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Summary: This paper presents a backward stable preprocessing technique for
(nearly) ill-posed semidefinite programming, SDP, problems, i.e., programs for
which the Slater constraint qualification, existence of strictly feasible points, (nearly)
fails.
Current popular algorithms for semidefinite programming rely onprimal-dual interior-
point, p-d i-pmethods. These algorithms require the Slater constraint qualification
for both the primal and dual problems. This assumption guarantees the existence
of Lagrange multipliers, well-posedness of the problem, and stability of algorithms.
However, there are many instances of SDPs where the Slater constraint qualification
fails or nearly fails. Our backward stable preprocessing technique is based on ap-
plying the Borwein-Wolkowicz facial reduction process to find a finite number,k, of
rank-revealing orthogonal rotationsof the problem. After an appropriate truncation,
this results in a smaller, well-posed,nearbyproblem that satisfies the Robinson con-
straint qualification, and one that can be solved by standardSDP solvers. The case
k = 1 is of particular interest and is characterized by strict complementarity of an
auxiliary problem.

Introduction

The aim of this paper is to develop a backward stable preprocessing technique to
handle (nearly) ill-posed semidefinite programming, SDP, problems, i.e., programs
for which the Slater constraint qualification (Slater CQ, orSCQ), the existence
of strictly feasible points, (nearly) fails. The techniqueis based on applying the
Borwein-Wolkowiczfacial reductionprocess [11, 12] to find a finite numberk of
rank-revealing orthogonal rotationsteps. Each step is based on solving an auxiliary
problem (AP) where it and its dual satisfy the Slater CQ. After an appropriate trun-
cation, this results in a smaller, well-posed,nearbyproblem for which the Robinson
constraint qualification (RCQ) [52] holds; and one that can be solved by standard
SDP solvers. In addition, the casek= 1 is of particular interest and is characterized
by strict complementarity of the (AP).

In particular, we study SDPs of the following form

(P) vP := sup
y
{bTy : A

∗y�C}, (1.1)

where the optimal valuevP is finite, b∈ R
m, C ∈ S

n, andA : Sn→ R
m is an onto

linear transformation from the spaceSn of n×n real symmetric matrices toRm. The
adjoint ofA is A ∗y =

∑m
i=1yiAi , whereAi ∈ S

n, i = 1, . . . ,m. The symbol� de-
notes the Löwner partial order induced by the coneS

n
+ of positive semidefinite ma-

trices, i.e.,A ∗y�C if and only if C−A ∗y∈ S
n
+. (Note that the cone optimization

problem (1.1) is commonly used as the dual problem in the SDP literature, though
it is often the primal in the Linear Matrix Inequality (LMI) literature, e.g., [13].)
If (P) is strictly feasible, then one can use standard solution techniques; if (P) is
strongly infeasible, then one can setvP = −∞, e.g., [38, 43, 47, 62, 66]. If neither



Contents 5

of these two feasibility conditions can be verified, then we apply our preprocessing
technique that finds a rotation of the problem that is akin torank-revealingmatrix
rotations. (See e.g., [58, 59] for equivalent matrix results.) This rotation finds an
equivalent (nearly) block diagonal problem which allows for simple strong dualiza-
tion by solving only the most significant block of (P) for which the Slater CQ holds.
This is equivalent to restricting the original problem to a face ofSn

+, i.e., the pre-
processing can be considered as afacial reductionof (P) . Moreover, it provides a
backward stableapproach for solving (P) when it is feasible and the SCQ fails; and
it solves a nearby problem when (P) isweakly infeasible.

The Lagrangian dual to (1.1) is

(D) vD := inf
X
{〈C,X〉 : A (X) = b,X � 0} , (1.2)

where〈C,X〉 := traceCX =
∑

i j Ci j Xi j denotes the trace inner product of the sym-
metric matricesC andX; and,A (X) = (〈Ai ,X〉) ∈ R

m. Weak dualityvD ≥ vP fol-
lows easily. The usual constraint qualification (CQ) used for (P) is SCQ, i.e., strict
feasibility A ∗y≺C (or C−A ∗y∈ S

n
++, the cone of positive definite matrices). If

we assume the Slater CQ holds and the primal optimal value is finite, then strong
duality holds, i.e., we have a zero duality gap and attainment of the dual optimal
value. Strong duality results for (1.1) without any constraint qualification are given
in [10, 11, 12, 72] and [48, 49], and more recently in [50, 65].Related closure con-
ditions appear in [44]; and, properties of problems where strong duality fails appear
in [45].

General surveys on SDP are in e.g., [4, 63, 68, 74]. Further general results on
SDP appear in the recent survey [31].

Many popular algorithms for (P) are based on Newton’s methodand aprimal-
dual interior-point, p-d i-p,approach, e.g., the codes (latest at the URLs in the cita-
tions) CSDP, SeDuMi, SDPT3, SDPA [9, 60, 67, 76]; see also the
SDP URL: www-user.tu-chemnitz.de/˜helmberg/sdpsoftware.html.
To find the search direction, these algorithms apply symmetrization in combination
with block elimination to find the Newton search direction. The symmetrization and
elimination steps both result in ill-conditioned linear systems, even for well con-
ditioned SDP problems, e.g., [19, 73]. And, these methods are very susceptible to
numerical difficulties and high iteration counts in the casewhen SCQ nearly fails,
see e.g., [21, 22, 23, 24]. Our aim in this paper is to provide astable regularization
process based on orthogonal rotations for problems where strict feasibility (nearly)
fails. Related papers on regularization are e.g., [30, 39];and papers on high accuracy
solutions for algorithms SDPA-GMP,-QD,-DD are e.g., [77].In addition, a popular
approach uses a selfdual embedding e.g., [16, 17]. This approach results in SCQ
holding by using homogenization and increasing the number of variables. In con-
trast, our approach reduces the size of the problem in a preprocessing step in order
to guarantee SCQ.
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Outline

We continue in Section 1 with preliminary notation and results for cone program-
ming. In Section 1 we recall the history and outline the similarities and differences of
what facial reduction means first for linear programming (LP), and then for ordinary
convex programming (CP), and finally for SDP, which has elements from both LP
and CP. Instances and applications where the SCQ fails are given in Section 1. Then,
Section 1 presents the theoretical background and tools needed for the facial reduc-
tion algorithm for SDP. This includes results on strong duality in Section 1; and,
various theorems of the alternative, with cones having bothnonempty and empty
interior, are given in Section 1. A stable auxiliary problem(1.18) for identifying the
minimal face containing the feasible set is presented and studied in Section 1; see
e.g., Theorem 1.13. In particular, we relate the question oftransforming the unsta-
ble problem of finding the minimal face to the existence of a primal-dual optimal
pair satisfying strict complementarity and to the number ofsteps in the facial reduc-
tion. See Remark 1.12 and Section 1. The resulting information from the auxiliary
problem for problems where SCQ (nearly) fails is given in Theorem 1.17 and Propo-
sitions 1.18, 1.19. This information can be used to construct equivalent problems.
In particular, a rank-revealing rotation is used in Section1 to yield two equivalent
problems that are useful in sensitivity analysis, see Theorem 1.22. In particular, this
shows the backwards stability with respect to perturbations in the parameterβ in
the definition of the coneTβ for the problem. Truncating the (near) singular blocks
to zero yields two smaller equivalent, regularized problems in Section 1.

The facial reduction is studied in Section 1. An outline of the facial reduction
using a rank-revealing rotation process is given in Section1. Backward stability
results are presented in Section 1.

Preliminary numerical tests, as well as a technique for generating instances with
a finite duality gap useful for numerical tests, are given in Section 1. Concluding
remarks appear in Section 1. (An index is included to help thereader, see page 50.)

Preliminary definitions

Let (V ,〈·, ·〉V ) be a finite-dimensional inner product space, andK be a (closed)
convex conein V , i.e.,λK ⊆K,∀λ ≥ 0, andK+K ⊆K. K is pointedif K∩(−K) =
{0}; K is proper if K is pointed and intK 6= /0; thepolar or dual coneof K is K∗ :=
{φ : 〈φ ,k〉 ≥ 0,∀k ∈ K}. We denote by�K the partial order with respect toK.
That is,x1 �K x2 means thatx2− x1 ∈ K. We also writex1 ≺K x2 to mean that
x2− x1 ∈ intK. In particular withV = S

n, K = S
n
+ yields the partial order induced

by the cone of positive semidefinite matrices inS
n, i.e., the so-called Löwner partial

order. We denote this simply withX � Y for Y−X ∈ S
n
+. cone(S) denotes the

convex cone generated by the setS. In particular, for any non-zero vectorx, the
ray generated by xis defined by cone(x). The ray generated bys∈ K is called an
extreme rayif 0 �K u�K s implies thatu∈ cone(s). The subsetF ⊆ K is a face of
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the cone K, denotedF �K, if

(s∈ F,0�K u�K s) =⇒ (cone(u)⊆ F) . (1.3)

Equivalently,F �K if F is a cone and
(

x,y∈ K, 1
2(x+ y) ∈ F

)

=⇒ ({x,y} ⊆ F).
If F �K but is not equal toK, we writeF �K. If {0} 6= F �K, thenF is aproper
faceof K. For S⊆ K, we let face(S) denote the smallest face ofK that containsS.
A face F �K is anexposed faceif it is the intersection ofK with a hyperplane.
The coneK is facially exposedif every faceF �K is exposed. IfF �K, then the
conjugate faceis Fc :=K∗∩{F}⊥. Note that the conjugate faceFc is exposedusing
anys∈ relintF (where relintSdenotes therelative interiorof the setS), i.e.,Fc =
K∗∩{s}⊥,∀s∈ relintF. In addition, note thatSn

+ is self-dual (i.e.,(Sn
+)
∗ = S

n
+) and

is facially exposed.
For the general conic programming problem, the constraint linear transformation

A : V → W maps between two Euclidean spaces. The adjoint ofA is denoted
by A ∗ : W → V , and the Moore-Penrose generalized inverse ofA is denoted by
A † : W → V .

A linear conic program may take the form

(Pconic) vconic
P = sup

y
{〈b,y〉 : C−A

∗y�K 0}, (1.4)

with b∈W andC∈ V . Its dual is given by

(Dconic) vconic
D = inf

X
{〈C,X〉 : A (X) = b,X �K∗ 0}. (1.5)

Note that the Robinson constraint qualification (RCQ) is said to hold for the linear
conic program (Pconic) if 0 ∈ int(C−A ∗(Rm)− S

n
+); see [53]. As pointed out in

[61], the Robinson CQ is equivalent to the Mangasarian-Fromovitz constraint qual-
ification in the case of conventional nonlinear programming. Also, it is easy to see
that the Slater CQ, strict feasibility, implies RCQ.

Denote the feasible solution and slack sets of (1.4) and (1.5) by FP = F
y
P = {y :

A ∗y�K C}, FZ
P = {Z : Z=C−A ∗y�K 0}, andFD = {X : A (X) = b, X�K∗ 0},

respectively. Theminimal faceof (1.4) is the intersection of all faces ofK containing
the feasible slack vectors:

fP = f Z
P := face(C−A

∗(FP)) = ∩{H �K : C−A
∗(FP)⊆ H} .

Here,A ∗(FP) is the linear image of the setFP underA ∗.
We continue with the notation specifically forV = S

n, K = S
n
+ andW = R

m.
Then (1.4) (respectively, (1.5)) is the same as (1.1) (respectively, (1.2)). We letei de-
note thei-th unit vector, andEi j := 1√

2
(eieT

j +ejeT
i ) are the unit matrices inSn. for

specificAi ∈ S
n, i = 1, . . . ,m. We let‖A ‖2 denote the spectral norm ofA and de-

fine the Frobenius norm (Hilbert-Schmidt norm) ofA as‖A ‖F :=
√

∑m
i=1‖Ai‖2F .

Unless stated otherwise, all vector norms are assumed to be 2-norm, and all ma-
trix norms in this paper are Frobenius norms. Then, e.g., [32, Chapter 5], for any



8 Contents

X ∈ S
n,

‖A (X)‖2≤ ‖A ‖2‖X‖F ≤ ‖A ‖F‖X‖F . (1.6)

We summarize our assumptions in the following.

Assumption 1.1 FP 6= /0; A is onto.

Framework for Regularization/Preprocessing

The case of preprocessing for linear programming is well known. The situation for
general convex programming is not. We now outline the preprocessing and facial
reduction for the cases of: linear programming, (LP); ordinary convex programming,
(CP); and SDP. We include details on motivation involving numerical stability and
convergence for algorithms. In all three cases, the facial reduction can be regarded
as a Robinson type regularization procedure.

The case of linear programming, LP

Preprocessing is essential for LP, in particular for the application of interior point
methods. Suppose that the constraint in (1.4) isA ∗y�K c with K = R

n
+, the non-

negative orthant, i.e., it is equivalent to the elementwiseinequalityATy≤ c,c∈R
n,

with the (full row rank) matrixA beingm×n. Then (Pconic) and (Dconic) form the
standard primal-dual LP pair. Preprocessing is an essential step in algorithms for
solving LP, e.g., [20, 27, 35]. In particular, interior-point methods require strictly
feasible points for both the primal and dual LPs. Under the assumption thatFP 6= /0,
lack of strict feasibility for the primal is equivalent to the existence of an unbounded
set of dual optimal solutions. This results in convergence problems, since current
primal-dual interior point methods follow thecentral pathand converge to the ana-
lytic center of the optimal set. From a standard Farkas’ Lemma argument, we know
that the Slater CQ, the existence of a strictly feasible point AT ŷ < c, holds if and
only if

the system 06= d≥ 0,Ad= 0,cTd = 0 is inconsistent. (1.7)

In fact, after a permutation of columns if needed, we can partition bothA,c as

A=
[

A< A=
]

, with A= sizem× t, c=

(

c<

c=

)

,

so that we have

A<T ŷ< c<, A=T ŷ= c=, for some ˆy∈R
m, andATy≤ c =⇒ A=Ty= c=,
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i.e. the constraintsA=Ty ≤ c= are theimplicit equality constraints, with indices
given in

P := {1, . . . ,n}, P
< := {1, . . . ,n− t}, P

= := {n− t+1, . . . ,n}.

Moreover, the indices forc= (and columns ofA=) correspond to the indices in
a maximal positivesolutiond in (1.7); and, the nonnegative linear dependence in
(1.7) implies that there are redundant implicit equality constraints that we can dis-
card, yielding the smaller(A=

R)
Ty = c=R with A=

R full column rank. Therefore, an
equivalent problem to (Pconic) is

(Preg) vP := max{bTy : A<Ty≤ c<, A=
R

Ty= c=R}. (1.8)

And this LP satisfies the Robinson constraint qualification (RCQ); see Corol-
lary 1.17, Item 2, below. In this case RCQ is equivalent to theMangasarian-
Fromovitz constraint qualification (MFCQ), i.e., there exists a feasible ˆywhich satis-
fies the inequality constraints strictly,A<T ŷ< c<, and the matrixA= for the equality
constraints is full row rank, see e.g., [8, 40]. The MFCQ characterizes stability with
respect to right-hand side perturbations and is equivalentto having a compact set of
dual optimal solutions. Thus, recognizing and changing theimplicit equality con-
straints to equality constraints and removing redundant equality constraints provides
a simpleregularization of LP.

Let fP denote the minimal face of the LP. Then note that we can rewrite the
constraint as

ATy� fP c, with fP := {z∈R
n
+ : zi = 0, i ∈P

=}.

Therefore, rewriting the constraint using the minimal faceprovides a regularization
for LP. This is followed by discarding redundant equality constraints to obtain the
MFCQ. This reduces the number of constraints and thus the dimension of the dual
variables. Finally, the dimension of the problem can be further reduced by eliminat-
ing the equality constraints completely using the nullspace representation. However,
this last step can result in loss of sparsity and is usually not done.

We can similarly use a theorem of the alternative to recognize failure of strict
feasibility in the dual, i.e., the (in)consistency of the system 06= ATv≥ 0,bTv =
0. This corresponds to identifying which variablesxi are identically zero on the
feasible set. The regularization then simply discards these variables along with the
corresponding columns ofA,c.

The case of ordinary convex programming, CP

We now move from LP to nonlinear convex programming. We consider theordinary
convex program (CP)



10 Contents

(CP) vCP := sup{bTy : g(y)≤ 0}, (1.9)

whereg(y) = (gi(y))∈Rn, andgi :Rm→R are convex functions, for alli. (Without
loss of generality, we let the objective functionf (y) = bTy be linear. This can always
be achieved by replacing a concave objective function with anew variable supt, and
adding a new constraint− f (y) ≤ −t.) The quadratic programming case has been
well studied, [28, 28, 42]. Some preprocessing results for the general CP case are
known, e.g., [15]. However, preprocessing for general CP isnot as well known as
for LP. In fact, see [6], as for LP there is a set ofimplicit equality constraints for
CP, i.e. we can partition the constraint index setP = {1, . . . ,n} into two sets

P
= = {i ∈P : y feasible =⇒ gi(y) = 0}, P

< = P\P=. (1.10)

Therefore, as above for LP, we can rewrite the constraints inCP using the minimal
face fP to getg(y)� fP 0. However, this is not a true convex program since the new
equality constraints are not affine. However, surprisinglythe corresponding feasible
set for the implicit equality constraints is convex, e.g., [6]. We include the result and
a proof for completeness.

Lemma 1.2.Let the convex program (CP) be given, and letP= be defined as in
(1.10). Then the setF= := {y : gi(y) = 0,∀i ∈P=} satisfies

F
= = {y : gi(y)≤ 0,∀i ∈P

=},

and thus is a convex set.

Proof. Let g=(y) = (gi(y))i∈P= andg<(y) = (gi(y))i∈P< . By definition of P<,
there exists a feasible ˆy∈F with g<(ŷ) < 0; and, suppose that there exists ¯y with
g=(ȳ)≤ 0, andgi0(ȳ)< 0, for somei0 ∈P=. Then for smallα > 0 the pointyα :=
α ŷ+(1−α)ȳ∈F andgi0(yα)< 0. This contradicts the definition ofP=.

This means that we can regularize CP by replacing the implicit equality constraints
as follows

(CPreg) vCP := sup{bTy : g<(y)≤ 0,y∈F
=}. (1.11)

The generalized Slater CQ holds for theregularized convex program(CPreg). Let

φ(λ ) = sup
y∈F=

bTy−λ Tg<(y)

denote theregularized dual functional for CP. Then strong duality holds for CP with
theregularized dual program, i.e.

vCP = vCPD := inf
λ≥0

φ(λ )

= φ(λ ∗),

for some (dual optimal)λ ∗ ≥ 0. The Karush-Kuhn-Tucker (KKT) optimality condi-
tions applied to (1.11) imply that
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y∗ is optimal for CPreg

if and only if






y∗ ∈F (primal feasibility)
b−∇g<(y∗)λ ∗ ∈ (F=− y∗)∗ , for someλ ∗ ≥ 0 (dual feasibility)
g<(y∗)Tλ ∗ = 0 (complementary slackness)

This differs from the standard KKT conditions in that we needthe polar set

(F=− y∗)∗ = cone(F=− y∗)
∗
= (D=(y∗))∗ , (1.12)

whereD=(y∗) denotes thecone of directions of constancyof the implicit equality
constraintsP=, e.g., [6]. Thus we need to be able to find this cone numerically,
see, [71]. A backward stable algorithm for the cone of directions of constancy is
presented in [37].

Note that a convex functionf is faithfully convex if f is affine on a line segment
only if it is affine on the whole line containing that segment;see [54]. Analytic con-
vex functions are faithfully convex, as are strictly convexfunctions . For faithfully
convex functions, the setF= is an affine manifold,F= = {y : Vy= Vŷ}, where
ŷ ∈F is feasible, and the nullspace of the matrixV gives the intersection of the
cones of directions of constancyD=. Without loss of generality, letV be chosen full
row rank. Then in this case we can rewrite the regularized problem as

(CPreg) vCP := sup{bTy : g<(y)≤ 0,Vy=Vŷ}, (1.13)

which is a convex program for which the MFCQ holds. Thus by identifying the
implicit equalities and replacing them with the linear equalities that represent the
cone of directions of constancy, we obtain the regularized convex program. If we let

gR(y) =

(

g<(y)
Vy−Vŷ

)

, then writing the constraintg(y)≤ 0 usinggR and the minimal

cone fP asgR(y)� fP 0 results in the regularized CP for which MFCQ holds.

The case of semidefinite programming, SDP

Finally, we consider our case of interest, the SDP given in (1.1). In this case, the cone
for the constraint partial order isSn

+, anonpolyhedralcone. Thus we have elements
of both LP and CP. Significant preprocessing is not done in current public domain
SDP codes. Theoretical results are known, see e.g., [34] forresults on redundant
constraints using a probabilistic approach. However, [10], the notion of minimal
face can be used to regularize SDP. Surprisingly, the above result for LP in (1.8)
holds. A regularized problem for (P) for which strong duality holds has constraints
of the formA ∗y � fP C without the need for an extra polar set as in (1.12) that
is used in the CP case, i.e., changing the cone for the partialorder regularizes the
problem. However, as in the LP case where we had to discard redundant implicit
equality constraints, extra work has to be done to ensure that the RCQ holds. The
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details for the facial reduction now follow in Section 1. An equivalent regularized
problem is presented in Corollary 1.24, i.e., rather than a permutation of columns
needed in the LP case, we perform a rotation of the problem constraint matrices, and
then we get a similar division of the constraints as in (1.8);and, setting the implicit
equality constraints to equality results in a regularized problem for which the RCQ
holds.

Instances where the Slater CQ fails for SDP

Instances where SCQ fails for CP are given in [6]. It is known that the SCQ holds
generically for SDP, e.g., [3]. However, there are surprisingly many SDPs that arise
from relaxations of hard combinatorial problems where SCQ fails. In addition, there
are many instances where the structure of the problems allows for exact facial re-
duction. This was shown for the quadratic assignment problem in [80] and for the
graph partitioning problem in [75]. For these two instances, the barycenter of the
feasible set is found explicitly and then used to project theproblem onto the mini-
mal face; thus we simultaneously regularize and simplify the problems. In general,
the affine hull of the feasible solutions of the SDP are found and used to find Slater
points. This is formalized and generalized in [64, 66]. In particular, SDP relaxations
that arise from problems with matrix variables that have 0,1 constraints along with
row and column constraints result in SDP relaxations where the Slater CQ fails.

Important applications occur in the facial reduction algorithm for sensor net-
work localization and molecular conformation problems given in [36]. Cliques in
the graph result in corresponding dimension reduction of the minimal face of the
problem resulting in efficient and accurate solution techniques. Another instance is
the SDP relaxation of the side chain positioning problem studied in [14]. Further
Applications that exploit the failure of the Slater CQ for SDP relaxations appear in
e.g., [1, 2, 5, 69].

Theory

We now present the theoretical tools that are needed for the facial reduction algo-
rithm for SDP. This includes the well known results for strong duality, the theorems
of the alternative to identify strict feasibility, and, in addition, a stable subproblem
to apply the theorems of the alternative. Note that we useK to represent the coneSn

+

to emphasize that many of the results hold for more general closed convex cones.
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Strong duality for cone optimization

We first summarize some results onstrong dualityfor the conic convex program
in the form (1.4). Strong duality for (1.4) means that there is azero duality gap,
vconic

P = vconic
D , and the dual optimal valuevD (1.5) is attained. However, it is easy to

construct examples where strong duality fails, see e.g., [45, 49, 74] and Section 1,
below.

It is well known that for a finite dimensional LP, strong duality fails only if the
primal problem and/or its dual are infeasible. In fact, in LPboth problems are feasi-
ble and both of the optimal values are attained (and equal) if, and only if, the optimal
value of one of the problems is finite. In general (conic) convex optimization, the
situation is more complicated, since the underlying cones in the primal and dual op-
timization problems need not be polyhedral. Consequently,even if a primal problem
and its dual are feasible, a nonzero duality gap and/or non-attainment of the optimal
values may ensue unless someconstraint qualificationholds; see e.g., [7, 55]. More
specific examples for our cone situations appear in e.g., [38], [51, Section 3.2], and
[63, Section 4].

Failure of strong duality is problematic, since many classes of p-d i-p algorithms
require not only that a primal-dual pair of problems possessa zero duality gap, but
also that the (generalized) Slater CQ holds for both primal and dual, i.e., that strict
feasibility holds for both problems. In [10, 11, 12], an equivalentstrongly dualized
primal problemcorresponding to (1.4), given by

(SP) vconic
SP := sup{〈b,y〉 : A

∗y� fP C}, (1.14)

where fP �K is the minimal face ofK containing the feasible region of (1.4), is
considered. The equivalence is in the sense that the feasible set is unchanged

A
∗y�K C ⇐⇒ A

∗y� fP C.

This means that for any faceF we have

fP�F �K =⇒ {A ∗y�K C ⇐⇒ A
∗y�F C} .

The Lagrangian dual of (1.14) is given by

(DSP) vconic
DSP := inf{〈C,X〉 : A (X) = b, X � f ∗P

0}. (1.15)

We note that the linearity of the constraint means that an equality set of the type in
(1.12) is not needed.

Theorem 1.3 ([10]).Suppose that the optimal valuevconic
P in (1.4) is finite. Then

strong duality holds for the pair (1.14) and (1.15), or equivalently, for the pair (1.4)
and (1.15); i.e.,vconic

P = vconic
SP = vconic

DSP and the dual optimal valuevconic
DSP is attained.
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Theorems of the alternative

In this section, we state some theorems of the alternative for the Slater CQ of the
conic convex program (1.4), which are essential to our reduction process. We first
recall the notion of recession direction (for the dual (1.5)) and its relationship with
the minimal face of the primal feasible region.

Definition 1.4. The convex cone ofrecession directionsfor (1.5) is

RD := {D ∈ V : A (D) = 0, 〈C,D〉 = 0, D�K∗ 0}. (1.16)

The coneRD consists of feasible directions for the homogeneous problem along
which the dual objective function is constant.

Lemma 1.5.Suppose that the feasible setFP 6= /0 for (1.4), and let 06= D ∈ RD.
Then the minimal face of (1.4) satisfies

fP�K∩{D}⊥�K.

Proof. We have

0= 〈C,D〉− 〈FP,A (D)〉= 〈C−A
∗(FP),D〉.

HenceC−A ∗(FP)⊆ {D}⊥∩K, which is a face ofK. It follows that fP⊆ {D}⊥∩
K. The required result now follows from the fact thatfP is (by definition) a face of
K, andD is nonzero.

Lemma 1.5 indicates that if we are able to find an elementD ∈ RD\{0}, thenD
gives us a smaller face ofK that containsFZ

P . The following lemma shows that
the existence of such a directionD is equivalentto the failure of the Slater CQ for
a feasible program (1.4). The lemma specializes [12, Theorem 7.1] and forms the
basis of our reduction process.

Lemma 1.6 ([12]).Suppose that intK 6= /0 andFP 6= /0. Then exactly one of the
following two systems is consistent:

1. A (D) = 0, 〈C,D〉= 0, and 06= D�K∗ 0 (RD\{0})
2. A ∗y≺K C (Slater CQ)

Proof. Suppose thatD satisfies the system in Item 1. Then for ally∈FP, we have
〈C−A ∗y,D〉 = 〈C,D〉 − 〈y,(A (D))〉 = 0. HenceFZ

P ⊆ K ∩ {D}⊥. But {D}⊥ ∩
intK = /0 as 06= D�K∗ 0. This implies that the Slater CQ (as in Item 2) fails.

Conversely, suppose that the Slater CQ in Item 2 fails. We have intK 6= /0 and

0 /∈ (A ∗(Rm)−C)+ intK.

Therefore, we can findD 6= 0 to separate the open set(A ∗(Rm)−C)+ intK from
0. Hence we have
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〈D,Z〉 ≥ 〈D,C−A
∗y〉 ,

for all Z ∈ K andy∈ W . This implies thatD ∈ K∗ and〈D,C〉 ≤ 〈D,A ∗y〉, for all
y∈W . This implies that〈A (D),y〉= 0 for all y∈W ; henceA (D) = 0. To see that
〈C,D〉= 0, fix anyŷ∈FP. Then 0≥ 〈D,C〉= 〈D,C−A ∗ŷ〉 ≥ 0, so〈D,C〉= 0.

We have an equivalent characterization for the generalizedSlater CQ for the dual
problem. This can be used to extend our results to (Dconic) .

Corollary 1.7. Suppose that intK∗ 6= /0 andFD 6= /0. Then exactly one of the fol-
lowing two systems is consistent:

1. 0 6= A ∗v�K 0, and〈b,v〉= 0.
2. A (X) = b,X ≻K∗ 0 (generalized Slater CQ).

Proof. Let K be a one-one linear transformation with rangeR(K ) = N (A ),
and letX̂ satisfyA (X̂) = b. Then, Item 2 is consistent if, and only if, there exists
û such thatX = X̂−K û≻K∗ 0. This is equivalent toK û≺K∗ X̂. Therefore,K , X̂
play the roles ofA ∗,C, respectively, in Lemma 1.6. Therefore, an alternative sys-
tem isK ∗(Z) = 0,0 6= Z �K 0, and〈X̂,Z〉 = 0. SinceN (K ∗) = R(A ∗), this is
equivalent to 06= Z = A ∗v�K 0, and〈X̂,Z〉= 0, or 0 6= A ∗v�K 0, and〈b,v〉= 0.

We can extend Lemma 1.6 to problems with additional equalityconstraints.

Corollary 1.8. Consider the modification of the primal (1.4) obtained by adding
equality constraints:

(PB) vPB := sup{〈b,y〉 : A
∗y�K C,By= f}, (1.17)

whereB : W →W ′ is an onto linear transformation. Assume that intK 6= /0 and (PB)
is feasible. LetC̄=C−A ∗B† f . Then exactly one of the following two systems is
consistent:

1. A (D)+B∗v= 0,
〈

C̄,D
〉

= 0, 0 6= D�K∗ 0.
2. A ∗y≺K C, By= f .

Proof. Let ȳ=B† f be the particular solution (of minimum norm) ofBy= f . Since
B is onto, we conclude thatBy= f if, and only if,y= ȳ+C ∗v, for somev, where
the range of the linear transformationC ∗ is equal to the nullspace ofB. We can now
substitute foryand obtain the equivalent constraintA ∗(ȳ+C ∗v)�K C; equivalently
we getA ∗C ∗v�K C−A ∗ȳ. Therefore, Item 2 holds aty= ŷ= ȳ+C ∗v̂, for some
v̂, if, and only if, A ∗C ∗v̂≺K C−A ∗ȳ. The result now follows immediately from
Lemma 1.6 by equating the linear transformationA ∗C ∗ with A ∗ and the right-hand
sideC−A ∗ȳwithC. Then the system in Item 1 in Lemma 1.6 becomesC (A (D))=
0,〈(C−A ∗ȳ),D〉 = 0. The result follows since the nullspace ofC is equal to the
range ofB∗.

We can also extend Lemma 1.6 to the important case where intK = /0. This occurs
at each iteration of the facial reduction.
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Corollary 1.9. Suppose that intK = /0, FP 6= /0, andC ∈ span(K). Then the linear
manifold

Sy := {y∈W : C−A
∗y∈ span(K)}

is a subspace. Moreover, letP be a one-one linear transformation with

R(P) = (A ∗)† span(K).

Then exactly one of the following two systems is consistent:

1. P∗A (D) = 0, 〈C,D〉= 0, D ∈ span(K), and 06= D�K∗ 0.
2. C−A ∗y∈ relintK.

Proof. SinceC∈ span(K) = K−K, we get that 0∈ Sy, i.e.,Sy is a subspace.
Let T denote an onto linear transformation acting onV such that the nullspace

N (T ) = span(K)⊥, andT ∗ is a partial isometry, i.e.,T ∗ = T †. Therefore,T is
one-to-one and is onto span(K). Then

A ∗y�K C⇐⇒ A ∗y�K C andA ∗y∈ span(K), sinceC∈ K−K
⇐⇒ (A ∗P)w�K C, y= Pw, for somew, by definition ofP
⇐⇒ (T A ∗P)w�T (K) T (C), y= T w, for somew, by definition ofT ,

i.e., (1.1) is equivalent to

vP := sup{〈P∗b,w〉 : (T A
∗
P)w�T (K) T (C)}.

The corresponding dual is

vD := inf
{

〈T (C),D〉 : P
∗
AT

∗(D) = P
∗b, D�(T (K))∗ 0

}

.

By construction, intT (K) 6= /0, so we may apply Lemma 1.6. We conclude that
exactly one of the following two systems is consistent:

1. P∗AT ∗(D) = 0, 0 6= D�(T (K))∗ 0, and〈T (C),D〉 = 0.
2. (T A ∗P)w≺T (K) T (D) (Slater CQ).

The required result follows, since we can now identifyT ∗(D) with D ∈ span(K),
andT (C) with C.

Remark 1.10.Ideally, we would like to findD̂∈ relint
(

FZ
P

)c
= relint((C+R(A ∗))∩K)c,

since then we have found the minimal facefP = {D̂}⊥ ∩K. This is difficult to
do numerically. Instead, Lemma 1.6 compromises and finds a point in a larger set
D ∈

(

N (A )∩{C}⊥∩K∗
)

\{0}. This allows for the reduction ofK← K ∩{D}⊥.
Repeating to find anotherD is difficult without the subspace reduction usingP

in Corollary 1.9. This emphasizes the importance of the minimal subspace form
reduction as an aid to the minimal cone reduction, [65].

A similar argument applies to the regularization of the dualas given in Corollary
1.7. LetFD = (X̂+N (A ))∩K∗, whereA (X̂) = b. We note that a compromise to
finding Ẑ ∈ relint(F z

P)
c = relint((X̂ +N (A ))∩K∗)c, fD = {Ẑ}⊥∩K∗ is finding

Z ∈ (R(A ∗)∩{X̂}⊥∩K)\{0}, where 0= 〈Z, X̂〉= 〈A ∗v, X̂〉= 〈v,b〉.



Contents 17

Stable auxiliary subproblem

From this section on we restrict the application of facial reduction to the SDP in
(1.1). (Note that the notion of auxiliary problem as well as Theorems 1.13 and 1.17,
below, apply to the more general conic convex program (1.4).) Each iteration of
the facial reduction algorithm involves two steps. First, we apply Lemma 1.6 and
find a pointD in the relative interior of the recession coneRD. Then, we project
onto the span of the conjugate face{D}⊥∩Sn

+ ⊇ fP. This yields a smaller dimen-
sional equivalent problem. The first step to findD is well-suited for interior-point
algorithms if we can formulate a suitable conic optimization problem. We now for-
mulate and present the properties of a stable auxiliary problem for findingD. The
following is well-known, e.g., [41, Theorems 10.4.1,10.4.7].

Theorem 1.11.If the (generalized) Slater CQ holds for both primal problem(1.1)
and dual problem (1.2), then as the barrier parameterµ → 0+, the primal-dual cen-
tral path converges to a point(X̂, ŷ, Ẑ), whereẐ = C−A ∗ŷ, such thatX̂ is in the
relative interior of the set of optimal solutions of (1.2) and (ŷ, Ẑ) is in the relative
interior of the set of optimal solutions of (1.1).

Remark 1.12.Many polynomial time algorithms for SDP assume that the New-
ton search directions can be calculated accurately. However, difficulties can arise
in calculating accurate search directions if the corresponding Jacobians become in-
creasingly ill-conditioned. This is the case in most of the current implementations
of interior point methods due to symmetrization and block elimination steps, see
e.g., [19]. In addition, the ill-conditioning arises if theJacobian of the optimality
conditions is not full rank at the optimal solution, as is thecase if strict complemen-
tarity fails for the SDP. This key question is discussed further in Section 1, below.

According to Theorem 1.11, if we can formulate a pair of auxiliary primal-dual
cone optimization problems, each with generalized Slater points such that the rel-
ative interior ofRD coincides with the relative interior of the optimal solution set
of one of our auxiliary problems, then we can design an interior-point algorithm for
the auxiliary primal-dual pair, making sure that the iterates of our algorithm stay
close to the central path (as they approach the optimal solution set) and generate our
desiredX ∈ relintRD.

This is precisely what we accomplish next. In the special case of K = S
n
+, this

corresponds to finding maximum rank feasible solutions for the underlying auxiliary
SDPs, since the relative interiors of the faces are characterized by their maximal rank
elements.

Define the linear transformationAC : Sn→R
m+1 by

AC(D) =

(

A (D)
〈C,D〉

)

,

This presents a homogenized form of the constraint of (1.1) and combines the two
constraints in Lemma 1.6, Item 1. Now consider the followingconic optimization
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problem, which we shall henceforth refer to as theauxiliary problem.

(AP)

valaux
P := min

δ ,D
δ

s.t. ‖AC(D)‖ ≤ δ
〈 1√

nI ,D〉= 1

D� 0.

(1.18)

This auxiliary problem is related to the study of the distances to infeasibility in
e.g., [46]. The Lagrangian dual of (1.18) is

sup

W�0,





β
u



�Q0

inf
δ ,D

δ + γ
(

1−
〈

D,
1√
n

I

〉)

−〈W,D〉−
〈(

β
u

)

,

(

δ
AC(D)

)〉

= sup

W�0,





β
u



�Q0

inf
δ ,D

δ (1−β )−
〈

D, A ∗
C u+ γ

1√
n

I +W

〉

+ γ,(1.19)

whereQ :=

{(

β
u

)

∈ R
m+2 : ‖u‖ ≤ β

}

refers to the second order cone. Since the

inner infimum of (1.19) is unconstrained, we get the following equivalent dual.

(DAP)

valaux
D := sup

γ,u,W
γ

s.t. A ∗
C u+ γ 1√

nI +W = 0

‖u‖ ≤ 1
W� 0.

(1.20)

A strictly feasible primal-dual point for (1.18) and (1.20)is given by

D =
1√
n

I , δ >

∥

∥

∥

∥

AC

(

1√
n

I

)∥

∥

∥

∥

, and γ =−1, u= 0, W =
1√
n

I , (1.21)

showing that the generalized Slater CQ holds for the pair (1.18)–(1.20).
Observe that the complexity of solving (1.18) is essentially that of solving the

original dual (1.2). Recalling that if a path-following interior point method is applied
to solve (1.18), one arrives at a point in the relative interior of the set of optimal
solutions, a primal optimal solution(δ ∗,D∗) obtained is such thatD∗ is of maximum
rank.

Auxiliary problem information for minimal face of FZ
P

This section outlines some useful information that the auxiliary problem provides.
Theoretically, in the case when the Slater CQ (nearly) failsfor (1.1), the auxiliary
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problem provides a more refined description of the feasible region, as Theorem 1.13
shows. Computationally, the auxiliary problem gives a measure of how close the
feasible region of (1.1) is to being a subset of a face of the cone of positive semidef-
inite matrices, as shown by: (i) the cosine-angle upper bound (near orthogonality) of
the feasible set with the conjugate face given in Theorem 1.17; (ii) the cosine-angle
lower bound (closeness) of the feasible set with a proper face of Sn

+ in Proposi-
tion 1.18; and (iii) the near common block singularity boundfor all the feasible
slacks obtained after an appropriate orthogonal rotation,in Corollary 1.19.

We first illustrate the stability of the auxiliary problem and show how a primal-
dual solution can be used to obtain useful information aboutthe original pair of
conic problems.

Theorem 1.13.The primal-dual pair of problems (1.18) and (1.20) satisfy the gen-
eralized Slater CQ, both have optimal solutions, and their (nonnegative) optimal
values are equal. Moreover, letting(δ ∗,D∗) be an optimal solution of (1.18), the
following holds under the assumption thatFP 6= /0:

1. If δ ∗= 0 andD∗≻ 0, then the Slater CQ fails for (1.1) but the generalized Slater
CQ holds for (1.2). In fact, the primal minimal face and the only primal feasible
(hence optimal) solution are

fP = {0}, y∗ = (A ∗)†(C).

2. If δ ∗ = 0 andD∗ 6≻ 0, then the Slater CQ fails for (1.1) and the minimal face
satisfies

fP�S
n
+∩{D∗}⊥�S

n
+. (1.22)

3. If δ ∗ > 0, then the Slater CQ holds for (1.1).

Proof. A strictly feasible pair for (1.18)–(1.20) is given in (1.21). Hence by strong
duality both problems have equal optimal values and both values are attained.

1. Suppose thatδ ∗ = 0 andD∗ ≻ 0. It follows thatAC(D∗) = 0 andD∗ 6= 0. It
follows from Lemma 1.5 that

fP� S
n
+∩{D∗}⊥ = {0}.

Hence all feasible points for (1.1) satisfyC−A ∗y = 0. SinceA is onto, we
conclude that the unique solution of this linear system isy= (A ∗)†(C).
SinceA is onto, there exists̄X such thatA (X̄) = b. Thus, for everyt ≥ 0,
A (X̄+ tD∗) = b, and fort large enough,̄X+ tD∗ ≻ 0. Therefore, the general-
ized Slater CQ holds for (1.2).

2. The result follows from Lemma 1.5.
3. If δ ∗ > 0, thenRD = {0}, whereRD was defined in (1.16). It follows from

Lemma 1.6 that the Slater CQ holds for (1.1).

Remark 1.14.Theorem 1.13 shows that if the primal problem (1.1) is feasible, then
by definition of (AP) as in (1.18),δ ∗ = 0 if, and only if,AC has a right singular vec-
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tor D such thatD� 0 and the corresponding singular value is zero, i.e., we could re-
place (AP) with min{‖AC(D)‖ : ‖D‖= 1,D� 0}. Therefore, we could solve (AP)
using a basis for the nullspace ofAC, e.g., using an onto linear functionNAC on
S

n that satisfiesR(N ∗
AC

) = N (AC), and an approach based on maximizing the
smallest eigenvalue:

δ ≈ sup
y

{

λmin(N
∗

AC
y) : trace(N ∗

AC
y) = 1,‖y‖ ≤ 1

}

,

so, in the case whenδ ∗ = 0, both (AP) and (DAP) can be seen as a max-min eigen-
value problem (subject to a bound and a linear constraint).

Finding 06= D� 0 that solvesAC(D) = 0 is also equivalent to the SDP

inf
D

‖D‖
s.t. AC(D) = 0, 〈I ,D〉=√n, D� 0,

(1.23)

a program for which the Slater CQ generally fails. (See Item 2of Theorem 1.13.)
This suggests that the problem of finding the recession direction 0 6= D � 0 that
certifies a failure for (1.1) to satisfy the Slater CQ may be a difficult problem.

One may detect whether the Slater CQ fails for the dual (1.2) using the auxiliary
problem (1.18) and its dual (1.20).

Proposition 1.15.Assume that (1.2) is feasible, i.e., there existsX̂ ∈ S
n
+ such that

A (X̂) = b. Then we have thatX is feasible for (1.2) if and only if

X = X̂+N
∗

A y� 0,

whereNA : Sn→R
n(n+1)/2−m is an onto linear transformation such thatR(N ∗

A
) =

N (A ). Then the corresponding auxiliary problem

inf
δ ,D

δ s.t.

∥

∥

∥

∥

(

NA (D)
〈

X̂,D
〉

)∥

∥

∥

∥

≤ δ , 〈I ,D〉=
√

n, D� 0

either certifies that (1.2) satisfies the Slater CQ, or that 0 is the only feasible slack
of (1.2), or detects a smaller face ofS

n
+ containingFD.

The results in Proposition 1.15 follows directly from the corresponding results for
the primal problem (1.1). An alternative form of the auxiliary problem for (1.2) can
be defined using the theorem of the alternative in Corollary 1.7.

Proposition 1.16.Assume that (1.2) is feasible. The dual auxiliary problem

sup
v,λ

λ s.t. (A (I))Tv= 1, bTv= 0, A
∗v� λ I (1.24)

determines if (1.2) satisfies the Slater CQ. The dual of (1.24) is given by

inf
µ,Ω

µ2 s.t. 〈I ,Ω〉= 1, A (Ω)− µ1A (I)− µ2b= 0, Ω � 0, (1.25)
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and the following hold under the assumption that (1.2) is feasible:

(1) If (1.24) is infeasible, then (1.2) must satisfy the Slater CQ.
(2) If (1.24) is feasible, then both (1.24) and (1.25) satisfy the Slater CQ. Moreover,

the Slater CQ holds for (1.2) if and only if the optimal value of (1.24) is negative.
(3) If (v∗,λ ∗) is an optimal solution of (1.24) withλ ∗ ≥ 0, thenFD ⊆ S

n
+ ∩

{A ∗v∗}⊥�S
n
+.

SinceX feasible for (1.2) implies that

〈A ∗v∗,X〉= (v∗)T(A (X)) = (v∗)Tb= 0,

we conclude thatFD ⊆ S
n
+∩{A ∗v∗}⊥�S

n
+. Therefore, if (1.2) fails the Slater

CQ, then, by solving (1.24), we can obtain a proper face ofS
n
+ that contains the

feasible regionFD of (1.2).

Proof. The Lagrangian of (1.24) is given by

L(v,λ ,µ ,Ω) = λ + µ1(1− (A (I)Tv))+ µ2(−bTv)+ 〈Ω ,A ∗v−λ I〉
= λ (1−〈I ,Ω〉)+ vT(A (Ω)− µ1A (I)− µ2b)+ µ2.

This yields the dual program (1.25).
If (1.24) is infeasible, then we must haveb 6= 0 andA (I) = kb for somek∈ R.

If k > 0, thenk−1I is a Slater point for (1.2). Ifk = 0, thenA (X̂ + λ I) = b and
X̂ +λ I ≻ 0 for anyX̂ satisfyingA (X̂) = b and sufficiently largeλ > 0. If k < 0,
thenA (2X̂+k−1I) = b for X̂� 0 satisfyingA (X̂) = b; and we have 2̂X+k−1I ≻ 0.

If (1.24) is feasible, i.e., if there exists ˆv such that(A (I))Tv = 1 andbT v̂ = 0,
then

(v̂, λ̂ ) =
(

v̂, λ̂ = λmin(A
∗v̂)−1

)

, (µ̂ ,Ω̂ ) =

((

1/n
0

)

,
1
n

I

)

is strictly feasible for (1.24) and (1.25) respectively.
Let (v∗,λ ∗) be an optimal solution of (1.25). Ifλ ∗ ≤ 0, then for anyv∈R

m with
A ∗y� 0 andbTv= 0, v cannot be feasible for (1.24) so〈I ,A ∗v〉 ≤ 0. This implies
thatA ∗v = 0. By Corollary 1.7, the Slater CQ holds for (1.2). Ifλ ∗ > 0, thenv∗

certifies that the Slater CQ fails for (1.2), again by Corollary 1.7.

The next result shows thatδ ∗ from (AP) is a measure of how close the Slater CQ
is to failing.

Theorem 1.17.Let (δ ∗,D∗) denote an optimal solution of the auxiliary problem
(1.18). Thenδ ∗ bounds how far the feasible primal slacksZ = C−A ∗y� 0 are
from orthogonality toD∗:

0≤ sup
0�Z=C−A ∗y6=0

〈D∗,Z〉
‖D∗‖‖Z‖ ≤ α(A ,C) :=















δ ∗

σmin(A )
if C∈R(A ∗),

δ ∗

σmin(AC)
if C /∈R(A ∗).

(1.26)
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Proof. Since〈 1√
nI ,D∗〉= 1, we get

‖D∗‖ ≥

〈

1√
n
I ,D∗

〉

‖ 1√
n
I‖

=
1

1√
n
‖I‖

= 1.

If C= A ∗yC for someyC ∈ R
m, then for anyZ =C−A ∗y� 0,

cosθD∗,Z :=
〈D∗,C−A ∗y〉
‖D∗‖‖C−A ∗y‖ ≤

〈A (D∗),yC− y〉
‖A ∗(yC− y)‖

≤ ‖A (D∗)‖ ‖yC− y‖
σmin(A ∗)‖yC− y‖

≤ δ ∗

σmin(A )
.

If C /∈R(A ∗), then by Assumption 1.1,AC is onto so〈D∗,C−A ∗y〉=
〈

AC(D∗),

(

−y
1

)〉

implies that 0�C−A ∗y 6= 0,∀y∈FP. Therefore the cosine of the angleθD∗,Z be-
tweenD∗ andZ =C−A ∗y� 0 is bounded by

cosθD∗,Z =
〈D∗,C−A ∗y〉
‖D∗‖‖C−A ∗y‖ ≤

〈

AC(D
∗),

(

−y
1

)〉

∥

∥

∥

∥

A
∗

C

(

−y
1

)∥

∥

∥

∥

≤
‖AC(D

∗)‖
∥

∥

∥

∥

(

−y
1

)∥

∥

∥

∥

σmin(AC)

∥

∥

∥

∥

(

−y
1

)∥

∥

∥

∥

=
δ ∗

σmin(AC)
.

Theorem 1.17 provides a lower bound for the angle and distance between feasi-
ble slack vectors and the vectorD∗ on the boundary ofSn

+. For our purposes, the
theorem is only useful whenα(A ,C) is small. Given thatδ ∗ = ‖AC(D∗)‖, we see
that the lower bound is independent of simple scaling ofAC, though not necessarily
independent of the conditioning ofAC. Thus,δ ∗ provides qualitative information
about both the conditioning ofAC and the distance to infeasibility.

We now strengthen the result in Theorem 1.17 by using more information from
D∗. In applications we expect to choose the partitions ofU and D∗ to satisfy
λmin(D+)>> λmax(Dε).

Proposition 1.18.Let (δ ∗,D∗) denote an optimal solution of the auxiliary problem
(1.18), and let

D∗ =
[

P Q
]

[

D+ 0
0 Dε

]

[

P Q
]T

, (1.27)
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0

D∗

{Z =C−A ∗y : y∈FP,Z� 0}

[face(D∗)]c = (D∗)⊥∩Sn
+

Fig. 1.1 Minimal Face; 0< δ ∗≪ 1

with U =
[

P Q
]

orthogonal, andD+ ≻ 0.
Let 0 6= Z := C−A ∗y� 0 andZQ := QQTZQQT . ThenZQ is the closest point

in R(Q ·QT)∩Sn
+ to Z; and, the cosine of the angleθZ,ZQ betweenZ and the face

R(Q ·QT)∩Sn
+ satisfies

cosθZ,ZQ :=
〈Z,ZQ〉
‖Z‖‖ZQ‖

=
‖QTZQ‖
‖Z‖ ≥ 1−α(A ,C)

‖D∗‖
λmin(D+)

, (1.28)

whereα(A ,C) is defined in (1.26). Thus the angle between any feasible slack and
the faceR(Q ·QT)∩Sn

+ cannot be too large in the sense that

inf
06=Z=C−A ∗y�0

cosθZ,ZQ ≥ 1−α(A ,C)
‖D∗‖

λmin(D+)
.

Moreover, the normalized distance to the face is bounded as in

‖Z−ZQ‖2≤ 2‖Z‖2
[

α(A ,C)
‖D∗‖

λmin(D+)

]

. (1.29)

Proof. SinceZ � 0, we haveQTZQ∈ argminW�0‖Z−QWQT‖. This shows that
ZQ := QQTZQQT is the closest point inR(Q ·QT)∩Sn

+ to Z. The expression for
the angle in (1.28) follows using

〈Z,ZQ〉
‖Z‖‖ZQ‖

=
‖QTZQ‖2
‖Z‖‖QTZQ‖ =

‖QTZQ‖
‖Z‖ . (1.30)

From Theorem 1.17, we see that 06= Z =C−A ∗y� 0 implies that
〈

1
‖Z‖Z,D

∗
〉

≤
α(A ,C)‖D∗‖. Therefore, the optimal value of the following optimization problem
provides a lower bound on the quantity in (1.30).

γ0 := min
Z

‖QTZQ‖
s.t. 〈Z,D∗〉 ≤ α(A ,C)‖D∗‖

‖Z‖2 = 1, Z� 0.

(1.31)
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Since〈Z,D∗〉 =
〈

PTZP,D+

〉

+
〈

QTZQ,Dε
〉

≥
〈

PTZP,D+

〉

wheneverZ � 0, we
have

γ0 ≥ γ := min
Z

‖QTZQ‖
s.t.

〈

PTZP,D+

〉

≤ α(A ,C)‖D∗‖
‖Z‖2 = 1, Z� 0.

(1.32)

It is possible to find the optimal valueγ of (1.32). After the orthogonal rotation

Z =
[

P Q
]

[

S V
VT W

]

[

P Q
]T

= PSPT +PVQT +QVTPT +QWQT ,

whereS∈ S
n−n̄
+ , W ∈ S

n̄
+ andV ∈ R

(n−n̄)×n̄, (1.32) can be rewritten as

γ = min
S,V,W

‖W‖
s.t. 〈S,D+〉 ≤ α(A ,C)‖D∗‖

‖S‖2+2‖V‖2+ ‖W‖2 = 1
[

S V
VT W

]

∈ S
n
+.

(1.33)

Since
‖V‖2≤ ‖S‖‖W‖ (1.34)

holds whenever

[

S V
VT W

]

� 0, we have that(‖S‖+‖W‖)2≥ ‖S‖2+2‖V‖2+‖W‖2.

This yields

γ ≥ γ̄ := minS,V,W ‖W‖ γ̄ ≥ min
S

1−‖S‖
s.t. 〈S,D+〉 ≤ α(A ,C)‖D∗‖ s.t. 〈S,D+〉 ≤ α(A ,C)‖D∗‖

‖S‖+ ‖W‖ ≥ 1 S� 0
S� 0, W � 0.

(1.35)
Sinceλmin(D+)‖S‖ ≤ 〈S,D+〉 ≤ α(A ,C)‖D∗‖, we see that the objective value of
the last optimization problem in (1.35) is bounded below by 1−α(A ,C)‖D∗‖/λmin(D+).
Now let u be a normalized eigenvector ofD+ corresponding to its smallest eigen-
valueλmin(D+). ThenS∗ = α(A ,C)‖D∗‖

λmin(D+)
uuT solves the last optimization problem in

(1.35), with corresponding optimal value 1− α(A ,C)‖D∗‖
λmin(D+)

.

Let β := min
{

α(A ,C)‖D∗‖
λmin(D+)

,1
}

. Thenγ ≥ 1−β . Also,

[

S V
VT W

]

:=

(
√

βu
√

1−βe1

)(
√

βu
√

1−βe1

)T

=

[

βuuT
√

β (1−β )ueT
1

√

β (1−β )e1uT (1−β )e1eT
1

]

∈Sn
+.

Therefore(S,V,W) is feasible for (1.33), and attains an objective value 1−β . This
shows thatγ = 1−β and proves (1.28).

The last claim (1.29) follows immediately from
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‖Z−ZQ‖2 = ‖Z‖2
(

1− ‖Q
TZQ‖2
‖Z‖2

)

≤ ‖Z‖2
[

1−
(

1−α(A ,C)
‖D∗‖

λmin(D+)

)2
]

≤ 2‖Z‖2α(A ,C)
‖D∗‖

λmin(D+)
.

These results are related to the extreme angles between vectors in a cone studied
in [29, 33]. Moreover, it is related to the distances to infeasibility in e.g., [46], in
which the distance to infeasibility is shown to provide backward and forward error
bounds.

We now see that we can use the rotationU =
[

P Q
]

obtained from the diago-
nalization of the optimalD∗ in the auxiliary problem (1.18) to revealnearness to
infeasibility, as discussed in e.g., [46]. Or, in our approach, this reveals nearness to
a facial decomposition. We use the following results to bound the size of certain
blocks of a feasible slackZ.

Corollary 1.19. Let (δ ∗,D∗) denote an optimal solution of the auxiliary problem
(1.18), as in Theorem 1.17; and let

D∗ =
[

P Q
]

[

D+ 0
0 Dε

]

[

P Q
]T

, (1.36)

with U =
[

P Q
]

orthogonal, andD+ ≻ 0. Then for any feasible slack 06= Z =
C−A ∗y� 0, we have

tracePTZP≤ α(A ,C)
‖D∗‖

λmin(D+)
‖Z‖, (1.37)

whereα(A ,C) is defined in (1.26).

Proof. Since

〈D∗,Z〉 =
〈[

D+ 0
0 Dε

]

,

[

PTZP PTZQ
QTZP QTZQ

]〉

=
〈

D+ ,PTZP
〉

+
〈

Dε ,QTZQ
〉

≥
〈

D+ ,PTZP
〉

≥ λmin(D+) tracePTZP,

(1.38)

the claim follows from Theorem 1.17.

Remark 1.20.We now summarize the information available from a solution of the
auxiliary problem, with optimaδ ∗ ≥ 0,D∗ 6≻ 0. We let 06= Z = C−A ∗y� 0 de-
note a feasible slack. In particular, we emphasize the information obtained from
the rotationUTZU using the orthogonalU that block diagonalizesD∗ and from the
closestpoint ZQ = QQTZQQT . We note that replacing all feasibleZ with thepro-
jected ZQ provides a nearby problem for the backwards stability argument. Alterna-



26 Contents

tively, we can view the nearby problem by projecting the dataAi←QQTAiQQT ,∀i,
C←QQTCQQT .

1. From (1.26) in Theorem 1.17, we get a lower bound on the angle (upper bound
on the cosine of the angle)

cosθD∗,Z =
〈D∗,Z〉
‖D∗‖‖Z‖ ≤ α(A ,C).

2. In Proposition 1.18 with orthogonalU =
[

P Q
]

, we get upper bounds on the
angle between a feasible slack and the face defined usingQ ·QT and on the
normalized distance to the face.

cosθZ,ZQ :=
〈Z,ZQ〉
‖Z‖‖ZQ‖

=
‖QTZQ‖
‖Z‖ ≥ 1−α(A ,C)

‖D∗‖
λmin(D+)

.

‖Z−ZQ‖2≤ 2‖Z‖2
[

α(A ,C)
‖D∗‖

λmin(D+)

]

.

3. After the rotation using the orthogonalU , the(1,1) principal block is bounded
as

tracePTZP≤ α(A ,C)
‖D∗‖

λmin(D+)
‖Z‖.

Rank-revealing rotation and equivalent problems

We may use the results from Theorem 1.17 and Corollary 1.19 toget tworotated
optimization problems equivalent to (1.1). The equivalentproblems indicate that,
in the case whenδ ∗ is sufficiently small, it is possible to reduce the dimensionof
the problem and get anearbyproblem that helps in the facial reduction. The two
equivalent formulations can be used to illustrate backwards stability with respect to
a perturbation of the coneSn

+.
First we need to find a suitable shift ofC to allow a proper facial projection. This

is used in Theorem 1.22, below.

Lemma 1.21.Let δ ∗,D∗,U =
[

P Q
]

,D+,Dε be defined as in the hypothesis of
Corollary 1.19. Let(yQ,WQ) ∈ R

m× S
n̄ be the best least squares solution to the

equationQWQT +A ∗y=C, that is,(yQ,WQ) is the optimal solution of minimum
norm to the linear least squares problem

min
y,W

1
2
‖C− (QWQT +A

∗y)‖2. (1.39)

LetCQ := QWQQT andCres :=C− (CQ+A ∗yQ). Then

QTCresQ = 0, and A (Cres) = 0. (1.40)
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Moreover, ifδ ∗ = 0, then for any feasible solutiony of (1.1), we get

C−A
∗y∈R(Q ·QT), (1.41)

and further(y,QT(C−A ∗y)Q) is an optimal solution of (1.39), whose optimal value
is zero.

Proof. Let Ω(y,W) := 1
2‖C− (QWQT +A ∗y)‖2. Since

Ω(y,W)=
1
2
‖C‖2+ 1

2
‖A ∗y‖2+ 1

2
‖W‖2+

〈

QWQT ,A ∗y
〉

−
〈

QTCQ,W
〉

−〈A (C),y〉 ,

we have(yQ,WQ) solves (1.39) if, and only if,

∇yΩ = A
(

QWQT − (C−A
∗y)
)

= 0, (1.42)

and ∇wΩ = W−
[

QT (C−A
∗y)Q

]

= 0. (1.43)

Then (1.40) follows immediately by substitution.
If δ ∗ = 0, then〈D∗,Ai〉 = 0 for i = 1, . . . ,m and 〈D∗,C〉 = 0. Hence, for any

y∈ R
m,

〈D+ ,PT(C−A
∗y)P〉+ 〈Dε ,Q

T(C−A
∗y)Q〉= 〈D∗,C−A

∗y〉= 0.

If C−A ∗y� 0, then we must havePT(C−A ∗y)P= 0 (asD+ ≻ 0), and soPT(C−
A ∗y)Q= 0. Hence

C−A ∗y = UUT(C−A ∗y)UUT

= U
[

P Q
]T

(C−A ∗y)
[

P Q
]

UT

= QQT(C−A ∗y)QQT
,

i.e., we conclude (1.41) holds.
The last statement now follows from substitutingW = QT(C−A ∗y)Q in (1.39).

We can now use the rotation from Corollary 1.19 with a shift ofC (toCres+CQ =
C−A ∗yQ) to get two equivalent problems to (P). This emphasizes thatwhenδ ∗ is
small, then the auxiliary problem reveals a block structure with one principal block
and threesmall/negligibleblocks. If δ is small, thenβ in the following Theorem
1.22 issmall. Then fixingβ = 0 results in a nearby problem to (P) that illustrates
backward stability of the facial reduction.

Theorem 1.22.Let δ ∗,D∗,U =
[

P Q
]

,D+,Dε be defined as in the hypothesis of
Corollary 1.19, and letyQ,WQ,CQ,Cres be defined as in Lemma 1.21. Define the
scalar

β := α(A ,C)
‖D∗‖

λmin(D+)
, (1.44)

and the convex coneTβ ⊆ S
n
+ partitioned appropriately as in (1.36),
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Tβ :=

{

Z =

[

A B
BT C

]

∈ S
n
+ : traceA≤ β traceZ

}

. (1.45)

Then we get the following two equivalent programs to (P) in (1.1):

1. using the rotationU and the coneTβ ,

vP = supy

{

bTy :

[

PTZP PTZQ
QTZP QTZQ

]

�Tβ 0,Z =C−A ∗y

}

; (1.46)

2. using(yQ,WQ),

vP = bTyQ+ supy

{

bTy :

[

PTZP PTZQ
QTZP QTZQ

]

�Tβ 0,Z =Cres+CQ−A ∗y

}

.(1.47)

Proof. From Corollary 1.19,

FP =

{

y :

[

PTZP PTZQ
QTZP QTZQ

]

�Tβ 0,Z =C−A
∗y

}

. (1.48)

hence the equivalence of (1.1) with (1.46) follows.
For (1.47), first note that for anyy∈ R

m,

Z :=Cres+CQ−A
∗y=C−A

∗(y+ yQ),

soZ� 0 if and only if y+ yQ ∈FP, if and only if Z ∈ Tβ . Hence

FP = yQ+

{

y :

[

PTZP PTZQ
QTZP QTZQ

]

�Tβ 0,Z =Cres+QWQQT −A
∗y

}

, (1.49)

and (1.47) follows.

Remark 1.23.As mentioned above, Theorem 1.22 illustrates the backwardsstabil-
ity of the facial reduction. It is difficult to state this precisely due to the shifts done
and the changes to the constraints in the algorithm. For simplicity, we just discuss
one iteration. The original problem (P) is equivalent to theproblem in (1.46). There-
fore, a facial reduction step can be applied to the original problem or equivalently
to (1.46). We then perturb this problem in (1.46) by settingβ = 0. The algorithm
applied to this nearby problem with exact arithmetic will result in the same step.

Reduction to two smaller problems

Following the results from Theorems 1.13 and 1.22, we focus on the case where
δ ∗= 0 andRD∩Sn

++ = /0. In this case we get a proper faceQS
n̄
+QT �S

n
+. We obtain

two different equivalent formulations of the problem by restricting to this smaller
face. In the first case, we stay in the same dimension for the domain variabley but
decrease the constraint space and include equality constraints. In the second case,
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we eliminate the equality constraints and move to a smaller dimensional space fory.
We first see that when we have found the minimal face, then we obtain an equivalent
regularized problem as was done for LP in Section 1.

Corollary 1.24. Suppose that the minimal facefP of (P) is found using the orthogo-
nalU =

[

Pfin Qfin
]

, so thatfP = QfinS
r
+QT

fin, 0< r < n. Then an equivalent problem
to (P) is

(PPQ,reg)
vP = supbTy

s.t. QT
fin(A

∗y)Qfin � QT
finCQfin

A ∗
finy = A ∗

finyQfin ,
(1.50)

where(yQfin ,WQfin) solves the least squares problem miny,W ‖C−(A ∗y+QfinWQT
fin)‖,

andA ∗
fin : Rm→ R

t is a full rank (onto) representation of the linear transformation

y 7→
[

PT
fin(A

∗y)Pfin

QT
fin(A

∗y)Pfin

]

.

Moreover, (PPQ,reg) is regularized i.e., the RCQ holds.

Proof. The result follows immediately from Theorem 1.22, since thedefinition of
the minimal face implies that there exists a feasible ˆy which satisfies the constraints
in (1.50). The new equality constraint is constructed to be full rank and not change
the feasible set.

Alternatively, we now reduce (1.1) to an equivalent problemover a spectrahedron
in a lower dimension using the spectral decomposition ofD∗.

Proposition 1.25.Let the notation and hypotheses in Theorem 1.22 hold withδ ∗ =

0 andD∗=
[

P Q
]

[

D+ 0
0 0

][

PT

QT

]

, where
[

P Q
]

is orthogonal,Q∈Rn×n̄ andD+ ≻ 0.

Then
vP = sup

{

bTy : QT(C−A ∗y)Q� 0,
PT(A ∗y)P= PT(A ∗yQ)P,
QT(A ∗y)P= QT(A ∗yQ)P } .

(1.51)

Moreover:

1. If R(Q ·QT)∩R(A ∗) = {0}, then for anyy1,y2 ∈FP, bTy1 = bTy2 = vP.
2. If R(Q ·QT)∩R(A ∗) 6= {0}, and if, for some ¯m> 0, P : Rm̄→ R

m is an
injective linear map such thatR(A ∗P) = R(A ∗)∩R(Q ·QT), then we have

vP = bTyQ + sup
v

{

(P∗b)T v : WQ−QT(A ∗
Pv)Q� 0

}

. (1.52)

And, if v∗ is an optimal solution of (1.52), theny∗ = yQ+Pv∗ is an optimal
solution of (1.1).

Proof. Since δ ∗ = 0, from Lemma 1.21 we have thatC = CQ + A ∗yQ,CQ =
QWQQT , for someyQ ∈ R

m andWQ ∈ S
n̄. Hence by (1.48),
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FP =
{

y∈R
m : QT(C−A ∗y)Q� 0,PT(C−A ∗y)P= 0,QT(C−A ∗y)P= 0

}

=
{

y∈R
m : QT(C−A ∗y)Q� 0,PT(A ∗(y− yQ))P= 0,QT(A ∗(y− yQ))P= 0

}

,
(1.53)

and (1.51) follows.

1. SinceC−A ∗y ∈ R(Q ·QT),∀y ∈ FP, we getA ∗(y2− y1) = (C−A ∗y1)−
(C−A ∗y2) ∈ R(Q ·QT)∩R(A ∗) = {0}. Given thatA is onto, we getb =
A (X̂), for someX̂ ∈ S

n, and

bT(y2− y1) =
〈

X̂,A ∗(y2− y1)
〉

= 0.

2. From (1.53),

FP = yQ+
{

y : WQ−QT(A ∗y)Q� 0,PT(A ∗y)P= 0,QT(A ∗y)P= 0
}

= yQ+
{

y : WQ−QT(A ∗y)Q� 0,A ∗y∈R(Q ·QT)
}

= yQ+
{

Pv : WQ−QT(A ∗Pv)Q� 0
}

,

the last equality follows from the choice ofP. Therefore, (1.52) follows, and
if v∗ is an optimal solution of (1.52), thenyQ+Pv∗ is an optimal solution of
(1.1).

Next we establish the existence of the operatorP mentioned in Proposition 1.25.

Proposition 1.26.For anyn×n orthogonal matrixU =
[

P Q
]

and any surjective
linear operatorA : Sn→R

m with m̄ := dim(R(A ∗)∩R(Q·QT))> 0, there exists
a one-one linear transformationP : Rm̄→R

m that satisfies

R(A ∗
P) = R(Q ·QT)∩R(A ∗), (1.54)

R(P) = N
(

PT(A ∗·)P
)

∩N
(

PT(A ∗·)Q
)

. (1.55)

Moreover, ¯A : Sn̄→ R
m̄ is defined by

¯A
∗(·) := QT(

A
∗
P(·)

)

Q

is onto.

Proof. Recall that for any matrixX ∈ S
n,

X =UUTXUUT = PPTXPPT +PPTXQQT +QQTXPPT +QQTXQQT .

Moreover,PTQ= 0. Therefore,X ∈R(Q ·QT) impliesPTXP= 0 andPTXQ= 0.
Conversely,PTXP= 0 andPTXQ= 0 implies X = QQTXQQT . ThereforeX ∈
R(Q ·QT) if, and only if,PTXP= 0 andPTXQ= 0.

For anyy∈ R
m, A ∗y∈R(Q ·QT) if, and only if,

m
∑

i=1

(PTAiP)yi = 0 and
m
∑

i=1

(PTAiQ)yi = 0,
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which holds if, and only if,y∈ span{β}, whereβ := {y1, . . . ,ym̄} is a basis of the
linear subspace
{

y :
m
∑

i=1

(PTAiP)yi = 0

}

∩
{

y :
m
∑

i=1

(PTAiQ)yi = 0

}

= N
(

PT(A ∗·)P
)

∩N
(

PT(A ∗·)Q
)

.

Now defineP : Rm̄→ R
m by

Pv=
m̄
∑

i=1

viyi for λ ∈ R
m̄.

Then, by definition ofP, we have

R(A ∗
P)=R(Q·QT)∩R(A ∗) and R(P)=N

(

PT(A ∗·)P
)

∩N
(

PT(A ∗·)Q
)

.

The onto property of ¯A follows from (1.54) and the fact that bothP,A ∗ are one-
one. Note that if ¯A ∗v= 0, noting thatA ∗Pv= QWQT for someW ∈ Sn̄ by (1.54),
we have thatw= 0 soA ∗Pv= 0. Since bothA ∗ andP injective, we have that
v= 0.

LP, SDP and the role of strict complementarity

The (near) loss of the Slater CQ results in both theoretical and numerical difficulties,
e.g., [46]. In addition, both theoretical and numerical difficulties arise from the loss
of strict complementarity, [70]. The connection between strong duality, the Slater
CQ, and strict complementarity is seen through the notion ofcomplementarity par-
titions, [65]. We now see that this plays a key role in the stability and in determining
the number of stepsk for the facial reduction. In particular, we see thatk = 1 is
characterized by strict complementary slackness and therefore results in a stable
formulation.

Definition 1.27.The pair of facesF1�K,F2�K∗ form acomplementarity partition
of K,K∗ if F1⊆ (F2)

c. (Equivalently,F2⊆ (F1)
c.) The partition isproper if both F1

andF2 are proper faces. The partition isstrict if (F1)
c = F2 or (F2)

c = F1.

We now see the importance of this notion for the facial reduction.

Theorem 1.28.Let δ ∗ = 0,D∗ � 0 be the optimum of (AP) with dual optimum
(γ∗,u∗,W∗). Then the following are equivalent:

1. If D∗ =
[

P Q
]

[

D+ 0
0 0

][

PT

QT

]

is a maximal rank element ofRD, where
[

P Q
]

is

orthogonal,Q∈Rn×n̄ andD+ ≻ 0, then the reduced problem in (1.52) usingD∗

satisfies the Slater CQ; only one step of facial reduction is needed.



32 Contents

2. Strict complementarity holds for (AP); that is, the primal-dual optimal solution
pair (0,D∗),(0,u∗,W∗) for (1.18) and (1.20) satisfy rank(D∗)+ rank(W∗) = n.

3. The faces ofSn
+ defined by

f 0
aux,P := face({D ∈ S

n : A (D) = 0, 〈C,D〉= 0, D� 0})
f 0
aux,D := face

({

W ∈ S
n : W = A

∗
C z� 0, for somez∈ R

m̄+1})

form a strict complementarity partition ofSn
+.

Proof. (1)⇐⇒ (2): If (1.52) satisfies the Slater CQ, then there exists ˜v∈ R
m̄ such

thatWQ−Ā ∗ṽ≻ 0. This implies that̃Z := Q(WQ−Ā ∗ṽ)QT is of rankn̄. Moreover,

0� Z̃ = QWQQ−A
∗
P ṽ=C−A

∗(yQ+P ṽ) = A
∗

C

(

−(yQ+P ṽ)
1

)

.

Hence, letting

ũ=

(

yQ+P ṽ
−1

)

∥

∥

∥

∥

(

yQ+P ṽ
−1

)∥

∥

∥

∥

and W̃ =
1

∥

∥

∥

∥

(

yQ+P ṽ
−1

)∥

∥

∥

∥

Z̃,

we have that(0, ũ,W̃) is an optimal solution of (1.20). Since rank(D∗)+ rank(W̃) =
(n− n̄)+ n̄= n, we get that strict complementarity holds.

Conversely, suppose that strict complementarity holds for(AP), and letD∗ be
a maximum rank optimal solution as described in the hypothesis of Item 1. Then
there exists an optimal solution(0,u∗,W∗) for (1.20) such that rank(W∗) = n̄. By
complementary slackness, 0= 〈D∗,W∗〉=

〈

D+,PTW∗P
〉

, soW∗ ∈R(Q ·QT) and

QTW∗Q≻ 0. Letu∗ =

(

ỹ
−α̃

)

, so

W∗ = α̃C−A
∗ỹ= α̃CQ−A

∗(ỹ− α̃yQ).

SinceW∗,CQ ∈R(Q ·QT) implies thatA ∗(ỹ− α̃yQ) = A ∗P ṽ for some ˜v∈ R
m̄,

we get
0≺QTW∗Q= α̃C̄− ¯A

∗ṽ.

Without loss of generality, we may assume thatα̃ = ±1 or 0. If α̃ = 1, thenC̄−
¯A ∗ṽ≻ 0 is a Slater point for (1.52). Consider the remaining two cases. Since (1.1)

is assumed to be feasible, the equivalent program (1.52) is also feasible so there
existsv̂ such thatC̄− ¯A ∗v̂� 0. If α̃ = 0, thenC̄− ¯A ∗(v̂+ ṽ)≻ 0. If α̃ =−1, then
C̄− ¯A ∗(2v̂+ ṽ)≻ 0. Hence (1.52) satisfies the Slater CQ.

(2)⇐⇒ (3): Notice thatf 0
aux,P and f 0

aux,D are the minimal faces ofSn
+ containing

the optimal slacks of (1.18) and (1.20) respectively, and that f 0
aux,P, f 0

aux,D form a
complementarity partition ofSn

+ = (Sn
+)
∗. The complementarity partition is strict if
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and only if there exist primal-dual optimal slacksD∗ andW∗ such that rank(D∗)+
rank(W∗) = n. Hence (2) and (3) are equivalent.

In the special case where the Slater CQ fails and (1.1) is a linear program (and,
more generally, the special case of optimizing over an arbitrary polyhedral cone, see
e.g., [57, 56, 79, 78]), we see that one single iteration of facial reduction yields a
reduced problem that satisfies the Slater CQ.

Corollary 1.29. Assume that the optimal value of (AP) equals zero, withD∗ being
a maximum rank optimal solution of (AP). IfAi = Diag(ai) for someai ∈ R

n, for
i = 1, . . . ,m, andC = Diag(c), for somec ∈ R

n, then the reduced problem (1.52)
satisfies the Slater CQ.

Proof. In this diagonal case, the SDP is equivalent to an LP. The Goldman-Tucker
Theorem [25] implies that there exists a required optimal primal-dual pair for (1.18)
and (1.20) that satisfies strict complementarity, so Item 2 in Theorem 1.28 holds. By
Theorem 1.28, the reduced problem (1.52) satisfies the Slater CQ.

Facial Reduction

We now study facial reduction for (P) and its sensitivity analysis.

Two Types

We first outline two algorithms for facial reduction that findthe minimal facefP
of (P) . Both are based on solving the auxiliary problem and applying Lemma 1.6.
The first algorithm repeatedly finds a faceF containing the minimal face and then
projects the problem intoF −F, thus reducing both the size of the constraints as
well as the dimension of the variables till finally obtainingthe Slater CQ. The sec-
ond algorithm also repeatedly findsF ; but then it identifies the implicit equality
constraints till eventually obtaining MFCQ.

Dimension reduction and regularization for the Slater CQ

Suppose that Slater’s CQ fails for our given inputA : Sn→ R
m, C ∈ S

n, i.e., the
minimal facefP�F := S

n
+. Our procedure consists of a finite number of repetitions

of the following two steps that begin withk= n.

1. We first identify 06= D ∈ ( fP)c using the auxiliary problem (1.18). This means
that fP�F ←

(

S
k
+∩{D}⊥

)

and the interior of this new faceF is empty.
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2. We then project the problem (P) into span(F). Thus we reduce the dimension of
the variables and size of the constraints of our problem; thenew cone satisfies
intF 6= /0. We setk← dim(F).4

Therefore, in the case that intF = /0, we need to to obtain an equivalent problem
to (P) in the subspace span(F) = F −F . One essential step is finding a subspace
intersection. We can apply the algorithm in e.g., [26, Thm 12.4.2]. In particular, by
abuse of notation, letH1,H2 be matrices with orthonormal columns representing the
orthonormal bases of the subspacesH1,H2, respectively. Then we need only find
a singular value decompositionHT

1 H2 = UΣVT and find which singular vectors
correspond to singular valuesΣii , i = 1, . . . , r, (close to) 1. Then bothH1U(:,1 : r)
andH2V(:,1 : r) provide matrices whose ranges yield the intersection. The coneSn

+

possesses a “self-replicating” structure. Therefore we choose an isometryI so that
I (Sn

+∩ (F−F)) is a smaller dimensional PSD coneSr
+.

Algorithm 1.0.1 outlines one iteration of facial reduction. The output returns an
equivalent problem( ¯A , b̄,C̄) on a smaller face ofSn

+ that contains the set of feasible
slacksFZ

P ; and, we also obtain the linear transformationP and pointyQ, which
are needed for recovering an optimal solution of the original problem (P) . (See
Proposition 1.25.)

Two numerical aspects arising in Algorithm 1.0.1 need to be considered. The first
issue concerns the determination of rank(D∗). In practice, the spectral decomposi-
tion of D∗ would be of the form

D∗=
[

P Q
]

[

D+ 0
0 Dε

][

PT

QT

]

with Dε ≈ 0, instead of D∗=
[

P Q
]

[

D+ 0
0 0

][

PT

QT

]

.

We need to decide which of the eigenvalues ofD∗ are small enough so that they
can be safely rounded down to zero. This is important for the determination ofQ,
which gives the smaller faceR(Q·QT)∩Sn

+ containing the feasible regionFZ
P . The

partitioning ofD∗ can be done by using similar techniques as in the determination of
numerical rank. Assuming thatλ1(D∗)≥ λ2(D∗)≥ ·· · ≥ λn(D∗)≥ 0, thenumerical
rank rank(D∗,ε) of D∗ with respect to a zero toleranceε > 0 is defined via

λrank(D∗,ε)(D
∗)> ε ≥ λrank(D∗,ε)+1(D

∗).

In implementing Algorithm 1.0.1, to determine the partitioning of D∗, we use
the numerical rank with respect toε‖D

∗‖√
n

where ε ∈ (0,1) is fixed: take r =

rank
(

D∗, ε‖D∗‖√
n

)

,

D+ = Diag(λ1(D
∗), . . . ,λr(D

∗)) , Dε = Diag(λr+1(D
∗), . . . ,λn(D

∗)) ,

and partition
[

P Q
]

accordingly. Then

4 Note that for numerical stability and well-posedness, it isessential that there exists Lagrange
multipliers and that intF 6= /0. Regularization involves both finding a minimal face as well as a
minimal subspace, see [65].
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Algorithm 1.0.1: One iteration of facial reduction
1 Input( A : Sn→ Rm, b∈ Rm, C∈ Sn);
2 Obtain an optimal solution(δ ∗,D∗) of (AP)
3 if δ ∗ > 0, then
4 STOP; Slater CQ holds for(A ,b,C).
5 else
6 if D∗ ≻ 0, then
7 STOP; generalized Slater CQ holds for (A ,b,C) (see Theorem 1.13);
8 else

9 Obtain eigenvalue decompositionD∗ =
[

P Q
]

[

D+ 0
0 0

][

PT

QT

]

as described in

Proposition 1.25, withQ∈ R
n×n̄;

10 if R(Q ·QT)∩R(A ∗) = {0}, then
11 STOP; all feasible solutions of supy{bT y : C−A ∗y� 0} are optimal.
12 else
13 find m̄, P : Rm̄→ R

m satisfying the conditions in Proposition 1.25;
14 solve (1.39) for(yQ,WQ);
15 C̄←WQ ;
16 b̄←P∗b;
17 Ā ∗←QT(A ∗P(·))Q;
18 Output( ¯A : Sn̄→ Rm̄, b̄∈ Rm̄, C̄∈ Sn̄; yQ ∈ Rm, P : Rm̄→ Rm);
19 end if
20 end if
21 end if

λmin(D+)>
ε‖D∗‖√

n
≥ λmax(Dε) =⇒ ‖Dε‖ ≤ ε‖D∗‖.

Also,
‖Dε‖2
‖D+‖2

=
‖Dε‖2

‖D∗‖2−‖Dε‖2
≤ ε2‖D∗‖2

(1− ε2)‖D∗‖2 =
1

ε−2−1
(1.56)

that is,Dε is negligible comparing withD+.
The second issue is the computation of intersection of subspaces,R(Q ·QT)∩

R(A ∗) (and in particular, finding one-one mapP such thatR(A ∗P) = R(Q ·
QT)∩R(A ∗)). This can be done using the following result on subspace intersec-
tion.

Theorem 1.30 ([26], Section 12.4.3).GivenQ∈ R
n×n̄ of full rank and onto linear

mapA : Sn→R
m, there existUsp

1 , . . . ,Usp
min{m,n̄2},V

sp
1 , . . . ,Vsp

min{m,n̄2} ∈ S
n such that

σsp
1 :=

〈

Usp
1 ,Vsp

1

〉

= max
{

〈U,V〉 : ‖U‖= 1= ‖V‖, U ∈R(Q ·QT), V ∈R(A ∗)
}

,
σsp

k :=
〈

Usp
k ,Vsp

k

〉

= max
{

〈U,V〉 : ‖U‖= 1= ‖V‖, U ∈R(Q ·QT), V ∈R(A ∗),
〈

U,Usp
i

〉

= 0=
〈

V,Vsp
i

〉

, ∀ i = 1, . . . ,k−1
}

,
(1.57)

for k= 2, . . . ,min
{

m, n̄2
}

, and 1≥ σsp
1 ≥ σsp

2 ≥ ·· · ≥ σsp
min{m,n̄2} ≥ 0. Suppose that
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σsp
1 = · · ·= σsp

m̄ = 1> σsp
m̄+1≥ ·· · ≥ σsp

min{n̄,m}, (1.58)

then

R(Q ·QT)∩R(A ∗) = span
(

Usp
1 , . . . ,Usp

m̄

)

= span
(

Vsp
1 , . . . ,Vsp

m̄

)

, (1.59)

andP : Rm̄→R
m defined byPv=

∑m̄
i=1viy

sp
i for v∈Rm̄, whereA ∗ysp

i =Vsp
i for

i = 1, . . . ,m̄, is one-one linear and satisfiesR(A ∗P) = R(Q ·QT)∩R(A ∗).

In practice, we do not getσsp
i = 1 (for i = 1, . . . ,m̄) exactly. For a fixed tolerance

εsp≥ 0, suppose that

1≥ σsp
1 ≥ ·· · ≥ σsp

m̄ ≥ 1− εsp> σsp
m̄+1≥ ·· · ≥ σsp

min{n̄,m} ≥ 0. (1.60)

Then we would take the approximation

R(Q ·QT)∩R(A ∗)≈ span
(

Usp
1 , . . . ,Usp

m̄

)

≈ span
(

Vsp
1 , . . . ,Vsp

m̄

)

. (1.61)

Observe that with the chosen toleranceεsp, we have that the cosines of the prin-
cipal angles betweenR(Q ·QT) and span

(

Vsp
1 , . . . ,Vsp

m̄

)

is no less than 1− εsp; in
particular,‖Usp

k −Vsp
k ‖2≤ 2εsp and‖QTVsp

k Q‖ ≥ σsp
k ≥ 1− εsp for k= 1, . . . ,m̄.

Remark 1.31.UsingVsp
1 , . . . ,Vsp

min{m,n̄2} from Theorem 1.30, we may replaceA1, . . . ,Am

by Vsp
1 , . . . ,Vsp

m (which may require extendingVsp
1 , . . . ,Vsp

min{m,n̄2} to a basis of

R(A ∗), if m> n̄2).
If the subspace intersection is exact (as in (1.58) and (1.59) in Theorem 1.30),

thenR(Q ·QT)∩R(A ∗) = span(A1, . . . ,Am̄) would hold. If the intersection is in-
exact (as in (1.60) and (1.61)), then we may replaceA by ˘A : Sn→ R

m, defined
by

Ăi =

{

Usp
i if i = 1, . . . ,m̄,

Vsp
i if i = m̄+1, . . . ,m,

which is a perturbation ofA with ‖A ∗− ˘A ∗‖F =
√

∑m̄
i=1‖U

sp
i −Vsp

i ‖2≤
√

2m̄εsp.

ThenR(Q·QT)∩R( ˘A ∗) = span(Ă1, . . . , Ăm̄) becausĕAi ∈R(Q·QT)∩R( ˘A ∗) for
i = 1, . . . ,m̄ and
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max
U,V

{

〈U,V〉 : U ∈R(Q ·QT),‖U‖= 1,V ∈R( ˘A
∗),‖V‖= 1,

〈

U,Usp
j

〉

= 0=
〈

V,Usp
j

〉

∀ j = 1, . . . ,m̄,
}

≤ max
U,y

{〈

U,

m̄
∑

i=1

y jU
sp
j +

m
∑

i=m̄+1

y jV
sp
j

〉

: U ∈R(Q ·QT),‖U‖= 1,‖y‖= 1,

〈

U,Usp
j

〉

= 0 ∀ j = 1, . . . ,m̄,
}

= max
U,y

{〈

U,

m
∑

i=m̄+1

y jV
sp
j

〉

: U ∈R(Q ·QT),‖U‖= 1,‖y‖= 1,
〈

U,Usp
j

〉

= 0 ∀ j = 1, . . . ,m̄,

}

= σsp
m̄+1 < 1− εsp< 1.

To increase the robustness of the computation ofR(Q ·QT)∩R(A ∗) in deciding
whetherσsp

i is 1 or not, we may follow similar treatment in [18] where one decides
which singular values are zero by checking the ratios between successive small sin-
gular values.

Implicit equality constraints and regularization for MFCQ

The second algorithm for facial reduction involves repeated use of two steps again.

1. We repeat step 1 in Section 1 and use (AP) to find the faceF .
2. We then find the implicit equality constraints and ensure that they are linearly

independent, see Corollary 1.24 and Proposition 1.25.

Preprocessing for the auxiliary problem

We can take advantage of the fact that eigenvalue-eigenvector calculations are ef-
ficient and accurate to obtain a more accurate optimal solution (δ ∗,D∗) of (AP),
i.e., to decide whether the linear system

〈Ai ,D〉= 0 ∀ i = 1, . . . ,m+1 (whereAm+1 :=C), 0 6= D� 0 (1.62)

has a solution, we can use Algorithm 1.0.2 as a preprocessor for Algorithm 1.0.1.
More precisely, Algorithm 1.0.2 tries to find a solutionD∗ satisfying (1.62) without
using an SDP solver. It attempts to find a vectorv in the nullspace of all theAi , and
then setsD∗ = vvT . In addition, any semidefiniteAi allows a reduction to a smaller
dimensional space.
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Algorithm 1.0.2: Preprocessing for (AP)

1 Input( A1, . . . ,Am,Am+1 :=C∈ S
n);

2 Output( δ ∗, P∈R
n×(n−n̄), D+ ∈ S

n−n̄ satisfying D+ ≻ 0; (so D∗ = PD+PT ));
3 if one of the Ai (i ∈ {1, . . . ,m+1}) is definitethen
4 STOP; (1.62) does not have a solution.
5 else

6 if some of the A=
[

U Ũ
]

[

D̂ 0
0 0

][

UT

ŨT

]

∈ {Ai : i = 1, . . . ,m+1} satisfiesD̂≻ 0, then

7 reduce the size usingAi ← ŨTAiŨ ,∀i;
8 else
9 if ∃0 6=V ∈ Rn×r such that AiV = 0 for all i = 1, . . . ,m+1, then

10 We get〈Ai ,VVT〉= 0 ∀ i = 1, . . . ,m+1 ;
11 δ ∗ = 0,D∗ =VVT solves (AP); STOP;
12 else
13 Use an SDP solver to solve (AP)
14 end if
15 .
16 end if
17 end if

Backward stability of one iteration of facial reduction

We now provide the details for one iteration of the main algorithm, see Theorem
1.38. Algorithm 1.0.1 involves many nontrivial subroutines, each of which would in-
troduce some numerical errors. First we need to obtain an optimal solution(δ ∗,D∗)
of (AP); in practice we can only get an approximate optimal solution, asδ ∗ is never
exactly zero, and we decide whether the true value ofδ ∗ is zero when the computed
value is only close to zero. Second we need to obtain the eigenvalue decomposition
of D∗. There comes the issue of determining which of the nearly zero eigenval-
ues are indeed zero. (Since (AP) is not solved exactly, the approximate solutionD∗

would have eigenvalues that are positive but close to zero.)Finally, the subspace
intersectionR(Q ·QT)∩R(A ∗) (for finding m̄ andP) can only be computed ap-
proximately via a singular value decomposition, because inpractice we would take
singular vectors corresponding to singular values that areapproximately (but not
exactly) 1.

It is important that Algorithm 1.0.1 is robust against such numerical issues arising
from the subroutines. We show that Algorithm 1.0.1 is backward stable (with respect
to these three categories of numerical errors), i.e., for any given input(A ,b,c),
there exists( ˜A , b̃,C̃) ≈ (A ,b,C) such that the computed result of Algorithm 1.0.1
applied on(A ,b,C) is equal to the exact result of the same algorithm applied on
( ˜A , b̃,C̃) (when (AP) is solved exactly and the subspace intersection is determined
exactly).

We first show that‖Cres‖ is relatively small, given a smallα(A ,C).

Lemma 1.32.Let yQ,CQ,Cres be defined as in Lemma 1.21. Then the norm ofCres

is small in the sense that
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‖Cres‖ ≤
√

2

[ ‖D∗‖
λmin(D+)

α(A ,C)

]1/2(

min
Z=C−A ∗y�0

‖Z‖
)

. (1.63)

Proof. By optimality, for anyy∈Fp,

‖Cres‖ ≤min
W
‖C−A

∗y−QWQT‖= ‖Z−QQTZQQT‖,

whereZ :=C−A ∗y. Therefore (1.63) follows from Proposition 1.18.

The following technical results shows the relationship between the quantity
min‖y‖=1‖A ∗y‖2−‖QT(A ∗y)Q‖2 and the cosine of the smallest principal angle
betweenR(A ∗) andR(Q ·QT), defined in (1.57).

Lemma 1.33.Let Q∈R
n×n̄ satisfyQTQ= In̄. Then

τ := min
‖y‖=1

{

‖A ∗y‖2−‖QT(A ∗y)Q‖2
}

≥
(

1− (σsp
1 )2)σmin(A

∗)2≥ 0, (1.64)

whereσsp
1 is defined in (1.57). Moreover,

τ = 0 ⇐⇒ σsp
1 = 1 ⇐⇒ R(Q ·QT)∩R(A ∗) 6= {0} . (1.65)

Proof. By definition ofσsp
1 ,

max
V

{

max
‖U‖=1,U∈R(Q·QT )

〈U,V〉 : ‖V‖= 1,V ∈R(A ∗)

}

≥ max
‖U‖=1,U∈R(Q·QT )

〈

U,Vsp
1

〉

≥
〈

Usp
1 ,Vsp

1

〉

= σsp
1

≥ max
V

{

max
‖U‖=1,U∈R(Q·QT )

〈U,V〉 : ‖V‖= 1,V ∈R(A ∗)

}

,

so equality holds throughout, implying that

σsp
1 = max

V

{

max
‖U‖=1,U∈R(Q·QT )

〈U,V〉 : ‖V‖= 1,V ∈R(A ∗)

}

= max
y

{

max
‖W‖=1

〈

QWQT ,A ∗y
〉

: ‖A ∗y‖= 1

}

= max
y

{

‖QT(A ∗y)Q‖ : ‖A ∗y‖= 1
}

.

Obviously,‖A ∗y‖= 1 implies that the orthogonal projectionQQT(A ∗y)QQT onto
R(Q ·QT) is of norm no larger than one:

‖QT(A ∗y)Q‖= ‖QQT(A ∗y)QQT‖ ≤ ‖A ∗y‖= 1. (1.66)

Henceσsp
1 ∈ [0,1]. In addition, equality holds in (1.66) if and only ifA ∗y∈R(Q ·

QT), hence
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σsp
1 = 1 ⇐⇒ R(A ∗)∩R(Q ·QT) 6= {0} . (1.67)

Whenever‖y‖= 1, ‖A ∗y‖ ≥ σmin(A
∗). Hence

τ = min
y

{

‖A ∗y‖2−‖QT(A ∗y)Q‖2 : ‖y‖= 1
}

= σmin(A
∗)2min

y

{

‖A ∗y‖2−‖QT(A ∗y)Q‖2 : ‖y‖= 1
σmin(A ∗)

}

≥ σmin(A
∗)2min

y

{

‖A ∗y‖2−‖QT(A ∗y)Q‖2 : ‖A ∗y‖ ≥ 1
}

= σmin(A
∗)2min

y

{

‖A ∗y‖2−‖QT(A ∗y)Q‖2 : ‖A ∗y‖= 1
}

= σmin(A
∗)2
(

1−max
y

{

‖QT(A ∗y)Q‖2 : ‖A ∗y‖= 1
}

)

= σmin(A
∗)2
(

1−
(

σsp
1

)2
)

.

This together withσsp
1 ∈ [0,1] proves (1.64). Ifτ = 0, thenσsp

1 = 1 sinceσmin(A
∗)>

0. Then (1.67) implies thatR(A ∗)∩R(Q ·QT) 6= {0}. Conversely, ifR(A ∗)∩
R(Q·QT) 6= {0}, then there exists ˆy such that‖ŷ‖= 1 andA ∗ŷ∈R(Q·QT). This
implies that

0≤ τ ≤ ‖A ∗ŷ‖2−‖QT(A ∗ŷ)Q‖2 = 0,

soτ = 0. This together with (1.67) proves the second claim (1.65).

Next we prove that two classes of matrices are positive semidefinite and show
their eigenvalue bounds, which will be useful in the backward stability result.

Lemma 1.34.SupposeA1, . . . ,Am,D∗ ∈ S
n. Then the matrixM̂ ∈ S

m defined by

M̂i j = 〈Ai ,D
∗〉
〈

A j ,D
∗〉 (i, j = 1, . . . ,m)

is positive semidefinite. Moreover, the largest eigenvalueλmax(M̂)≤∑m
i=1 〈Ai ,D∗〉2.

Proof. For anyy∈ R
m,

yTM̂y=
m
∑

i, j=1

〈Ai,D
∗〉
〈

A j ,D
∗〉yiy j =

(

m
∑

i=1

〈Ai ,D
∗〉yi

)2

.

HenceM̂ is positive semidefinite. Moreover, by the Cauchy Schwarz inequality we
have

yTM̂y=

(

m
∑

i=1

〈Ai ,D
∗〉yi

)2

≤
(

m
∑

i=1

〈Ai ,D
∗〉2
)

‖y‖22.

Henceλmax(M̂)≤∑m
i=1 〈Ai ,D∗〉2.
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Lemma 1.35.SupposeA1, . . . ,Am ∈ S
n and Q ∈ R

n×n̄ has orthonormal columns.
Then the matrixM ∈ S

m defined by

Mi j =
〈

Ai ,A j
〉

−
〈

QTAiQ,QTA jQ
〉

, i, j = 1, . . . ,m,

is positive semidefinite, with the smallest eigenvalueλmin(M) ≥ τ, whereτ is de-
fined in (1.64).

Proof. For anyy∈ R
m, we have

yTMy=
m
∑

i, j=1

〈

yiAi ,y jA j
〉

−
〈

yiQ
TAiQ,y jQ

TA jQ
〉

= ‖A ∗y‖2−
∥

∥QT(A ∗y)Q
∥

∥

2≥ τ‖y‖2.

HenceM ∈ S
m
+ andλmin(M) ≥ τ.

The following lemma shows that when nonnegativeδ ∗ is approximately zero and
D∗ = PD+PT +QDεQT ≈ PD+PT with D+ ≻ 0, under a mild assumption (1.70) it
is possible to find a linear operator̂A “near” A such that we can take the following
approximation:

δ ∗← 0, D∗← PD+PT , A
∗← ˆA

∗,

and we maintain that ˆA (PD+PT) = 0 andR(Q ·QT)∩R(A ∗) = R(Q ·QT)∩
R( ˆA ∗).

Lemma 1.36.LetA : Sn→R
m : X 7→ (〈Ai ,X〉) be onto. LetD∗=

[

P Q
]

[

D+ 0
0 Dε

][

PT

QT

]

∈

S
n
+, where

[

P Q
]

∈R
n×n is an orthogonal matrix,D+ ≻ 0 andDε � 0. Suppose that

R(Q ·QT)∩R(A ∗) = span(A1, . . . ,Am̄), (1.68)

for somem̄∈ {1, . . . ,m}. Then

min
‖y‖=1,y∈Rm−m̄







∥

∥

∥

∥

∥

m−m̄
∑

i=1

yiAm̄+i

∥

∥

∥

∥

∥

2

−
∥

∥

∥

∥

∥

m−m̄
∑

i=1

yiQ
TAm̄+iQ

∥

∥

∥

∥

∥

2






> 0. (1.69)

Assume that

min
‖y‖=1,y∈Rm−m̄







∥

∥

∥

∥

∥

m−m̄
∑

i=1

yiAm̄+i

∥

∥

∥

∥

∥

2

−
∥

∥

∥

∥

∥

m−m̄
∑

i=1

yiQ
TAm̄+iQ

∥

∥

∥

∥

∥

2






>
2

‖D+‖2

(

‖A (D∗)‖2+ ‖Dε‖2
m
∑

i=m̄+1

‖Ai‖2
)

.

(1.70)
DefineÃi to be the projection ofAi on

{

PD+PT
}⊥:

Ãi := Ai−
〈

Ai ,PD+PT
〉

〈D+,D+〉
PD+PT , ∀ i = 1, . . . ,m. (1.71)

Then
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R(Q ·QT)∩R( ˜A
∗) = R(Q ·QT)∩R(A ∗). (1.72)

Proof. We first prove the strict inequality (1.69). First observe that since

∥

∥

∥

∥

∥

m−m̄
∑

i=1

yiAm̄+i

∥

∥

∥

∥

∥

2

−
∥

∥

∥

∥

∥

m−m̄
∑

i=1

yiQ
TAm̄+iQ

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

m−m̄
∑

i=1

yi(Am̄+i−QQTAm̄+iQQT)

∥

∥

∥

∥

∥

2

≥ 0,

the optimal value is always nonnegative. Let ¯y solve the minimization problem in

(1.69). If
∥

∥

∑m−m̄
i=1 ȳiAm̄+i

∥

∥

2−
∥

∥

∑m−m̄
i=1 ȳiQTAm̄+iQ

∥

∥

2
= 0, then

0 6=
m−m̄
∑

i=1

ȳiAm̄+i ∈R(Q ·QT)∩R(A ∗) = span(A1, . . . ,Am̄),

which is absurd sinceA1, . . . ,Am are linearly independent.
Now we prove (1.72). Observe that forj = 1, . . . ,m̄, A j ∈R(Q·QT) so

〈

A j ,PD+PT
〉

=

0, which implies that̃A j = A j . Moreover,

span(A1, . . . ,Am̄)⊆R(Q ·QT)∩R(Ã∗).

Conversely, suppose thatB := ˜A ∗y ∈ R(Q ·QT). SinceÃ j = A j ∈ R(Q ·QT) for
j = 1, . . . ,m̄,

B= QQTBQQT =⇒
m
∑

j=m̄+1

y j(Ã j −QQTÃ jQQT) = 0

We show thatym̄+1= · · ·= ym= 0. In fact, sinceQT(PD+PT)Q= 0,
∑m

j=m̄+1y j(Ã j−
QQT Ã jQQT) = 0 implies

m
∑

j=m̄+1

y jQQTA jQQT =
m
∑

j=m̄+1

y jA j −





m
∑

j=m̄+1

〈

A j ,PD+PT
〉

〈D+,D+〉
y j



PD+PT .

For i = m̄+1, . . . ,m, taking inner product on both sides withAi ,

m
∑

j=m̄+1

〈

QTAiQ,QTA jQ
〉

y j =

m
∑

j=m̄+1

〈

Ai ,A j
〉

y j−
m
∑

j=m̄+1

〈

Ai ,PD+PT
〉〈

A j ,PD+PT
〉

〈D+,D+〉
y j ,

which holds if, and only if,

(M− M̃)







ym̄+1
...

ym






= 0, (1.73)

whereM,M̃ ∈ S
m−m̄ are defined by
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M(i−m̄),( j−m̄) =
〈

Ai ,A j
〉

−
〈

QTAiQ,QTA jQ
〉

,

M̃(i−m̄),( j−m̄) =

〈

Ai ,PD+PT
〉〈

A j ,PD+PT
〉

〈D+,D+〉
,∀ i, j = m̄+1, . . . ,m.

We show that (1.73) implies thatym̄+1 = · · · = ym = 0 by proving thatM− M̃ is
indeed positive definite. By Lemmas 1.34 and 1.35,

λmin(M− M̃) ≥ λmin(M)−λmax(M̃)

≥ min
‖y‖=1







∥

∥

∥

∥

∥

m−m̄
∑

i=1

yiAm̄+i

∥

∥

∥

∥

∥

2

−
∥

∥

∥

∥

∥

m−m̄
∑

i=1

yiQ
TAm̄+iQ

∥

∥

∥

∥

∥

2






−
∑m

i=m̄+1

〈

Ai ,PD+PT
〉2

〈D+,D+〉
.

To see thatλmin(M− M̃)> 0, note that sinceD∗ = PD+PT +QDεQT , for all i,
∣

∣

〈

Ai ,PD+PT〉
∣

∣ ≤
∣

∣〈Ai ,D
∗〉 |+ |

〈

Ai ,QDε QT〉
∣

∣

≤ |〈Ai ,D
∗〉|+ ‖Ai‖‖QDεQT‖

= |〈Ai ,D
∗〉|+ ‖Ai‖‖Dε‖

≤
√

2
(

|〈Ai ,D
∗〉|2+ ‖Ai‖2‖Dε‖2

)1/2
.

Hence

m
∑

i=m̄+1

∣

∣

〈

Ai ,PD+PT〉
∣

∣

2≤ 2
m
∑

i=m̄+1

(

|〈Ai ,D
∗〉|2+ ‖Ai‖2‖Dε‖2

)

≤ 2‖A (D∗)‖2+2‖Dε‖2
m
∑

i=m̄+1

‖Ai‖2,

and thatλmin(M− M̃) > 0 follows from the assumption (1.70). This implies that
ym̄+1 = · · ·= ym = 0. ThereforeB=

∑m̄
i=1yiÃi , and by (1.68)

R(Q ·QT)∩R( ˜A
∗) = span(A1, . . . ,Am̄) = R(Q ·QT)∩R(A ∗).

Remark 1.37.We make a remark about the assumption (1.70) in Lemma 1.36. We
argue that the right hand side expression

2
‖D+‖2

(

‖A (D∗)‖2+ ‖Dε‖2
m
∑

i=m̄+1

‖Ai‖2
)

is close to zero (whenδ ∗≈ 0 and whenDε is chosen appropriately). Assume that the
spectral decomposition ofD∗ is partitioned as described in Section 1. Then (since
‖Dε‖ ≤ ε‖D∗‖)

2
‖D+‖2

‖A (D∗)‖2≤ 2(δ ∗)2

‖D∗‖2−‖Dε‖2
≤ 2(δ ∗)2

‖D∗‖2− ε2‖D∗‖2 ≤
2n(δ ∗)2

1− ε2

and
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2‖Dε‖2
‖D+‖2

m
∑

i=m̄+1

‖Ai‖2≤
2ε2

1− ε2

m
∑

i=m̄+1

‖Ai‖2.

Therefore as long asε andδ ∗ are small enough (taking into accountnand
∑m

i=m̄+1‖Ai‖2),
then the right hand side of (1.70) would be close to zero.

Here we provide the backward stability result for one step ofthe facial reduction
algorithm. That is, we show that the smaller problem obtained from one step of
facial reduction withδ ∗ ≥ 0 is equivalent to applying facial reduction exactly to an
SDP instance “nearby” to the original SDP instance.

Theorem 1.38.SupposeA : Sn→ R
m, b∈ R

m andC ∈ S
n are given so that (1.1)

is feasible and Algorithm 1.0.1 returns(δ ∗,D∗), with 0≤ δ ∗ ≈ 0 and spectral de-

compositionD∗ =
[

P Q
]

[

D+ 0
0 Dε

][

PT

QT

]

, and( ¯A , b̄,C̄,yQ,P). In addition, assume

that

P : Rm̄→R
m : v 7→

(

v
0

)

, soR(A ∗
P) = span(A1, . . . ,Am̄).

Assume also that (1.70) holds. Fori = 1, . . . ,m, defineÃi ∈ S
n as in (1.71), and

˜A ∗y :=
∑m

i=1yiÃi . Let C̃ = ˜A ∗yQ+QC̄QT . Then( ¯A , b̄,C̄) is the exact output of
Algorithm 1.0.1 applied on( ˜A ,b,C̃), that is, the following hold:

(1) ˜AC̃(PD+PT) =

( ˜A (PD+PT)
〈

C̃,PD+PT
〉

)

= 0,

(2) (yQ,C̄) solves

min
y,Q

1
2

∥

∥ ˜A
∗y+QWQT −C̃

∥

∥

2
. (1.74)

(3) R( ˜A ∗P) = R(Q ·QT)∩R( ˜A ∗).

Moreover,( ˜A ,b,C̃) is close to(A ,b,C) in the sense that

m
∑

i=1

‖Ai− Ãi‖2 ≤
2

‖D+‖2

(

(δ ∗)2+ ‖Dε‖2
m
∑

i=1

‖Ai‖2
)

, (1.75)

‖C−C̃‖ ≤
√

2
‖D+‖

(

(δ ∗)2+ ‖Dε‖2
m
∑

i=1

‖Ai‖2
)1/2

‖yQ‖

+
√

2

[ ‖D∗‖
λmin(D+)

α(A ,C)

]1/2(

min
Z=C−A ∗y�0

‖Z‖
)

,(1.76)

whereα(A ,c) is defined in (1.26).

Proof. First we show that( ¯A , b̄,C̄) is the exact output of Algorithm 1.0.1 applied
on ( ˜A ,b,C̃):

(1) Fori = 1, . . . ,m, by definition ofÃi in (1.71), we have
〈

Ãi ,PD+PT
〉

= 0. Hence
˜A (PD+PT)= 0. Also,

〈

C̃,PD+PT
〉

= yT
Q(

˜A (PD+PT))+
〈

C̄,QT(PD+PT)Q
〉

=
0.
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(2) By definition,C̃− ˜A ∗yQ−QC̄QT = 0, so(yQ,C̄) solves the least squares prob-
lem (1.74).

(3) Given (1.70), we have that

R(Q·QT)∩R( ˜A
∗)=R(Q·QT)∩R(A ∗)=R(A1, . . . ,Am̄)=R(Ã1, . . . , Ãm̄)=R( ˜A

∗
P).

The results (1.75) and (1.76) follow easily:

m
∑

i=1

‖Ai− Ãi‖2 =
m
∑

i=1

∣

∣

〈

Ai ,PD+PT
〉∣

∣

2

‖D+‖2
≤

m
∑

i=1

2|〈Ai ,D∗〉|2+2‖Ai‖2‖Dε‖2
‖D+‖2

≤ 2
‖D+‖2

(

(δ ∗)2+ ‖Dε‖2
m
∑

i=1

‖Ai‖2
)

,

and

‖C−C̃‖ ≤ ‖A ∗yQ− ˜A
∗yQ‖+ ‖Cres‖

≤
m
∑

i=1

|(yQ)i |‖Ai− Ãi‖+ ‖Cres‖

≤ ‖yQ‖
(

m
∑

i=1

‖Ai− Ãi‖2
)1/2

+ ‖Cres‖

≤
√

2
‖D+‖

(

(δ ∗)2+ ‖Dε‖2
m
∑

i=1

‖Ai‖2
)1/2

‖yQ‖

+
√

2

[ ‖D∗‖
λmin(D+)

α(A ,C)

]1/2(

min
Z=C−A ∗y�0

‖Z‖
)

,

from (1.75) and (1.63).

Test Problem Descriptions

Worst case instance

From Tunçel [66], we consider the followingworst caseproblem instance in the
sense that forn≥ 3, the facial reduction process in Algorithm 1.0.1 requiresn−1
steps to obtain the minimal face. Letb = e2 ∈ R

n, C = 0, andA : Sn
+ → R

n be
defined by

A1 = e1eT
1 , A2 = e1eT

2 +e2eT
1 , Ai = ei−1eT

i−1+e1eT
i +eie

T
1 for i = 3, . . . ,n.

It is easy to see that
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F
Z
P =

{

C−A
∗y∈ S

n
+ : y∈R

n}=
{

µe1eT
1 : µ ≥ 0

}

,

(soFZ
P has empty interior) and

sup{bTy : C−A
∗y� 0}= sup{y2 :−A

∗y= µe1eT
1 ,µ ≥ 0}= 0,

which is attained by any feasible solution.
Now consider the auxiliary problem

min‖AC(D)‖=
[

D2
11+4D2

12+
n
∑

i=3

(Di−1,i−1+2D1i)

]1/2

s.t. 〈D, I〉=
√

n, D� 0.

An optimal solution isD∗ =
√

neneT
n , which attains objective value zero. It is easy

to see this is the only solution. More precisely, any solution D attaining objective
value 0 must satisfyD11= 0, and by the positive semidefiniteness constraintD1,i =
0 for i = 2, . . . ,n and soDii = 0 for i = 2, . . . ,n− 1. SoDnn is the only nonzero
entry and must equal

√
n by the linear constraint〈D, I〉 = √n. Therefore,Q from

Proposition 1.18 must haven−1 columns, implying that the reduced problem is in
S

n−1. Theoretically, each facial reduction step via the auxiliary problem can only
reduce the dimension by one. Moreover, after each reductionstep, we get the same
SDP withn reduced by one. Hence it would taken−1 facial reduction steps before
a reduced problem with strictly feasible solutions is found. This realizes the result
in [12] on the upper bound of the number of facial reduction steps needed.

Generating instances with finite nonzero duality gaps

In this section we give a procedure for generating SDP instances with finite nonzero
duality gaps. The algorithm is due to the results in [65, 70].

Finite nonzero duality gaps and strict complementarity areclosely tied together
for cone optimization problems; using the concept of acomplementarity partition,
we can generate instances that fail to have strict complementarity; these in turn can
be used to generate instances with finite nonzero duality gaps. See [65, 70].

Theorem 1.39.Given any positive integersn, m≤ n(n+ 1)/2 and anyg > 0 as
input for Algorithm 1.0.3, the following statements hold for the primal-dual pair
(1.1)-(1.2) corresponding to the output data from Algorithm 1.0.3:

1. Both (1.1) and (1.2) are feasible.
2. All primal feasible points are optimal andvP = 0.
3. All dual feasible point are optimal andvD = g> 0.

It follows that (1.1) and (1.2) possess a finite positive duality gap.

Proof. Consider the primal problem (1.1). (1.1) is feasible becauseC := X̄ given in
(1.78) is positive semidefinite. Note that by definition ofA in Algorithm 1.0.3, for
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Algorithm 1.0.3: Generating SDP instance that has a finite nonzero duality gap

1 Input(problem dimensions m, n; desired duality gap g);
2 Output(linear mapA : Sn→ Rm, b∈Rm, C∈ Sn such that the corresponding primal dual

pair (1.1)-(1.2)has a finite nonzero duality gap);
1. Pick any positive integerr1,r3 that satisfyr1+ r3+1= n,

and any positive integerp≤ r3.
2. ChooseAi � 0 for i = 1, . . . , p so that dim(face({Ai : i = 1, . . . , p})) = r3.

Specifically, chooseA1, . . .,Ap so that

face({Ai : 1, . . . , p}) =





0 0 0
0 0 0
0 0 S

r3
+



 . (1.77)

3. ChooseAp+1, . . . ,Am of the form

Ai =





0 0 (Ai)13
0 (Ai)22 ∗

(Ai)
T
13 ∗ ∗



 ,

where an asterisk denotes a block having arbitrary elements, such that(Ap+1)13, . . ., (Am)13
are linearly independent, and(Ai)22≻ 0 for somei ∈ {p+1, . . . ,m}.

4. Pick

X̄ =





0 0 0
0
√

g 0
0 0 0



 . (1.78)

5. Takeb= A (X̄), C = X̄.

anyy∈R
m,

C−
p
∑

i=1

yiAi =





0 0 0
0
√

g 0
0 0 ∗



 and−
m
∑

i=p+1

yiAi =





0 0 ∗
0 ∗ ∗
∗ ∗ ∗



 ,

so if y ∈ R
m satisfiesZ := C−A ∗y � 0, then

∑m
i=p+1yiAi = 0 must hold. This

implies
∑m

i=p+1yi(Ai)13 = 0. Since(Ap+1)13, . . . ,(Am)13 are linearly independent,
we must haveyp+1 = · · ·= ym = 0. Consequently, ify is feasible for (1.1), then

A
∗y=





0 0 0
0 0 0
0 0−Z33





for someZ33� 0. The corresponding objective value in (1.1) is given by

bTy= 〈X̄,A ∗y〉= 0.

This shows that the objective value of (1.1) is constant overthe feasible region.
HencevP = 0, and all primal feasible solutions are optimal.
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Consider the dual problem (1.2). By the choice ofb, X̄ � 0 is a feasible solution,
so (1.2) is feasible too. From (1.77), we have thatb1 = · · · = bp = 0. Let X � 0
be feasible for (1.1). Then〈Ai ,X〉 = bi = 0 for i = 1, . . . , p, implying that the (3,3)
block ofX must be zero by (1.77), so

X =





∗ ∗ 0
∗ ∗ 0
0 0 0



 .

Sinceα = (A j)22 > 0 for somej ∈ {p+1, . . . ,m}, we have that

αX22 =
〈

A j ,X
〉

=
〈

A j , X̄
〉

= α
√

g,

soX22 =
√

g and〈C,X〉 = g. Therefore the objective value of (1.2) is constant and
equalsg> 0 over the feasible region, and all feasible solutions are optimal.

Numerical results

Table 1.1 shows a comparison of solving SDP instanceswith versuswithout facial
reduction. Examples 1 through 9 are specially generated problems available online
at the URL for this paper5. In particular: Example 3 has a positive duality gap,
vP = 0 < vD = 1; for Example 4, the dual is infeasible; in Example 5, the Slater
CQ holds; Examples 9a,9b are instances of the worst case problems presented in
Section 1. The remaining instances RandGen1-RandGen11 aregenerated randomly
with most of them having a finite positive duality gap, as described in Section 1.
These instances generically require only one iteration of facial reduction. The soft-
ware package SeDuMi is used to solve the SDPs that arise.

One general observation is that, if the instance has primal-dual optimal solutions
and has zero duality gap, SeDuMi is able to find the optimal solutions. However,
if the instance has finite nonzero duality gaps, and if the instance is not too small,
SeDuMi is unable to compute any solution, and returns NaN.

SeDuMi, based on self-dual embedding, embeds the input primal-dual pair into a
larger SDP that satisfies the Slater CQ [16]. Theoretically,the lack of the Slater CQ
in a given primal-dual pair is not an issue for SeDuMi. It is not known what exactly
causes problem on SeDuMi when handling instances where a nonzero duality gap
is present.

5 orion.math.uwaterloo.ca/˜hwolkowi/henry/reports/ABSTRACTS.html
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Name n m True primal True dual Primal optimal value Primal optimal value

optimal value optimal value with facial reduction without facial reduction

Example 1 3 2 0 0 0 -6.30238e-016
Example 2 3 2 0 1 0 +0.570395
Example 3 3 4 0 0 0 +6.91452e-005
Example 4 3 3 0 Infeas. 0 +Inf
Example 5 10 5 * * +5.02950e+02 +5.02950e+02
Example 6 6 8 1 1 +1 +1
Example 7 5 3 0 0 0 -2.76307e-012
Example 9a20 20 0 Infeas. 0 Inf
Example 9b100 100 0 Infeas. 0 Inf
RandGen1 10 5 0 1.4509 +1.5914e-015 +1.16729e-012
RandGen2100 67 0 5.5288e+003 +1.1056e-010 NaN
RandGen4200 140 0 2.6168e+004 +1.02803e-009 NaN
RandGen5120 45 0 0.0381 -5.47393e-015 -1.63758e-015
RandGen6320 140 0 2.5869e+005 +5.9077e-025 NaN
RandGen7 40 27 0 168.5226 -5.2203e-029 +5.64118e-011
RandGen8 60 40 0 4.1908 -2.03227e-029 NaN
RandGen9 60 40 0 61.0780 +5.61602e-015 -3.52291e-012
RandGen10180 100 0 5.1461e+004 +2.47204e-010 NaN
RandGen11255 150 0 4.6639e+004 +7.71685e-010 NaN

Table 1.1 Comparisons with/without facial reduction

Conclusions and future work

In this paper we have presented a preprocessing technique for SDP problems where
the Slater CQ (nearly) fails. This is based on solving a stable auxiliary problem that
approximately identifies the minimal face for (P) . We have included a backward
error analysis and some preliminary tests that successfully solve problems where
the CQ fails and also problems that have a duality gap. The optimal value of our
(AP) has significance as a measure ofnearness to infeasibility.

Though our stable (AP) satisfied both the primal and dual generalized Slater CQ,
high accuracy solutions were difficult to obtain for unstructured general problems.
(AP) is equivalent to the underdetermined linear least squares problem

min‖AC(D)‖22 s.t. 〈I ,D〉=
√

n, D� 0, (1.79)

which is known to be difficult to solve. High accuracy solutions are essential in
performing a proper facial reduction.

Extensions of some of our results can be made to general conicconvex program-
ming, in which case the partial orderings in (1.1) and (1.2) are induced by a proper
closed convex coneK and the dual coneK∗, respectively.
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CQ := QWQQT , 26
Ei j , unit matrices, 7
K∗, polar (dual) cone, 6
WQ, 26
A †, Moore-Penrose generalized inverse, 7
AC, homogenized constraint, 17
cone(S), convex cone generated byS, 6
face(S), 7
F=, 10
Q, second order cone, 18
RD, cone of recession directions, 14
α(A ,C), distance from orthogonality, 22
Cres=C−CQ−A ∗yq, 26
λmax(M̂), largest eigenvalue, 40
λmin(M), smallest eigenvalue, 41
〈C,X〉 :=

∑

Ci j Xi j , trace inner product, 5
σi(A), singular values ofA, 7
ei , unit vector, 7
fP, minimal face of (1.1), 7
vD, dual optimal value, 5
vP, (finite) primal optimal value, 4
yQ, 26
(AP), auxiliary problem (1.18), 18
(DAP), dual of auxiliary problem (1.20), 18

auxiliary problem, (AP) (1.18), 18

complementarity partition, 31
complementarity partition, proper, 31
complementarity partition, strict, 31
cone of recession directions,RD, 14
cone partial order, 6
cones of directions of constancy, 11
conjugate face, 7
constraint qualification, CQ, 5, 13
convex cone generated byS, cone(S), 6
convex cone,K, 6

CP, ordinary convex program, 9

distance from orthogonality,α(A ,C), 22
dual cone,K∗, 6
dual of auxiliary problem, (DAP) (1.20), 18
dual SDP, 5

exposed face, 7
extremal ray, 6

face,F �K, 7
facial reduction, 5
facially exposed cone, 7
faithfully convex functions, 11
feasible sets,FP,F

y
P,F

z
P,FD, 7

implicit equality constraints, 9
implicit equality constraints for CP, 10

Löwner partial order, 4, 6
largest eigenvalue,λmax(M̂), 40

Mangasarian-Fromovitz CQ, MFCQ, 7, 9
MFCQ, Mangasarian-Fromovitz CQ, 7, 9
minimal face of (1.1),fP, 7, 33
Moore-Penrose generalized inverse,A †, 7

numerical rank, 34

ordinary convex program, CP, 9

p-d i-p, primal-dual interior-point, 5
partial order induced byK, 6
pointed cone, 6
polar cone,K∗, 6
preprocessing, 37
primal SDP, 4
primal-dual interior-point, p-d i-p, 5
problem assumptions, 8
proper cone, 6
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proper face, 7

rank-revealing, 5
RCQ, Robinson CQ, 4, 7, 9
regularization of LP, 9
regularized convex program, 10
regularized dual functional for CP, 10
regularized dual program, 10
Robinson CQ, RCQ, 4, 7, 9

SCQ, Slater CQ, 5, 7, 8, 13
SCQ,Slater CQ, 5

second order cone,Q, 18
singular values ofA, σi(A), 7
Slater CQ, SCQ, 5, 7, 8, 13
smallest eigenvalue,λmin(M), 41
strong duality, 13
strong infeasibility, 4
strongly dualized primal problem, 13

theorems of alternative, 14

weak infeasibility, 4
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