dual pair, making sure that the itesabf our algorithm stay
close to the central path (as they approach the optimalisols¢t) and generate our
desiredX e relint%p.

This is precisely what we accomplish next. In the speciaé @& =S, this
corresponds to finding maximum rank feasible solutiondferinderlying auxiliary
SDPs, since the relative interiors of the faces are charaetkby their maximal rank
elements.

Define the linear transformatiosc : S" — R™1 by

_ (“(D)
WC(D) - (<C, D>) ’
This presents a homogenized form of the constraint of (In@l)ambines the two
constraints in Lemma 1.6, Item 1. Now consider the followdogic optimization
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problem, which we shall henceforth refer to as #hiliary problem

valg":= min 0
3,D
s.t. |o(D)]| <o
(AP) |\< jl( 3|>\:1 (1.18)
VA D)=
D> 0.

This auxiliary problem is related to the study of the dis&sto infeasibility in
e.g., [46]. The Lagrangian dual of (1.18) is

s;p E?£5+y(1—<0,%|>)—<VV,D>—<(6),(%‘§D))>
w(l)-s

= sup jsrg 6(1—B)—<D, GEU+ yil +W> +HL.19)

5 , vn
W>0, (U) > 90
where2 := ﬁ €R™2: ||yl < B} refers to the second order cone. Since the
inner infimum of (1.19) is unconstrained, we get the follogveguivalent dual.
valg3"*:= sup y
y,uW
(DAP) s.t. Fdu+ V%| +W=0 (1.20)
Jul <1
W - 0.

A strictly feasible primal-dual point for (1.18) and (1.28)given by

1 1 1

o= 15> e (1) v
showing that the generalized Slater CQ holds for the pal8)(1.20).

Observe that the complexity of solving (1.18) is essertitiiat of solving the

original dual (1.2). Recalling that if a path-following @rtor point method is applied

to solve (1.18), one arrives at a point in the relative imtedf the set of optimal

solutions, a primal optimal solutigd*, D*) obtained is such th&* is of maximum
rank.

, and y=—1L u=0 W= I, (1.22)

Auxiliary problem information for minimal face of %3

This section outlines some useful information that the lgaryi problem provides.
Theoretically, in the case when the Slater CQ (nearly) failg1.1), the auxiliary
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problem provides a more refined description of the feasdéaiéon, as Theorem 1.13
shows. Computationally, the auxiliary problem gives a mea®f how close the
feasible region of (1.1) is to being a subset of a face of tie @d positive semidef-
inite matrices, as shown by: (i) the cosine-angle upper dd¢near orthogonality) of
the feasible set with the conjugate face given in Theorem;1ii) the cosine-angle
lower bound (closeness) of the feasible set with a proper &&'} in Proposi-
tion 1.18; and (iii) the near common block singularity bouod all the feasible
slacks obtained after an appropriate orthogonal rotaitio@prollary 1.19.

We first illustrate the stability of the auxiliary problemdashow how a primal-
dual solution can be used to obtain useful information alte@toriginal pair of
conic problems.

Theorem 1.13.The primal-dual pair of problems (1.18) and (1.20) satikky gen-
eralized Slater CQ, both have optimal solutions, and thenfegative) optimal
values are equal. Moreover, lettiig*,D*) be an optimal solution of (1.18), the
following holds under the assumption thép # 0:

1. If * =0andD* - 0, then the Slater CQ fails for (1.1) but the generalizeds8lat
CQ holds for (1.2). In fact, the primal minimal face and théyqrimal feasible
(hence optimal) solution are

fo={0}, vy =(«")"(©C).

2. If 6* =0 andD* ¥ 0, then the Slater CQ fails for (1.1) and the minimal face
satisfies
fp ST N{D*}*+ < ST (1.22)

3. If * > 0, then the Slater CQ holds for (1.1).

Proof. A strictly feasible pair for (1.18)—(1.20) is given in (1)2Hence by strong
duality both problems have equal optimal values and bothesare attained.

1. Suppose thad* = 0 andD* > 0. It follows that.e(D*) = 0 andD* #£ 0. It
follows from Lemma 1.5 that

fp< ST N{D*}*+ = {0}.

Hence all feasible points for (1.1) satigsB/— «7*y = 0. Since« is onto, we
conclude that the unique solution of this linear systes-is(7*)1(C).
Since ¢/ is onto, there existX such thate/ (X) = b. Thus, for everyt > 0,
o/ (X +tD*) = b, and fort large enoughX +tD* - 0. Therefore, the general-
ized Slater CQ holds for (1.2).

2. The result follows from Lemma 1.5.

3. If 0* > 0, then%p = {0}, whereZp was defined in (1.16). It follows from
Lemma 1.6 that the Slater CQ holds for (1.1).

Remark 1.14.Theorem 1.13 shows that if the primal problem (1.1) is fdasihen
by definition of (AP) as in (1.18)* = 0 if, and only if,.e#c has a right singular vec-
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tor D such thaD > 0 and the corresponding singular value is zero, i.e., wedoeul
place (AP) with mi{||.«%=(D)|| : ||D|| = 1,D = 0}. Therefore, we could solve (AP)
using a basis for the nullspace ot, e.g., using an onto linear function,. on

S" that satisfies%’(ai{;c) = A (4), and an approach based on maximizing the
smallest eigenvalue:

& 7 sup{ Amin#y) : WacdAey) = Lyl < 1f

s0, in the case whed* = 0, both (AP) and (DAP) can be seen as a max-min eigen-
value problem (subject to a bound and a linear constraint).
Finding 0+ D = 0 that solves#: (D) = 0 is also equivalent to the SDP

inf ||D|
st @ (D)=0, (I,D) =/, D=0,

a program for which the Slater CQ generally fails. (See Iteaf Zheorem 1.13.)
This suggests that the problem of finding the recession titire® # D > 0 that
certifies a failure for (1.1) to satisfy the Slater CQ may béffecdlt problem.

(1.23)

One may detect whether the Slater CQ fails for the dual (siguthe auxiliary
problem (1.18) and its dual (1.20).

Proposition 1.15.Assume that (1.2) is feasible, i.e., there exits ST such that
</ (X) = b. Then we have th&X is feasible for (1.2) if and only if

X=X+ 43y >0,

where#, : S" — R"1)/2-Mis an onto linear transformation such tat.4%) =
A (). Then the corresponding auxiliary problem

|nf6 s.t. H( >)>H§6,<I,D>_\/H,D§0

either certifies that (1.2) satisfies the Slater CQ, or thattbeé only feasible slack
of (1.2), or detects a smaller faceSJf containingZp.

The results in Proposition 1.15 follows directly from theresponding results for
the primal problem (1.1). An alternative form of the auxijigproblem for (1.2) can
be defined using the theorem of the alternative in Corollary 1

Proposition 1.16.Assume that (1.2) is feasible. The dual auxiliary problem

supA st ((1)Tv=1 b'v=0, &*v= Al (1.24)
VA

determines if (1.2) satisfies the Slater CQ. The dual of (li2dgiven by

inff) 2 st {(1,Q)=1 & (Q)— 1/ (1)— b=0, Q >0, (1.25)
H,
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and the following hold under the assumption that (1.2) isitde:

(1) If (1.24) is infeasible, then (1.2) must satisfy the 8IaLQ.

(2) If (1.24) is feasible, then both (1.24) and (1.25) sgtikE Slater CQ. Moreover,
the Slater CQ holds for (1.2) if and only if the optimal vald€24) is negative.

(3) If (v*,A*) is an optimal solution of (1.24) witd* > 0, then.%p C S| N
{7 v}t s,
SinceX feasible for (1.2) implies that

(v, X) = (V) T((X)) = (v')Tb =0,

we conclude that?p C ST N {e7*v*} <ST. Therefore, if (1.2) fails the Slater
CQ, then, by solving (1.24), we can obtain a proper fac&othat contains the
feasible regionZp of (1.2).

Proof. The Lagrangian of (1.24) is given by

LA, 1, Q) = A+ ps(1— (/1)) + pa(=b"v) + (Q, o7 *v— Al)
= A(1={(1,Q) +V'((Q) — e (1) — pizb) + 2.

This yields the dual program (1.25).
If (1.24) is infeasible, then we must habeZ 0 and</ () = kb for somek € R.
If k> 0, thenk 1l is a Slater point for (1.2). Ik = 0, then/ (X + Al) = b and
X + Al > 0 for anyX satisfying.« (X) = b and sufficiently large\ > 0. If k < 0,
then (2X 4+ k1) =bfor X = 0 satisfyingeZ (X) = b; and we have 2 + k11 > 0.
If (1.24) is feasible, i.e., if there existssuich that.z7(1))"v= 1 andb"0 = 0,

then
(U,A) = (\7,5\ :/\min(,gzw)—l), (1,0) = ((1(/)”) %|)

is strictly feasible for (1.24) and (1.25) respectively.

Let (v,A*) be an optimal solution of (1.25). * <0, then for anyw € R™ with
@/*y = 0andb"v =0, v cannot be feasible for (1.24) b .27*v) < 0. This implies
that.er*v = 0. By Corollary 1.7, the Slater CQ holds for (1.2).Af > 0, thenv*
certifies that the Slater CQ fails for (1.2), again by Comylla.7.

The next result shows that from (AP) is a measure of how close the Slater CQ
is to failing.

Theorem 1.17.Let (&*,D*) denote an optimal solution of the auxiliary problem
(1.18). Thend* bounds how far the feasible primal slacks= C — .&7*y = 0 are
from orthogonality tdD*:

5 . .

0< su (D*,Z) Omin(<) it C e 2(a),
p .
o =L < a(,C) =

e izl _O% _ tcem)

(1.26)
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Proof. Since(%l ,D*) =1, we get

oy SH0)

I
If C = &*yc for someyc € R™, then for anyZ = C — &*y = 0,

(D*.C—a"y) _ (Z(D").yc—¥)

Cos 2 = o IC— 7y = T O Yl
17 )] lye vl
B Umin(fd*)”yc—y”
< o
o Umin(ﬂ).

If C ¢ %(</*), then by Assumption 1.%# is onto so/D*,C — o7*y) = <MC(D*), <—1y> >
implies that 0= C — <7y # 0,Vy € .%p. Therefore the cosine of the andlg: 7 be-

tweenD* andZ = C — &*y = 0 is bounded by

O Cc-ay) _ (0 (7))
T e ()]

ot ()]

Omin () (—1y) H

5*
Omin(9c)

Theorem 1.17 provides a lower bound for the angle and disthatween feasi-
ble slack vectors and the vectdf on the boundary of'} . For our purposes, the
theorem is only useful whea(«7,C) is small. Given thad* = ||.o%(D*)||, we see
that the lower bound is independent of simple scaling/ef though not necessarily
independent of the conditioning efc. Thus,d* provides qualitative information
about both the conditioning a#%: and the distance to infeasibility.

We now strengthen the result in Theorem 1.17 by using moognmdtion from

D*. In applications we expect to choose the partitiondJofind D* to satisfy
Amin(D+) >> Amax(Dg).

Proposition 1.18.Let (6*,D*) denote an optimal solution of the auxiliary problem
(1.18), and let

cosbp: z =

D =[P Q [Dg [?J Pq, (1.27)
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face(D*)]° = (D*) - NS"

{Z=C—-a*y:ye Fp,Z > 0}

Fig. 1.1 Minimal Face; 0< 0* < 1

with U = [P Q] orthogonal, an®., - 0.

Let0+# Z:=C—&/*y = 0 andZg := QQ'ZQQ'. ThenZy is the closest point
in Z(Q-Q")NS" to Z; and, the cosine of the angte z, betweerZ and the face
2(Q-QT)NS" satisfies

229 1929 . I
“T2lzel = 1zl St O mm

wherea(<7,C) is defined in (1.26). Thus the angle between any feasibl& slad
the faceZ(Q- Q") NS" cannot be too large in the sense that

cosbz z, : (1.28)

(Lo
Amin(D+)

Moreover, the normalized distance to the face is bounded as i

inf >1—a(«/.C
O#Z:C”lof*yto COSGZ-VZQ = a(<,C)

o]
)\min(DJr)
Proof. SinceZ = 0, we haveQ'ZQ € argminy. o/|Z — QW ||. This shows that

Zg = QQ'ZQQ" is the closest point i?(Q- Q") NS" to Z. The expression for
the angle in (1.28) follows using

2.29) _ |Q"2Q)” _|Q'zq|

1Z - Zo|l* < 2|Z||* |a(«,C) (1.29)

IZllZell — lIZIfQTzQl — 1zl

(1.30)

From Theorem 1.17, we see tha:Z = C — &*y = 0 implies that<H—%”Z, D*> <

a(</,C)||D*||. Therefore, the optimal value of the following optimizatiproblem
provides a lower bound on the quantity in (1.30).

Yo := min [lop4e]
s.t. (Z,D*) < a(«,C)||D*| (1.31)
1Z|IP=1, z=o.

)
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Since (Z,D*) = (PTZPD. )+ (Q'ZQ,D¢) > (PTZP D, ) wheneverZ = 0, we
have

Yo > y:=min IQ"Zq|
st. (PTZPD,) < a(«,C)||D*| (1.32)
1Z|?=1, Z=0.

It is possible to find the optimal valueof (1.32). After the orthogonal rotation
T TpT T
=[PQ [VT w} [PQ"=PSP +PVQ +QVTPT +Qwd,

whereSe ST, W e ST andV € R("V*1, (1.32) can be rewritten as

y = min gl
SVW
st. (SDy) <a(«,C)||D7
ISI2 42| V[ + [W]|* = 1 (1.33)
SV
VT W] S Sn+
Since
V112 < 1IS] I (1.34)
holds Wheneve[VST x} > 0, we have that||S|| + [W])? > ||SI|2+ 2|V ||+ ||W||2.
This yields
Y= ¥i=minsyw W y>min  1-|s]
s.t. (SDy) <a(#,0)D*|| st (SDy) <a(«,C)[|D*|
IS+ W[l = 1 Sz 0
S>=0, W~ 0.

(1.35)
SinceAmin(D4)[|S] < (SD4) < a(«/,C)||D*||, we see that the objective value of
the last optimization problemin (1.35) is bounded below bydl(.«7,C) ||D*|| / Amin(D~)-
Now letu be a normalized eigenvector Bf, corresponding to its smallest eigen-

valueAmin(D4 ). ThenSt = %UJ solves the last optimization problem in
(1.35), with corresponding optimal valual%“f)*“.

Letg = mm{% 1} Theny > 1— 3. Also,

{ ] ( V/Bu )( VBu ) { Bl /BIL-Pluel] g
VT w V1-Be) \V/1-Be VBI-B)ew’ (1-p)ee] -
Therefore(S,V,W) is feasible for (1.33), and attains an objective valuef. This

shows thayy = 1 — 8 and proves (1.28).
The last claim (1.29) follows immediately from
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TZ 2
Iz-zol? = 1217 (1- 13220

% 2
< lz)? [1— (1-at.0; 150 ) ]

=S
)\min(D+)

These results are related to the extreme angles betweesry@tta cone studied
in [29, 33]. Moreover, it is related to the distances to isibdity in e.g., [46], in
which the distance to infeasibility is shown to provide baakd and forward error
bounds.

We now see that we can use the rotatibr= [P Q] obtained from the diago-
nalization of the optimaD* in the auxiliary problem (1.18) to reveakarness to
infeasibility, as discussed in e.g., [46]. Or, in our approach, this revesdrness to
a facial decomposition. We use the following results to lbtlre size of certain
blocks of a feasible slack.

< 2|z|*a(«,C)

Corollary 1.19. Let (8*,D*) denote an optimal solution of the auxiliary problem
(1.18), as in Theorem 1.17; and let

D =[P Q [Dg [?J Pq, (1.36)

with U = [P Q| orthogonal, andD, - 0. Then for any feasible slack Z =
C— ™"y > 0, we have

Dl
traceP' ZP < a(«/,C e Z||, 1.37
<a(,C)5 =12 (L37)
wherea(7,C) is defined in (1.26).
Proof. Since
.o /[Dy 0] [PTZP P'ZQ
<D ,Z> - <[ 0 D£:| ) [QTZP QTZQ
= (D4,PTZP)+(D¢,Q"ZQ) (1.38)
> D+,PTZP>

> Amin(D-) traceP” ZP,

the claim follows from Theorem 1.17.

Remark 1.20.We now summarize the information available from a solutibthe
auxiliary problem, with optima* > 0,D* % 0. We let 0# Z =C — &/*y = 0 de-
note a feasible slack. In particular, we emphasize the iinéion obtained from
the rotatiorlJ T ZU using the orthogona) that block diagonalize®* and from the
closestpoint Zg = QQ"ZQQ'. We note that replacing all feasibEewith the pro-
jected % provides a nearby problem for the backwards stability amguimAlterna-
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tively, we can view the nearby problem by projecting the data- QQ" AQQ', Vi,
C+ QQ'CQQ".
1. From (1.26) in Theorem 1.17, we get a lower bound on theeafuglper bound
on the cosine of the angle)

(b*,2)
cosBp+ 7 = ST < G(sz,C)
DIzl

2. In Proposition 1.18 with orthogontl = [P Q], we get upper bounds on the
angle between a feasible slack and the face defined @ir@" and on the
normalized distance to the face.

(Z,Zq) _ |Q"zQ)| D]
cosBz 7z, = = >1-0(o,C)———.
2 zZlzql 1| ( )/\min(D+)
12 Zgl2 < 212)1? |a(er.C) A |
/\min(D+)
3. After the rotation using the orthogona| the(1,1) principal block is bounded
" 07|

traceP' ZP < a(«/,C)————|Z||.
<a( 0y ~5 52l

Rank-revealing rotation and equivalent problems

We may use the results from Theorem 1.17 and Corollary 1.1f#®tdwo rotated
optimization problems equivalent to (1.1). The equivalerdblems indicate that,
in the case whew* is sufficiently small, it is possible to reduce the dimensifn
the problem and get aearbyproblem that helps in the facial reduction. The two
equivalent formulations can be used to illustrate backwatdbility with respect to
a perturbation of the corf& .

First we need to find a suitable shift@fto allow a proper facial projection. This
is used in Theorem 1.22, below.

Lemma 1.21.Let 5*,D*,U = [P Q],D4,D, be defined as in the hypothesis of
Corollary 1.19. Let(yg,Wg) € R™ x S" be the best least squares solution to the
equatiorQW Q' + .o7*y = C, that is,(yo, W) is the optimal solution of minimum
norm to the linear least squares problem

-1 N} * 2
r;jvlvnéllc—(QWQ +y)||%. (1.39)

LetCq := QWHQ" andCres:=C— (Cq + &/*yq). Then
Q'CeQ = 0, and & (Cres) = O. (1.40)
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Moreover, if* = 0, then for any feasible solutignof (1.1), we get
C-o'ye Z(Q-Q), (1.41)

and further(y, Q" (C—.<7*y)Q) is an optimal solution of (1.39), whose optimal value
is zero.

Proof. Let Q(y,W) := 1||C— (QWQ + &7*y)||2. Since

1 1., 1 .
QW) = SIICIZ+ 5 |2y + 5 IWIZ+(QW T, *y) — (Q'CQW) —(/(C).y)
we have(yg,Wg) solves (1.39) if, and only if,

0,Q = o (QWQ — (C—*y)) =0, (1.42)
and 0uQ = W-[Q"(C—«*y)Q] =0. (1.43)

Then (1.40) follows immediately by substitution.
If 0* =0, then(D*,A;) =0 fori=1,...,mand(D*,C) = 0. Hence, for any
yeRM

(D4, PT(C—@*y)P) + (D¢, QT (C— &/*y)Q) = (D*,C— &/*y) = 0.

If C—o7*y > 0, then we must havie' (C — .&7*y)P = 0 (asD > 0), and sdP" (C—
«/*y)Q = 0. Hence

C—o/*y = UUT(C— a7*y)uuT
—U[PQ(C—ay)[PQUT,
=QQ'(C— «*y)QQ"

i.e., we conclude (1.41) holds.
The last statement now follows from substituting= QT (C — .&7*y)Q in (1.39).

We can now use the rotation from Corollary 1.19 with a shif€¢fo Cres+Cq =
C — #/*yg) to get two equivalent problems to (P). This emphasizeswiano* is
small then the auxiliary problem reveals a block structure witk principal block
and threesmall/negligibleblocks. If d is small, thenB in the following Theorem
1.22 issmall Then fixing8 = 0 results in a nearby problem to (P) that illustrates
backward stability of the facial reduction.

Theorem 1.22.Let 6*,D*,U = [P Q] ,D,,D; be defined as in the hypothesis of
Corollary 1.19, and leyg,Wg,Cq,Cres be defined as in Lemma 1.21. Define the

scalar .
=l

)\min(D+) ’
and the convex corig C S'} partitioned appropriately as in (1.36),

B:=a(«,C) (1.44)
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Tg = {Z_ L;} Cﬂ €S : traceA< Btracez}. (1.45)

Then we get the following two equivalent programs to (P) ii)1

1. using the rotatioty and the condp,

vo=supdbty: [PZPPZQl 5oyl (146
P = R/ y: _QTZP QTZQ_ TTg V&= Yo :

2. using(yo,Wo),

[PTZP P'ZQ]
Vp = bTyQ+SuR/{bTy: QTZP QTZg ETB O,Z = Cres"'CQ_JZ{*y}l‘]’?)

Proof. From Corollary 1.19,

T 1l
el B e ) e

hence the equivalence of (1.1) with (1.46) follows.
For (1.47), first note that for anye R™,

Z:=CrestCo— @'y=C—"(y+Yo),
soZ = 0ifand only ify+yq € p, if and only if Z € Tg. Hence

T 1)
Fp=Yo+ {y: {géi g@g} =1, 0,Z = Cres+ QWGQ" — & *y} ;o (1.49)

and (1.47) follows.

Remark 1.23.As mentioned above, Theorem 1.22 illustrates the backveiadis-
ity of the facial reduction. It is difficult to state this pisely due to the shifts done
and the changes to the constraints in the algorithm. Forlitypwe just discuss
one iteration. The original problem (P) is equivalent togheblem in (1.46). There-
fore, a facial reduction step can be applied to the originabjem or equivalently
to (1.46). We then perturb this problem in (1.46) by setfihg 0. The algorithm
applied to this nearby problem with exact arithmetic wibu# in the same step.

Reduction to two smaller problems

Following the results from Theorems 1.13 and 1.22, we focushe case where
5* =0and%pNST, = 0. Inthis case we get a proper fa@87 Q" <iS" . We obtain
two different equivalent formulations of the problem bytrising to this smaller
face. In the first case, we stay in the same dimension for theadovariabley but
decrease the constraint space and include equality constrin the second case,
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we eliminate the equality constraints and move to a smaileedsional space for.
We first see that when we have found the minimal face, then wairoan equivalent
regularized problem as was done for LP in Section 1.

Corollary 1.24. Suppose that the minimal faég of (P) is found using the orthogo-
nalU = [Rin Qsin], S0 thatfp = QfinS', Qf,, 0< r < n. Then an equivalent problem
to (P)is

vp = supb’y
(Ppqreg) s.t. Q. («*Y)Qtin = Qf,CQ¥in (1.50)
"Q{ﬂ?y = JZ{fiTﬁyQﬁn’

where(yg,, , Way,, ) Solves the least squares problem yai|C — (<7 *y+ QW QL) |,
and<;, : R™— R'is a full rank (onto) representation of the linear transfation

P (7 *y)Pfin}
— » .
Y {Q?ﬁ(xzf Y)Pin
Moreover, (Bqreg) is regularized i.e., the RCQ holds.

Proof. The result follows immediately from Theorem 1.22, since dieéinition of
the minimal face implies that there exists a feasibléhich satisfies the constraints
in (1.50). The new equality constraint is constructed toulerénk and not change
the feasible set.

Alternatively, we now reduce (1.1) to an equivalent problevar a spectrahedron
in a lower dimension using the spectral decompositioDof

Proposition 1.25.Let the notation and hypotheses in Theorem 1.22 hold &tk

T _
0andD* = [P Q] {Dg 8} [(ST] , where[P Q| is orthogonalQ € R™"andD,, > 0.
Then
vp =sup{bTy: QT(C—.&*y)Q =0,
PT(&/*y)P =P (7*yq)P, (1.51)
QT (#*y)P= Q" (*yQ)P }.
Moreover:

1. f 2(Q-Q")NZ%(«/*) = {0}, then for anyy1,y> € Fp, bTy1 = by, = vp.
2.1f 2(Q-Q")nZ#(«7*) # {0}, and if, for somem> 0, & : R™ — R™ is an
injective linear map such tha# («/* 2) = %(</*) N%(Q-Q'), then we have

vp=b'yg + sup{(@*b)Tv ‘Wo — QT (&7 2v)Q - O} : (1.52)

And, if v* is an optimal solution of (1.52), theyt = yq + £?v* is an optimal
solution of (1.1).

Proof. Since 6* = 0, from Lemma 1.21 we have th& = Cq + &/*yq,Cq =
QWLQ', for someyg € R™andWq € S". Hence by (1.48),
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Fp = iye R™: Q" (C—«/*y)Q = 0,PT(C— &/*y)P =0,Q" (C— o/*y)P = 0}
yeR™: QT(C—a*Y)Q = 0,PT(o/*(y—yqQ))P= OvQT(M*(y—YQ()])-Zg)O}v

and (1.51) follows.

1. SinceC — &7*y € Z(Q-Q'),Vy € Fp, we geta*(y» —y1) = (C—.a/*y;) —
(C—a*y2) € Z(Q-QT)N%(27*) = {0}. Given thate/ is onto, we geb =
o (X), for someX € S", and

bT(y2—y1) = (X, &/*(y2—y1)) = 0.
2. From (1.53),
Fp =yo+{y:Wo— QT (/*y)Q = 0,PT (o7*y)P = 0,Q" (o7 *y)P = 0}

=Yo+{y:Wo—-Q"(&*y)Q= 0,4*ye Z(Q-Q")}
=Yo+{#V:Wo— QT (&*2Vv)Q = 0},

the last equality follows from the choice e?. Therefore, (1.52) follows, and
if v* is an optimal solution of (1.52), theyp + &?v* is an optimal solution of
(1.2).

Next we establish the existence of the operafomentioned in Proposition 1.25.

Proposition 1.26.For anyn x n orthogonal matrixJ = [P Q| and any surjective
linear operator7 : S" — R™ with m:= dim(Z(«/*)NZ(Q-Q")) > 0, there exists
a one-one linear transformaticf : R™ — R™ that satisfies

R(A*P) = R(Q-QNYNZ (™), (1.54)
R(P) =N (P (7" )P)NAN (PT(/)Q). (1.55)

Moreover,o : S" — R is defined by

() = Q' (" 2(-)Q
is onto.

Proof. Recall that for any matriX € S",
X =UUTXUUT = PPTXPP" + PP"XQQ" + QQ'XPP" +QQ'XQQ".

Moreover,PTQ = 0. ThereforeX € Z(Q- Q") impliesP" XP = 0 andP" XQ = 0.
ConverselyPTXP = 0 andP"XQ = 0 implies X = QQ"XQQ'. ThereforeX e
Z(Q-QT) if, and only if, PTXP= 0 andP" XQ = 0.

For anyy € R™ o7*y € 2(Q- Q') if, and only if,

m

> (PTAP)yi=0 and > (PTAQ)i =0,

i=1 i=1
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which holds if, and only ify € spar{ 8}, wheref3 := {y1,...,ym} is a basis of the
linear subspace

{ Y (TR =0 } { S (PTAQY - }‘«/V<PT<M~>P)M<PT<M~>Q>-
i=1 i=1

Now defineZ? : R™ — R™ by

PV = Zviyi for A € R™
i—1

Then, by definition of??, we have
R(A*P)=RQQ)NRZ(*) and Z(P)=N (PT(«*)P)NA (PT(/*)Q).

The onto property ot follows from (1.54) and the fact that botb?, o7 are one-
one. Note that iz *v = 0, noting thate7* 22v = QW Q' for someW € S" by (1.54),
we have thatv = 0 so.or* Zv = 0. Since bothes™ and & injective, we have that
v=_0.

LP, SDP and the role of strict complementarity

The (near) loss of the Slater CQ results in both theoretiwdiraumerical difficulties,
e.g., [46]. In addition, both theoretical and numericalidifities arise from the loss
of strict complementarity, [70]. The connection betweaorsg duality, the Slater
CQ, and strict complementarity is seen through the noticcoaiplementarity par-
titions, [65]. We now see that this plays a key role in the ifitgland in determining
the number of stepk for the facial reduction. In particular, we see ttat 1 is
characterized by strict complementary slackness andftrereesults in a stable
formulation.

Definition 1.27. The pair of face$; <K, F, <K* form acomplementarity partition
of K,K* if Fy C (F)°. (Equivalently~ C (F;)C.) The partition isproperif both Fy
andF, are proper faces. The partitionsgict if (F1)¢ = F, or (F)¢ = Fy.

We now see the importance of this notion for the facial reidact

Theorem 1.28.Let 8* = 0,D* = 0 be the optimum of (AP) with dual optimum
(y*,u*,;W*). Then the following are equivalent:
y D, 0| [PT]. . .
1.1fD* = [P Q| 0 ol |or is a maximal rank element o#p, where[P Q] is

orthogonalQ € R™"andD, = 0, then the reduced problem in (1.52) usiig
satisfies the Slater CQ; only one step of facial reductioreeded.
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2. Strict complementarity holds for (AP); that is, the prlrdaal optimal solution
pair (0,D*), (0, u*,W*) for (1.18) and (1.20) satisfy rafiR*) + rankW*) = n.
3. The faces o8] defined by
fouxp = face({D € S": /(D) =0, (C,D) =0, D = 0})
fOxp = face({W € S": W = o7¢z - 0, for somez e R™1})

form a strict complementarity partition 6f! .

Proof. (1) < (2): If (1.52) satisfies the Slater CQ, then there existsR™ such
thatWg — &7V = 0. This implies thaZ := Q(Wq — &7 *%)Q" is of rankn. Moreover,

07— QuQ- o7 9= G (yq - 20— s (V0T 7).

Hence, letting

(yQ+ 9\7)
and W =

B (G (%

we have that0, i, W) is an optimal solution of (1.20). Since rgiik’) + rank\W) =
(n—n)+n=n, we get that strict complementarity holds.

Conversely, suppose that strict complementarity holdgA#?), and letD* be
a maximum rank optimal solution as described in the hypdghafsitem 1. Then
there exists an optimal solutiq®, u*,W*) for (1.20) such that rarfv*) = n. By
complementary slackness=0(D*,W*) = (D,,PTW*P), soW* € Z(Q- Q') and

Q"W*Q > 0. Letu* = (_y&), so

W* = GC— o/*§ = GCq — /" (§— lyo).

SinceW*,Cq € Z(Q- Q") implies thater* (§ — ayg) = o 2V for someve R™,
we get L
0<Q"W'Q=aC— V.

Without loss of generality, we may assume thiat +1 or 0. If & = 1, thenC —
o/*¥ 0 is a Slater point for (1.52). Consider the remaining twaesaSince (1.1)
is assumed to be feasible, the equwalent program (1. 52};<|Isfaa3|ble so there
existsv'such thaC — .&7*V = 0. If & =0, thenC — &* (V4 V) > 0. If & = —1, then
o= M*(2v+ V) = 0. Hence (1 52) satisfies the Slater CQ.

(2) <= (3): Notice thatfauxp and fauxD are the minimal faces & containing
the optimal slacks of (1.18) and (1.20) respectively, arat t@uxp, fau p form a
complementarity partition d§'} = (S} )*. The complementarity part|t|on is strict if
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and only if there exist primal-dual optimal slacR$ andW* such that ran{fD*) +
rankW*) = n. Hence (2) and (3) are equivalent.

In the special case where the Slater CQ fails and (1.1) iseadiprogram (and,
more generally, the special case of optimizing over anantyipolyhedral cone, see
e.g., [57, 56, 79, 78]), we see that one single iteration offaeduction yields a
reduced problem that satisfies the Slater CQ.

Corollary 1.29. Assume that the optimal value of (AP) equals zero, \lithbeing

a maximum rank optimal solution of (AP). K = Diag(a;) for somea; € R", for
i=1,...,m andC = Diag(c), for somec € R", then the reduced problem (1.52)
satisfies the Slater CQ.

Proof. In this diagonal case, the SDP is equivalent to an LP. The i@atdTucker
Theorem [25] implies that there exists a required optimihpt-dual pair for (1.18)
and (1.20) that satisfies strict complementarity, so ltemPheorem 1.28 holds. By
Theorem 1.28, the reduced problem (1.52) satisfies ther$l&e

Facial Reduction

We now study facial reduction for (P) and its sensitivity lgses.

Two Types

We first outline two algorithms for facial reduction that fittte minimal facefp

of (P) . Both are based on solving the auxiliary problem arulyapg Lemma 1.6.
The first algorithm repeatedly finds a fa€econtaining the minimal face and then
projects the problem inté — F, thus reducing both the size of the constraints as
well as the dimension of the variables till finally obtainithg Slater CQ. The sec-
ond algorithm also repeatedly findls but then it identifies the implicit equality
constraints till eventually obtaining MFCQ.

Dimension reduction and regularization for the Slater CQ

Suppose that Slater’s CQ fails for our given inpdt: S" — R™ C € S", i.e., the
minimal facefp <F :=S'.. Our procedure consists of a finite number of repetitions
of the following two steps that begin with= n.

1. We first identify 04 D € (fp)® using the auxiliary problem (1.18). This means
thatfp <F < (S N{D}*) and the interior of this new fade is empty.
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2. We then project the problem (P) into sp&i. Thus we reduce the dimension of
the variables and size of the constraints of our problemn#ve cone satisfies
intF # 0. We sek « dim(F).#

Therefore, in the case that lat= 0, we need to to obtain an equivalent problem
to (P) in the subspace sp@&n = F — F. One essential step is finding a subspace
intersection. We can apply the algorithm in e.g., [26, Thmd12. In particular, by
abuse of notation, léd;, H, be matrices with orthonormal columns representing the
orthonormal bases of the subspacég 7%, respectively. Then we need only find
a singular value decompositidmlTHz =UXVT and find which singular vectors
correspond to singular valugs,i = 1,...,r, (close to) 1. Then both;U (:,1:r)
andHyV (:,1 :r) provide matrices whose ranges yield the intersection. thes
possesses a “self-replicating” structure. Therefore vemsh an isometry” so that
F (ST N(F—F))is a smaller dimensional PSD cofie.

Algorithm 1.0.1 outlines one iteration of facial reductidrne output returns an
equivalent problemie7, b,C) on a smaller face &'} that contains the set of feasible
slacks.Z%; and, we also obtain the linear transformatighand pointyg, which
are needed for recovering an optimal solution of the origgrablem (P) . (See
Proposition 1.25.)

Two numerical aspects arising in Algorithm 1.0.1 need todres@ered. The first
issue concerns the determination of rélK). In practice, the spectral decomposi-
tion of D* would be of the form

N )

We need to decide which of the eigenvalueddfare small enough so that they
can be safely rounded down to zero. This is important for gterdnination ofQ,
which gives the smaller fac#(Q- Q") NSY containing the feasible regiofs. The
partitioning ofD* can be done by using similar techniques as in the deterrometfi
numerical rank. Assuming thag (D*) > A(D*) > --- > Ay(D*) > 0, thenumerical
rankrank(D*, &) of D* with respect to a zero toleranee> 0 is defined via

/\rank(D*,a)(D*) >€2 /\rank(D*,s)+l(D*)-

In implementing Algorithm 1.0.1, to determine the partiiog of D*, we use
the numerical rank with respect tﬂ% where € € (0,1) is fixed: taker =
x €]ID7
rank(D ’T)’
D, = Diag(A1(D*),..., A (D*)), D¢ =Diag(A;+1(D"),...,An(D")),

and partition[P Q| accordingly. Then

4 Note that for numerical stability and well-posedness, iessential that there exists Lagrange
multipliers and that inf # 0. Regularization involves both finding a minimal face adlas a
minimal subspace, see [65].
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Algorithm 1.0.1: One iteration of facial reduction

1 Input(«7 :S" - R™ be R™ Ce S");

2 Obtain an optimal solutiofo*, D*) of (AP)

3 if * > 0, then

4 | STOP; Slater CQ holds fd7,b,C).

5 else

6 if D* - O, then

7 | STOP; generalized Slater CQ holds fe# (b,C) (see Theorem 1.13);

8 else

o . D, 0] [PT I
9 Obtain eigenvalue decompositidf = [P Q) { 0 O} {QT as described in
Proposition 1.25, witlQ € R™";

10 if Z(Q-Q")NZ(</*) = {0}, then

11 | STOP; all feasible solutions of s)uibTy :C—o/*y > 0} are optimal.
12 else B

13 find m, 22 : R™ — R™ satisfying the conditions in Proposition 1.25;
14 solve (1.39) for(yg, Wg);
15 C <—WQ )
16 b+ Z7*Db;
17 o QN (A P())Q;
18 output( <7 : ST — R™ be RM C e S™ Yo €R™ 2 :R™ - RM);
19 end if
20 end if
21 end if

_ e[| || ‘
Amin(D+) > > Amax(De) = ||De|| < €[|D"||.
NG
Also,
IDell® _ IDel? ez 1

0.7~ T P- e = T-edo P~ e2-1 %0
that is,D¢ is negligible comparing witlD, .

The second issue is the computation of intersection of adesZ(Q- Q") N
2% (<7*) (and in particular, finding one-one mag such thatZ(«/* %) = #Z(Q-
Q")N%(<7*)). This can be done using the following result on subspaeasat-
tion.

Theorem 1.30 ([26], Section 12.4.3BivenQ € R™" of full rank and onto linear

map : S"— R™, there exist;®, ... ,U;‘i’n{m’r?},vfp, o ni‘fn{ i) € S" such that

o]zp: U]zpvjzp =max{(U,V): U =1=|V|,UeZ(Q-Q"),V ez},
Pi= (U V) = max{(UV) U] =1= |V, UE%’(Q Q") VeZz(a),

(U,UP) =0=(V,VP), Vi=1,.. k—1},

(157)

fork=2,...,min{mm?}, and 1> 0;*> o;* > ... > ¢° ) > 0. Suppose that

m{m
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SP_ . gl Sp SP
O = =0n =1>0g5,1> 205 mm;

(1.58)
then

Z(Q-Q")NZ(a*) =spanU;P,....U) = span(V;P,...,V3P), (1.59)
and2 : R™ — R™ defined byZv = 3", viy* for v € R™, wheres/*y*® = Vi for
i=1,...,m, is one-one linear and satisfig&( «/* Z) = Z(Q- Q") NZ(*).
In practice, we do not gerfp: 1 (fori =1,...,m) exactly. For a fixed tolerance

£SP > 0, suppose that

SP .. Sp _gSP Sp Sp
1>07 > 205 21-F>05,2> 2> Oringim >0. (1.60)

Then we would take the approximation
Z(Q-QNYNZ(ar*) ~ span(U;P,....UF) ~ span(V;P,... V3P). (1.61)

Observe that with the chosen tolerara®8, we have that the cosines of the prin-
cipal angles betwee®(Q- Q") and sparfV;”,...,V5P) is no less than £ &% in
particular,|UP — VeP||? < 265P and || QTVPQ| > 0P > 1 eSPfork=1,...,m.
Remark 1.31.UsingV;®, ... ,V:]
by V2P ... VP (which may require extendinglsp,...,V;f’n{mﬁz} to a basis of
R (), if m>n?).

If the subspace intersection is exact (as in (1.58) and Jir6%heorem 1.30),

thenZ(Q- Q") N % («/*) = spariAy, ..., As) would hold. If the intersection is in-
exact (as in (1.60) and (1.61)), then we may replatdy  : S" — R™, defined

by
i {ufp ifi=1,...m

VP ifi=m+1,...,m,

p
in{mi®) from Theorem 1.30, we may replade, ..., Amn

which is a perturbation of/ with ||.«7* — &% || = \/Zi”il [USP— V|2 < /2mesP.,

ThenZ(Q-Q")N#(</*) =spariAy,...,Ar) becausdy € Z(Q-QT)NZ(*) for
i=1...,mand
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max{(U.V):U € 2(Q-Q").|U|| = 1.V € Z(e/"), |V|| = 1,
<u,ufp> —0= <V,Ufp> V= 1,...,m,}

m m
< fﬂ@X{<U,Zijfp+ > ij$"> U eZ(Q-QN), V| =1yl =1,
’ i=1

i=mt1
<u,ufp>:ov1 :1,...,rﬁ,}

U, =
4 i=m+1

=0 <1-eP<1

m+1
To increase the robustness of the computatio®¢® - Q") N % (<*) in deciding
WhetheroiSp is 1 or not, we may follow similar treatment in [18] where orexilies
which singular values are zero by checking the ratios betseecessive small sin-
gular values.

Implicit equality constraints and regularization for MFCQ

The second algorithm for facial reduction involves repéatee of two steps again.

1. We repeat step 1 in Section 1 and use (AP) to find theFace
2. We then find the implicit equality constraints and ensheg they are linearly
independent, see Corollary 1.24 and Proposition 1.25.

Preprocessing for the auxiliary problem

We can take advantage of the fact that eigenvalue-eigesveaiculations are ef-
ficient and accurate to obtain a more accurate optimal sold*,D*) of (AP),
i.e., to decide whether the linear system

(A,D)=0Vi=1,...m+1 (whereAn1:=C), 0£D=0  (1.62)

has a solution, we can use Algorithm 1.0.2 as a preprocesséddorithm 1.0.1.
More precisely, Algorithm 1.0.2 tries to find a solutibri satisfying (1.62) without
using an SDP solver. It attempts to find a veatan the nullspace of all théy, and
then set* = w'. In addition, any semidefinitd; allows a reduction to a smaller
dimensional space.

m
max{ <u, 3 ij?"> U €2(Q-QN, Ul =1y =1,(U.UP) =0%j=1,..

3I



38 Contents

Algorithm 1.0.2: Preprocessing for (AP)

Input( Ag,...,Am,Ani1:=C e S");
Output( 8*, Pe R™ (M D, e S" N satisfying D > 0; (so D* = PD,P"));
if one of the A(i € {1,...,m-+1}) is definitethen

| STOP; (1.62) does not have a solution.
else

a b~ wN e

~- D T ~
if some of the A= [U U] [Ig g} {ST] e {A:i=1,...,m+1} satisfieD > 0, then

6
7 | reduce the size using <~ UTAU,Vi;
8 else

9 if 30#£V € R™ suchthatA/ =0foralli=1,..., m+ 1, then

10 We get(A,VVT) =0Vi=1,...,m+1;
11 &* =0,D* =VVT solves (AP); STOP;
12 else

13 | Use an SDP solver to solve (AP)

14 end if

16 end if
17 end if

Backward stability of one iteration of facial reduction

We now provide the details for one iteration of the main atfpon, see Theorem
1.38. Algorithm 1.0.1 involves many nontrivial subrousineach of which would in-
troduce some numerical errors. First we need to obtain dmapsolution(d*,D*)
of (AP); in practice we can only get an approximate optimalson, asd* is never
exactly zero, and we decide whether the true valug&a$ zero when the computed
value is only close to zero. Second we need to obtain the eadigmdecomposition
of D*. There comes the issue of determining which of the nearlyp régenval-
ues are indeed zero. (Since (AP) is not solved exactly, theoapmate solutiorD*
would have eigenvalues that are positive but close to z&inglly, the subspace
intersectionZ(Q- Q") NZ(=*) (for finding mand &) can only be computed ap-
proximately via a singular value decomposition, becaugeactice we would take
singular vectors corresponding to singular values thatapproximately (but not
exactly) 1.

Itis important that Algorithm 1.0.1 is robust against suamerical issues arising
from the subroutines. We show that Algorithm 1.0.1 is baakletable (with respect
to these three categories of numerical errors), i.e., fgrgiven input(</,b,c),
there existg.«7,b,C) ~ («7,b,C) such that the computed result of Algorithm 1.0.1
applied on(.«7,b,C) is equal to the exact result of the same algorithm applied on
(o, b, C) (when (AP) is solved exactly and the subspace intersectidetermined
exactly).

We first show thaf|Cie4| is relatively small, given a smadt(«7,C).

Lemma 1.32.Let yg,Cq,Cres be defined as in Lemma 1.21. Then the nornCgt
is small in the sense that
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o] O
< : :
[Cesll < V2| 355 a(e.C)| - (,_min_ 12 (1.63)

Proof. By optimality, for anyy € %,
ICresl] < min|IC— 7"y —QWQ || = Z-QQ"ZQQ',

whereZ := C — &*y. Therefore (1.63) follows from Proposition 1.18.

The following technical results shows the relationshipwasin the quantity
miny 1 l#*y||> - | Q" («*y)Q||?> and the cosine of the smallest principal angle
betweenZz(«/*) and%(Q-Q"), defined in (1.57).

Lemma 1.33.Let Q € R™ satisfyQ"Q = I5. Then

T.= MQ{H%WHZ — HQT (ﬂ*y)QHZ} > (1_ (o‘fp)Z) Umin(d*)z > 07 (164)

whereo;” is defined in (1.57). Moreover,
1=0<+= 0;,°=1 < Z2(Q-Q")N# (/") # {0}. (1.65)
Proof. By definition of o;",

max{ max UV): V=1V e %(d*)}
Vol ul=1Uez(QQT)

> max UV > (UPvPy = gf
HUH:1,U€<%(Q-QT)< 1> < 1 1> 1

> max{ max UV): V=1V e %’(d*)},
Vo ul=1Ue2(QQT)

so equality holds throughout, implying that

0P = max{ max UV):|V|=1V e%(d*)}
Vo uj=1uezQQn)

= max{ max (QWQ', &*y) : ||7*y|| = 1}
v Iwi=1
= m}gx{HQT(d*y)QH eyl =1}

Obviously,||.«7*y| = 1 implies that the orthogonal projecti@Q’ (.=7*y)QQ" onto
Z(Q-QT) is of norm no larger than one:

IQ" («*y)Qll = |QQ" («7*y)QQ" || < [l *y]| = 1. (1.66)

Henceo;® € [0,1]. In addition, equality holds in (1.66) if and onlyi#*y € Z(Q-
Q"), hence
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0P =1 = Z(F*)NZ(Q-Q") # {0}. (1.67)
Whenevelly|| =1, [|«/*Y|| > Omin(</*). Hence
T= myin{llﬁf*yl\z— IQT («*y)QII?: IIyll = 1}

_ ) )2 pam *\ 12 T * 2. _ 1
~ amaler" ] or Y1 1T (o YIQUR: Iy = 5}
> G2 2 QT (oY) 7'y 2 1)

= Umin(%*)zmjn{ﬂd*yﬂz —1QT(«*y)Q|I?: |« *y| = 1}
= Oiin(/*)? (1— m}?X{HQT(ﬁf*Y)QHZ eyl = 1})
ol (1= (67).
This together witro;” € [0, 1] proves (1.64). It = 0, theno;” = 1 sinceomin(.«/*)
0. Then (1.67) implies tha#?(<7*) N %(Q- Q") # {0}. Conversely, if%(</*) N

Z%(Q-QT) # {0}, then there existg Such that|y| = 1 ande7*y € Z(Q- Q). This
implies that

*

0< 1<)~ Q" («*9)QlI* =
so1 = 0. This together with (1.67) proves the second claim (1.65).

Next we prove that two classes of matrices are positive sefimite and show
their eigenvalue bounds, which will be useful in the bacldh&tability result.

Lemma 1.34.Supposé\y, ..., An,D* € S". Then the matriM € S™ defined by

is positive semidefinite. Moreover, the largest eigenvalyg(M) < 3" (A, D)2,

Proof. For anyy € R™,

m m 2
Z (A, D* AJv nyJ <Z (A,DY) ) .
=1 i=1

HenceM is positive semidefinite. Moreover, by the Cauchy Schwaegirality we
have

y' My = <§;<A| D*) ) <§mj (A, D7) >|y||%-

i=1

HenceAmax(M) < S, (A, D*)2.
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Lemma 1.35.SupposéAy, ..., Am € S" andQ € R™" has orthonormal columns.
Then the matriM € S™ defined by

Mij = (ALA) —(QTAQ.QTAQ), i,j=1,....m

is positive semidefinite, with the smallest eigenvaly@, (M) > 1, wherer is de-
fined in (1.64).

Proof. For anyy € R™, we have
m 2
Y My=">" (yiA.yiA]) - (¥QTAQYQTAQ) = | *y|*— | QT («*y)Q|| > T|ly||.
ij=1
HenceM € ST andAmin(M) > 1.

The following lemma shows that when nonnegat¥es approximately zero and
D* =PD,P" +QD,Q" ~ PD,P" with D, - 0, under a mild assumption (1.70) it
is possible to find a linear operatef “near” <7 such that we can take the following
approximation: .

5«0, D'« PD,P", &« ",
and we maintain that/(PD,PT) = 0 andZ(Q- Q") N #Z(«/*) = #(Q-Q") N
R (™).

.
Lemma 1.36.Let.e/ :S"— R™: X ((A;, X)) be onto. LeD* = [P Q] [DO+ S} [ST} ©
&

ST, where[P Q] € R™Mis an orthogonal matrixD ., > 0 andD; = 0. Suppose that

Z(Q-QNNZ () = spariAy,...,Am), (1.68)

for someme {1,...,m}. Then

m—m 2 m—m 2
min 1S " yiAg| — 1Y %QTARAQ| ¢ >0. (1.69)
Iyll=1,yeRm=m | <=7 Y
Assume that
m-m 2 m-m 2 2 m
min Yitmi|| || D_YiQ"AmQ| ¢ > 1= | [1/(DY)]|*+[IDe? Al ).
i i 0§ | = |3 Q"AnQ) > 15 <| O+ IDel? 3 1A
(1.70)
DefineA to be the projection of; on {PD+PT}L:
) (A.PDPT) o
A=A /pp.pT vi=1,....m 1.71
(D+,Dy4) " (.7

Then
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Z(Q-Q)NZ(*) =2(Q-Q")NR (/™). (1.72)
Proof. We first prove the strict inequality (1.69). First observattsince

2 2

Z yiAm—H

i=1

- QQ'A%:iQQ")

QAm+|

i=1

the optimal value is always nonnegative. lyefolve the minimization problem in

(1.69). If[| ST " FiAm ]|~ |5 Q" Amii Q|| = 0, then

0# Y ViAmii € Z2(Q-QT) N (/") = sparfAy, ..., Am),

i=1

which is absurd sincAyq, ..., Ay are linearly independent.
Now we prove (1.72). Observethatfpe1,...,m, Aj € Z(Q-Q") so(Aj,PD,PT) =
0, which implies tha#\; = Aj. Moreover,

Conversely, suppose thBt:= &/*y € 2(Q-Q"). SinceA; = Aj € Z2(Q- Q") for
i=1,.
B=QQ'BQQ = Y yj(Aj-QQ'AQQ") =0
j=mi1

We show thaym; 1 = - - = ym= 0. Infact, sinc®" (PD, PT)Q=0,3"1" ., yj (Aj—
QQ'A;QQ") = 0 implies

m m M (A;,PD,PT
> ViQQTAQQ = Y yiAj - ( > {A,PD-F) <JD+ S+> >Yj) PD.P".

j=m+1 j=mt1 j=m+1

Fori=m+1,...,m, taking inner product on both sides wit,

m m m T T
Ai,PD,PT)(Aj,PD,PT)

Q"AQ,Q"AQ)y ALA)) < Yis
jzmjﬂ< J :;Jr " J;H {D+.D+) J
which holds if, and only if,

Ym+1
M-M)| : |=0 (1.73)
Ym

whereM,M € S™ ™ are defined by
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Mi_m.i-m = (A,A))— (QTAQ.QTA|Q),
(A,PD,PT) (A,PD,PT)

M m (iom = Yij=m+1,...,m
(=), () D..D,) J

We show that (1.73) implies thgfs.1 = --- = ym = O by proving thatM — M is
indeed positive definite. By Lemmas 1.34 and 1.35,

/\min(l\/I - |\7|) > )\min( )—)\max(m)

To see thalyin(M — M) > 0, note that sinc®* = PD, PT 4+ QD,Q", for alli,

2

- QT AmiQ

i=1

| S (APDLPTY
- <D+7D+> '

|(A,PDLPT)| < [(A,D*) | +|{A,QD:Q")|
< [(A,D*)|+ || Ail|QD:QT |
= [(A, D)+ [|Al[|Del

1/2
< V2(|(A,D") P+ A2 1?)
Hence
m
3 [(APDPT)P<2 Y (1AL} + 1A 21ID]12) < 2117 (D) 24211 12 A2
i=m+1 i=m+1 i=m41

and thatAmin(M — M) > 0 follows from the assumption (1.70). This implies that
Yir1 =+ =Ym=0. Therefor8 = >, yiA, and by (1.68)
A(Q-Q")N% () = spariAy, ... Ar) = Z(Q- Q") N&(/*).

Remark 1.37.We make a remark about the assumption (1.70) in Lemma 1.36. We
argue that the right hand side expression

2 m
DL <|~<27(D*)|2+||De|2 > IIAHZ>

i=m+1

is close to zero (whed* ~ 0 and wherD; is chosen appropriately). Assume that the
spectral decomposition @* is partitioned as described in Section 1. Then (since
IDe|l < ]D*))

HD+|I2 - HD"H2 IIDsII2 ~ |ID*[]2—€2||D¥|2 T 1-¢?

and
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20§~ p 2 < 223 a2
1D.17 s
i=m-1 i=m+1

Therefore as long asandd* are small enough (taking into accourgnd)_" - , || Ail2),
then the right hand side of (1.70) would be close to zero.

Here we provide the backward stability result for one stetheffacial reduction
algorithm. That is, we show that the smaller problem obtifirem one step of
facial reduction withd* > 0 is equivalent to applying facial reduction exactly to an
SDP instance “nearby” to the original SDP instance.

Theorem 1.38.Supposes” : S" — R™, b e R™andC € S" are given so that (1.1)
is feasible and Algorithm 1.0.1 returiié*,D*), with 0 < 6* ~ 0 and spectral de-

compositiorD* = [P Q] [D O} [QT] and(«7,b,C,yo, 2). In addition, assume
that
PR SR v <\é) , SOZ(A*P)=spaiAy,...,Aq).

Assume also that (1.70) holds. Fo=1,...,m, defineA; € S" as in (1.71), and

*y:=3 " yA. LetC = d*yQJrQCQT Then («7,b,C) is the exact output of
Algorithm 1.0.1 applied orie/, b C) that is, the following hold:

(1) (PD, PT) = <f{§(EBj§T§> o,

(2) (yo.C) solves
min ||y + QWJ —&||%. (1.74)
yQ 2

B) Z(* 2) = Z(Q-Q")NA(T*).
Moreover,(«7,b,C) is close to(«,b,C) in the sense that

m ~ 2 m
Do IA AP < <<6*>2+ |Ds||22||m||2> , (L.75)
i=1 i=

1/2
Ic-C| < ”\Df” ((5*) +||DeZZIIA||2> ol

i=1

2|18 (w,q]m( min _12)6)

Am|n(D+ =C—a/*y=0

wherea (7, c) is defined in (1.26).

Proof. First we show tha(;z% b, C) is the exact output of Algorithm 1.0.1 applied

on(«,b,C):

(1) Fori =1,...,m, by definition ofA; in (1.71), we havéA;, PD, PT) = 0. Hence
ézf(PmPT) = 0. Also,(C,PD,PT) = y{,(#/(PD,PT))+(C,Q"(PD,PT)Q) =
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(2) By definition,C — ,c%* Yo — QCQ' =0, so(yo, )solvesthe least squares prob-
lem (1.74).
(3) Given (1.70), we have that

Z(Q-QNN%(A*)=R(Q-QNNR(A*)=R(A1,.... A7) =R (A, ..., A7) = B(d*P).

The results (1.75) and (1.76) follow easily:

[(A.PDPT)* L 2)(A, D)2+ 2|A2]De 12
Z””“ Al = Z CHEmmEDY o

2 m
<DL ((5*)2+|DsIIZZ|A‘H2>,

i=1

and
IC—Cll < [19*yq— o "yal| + [|Cres
m

<) 1vQ)il 1A — Al + [[Cred)
i=1

1/2
< llyal (ZHA——MZ) + [|Cred]

1/2
_”f| ((6* o Z|A|2> el
i=1

+f2[ ”D*|) (d,C)T/Z( min |z ||),

Amin(D+ Z=C—a/*y=0

from (1.75) and (1.63).

Test Problem Descriptions

Worst case instance

From Tuncel [66], we consider the followingorst caseproblem instance in the
sense that fon > 3, the facial reduction process in Algorithm 1.0.1 requites1
steps to obtain the minimal face. Lbt=e; € R", C=0, and«/ : S| — R" be
defined by

Ai=ee], Ay=ee] +eel, A=e_1g ,+e6 +eael fori=3,....n.

It is easy to see that
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FE={C—a'yeS :yeR"} = {pee] : y >0},
(s0.Z& has empty interior) and
sup{b'y:C— /"y = 0} = sup{y: —o/"y = pejef ,ju > 0} =0,

which is attained by any feasible solution.
Now consider the auxiliary problem

1/2

n
min||.@c(D)|| = |D%; +4D3,+ Y (Di_1;-1+2Dy) st. (D,1)=+/n, D=0.
i=3

An optimal solution isD* = \/neygl, which attains objective value zero. It is easy
to see this is the only solution. More precisely, any solufibattaining objective
value 0 must satisfip11 = 0, and by the positive semidefiniteness constriiit=
Ofori=2,....,nand soD; =0 fori=2,...,n— 1. SoDyy, is the only nonzero
entry and must equa)/n by the linear constrain{D,1) = \/n. ThereforeQ from
Proposition 1.18 must have— 1 columns, implying that the reduced problemis in
S"™1. Theoretically, each facial reduction step via the ausjliproblem can only
reduce the dimension by one. Moreover, after each redusteap) we get the same
SDP withn reduced by one. Hence it would take- 1 facial reduction steps before
a reduced problem with strictly feasible solutions is foufkis realizes the result
in [12] on the upper bound of the number of facial reducti@pstneeded.

Generating instances with finite nonzero duality gaps

In this section we give a procedure for generating SDP istswvith finite nonzero
duality gaps. The algorithm is due to the results in [65, 70].

Finite nonzero duality gaps and strict complementarityciosely tied together
for cone optimization problems; using the concept abanplementarity partition
we can generate instances that fail to have strict compl&arign these in turn can
be used to generate instances with finite nonzero duality.gge [65, 70].

Theorem 1.39.Given any positive integers, m < n(n+1)/2 and anyg > 0 as
input for Algorithm 1.0.3, the following statements hold fine primal-dual pair
(1.1)-(1.2) corresponding to the output data from Algarith.0.3:

1. Both (1.1) and (1.2) are feasible.
2. All primal feasible points are optimal ang = 0.
3. All dual feasible point are optimal amg = g > 0.

It follows that (1.1) and (1.2) possess a finite positive dyaglap.

Proof. Consider the primal problem (1.1). (1.1) is feasible bee&ls= X given in
(1.78) is positive semidefinite. Note that by definitionagfin Algorithm 1.0.3, for
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Algorithm 1.0.3: Generating SDP instance that has a finite nonzero duality gap

1 Input(problem dimensions m, n; desired duality gap g
2 Output(linear map< : S" — R™, be R™, C € S" such that the corresponding primal dual
pair (1.1)(1.2) has a finite nonzero duality gap
1. Pick any positive integes,r3 that satisfyry; +rz3+1=n,
and any positive integgy < rs.
2. ChooseA = 0fori=1,...,pso that dinfface{A; :i=1,...,p})) =r3.

Specifically, chooséy, ..., A, so that
000
face({Ai:1,...,p})=100 0. 1.77)
00S"?
3. ChooséAp.1,...,An of the form
0 0 (A)s
A=| 0 (A)z =* |,
(Ai)Is * *

where an asterisk denotes a block having arbitrary elemsmts tha(Ap1)13, ..., (Am)13
are linearly independent, arié),2 > O for somei € {p+1,...,m}.

4. Pick
_Joo
X=10,50|. (1.78)
000
5. Takeb= «7(X),C=X.
anyy € R™,
p 00O m 0 0x
C—ZyiAiZ 0,90 and—ZYiAi: O x|,
i=1 0 0 x i=p+1 %k kK

so if y € R™ satisfiesZ := C — &/*y = 0, thenzi”;p“yiAi = 0 must hold. This
implies Z{imlyi (Ai)13 = 0. Since(Ap;1)13,.-.,(Am)13 are linearly independent,

we must havegp, 1 = --- = ym = 0. Consequently, ij is feasible for (1.1), then
00 O
o*y=100 0
00—Zz3

for someZsz > 0. The corresponding objective value in (1.1) is given by
by = (X,*y) =0.

This shows that the objective value of (1.1) is constant dkerfeasible region.
Hencevp = 0, and all primal feasible solutions are optimal.
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Consider the dual problem (1.2). By the choicdpX = 0 is a feasible solution,
so (1.2) is feasible too. From (1.77), we have that=--- = b, =0. LetX = 0
be feasible for (1.1). Thet®,X) =bj =0fori =1,...,p, implying that the (3,3)
block of X must be zero by (1.77), so

%0
X=|*x%0]|.
000

Sincea = (Aj)22 > 0 for somej € {p+1,...,m}, we have that

C{XZZZ <Aj,X> = <AJ,X> = a\/g,

S0 X2 = /g and(C,X) = g. Therefore the objective value of (1.2) is constant and
equalsy > 0 over the feasible region, and all feasible solutions atamap.

Numerical results

Table 1.1 shows a comparison of solving SDP instamg#sversuswithout facial
reduction. Examples 1 through 9 are specially generateulgmts available online
at the URL for this papér In particular: Example 3 has a positive duality gap,
vp = 0 < vp = 1, for Example 4, the dual is infeasible; in Example 5, thete3la
CQ holds; Examples 9a,9b are instances of the worst caséeprsipresented in
Section 1. The remaining instances RandGenl1-RandGengknesated randomly
with most of them having a finite positive duality gap, as diésd in Section 1.
These instances generically require only one iteratiomcief reduction. The soft-
ware package SeDuMi is used to solve the SDPs that arise.

One general observation is that, if the instance has prétaal-optimal solutions
and has zero duality gap, SeDuMi is able to find the optimaltsmis. However,
if the instance has finite nonzero duality gaps, and if theaimse is not too small,
SeDuMi is unable to compute any solution, and returns NaN.

SeDuMi, based on self-dual embedding, embeds the inpugidinal pair into a
larger SDP that satisfies the Slater CQ [16]. Theoretictilylack of the Slater CQ
in a given primal-dual pair is not an issue for SeDuM.i. It ig kmown what exactly
causes problem on SeDuMi when handling instances where zermduality gap
is present.

5 orion.math.uwaterloo.ca/"hwolkowi/henry/reports/ ABRACTS. html
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Name n | m | True primal True dual |Primal optimal valug Primal optimal value
optimal value optimal value | with facial reductionfwithout facial reductio

Example 1f 3 | 2 0 0 0 -6.30238e-016
Example 2[ 3 | 2 0 1 0 +0.570395
Example 3] 3 | 4 0 0 0 +6.91452e-005
Example 4{ 3 | 3 0 Infeas. 0 +Inf
Example 5{ 10| 5 * * +5.02950e+02| +5.02950e+02
Example 6] 6 | 8 1 1 +1 +1
Example 7 5 | 3 0 0 0 -2.76307e-012
Example 9420 | 20 0 Infeas. 0 Inf
Example 91100/ 100 0 Infeas. 0 Inf
RandGenl 10| 5 0 1.4509 +1.5914e-015( +1.16729e-012
RandGenZ100| 67 0 5.5288e+008 +1.1056e-010 NaN
RandGen4200/140 0 2.6168e+004 +1.02803e-009 NaN
RandGen4120| 45 0 0.0381 -5.47393e-015| -1.63758e-015
RandGeng320/140 0 2.5869e+005 +5.9077e-025 NaN
RandGen7 40 | 27 0 168.5226 | -5.2203e-029 | +5.64118e-011
RandGen{ 60 | 40 0 4.1908 -2.03227e-029 NaN
RandGend 60 | 40 0 61.0780 | +5.61602e-015( -3.52291e-012
RandGen1{180[100 0 5.1461e+004 +2.47204e-010) NaN
RandGen1[255/150 0 4.6639e+004 +7.71685e-010 NaN

Table 1.1 Comparisons with/without facial reduction

Conclusions and future work

In this paper we have presented a preprocessing technig&®® problems where
the Slater CQ (nearly) fails. This is based on solving a stabkiliary problem that
approximately identifies the minimal face for (P) . We haveluded a backward
error analysis and some preliminary tests that succegsalle problems where
the CQ fails and also problems that have a duality gap. Thienapvalue of our
(AP) has significance as a measuraeérness to infeasibility

Though our stable (AP) satisfied both the primal and dualgdized Slater CQ,
high accuracy solutions were difficult to obtain for unstured general problems.
(AP) is equivalent to the underdetermined linear least sEgiproblem

min||«(D)||3 st. (I,D)=+n, D3>0, (1.79)

which is known to be difficult to solve. High accuracy soluisoare essential in
performing a proper facial reduction.

Extensions of some of our results can be made to general coniex program-
ming, in which case the partial orderings in (1.1) and (1r2)iaduced by a proper
closed convex conk and the dual conkK*, respectively.
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conjugate face, 7

constraint qualification, CQ, 5, 13
convex cone generated §ycong(S), 6
convex coneK, 6

CP, ordinary convex program, 9

distance from orthogonality («,C), 22
dual coneK*, 6

dual of auxiliary problem, (DAP) (1.20), 18
dual SDP, 5

exposed face, 7
extremal ray, 6

face,F <K, 7

facial reduction, 5

facially exposed cone, 7
faithfully convex functions, 11
feasible setsp, 73, #Z, 7o, 7

implicit equality constraints, 9
implicit equality constraints for CP, 10

Lowner partial order, 4, 6
largest eigenvalué\max(M), 40

Mangasarian-Fromovitz CQ, MFCQ, 7, 9
MFCQ, Mangasarian-Fromovitz CQ, 7, 9
minimal face of (1.1) fp, 7, 33
Moore-Penrose generalized inversg!, 7

numerical rank, 34
ordinary convex program, CP, 9

p-d i-p, primal-dual interior-point, 5
partial order induced bif, 6
pointed cone, 6

polar coneK*, 6

preprocessing, 37

primal SDP, 4

primal-dual interior-point, p-d i-p, 5
problem assumptions, 8

proper cone, 6
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proper face, 7

rank-revealing, 5

RCQ, Robinson CQ, 4,7, 9
regularization of LP, 9

regularized convex program, 10
regularized dual functional for CP, 10
regularized dual program, 10
Robinson CQ, RCQ, 4, 7,9

SCQ, Slater CQ, 5, 7, 8, 13
SCQ,Slater CQ, 5

second order coneZ, 18

singular values of, g;(A), 7

Slater CQ, SCQ, 5, 7, 8, 13
smallest eigenvalué\min(M), 41
strong duality, 13

strong infeasibility, 4

strongly dualized primal problem, 13

theorems of alternative, 14

weak infeasibility, 4
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