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1 Introduction

Over the past decade, Euclidean distance matrices, or EDMs, have been re-
ceiving increased attention for two main reasons. The first reason is that the
many applications of EDMs, such as molecular conformation in bioinformat-
ics, dimensionality reduction in machine learning and statistics, and especially
the problem of wireless sensor network localization, have all become very ac-
tive areas of research. The second reason for this increased interest is the
close connection between EDMs and semidefinite matrices. Our recent ability
to solve semidefinite programs, SDPs, efficiently means we can now also solve
many problems involving EDMs efficiently.

1.1 Background

Distance geometry and Euclidean distance matrices

Two foundational papers in the area of Euclidean distance matrices are
[105] and [120]. The topic was further developed with the series of papers
[63, 64, 65], followed by [43, 54]. For papers on the Euclidean distance ma-
trix completion problem and the related semidefinite completion problem, see
the classic paper on semidefinite completion [67], and follow-up papers [19]
and [78]; also see [88] on the topic of the complexity of these completion
problems. More on the topic of uniqueness of Euclidean distance matrix com-
pletions can be found in the papers [8, 9]. The cone of Euclidean distance
matrices and its geometry is described in, for example, [11, 59, 71, 111, 112].
Using semidefinite optimization to solve Euclidean distance matrix problems
is studied in [2, 4]. Further theoretical results are given in [10, 13]. Books
and survey papers containing a treatment of Euclidean distance matrices in-
clude, for example, [31, 44, 87], and most recently [3]. The topic of rank mini-
mization for Euclidean distance matrix problems is discussed in, for example,
[34, 35, 55, 56, 99, 100].
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Graph realization and graph rigidity

The complexity of graph realization in a fixed dimension was determined to
be NP-hard by [103, 119]. For studies on graph rigidity, see, for example,
[6, 7, 12, 23, 24, 39, 73, 74, 76], and the references therein. Graph rigidity for
sensor network localization is studied as graph rigidity with some nodes being
grounded or anchored; see, for example, [53, 109]. Semidefinite optimization
techniques have also been applied to graph realization and graph rigidity
problems; see, for example, [20, 107, 108].

Sensor network localization

While semidefinite relaxations were discussed earlier in [4] for Euclidean dis-
tance matrix problems, the first semidefinite relaxations specialized for the
sensor network localization problem were proposed by [47]. The paper by
[28] followed with what is now called the Biswas-Ye semidefinite relaxation
of sensor network localization problem. As problems with only a few hun-
dred sensors could be solved directly using the Biswas-Ye relaxation, [77] and
[36] proposed the scalable SpaseLoc semidefinite-based build-up algorithm
which solves small subproblems using the Biswas-Ye semidefinite relaxation,
locating a few sensors at a time. In the follow-up paper [26] propose regu-
larization and refinement techniques for handling noisy problems using the
Biswas-Ye semidefinite relaxation. In order to handle larger problems, a dis-
tributed method was proposed in [29] which clusters points together in small
groups, solves the smaller subproblems, then stitches the clusters together;
see also the PhD thesis [25]. To allow the solution of larger problems, [114]
proposed further relaxations of the sensor network localization problem in
which they do not insist that the full n-by-n matrix of the Biswas-Ye relax-
ation be positive semidefinite, but rather only that certain submatrices of this
matrix be positive semidefinite; the most successful of these further relax-
ations is the so-called edge-based SDP relaxation, or ESDP. A noise-aware
robust version of the ESDP relaxation called ρ-ESDP is proposed by [97] and
which is solved with their Log-barrier Penalty Coordinate Gradient Descent
(LPCGD) method. Using techniques from [57], it is shown in [80] how to form
an equivalent sparse version of the full Biswas-Ye relaxation, called SFSDP.
The sparsity in the SFSDP formulation can then be exploited by a semidefi-
nite optimization solver, allowing the solution of noisy instances of the sensor
network localization problem with up to 18000 sensors and 2000 anchors to
high accuracy in under ten minutes; see [81]. Most recently, it was shown in
[84] how to use facial reduction to solve a semidefinite relaxation of the sensor
network localization problem; the resulting algorithm is able to solve noiseless
problems with up to 100,000 sensors and 4 anchors to high accuracy in under
six minutes on a laptop computer. The connection between the sensor network
localization problem and the Euclidean distance matrix problem is described
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in [3]. In particular, the connection uses facial reduction based on the clique
of anchors.

Other relaxations have also been studied; [113] considers a second-order
cone (SOC) relaxation of the sensor network localization problem, while [96]
studies the sum-of-squares (SOS) relaxation of this problem.

For more applied approaches and general heuristics, see, for example, [32,
33, 37, 40, 91, 92, 95, 102, 110, 118]. A older survey paper on wireless sensor
networks is [1]; for a recent book on wireless ad hoc and sensor networks, see
[90].

The complexity of the sensor network localization problem is discussed in
[16, 17]. References for the single sensor localization problem are, for example,
[21, 22].

Molecular conformation

An early algorithmic treatment of molecular conformation is [69] in which
they give their bound embedding algorithm EMBED. This paper was then
followed by the book [42]; a review paper [41] provides an update three years
after the publication of this book. A personal historical perspective is given
in [70].

Other algorithmic developments followed, including: a divide-and-conquer
algorithm called ABBIE based on identifying rigid substructures [72]; an alter-
nating projection approach [58]; a global smoothing continuation code called
DGSOL [93, 94]; a geometric build-up algorithm [48, 49, 116, 117]; an extended
recursive geometric build-up algorithm [50]; a difference of convex functions
(d.c.) optimization algorithm [15]; a method based on rank-reducing pertur-
bations of the distance matrix that maintain desired structures [52]; an al-
gorithm for solving a distance matrix based, large-scale, bound constrained,
non-convex optimization problem called StrainMin [68].

Recently, semidefinite optimization approaches to the molecular confor-
mation problem have been studied in [25, 27, 89].

1.2 Outline

We begin in Section 2 by discussing some preliminaries and introducing nota-
tion. In Section 3, we explain the close connection to semidefinite matrices and
the many recent results arising from this special relationship. In Section 5, we
will look at some popular applications, and we especially focus on the problem
of sensor network localization (SNL).

2 Preliminaries

We let Sn be the space of n×n real symmetric matrices. A Euclidean distance
matrix (EDM) is a matrix D for which
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∃p1, . . . , pn ∈ Rr, such that Dij = ‖pi − pj‖22, ∀i, j = 1, . . . , n. (1)

The set of Euclidean distance matrices is denoted En. If D is an EDM, then
the smallest integer r for which condition (1) is possible is called the embedding
dimension of D, and is denoted embdim(D).

2.1 Further Notation

The adjoint of a linear transformation T is denoted T ∗ and satisfies 〈Tx, y〉 =
〈x, T ∗y〉,∀x, y. For a given matrix M and vector v, we let diag(M) denote the
vector formed from the diagonal of M . The adjoint Diag(v) = diag∗(v) is the
diagonal matrix formed with v as its diagonal. For a given symmetric matrix
B, we let B[α] denote the principal submatrix formed using the rows/columns
from the index set α.

The cone of symmetric positive semidefinite (resp. definite) matrices is
denoted by Sn

+ (resp. Sn
++). The cone Sn

+ is closed and convex and induces
the Löwner partial order:

A � B (resp. A � B), if A−B ∈ Sn
+ (resp. A−B ∈ Sn

++).

A convex cone F ⊆ K is a face of the cone K, denoted F E K, if(
x, y ∈ K,

1
2
(x + y) ∈ F

)
=⇒ (x, y ∈ F ) .

If F E K, but is not equal to K, we write F C K. If {0} 6= F C K, then F
is a proper face of K. For S ⊆ K, we let face(S) denote the smallest face
of K that contains S. If F E K, the conjugate face of F is F c := F⊥ ∩K∗,
where K∗ := {x : 〈x, y〉 ≥ 0,∀y ∈ K} is the dual cone of the cone K; in fact
it is easy to show that F c E K∗ and that if φ ∈ F c, then F E K ∩ {φ}⊥ (see,
for example, [82]). A face F E K is an exposed face if it is the intersection of
K with a hyperplane. It is well known that Sn

+ is facially exposed: every face
F E Sn

+ is exposed. For more on faces of convex cones, the interested reader
is encouraged to refer to [98, 101, 104].

3 Euclidean distance matrices and semidefinite matrices

The connection between EDMs and semidefinite matrices is well known. This
has been studied at length in, e.g., [78, 86, 87]. There is a natural relationship
between the sets Sn

+ and En. Suppose that D ∈ En is realized by the points
p1, . . . , pn ∈ Rr. Let

P :=

pT
1
...

pT
n

 ∈ Rn×r and Y := PPT =
(
pT

i pj

)n
i,j=1

.
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The matrix Y = PPT is known as the Gram matrix of the points p1, . . . , pn.
Then, ∀i, j ∈ {1, . . . , n}, we have

Dij = ‖pi − pj‖22
= pT

i pi + pT
j pj − 2pT

i pj

= Yii + Yjj − 2Yij .

Therefore, D = K(Y ), where K : Sn → Sn is the linear operator3 defined as

K(Y )ij := Yii + Yjj − 2Yij , for i, j = 1, . . . , n.

Equivalently, we can define K by

K(Y ) := diag(Y )eT + ediag(Y )T − 2Y, (2)

where e ∈ Rn is the vector of all ones. From this simple observation, we can
see that K maps the cone of semidefinite matrices, Sn

+, onto En. That is,
K(Sn

+) = En. In addition, since Sn
+ is a convex cone, we immediately get that

En is a convex cone.

Mappings between EDM and SDP

There are several linear transformations that map between En and the cone of
semidefinite matrices. We first present some useful properties of K in (2) and
related transformations and their adjoints follow; see, e.g., [84]. For Y ∈ Sn

we let De(Y ) := diag(Y )eT + ediag(Y )T ; by abuse of notation, we also let
De(y) := yeT + eyT , for y ∈ Rn. Then, our main operator of interest is

K(Y ) := De(Y )− 2Y.

The adjoints are

D∗
e(D) = 2 Diag(De), K∗(D) = 2(Diag(De)−D).

We also have an explicit representation for the Moore-Penrose generalized
inverse:

K†(D) = −1
2
J offDiag(D)J

where J := I − 1
n

eeT , offDiag(D) := D −Diag (diag(D)). In addition,

Sn
H := {D ∈ Sn : diag(D) = 0} KK†(D) = offDiag(D)

Sn
C := {Y ∈ Sn : Y e = 0} K†K(Y ) = JY J

3 Early appearances of this linear operator are in [105, 120]. However, the use of the
notation K for this linear operator dates back to [43] wherein κ was used due to the
fact that the formula for K is basically the cosine law (c2 = a2 + b2− 2ab cos(γ)).
Later on, in [78], K was used to denote this linear operator.
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Sn
H is called the hollow subspace, while Sn

C is called the centered subspace.

range(K) = Sn
H null(K†) = range(Diag)

range(K†) = Sn
C null(K) = range(De)

K(Sn
C) = Sn

H K†(Sn
H) = Sn

C

K(Sn
+ ∩ Sn

C) = En K†(En) = Sn
+ ∩ Sn

C

embdim(D) = rankK†(D), for D ∈ En

‖K‖F := max
0 6=Y ∈Sn

‖K(Y )‖F

‖Y ‖F
= 2

√
n

We let T := K†. Then K and T map between the centered subspace, Sn
C ,

and the hollow subspace, Sn
H . Since int(Sn

C ∩ Sn
+) = ∅, we can have problems

with constraint qualifications and unbounded optimal sets. To avoid this ([2,
4]), we define KV : Sn−1 → Sn by

KV (X) := K(V XV T ), (3)

where V ∈ Rn×(n−1) is full column rank and satisfies V T e = 0. Then
KV (Sn−1

+ ) = En. And, KV (X) = D ∈ En implies that V XV T is the cor-
responding Gram matrix.

Alternatively, see [2], we can use L : Sn−1 → Sn

L(X) :=
[

0 diag(X)T

diag(X) K(X)

]
. (4)

And, as with KV , we get L(Sn−1
+ ) = En.

3.1 Properties of K

We now include further useful properties of the linear map K.

Translational invariance and the null space of K

The null space of K is closely related to the translational invariance of dis-
tances between a set of points. Suppose that P ∈ Rn×r and that

P̂ = P + evT , for some v ∈ Rr;

that is, P̂ is the matrix formed by translating every row of P by the vector
v. Clearly, P and P̂ generate the same Euclidean distance matrix, so we have
K(PPT ) = K(P̂ P̂T ). Note that

P̂ P̂T = PPT + PveT + evT P + evT veT

= PPT +De(y),
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where y := Pv + vT v
2 e. Thus, we have

0 = K(P̂ P̂T − PPT ) = K(De(y)),

so De(y) ∈ null(K). Thus, if there are no anchors among the points, then we
do not have to worry about translations of the set of points.

Rotational invariance of the Gram matrix

Suppose that P ∈ Rn×r and that

P̂ = PQ, for some Q ∈ Rr×r orthogonal;

that is, P̂ is the matrix formed by rotating/reflecting each row of P by the
same orthogonal transformation. Again, we clearly have that P and P̂ generate
the same Euclidean distance matrix, but we can say more. If Y is the Gram
matrix of P and Ŷ is the Gram matrix of P̂ , then

Ŷ = P̂ P̂T = PQQT PT = PPT = Y.

Therefore, we have that the Gram matrix is invariant under orthogonal trans-
formations of the points. Thus, when using a semidefinite matrix Y to repre-
sent a Euclidean distance matrix D with D = K(Y ), orthogonal transforma-
tions will not affect Y nor D.

The maps K and K† as bijections

Consider K and K† restricted to the subspaces Sn
C and Sn

H , respectively. Then,
the above expressions for the ranges implies that the map K : Sn

C → Sn
H is a

bijection and K† : Sn
H → Sn

C is its inverse.
If we consider K and K† restricted to the convex cones Sn

+ ∩ Sn
C and En,

respectively, then the map K : Sn
+ ∩ Sn

C → En is a bijection and K† : En →
Sn

+ ∩ Sn
C is its inverse. Note that we could use a rotation and replace the face

Sn
+ ∩ Sn

C C Sn
+, as is done above with the KV linear transformation defined in

equation (3).

Embedding dimension and a theorem of Schoenberg

We now give the following much celebrated theorem of Schoenberg [105] (also
found in the later paper by Young and Householder [120]) that provides a
method for testing if a matrix is a Euclidean distance matrix and a method
determining the embedding dimension of a Euclidean distance matrix; see
also [4].

Theorem 3.1 ([105, 120]) A matrix D ∈ Sn
H is a Euclidean distance matrix

if and only if K†(D) is positive semidefinite. Furthermore, if D ∈ En, then

embdim(D) = rankK†(D) ≤ n− 1. ut
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This means that given D ∈ En, we can find the Gram matrix B = K†(D) and
the full rank factorization PPT = B. Then the points, pj , given by the rows
of P satisfy pj ∈ Rt, for j = 1, . . . , n. Moreover, t is necessarily less than n.

4 The Euclidean distance matrix completion problem

Following [19], we say that an n-by-n matrix D is a partial Euclidean distance
matrix if every entry of D is either “specified” or “unspecified”, diag(D) = 0,
and every fully specified principal submatrix of D is a EDM. Note that this
definition implies that every specified entry of D is nonnegative. In addition,
if every fully specified principal submatrix of D has embedding dimension less
than or equal to r, then we say that D is a partial EDM in Rr.

Associated with an n-by-n partial EDM D is a weighted undirected graph
G = (N,E, ω) with node set N := {1, . . . , n}, edge set

E := {ij : i 6= j, and Dij is specified},

and edge weights ω ∈ RE
+ with ωij =

√
Dij , for all ij ∈ E. We say that H is

the 0–1 adjacency matrix of G if H ∈ Sn with

Hij =

{
1, ij ∈ E

0, ij /∈ E.

The Euclidean distance matrix completion (EDMC) problem asks to find a
completion of a partial Euclidean distance matrix D; that is, if G = (N,E, ω)
is the weighted graph associated with D, the EDMC problem can be posed as

find D̂ ∈ En

s.t. D̂ij = Dij , ∀ij ∈ E.
(5)

Letting H ∈ Sn be the 0–1 adjacency matrix of G, the EDMC problem can
be stated as

find D̂ ∈ En

s.t. H ◦ D̂ = H ◦D,
(6)

where “◦” represents the component-wise (or Hadamard) matrix product.
Using the linear map K, we can substitute D̂ = K(Y ), where Y ∈ Sn

+∩Sn
C ,

in the EDMC problem (6) to obtain the equivalent problem

find Y ∈ Sn
+ ∩ Sn

C

s.t. H ◦ K(Y ) = H ◦D.
(7)
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4.1 The low-dimensional EDM completion problem

If D is a partial EDM in Rr, one is often interested in finding a Euclidean
distance matrix completion of D that has embedding dimension r. The low-
dimensional Euclidean distance matrix completion problem is

find D̂ ∈ En

s.t. H ◦ D̂ = H ◦D

embdim(D̂) = r,

(8)

where H is the 0–1 adjacency matrix of the graph G associated with D.
Using the linear map K, we can state the low-dimensional EDMC prob-

lem (8) as the following rank constrained SDP:

find Y ∈ Sn
+

s.t. H ◦ K(Y ) = H ◦D
Y e = 0

rank(Y ) = r.

(9)

Note that the constraint Y e = 0 means that there is no positive definite
feasible solution. This means that standard interior point methods cannot
properly handle this problem without some modification, e.g., the use of KV

given above in equation (3).

4.2 Chordal EDM completions

Let G be a graph and C be a cycle in the graph. We say that C has a
chord if there are two vertices on C that are connected by an edge which
is not contained in C. Note that it is necessary that a cycle with a chord
have length more than three. The graph G is called chordal if every cycle
of the graph with length three or more has a chord. In the landmark paper
[67], they show the strong result that any partial semidefinite matrix with
a chordal graph has a semidefinite completion; moreover, if a graph is not
chordal, then there exists a partial semidefinite matrix with that graph, but
having no semidefinite completion.

Due to the strong connection between EDMs and semidefinite matrices,
it is not surprising that the result of chordal semidefinite completions of [67]
extends to the case of chordal EDMC. Indeed, see [19]:

1. any partial Euclidean distance matrix in Rr with a chordal graph can be
completed to a distance matrix in Rr;

2. every nonchordal graph has a partial Euclidean distance matrix that does
not admit any distance matrix completions;

3. if the graph G of a partial Euclidean distance matrix D in Rr is chordal,
then the completion of D is unique if and only if

rank
([

0 eT

e D[S]

])
= r + 2, for all minimal vertex separators S of G.
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A set of vertices S in a graph G is a minimal vertex separator if removing the
vertices S from G separates some vertices u and v in G, and no proper subset
of S separates u and v. It is discussed in, for example, [85] how the maximum
cardinality search (MCS) can be used to test in linear time if a graph G
is chordal; moreover, [85] show that MCS can also be used to compute all
minimal vertex separators of a chordal graph in linear time. See also [8, 9],
for example, for more on the topic of uniqueness of EDMC.

4.3 Corresponding Graph Realization Problems

Suppose that we are given an n× n partial EDM D̄, where only the elements
D̄ij , for all ij ∈ E, are known. In addition, suppose every fully specified
principal submatrix of D̄ has an embedding dimension less or equal to r. We
let G = (N,E, ω) be the corresponding simple weighted graph on the node
set N = {1, . . . , n} whose edge set E corresponds to the known entries of D̄,
with edge weights D̄ij = ω2

ij , for all ij ∈ E. The graph realization problem
consists of finding a mapping p : N → Rr, with pi ∈ Rr for all i ∈ N , such
that ‖pi − pj‖ = ωij , for all ij ∈ E.

We note that a clique C ⊆ N of the graph G defines a complete subgraph
of G and this corresponds to a known principal submatrix of D̄. Cliques play
a significant role in a facial reduction algorithm for the SNL problem that we
describe in Section 4.8 below.

We note here the deep connection between the Euclidean distance matrix
completion problem and the problem of graph realization. Let N := {1, . . . , n}.
Given a graph G = (N,E, ω) with edge weights ω ∈ RE

+, the graph realization
problem asks to find a mapping p : N → Rr such that

‖pi − pj‖ = ωij , for all ij ∈ E;

in this case, we say that G has an r-realization, p. Clearly the graph realization
problem is equivalent to the problem of Euclidean distance matrix completion,
and the problem of the r-realizability of a weighted graph is equivalent to the
low-dimensional Euclidean distance matrix completion problem.

A related problem is that of graph rigidity. Again, let N := {1, . . . , n}. An
unweighted graph G = (N,E) together with a mapping p : N → Rr is called a
framework (also bar framework) in Rr, and is denoted by (G, p). Frameworks
(G, p) in Rr and (G, q) in Rs are called equivalent if

‖pi − pj‖ = ‖qi − qj‖ , for all ij ∈ E.

Furthermore, p and q are called congruent if

‖pi − pj‖ = ‖qi − qj‖ , for all i, j = 1, . . . , n. (10)

Note that condition (10) can be stated as

K(PPT ) = K(QQT ),
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where P ∈ Rn×r and Q ∈ Rn×s are defined as

P :=

pT
1
...

pT
n

 and Q :=

qT
1
...

qT
n

 .

Thus, if PT e = QT e = 0, then we have PPT = QQT , which implies that:

• PQ̄ =
[
Q 0

]
, for some orthogonal Q̄ ∈ Rr, if r ≥ s;

•
[
P 0
]
Q̄ = Q, for some orthogonal Q̄ ∈ Rs, if s ≥ r.

A framework (G, p) in Rr is called globally rigid in Rr if all equivalent
frameworks (G, q) in Rr satisfy condition (10). Similarly, a framework (G, p)
in Rr is called universally rigid in Rr if, for all s = 1, . . . , n− 1, all equivalent
frameworks (G, q) in Rs satisfy condition (10). Note that a framework (G, p)
in Rr corresponds to the pair (H,D), where H is the 0–1 adjacency matrix
of G, and D is a Euclidean distance matrix embdim(D) ≤ r. Therefore, the
framework (G, p) given by (H,D) is globally rigid if

H ◦ D̂ = H ◦D ⇒ D̂ = D,

for all D̂ ∈ En with embdim(D̂) ≤ r; equivalently, (G, p) is globally rigid if

H ◦ K(Y ) = H ◦D ⇒ K(Y ) = D,

for all Y ∈ Sn
+ ∩ Sn

C with rank(Y ) ≤ r. Moreover, the framework (G, p) given
by (H,D) is universally rigid if

H ◦ D̂ = H ◦D ⇒ D̂ = D,

for all D̂ ∈ En; equivalently, (G, p) is universally rigid if

H ◦ K(Y ) = H ◦D ⇒ K(Y ) = D,

for all Y ∈ Sn
+ ∩ Sn

C .
Graph realization and graph rigidity is a vast area of research, so we keep

our discussion brief. More information can be found in, for example, [39, 73,
107], the recent survey [3], and the references therein.

4.4 Low-dimensional EDM completion is NP-hard

We now discuss the complexity of the low-dimensional Euclidean distance
matrix completion decision problem (8) (equivalently, problem (9)). It was
independently discovered by [103] and [119] that the problem of graph em-
beddability with integer edge weights, in r = 1 or r = 2 dimensions, is NP-
complete by reduction from the NP-complete problem Partition. The Par-
tition problem is defined as follows: Given a set of S of n integers, determine
if there is a partition of S into two sets S1, S2 ⊆ S such that the sum of the
integers in S1 equals the sum of the integers in S2. Partition is one of Karp’s
21 NP-complete problems in his landmark paper [79].
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Theorem 4.1 ([103, Theorem 3.2]) The problem of 1-embeddability of graphs
with integer weights is NP-complete. ut

Furthermore, by showing that for any r, r-embeddability of {1, 2}-weighted
graphs is NP-hard, [103] proves that the problem of r-embeddability of integer
weighted graphs is strongly NP-hard.

In practice, the so-called unit disk graphs are used; these graphs have
realization in some Euclidean space satisfying their edge-weights such that
the distance between vertices that are not connected is greater than some
radio range R, and R is greater than all the edge weights. Thus, vertices are
connected if and only if they are within radio range. However, see [18], the
realizability of unit disk graphs is, in fact, NP-hard (again, by reduction from
Partition). In the [18] proof, they again work with cycles, which are typically
not uniquely realizable. In applications, one is often most interested in unit
disk graphs that have a unique realization. However, it is shown in [16, 17]
that there is no efficient algorithm for solving the unit disk graph localization
problem, even if that graph has a unique realization, unless RP = NP (RP is
the class of randomized polynomial time solvable problems). Problems in RP
can be solved in polynomial time with high probability using a randomized
algorithm. See also [88], for example, for more on the topic of the complexity
of Euclidean distance matrix completion and related problems.

Due to these hardness results for the low-dimensional Euclidean distance
matrix problem, we turn to convex relaxations which can be solved efficiently,
but may not solve our original problem.

4.5 SDP relaxation of the low-dimensional EDM completion
problem

The semidefinite relaxation of the low-dimensional EDM completion prob-
lem (9) is given by relaxing the hard rank(Y ) = r constraint. Thus, we have
the following tractable convex relaxation

find Y ∈ Sn
+

s.t. H ◦ K(Y ) = H ◦D
Y e = 0.

(11)

This semidefinite relaxation essentially allows the points to move into Rk,
where k > r. That is, if a solution Y of problem (11) has rank(Y ) = k >
r, then we have found a Euclidean distance matrix completion of D with
embedding dimension k; this is even possible if D has a completion with
embedding dimension r, or even if D has a unique completion with embedding
dimension r.

We can view this relaxation as a Lagrangian relaxation of the low-
dimensional EDM completion problem.

Proposition 4.2 ([83, Prop. 2.48]) Relaxation (11) is the Lagrangian re-
laxation of Problem (9). ut
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Duality of the SDP relaxation

Problem (11) is equivalent to

minimize 0
subject to H ◦ K(Y ) = H ◦D

Y e = 0
Y ∈ Sn

+.

The Lagrangian of this problem is given by

L(Y, Λ, v) = 〈Λ, H ◦ K(Y )−H ◦D〉+ 〈v, Y e〉
= 〈K∗(H ◦ Λ), Y 〉 − 〈H ◦ Λ, D〉+

〈
evT , Y

〉
=
〈
K∗(H ◦ Λ) +

1
2
(
evT + veT

)
, Y

〉
− 〈H ◦ Λ, D〉

=
〈
K∗(H ◦ Λ) +

1
2
De(v), Y

〉
− 〈H ◦ Λ, D〉 .

Therefore, the Lagrangian dual problem is

sup
Λ,v

inf
Y ∈Sn

+

L(Y, Λ, v),

which is equivalent to

sup
{
−〈H ◦ Λ, D〉 : K∗(H ◦ Λ) +

1
2
De(v) � 0

}
.

From this dual problem, we obtain the following partial description of the
conjugate face of the minimal face of the EDM completion problem (11).

Proposition 4.3 Let F := face(F), where

F :=
{
Y ∈ Sn

+ : H ◦ K(Y ) = H ◦D,Y e = 0
}

.

If F 6= ∅, then

face
{

S ∈ Sn
+ : S = K∗(H ◦ Λ) +

1
2
De(v), 〈H ◦ Λ, D〉 = 0

}
E F c. ut

Using Proposition 4.3, we obtain the following partial description of the
minimal face of the EDM completion problem (11).

Corollary 4.4 If F :=
{
Y ∈ Sn

+ : H ◦ K(Y ) = H ◦D,Y e = 0
}
6= ∅ and

there exists S � 0 such that

S = K∗(H ◦ Λ) +
1
2
De(v) and 〈H ◦ Λ, D〉 = 0,

for some Λ ∈ Sn and v ∈ Rn, then

face(F) E Sn
+ ∩ {S}

⊥
. ut
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For example, we can apply Corollary 4.4 as follows. Let Λ := 0 and v := e.
Then,

K∗(H ◦ Λ) +
1
2
De(v) = eeT � 0, and 〈H ◦ Λ, D〉 = 0.

Thus,

face
{
Y ∈ Sn

+ : H ◦ K(Y ) = H ◦D,Y e = 0
}

E Sn
+ ∩

{
eeT
}⊥

= V Sn−1
+ V T ,

where
[
V 1√

n
e
]
∈ Rn×n is orthogonal. Note that we have V T V = I and

V V T = J , where J is the orthogonal projector onto {e}⊥. Therefore, Prob-
lem (11) is equivalent to the reduced problem

find Z ∈ Sn−1
+

s.t. H ◦ KV (Z) = H ◦D,

where KV : Sn−1 → Sn is defined as in equation (3).

4.6 Rank minimization heuristics for the EDM completion
problem

In order to encourage having a solution of the semidefinite relaxation with low
rank, the following heuristic has been suggested by [115] and used with great
success by [26] on the sensor network localization problem. The idea is that
we can try to “flatten” the graph associated with a partial Euclidean distance
matrix by pushing the nodes of the graph away from each other as much as
possible. This flattening of the graph then corresponds to reducing the rank of
the semidefinite solution of the relaxation. Geometrically, this makes a lot of
sense, and [115] gives this nice analogy: a loose string on the table can occupy
two dimensions, but the same string pulled taut occupies just one dimension.

Therefore, we would like to maximize the objective function

n∑
i,j=1

‖pi − pj‖2 = eTK(PPT )e,

where

P :=

pT
1
...

pT
n

 ,

subject to the distance constraints holding. Moreover, if we include the con-
straint that PT e = 0, then
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eTK(PPT )e =
〈
eeT ,K(PPT )

〉
=
〈
K∗(eeT ), PPT

〉
=
〈
2(Diag(eeT e)− eeT ), PPT

〉
=
〈
2(nI − eeT ), PPT

〉
=
〈
2nI, PPT

〉
−
〈
eeT , PPT

〉
= 2n · trace(PPT ).

Note that

trace(PPT ) =
n∑

i=1

‖pi‖2 ,

so pushing the nodes away from each other is equivalent to pushing the nodes
away from the origin, under the assumption that the points are centred at the
origin. Normalizing this objective function by dividing by the constant 2n,
substituting Y = PPT , and relaxing the rank constraint on Y , we obtain the
following regularized semidefinite relaxation of the low-dimensional Euclidean
distance matrix completion problem:

maximize trace(Y )
subject to H ◦ K(Y ) = H ◦D

Y ∈ Sn
+ ∩ Sn

C .
(12)

It is very interesting to compare this heuristic with the nuclear norm rank
minimization heuristic that has received much attention lately. This nuclear
norm heuristic has had much success and obtained many practical results for
computing minimum-rank solutions of linear matrix equations (for example,
finding the exact completion of low-rank matrices); see, for example, [14, 34,
35, 55, 100] and the recent review paper [99].

The nuclear norm of a matrix X ∈ Rm×n is given by

‖X‖∗ :=
k∑

i=1

σi(X),

where σi(X) is the ith largest singular value of X, and rank(X) = k. The
nuclear norm of a symmetric matrix Y ∈ Sn is then given by

‖Y ‖∗ =
n∑

i=1

|λi(Y )|.

Furthermore, for Y ∈ Sn
+, we have ‖Y ‖∗ = trace(Y ).

Since we are interested in solving the rank minimization problem,

minimize rank(Y )
subject to H ◦ K(Y ) = H ◦D

Y ∈ Sn
+ ∩ Sn

C ,
(13)
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the nuclear norm heuristic gives us the problem

minimize trace(Y )
subject to H ◦ K(Y ) = H ◦D

Y ∈ Sn
+ ∩ Sn

C .
(14)

However, this is geometrically interpreted as trying to bring all the nodes of
the graph as close to the origin as possible. Intuition tells us that this approach
would produce a solution with a high embedding dimension.

Another rank minimization heuristic that has been considered recently in
[56] is the log-det maximization heuristic. There they successfully computed
solutions to Euclidean distance matrix problems with very low embedding
dimension via this heuristic.

4.7 Nearest EDM Problem

For many applications, we are given an approximate (or partial) EDM D̄ and
we need to find the nearest EDM. Some of the elements of D̄ may be exact.
Therefore, we can model this problem as the norm minimization problem,

min ‖W ◦ (K(B)− D̄)‖
s.t. K(B)ij = D̄ij ,∀ij ∈ E,

B � 0,
(15)

where W represents a weight matrix to reflect the accuracy of the data, and
E is a subset of the pairs of nodes corresponding to exact data. This model
often includes upper and lower bounds on the distances; see, e.g., [4].

We have not specified the norm in (15). The Frobenius norm was used in
[4], where small problems were solved; see also [5]. The Frobenius norm was
also used in [45, 46], where the EDM was specialized to the sensor network
localization, SNL, model. All the above approaches had a difficult time solv-
ing large problems. The difficulty was both in the size of the problem and
the accuracy of the solutions. It was observed in [46] that the Jacobian of
the optimality conditions had many zero singular values at optimality. An
explanation of this degeneracy is discussed below in Section 4.8.

4.8 Facial reduction

As mentioned in Section 4.7 above, solving large scale nearest EDM problems
using SDP is difficult due to the size of the resulting SDP and also due to
the difficulty in getting accurate solutions. In particular, the empirical tests
in [46] led to the observation [83, 84] that the problems are highly, implicitly
degenerate. In particular, if we have a clique in the data, α ⊆ N , (equiva-
lently, we have a known principal submatrix of the data D̄), then we have the
following basic result.
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Theorem 4.5 ([84, Thm 2.3]) Let D ∈ En, with embedding dimension r. Let
D̄ := D[1 :k] ∈ Ek with embedding dimension t, and B := K†(D̄) = ŪBSŪT

B ,
where ŪB ∈ Mk×t, ŪT

B ŪB = It, and S ∈ St
++. Furthermore, let UB :=[

ŪB
1√
k
e
]
∈Mk×(t+1), U :=

[
UB 0
0 In−k

]
, and let

[
V UT e

‖UT e‖

]
∈Mn−k+t+1 be

orthogonal. Then

faceK†
(
En(1 :k, D̄)

)
=
(
USn−k+t+1

+ UT
)
∩ SC = (UV )Sn−k+t

+ (UV )T . ut

Theorem 4.5 implies that the Slater constraint qualification (strict feasibil-
ity) fails if the known set of distances contains a clique. Moreover, we explicitly
find the expression for the face of feasible semidefinite Gram matrices. This
means we have reduced the size of the problem from matrices in Sn to ma-
trices in Sn−k+t. We can continue to do this for all disjoint cliques. Note the
equivalences between the cliques, the faces, and the subspace representation
for the faces.

The following result shows that we can continue to reduce the size of
the problem using two intersecting cliques. All we have to do is find the
corresponding subspace representations and calculate the intersection of these
subspaces.

Theorem 4.6 ([84, Thm 2.7]) Let D ∈ En with embedding dimension r and,
define the sets of positive integers

α1 := 1:(k̄1 + k̄2), α2 := (k̄1 + 1):(k̄1 + k̄2 + k̄3) ⊆ 1:n,
k1 := |α1| = k̄1 + k̄2, k2 := |α2| = k̄2 + k̄3,

k := k̄1 + k̄2 + k̄3.

For i = 1, 2, let D̄i := D[αi] ∈ Eki with embedding dimension ti, and Bi :=
K†(D̄i) = ŪiSiŪ

T
i , where Ūi ∈ Mki×ti , ŪT

i Ūi = Iti , Si ∈ Sti
++, and Ui :=[

Ūi
1√
ki

e
]
∈Mki×(ti+1). Let t and Ū ∈Mk×(t+1) satisfy

R(Ū) = R
([

U1 0
0 Ik̄3

])
∩R

([
Ik̄1

0
0 U2

])
, with ŪT Ū = It+1.

Let U :=
[
Ū 0
0 In−k

]
∈Mn×(n−k+t+1) and

[
V UT e

‖UT e‖

]
∈Mn−k+t+1 be orthog-

onal. Then

2⋂
i=1

faceK†
(
En(αi, D̄i)

)
=
(
USn−k+t+1

+ UT
)
∩ SC = (UV )Sn−k+t

+ (UV )T . ut

Moreover, the intersections of subspaces can be found efficiently and accu-
rately.

Lemma 4.7 ([84, Lemma 2.9]) Let
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U1 :=
[ r+1

s1 U ′
1

k U ′′
1

]
, U2 :=

[ r+1

k U ′′
2

s2 U ′
2

]
, Û1 :=


r+1 s2

s1 U ′
1 0

k U ′′
1 0

s2 0 I

, Û2 :=


s1 r+1

s1 I 0
k 0 U ′′

2

s2 0 U ′
2


be appropriately blocked with U ′′

1 , U ′′
2 ∈ Mk×(r+1) full column rank and

R(U ′′
1 ) = R(U ′′

2 ). Furthermore, let

Ū1 :=


r+1

s1 U ′
1

k U ′′
1

s2 U ′
2(U

′′
2 )†U ′′

1

, Ū2 :=


r+1

s1 U ′
1(U

′′
1 )†U ′′

2

k U ′′
2

s2 U ′
2

.

Then Ū1 and Ū2 are full column rank and satisfy

R(Û1) ∩R(Û2) = R
(
Ū1

)
= R

(
Ū2

)
.

Moreover, if er+1 ∈ Rr+1 is the (r + 1)st standard unit vector, and Uier+1 =
αie, for some αi 6= 0, for i = 1, 2, then Ūier+1 = αie, for i = 1, 2. ut

As mentioned above, a clique α corresponds to both a principal submatrix
D̄[α], in the data D̄; to a face in Sn

+, and to a subspace. In addition, we
can use K to obtain B = K†(D̄[α]) � 0 to represent the face and then use
the factorization B = PPT to find a point representation. Using this point
representation increases the accuracy of the calculations.

4.9 Minimum norm feasibility problem

The (best) least squares feasible solution was considered in [2]. We can replace
K with L in (4). We get

min ‖X‖2F
s.t. L(X)ij = D̄ij , ∀ij ∈ E

X � 0.
(16)

The Lagrangian dual is particularly elegant and can be solved efficiently. In
many cases, these (large, sparse case) problems can essentially be solved ex-
plicitly.

5 Applications

There are many applications of Euclidean distance matrices, including wireless
sensor network localization, molecular conformation in chemistry and bioin-
formatics, and nonlinear dimensionality reduction in statistics and machine
learning. For space consideration, we emphasize sensor network localization.
And, in particular, we look at methods that are based on the EDM problem
and compare these with the Biswas-Ye SDP relaxation.
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5.1 Sensor network localization

The sensor network localization (SNL) problem is a low-dimensional Eu-
clidean distance matrix completion problem in which the position of a subset
of the nodes is specified. Typically, a wireless ad hoc sensor network consists
of n sensors in e.g., a geographical area. Each sensor has wireless communi-
cation capability and the ability for some signal processing and networking.
Applications abound, for example: military; detection and characterization
of chemical, biological, radiological, nuclear, and explosive attacks; monitor-
ing environmental changes in plains, forests, oceans, etc.; monitoring vehicle
traffic; providing security in public facilities; etc...

We let x1, . . . , xn−m ∈ Rr denote the unknown sensor locations; while
a1 = xn−m+1, . . . , am = xn ∈ Rr denotes the known positions of the an-
chors/beacons. Define:

X :=

 xT
1
...

xT
n−m

 ∈ R(n−m)×r; A :=

aT
1
...

aT
m

 ∈ Rm×r; P :=
[
X
A

]
∈ Rn×r.

We partition the n-by-n partial Euclidean distance matrix as

D =:
[ n−m m

n−m D11 D12

m DT
12 D22

]
.

The sensor network localization problem can then be stated as follows.

Given: A ∈ Rm×r; D ∈ Sn a partial Euclidean distance matrix satis-
fying D22 = K(AAT ), with corresponding 0–1 adjacency matrix H;

find X ∈ R(n−m)×r

s.t. H ◦ K
(
PPT

)
= H ◦D

P =
[
X
A

]
∈ Rn×r.

(17)

Before discussing the semidefinite relaxation of the sensor network local-
ization problem, we first discuss the importance of the anchors, and how we
may, in fact, ignore the constraint on P that its bottom block must equal the
anchor positions A.

Anchors and the Procrustes problem

For the uniqueness of the sensor positions, a key assumption that we need
to make is that the affine hull of the anchors A ∈ Rm×r is full-dimensional,
aff {a1, . . . , am} = Rr. This further implies that m ≥ r + 1, and A is full
column rank.
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On the other hand, from the following observations, we see that we can
ignore the constraint P2 = A in problem (17), where P ∈ Rn×r is partitioned
as

P =:
[ r

n−m P1

m P2

]
. (18)

The distance information is D22 in sufficient for completing the partial EDM;
i.e., if P satisfies H ◦ K

(
PPT

)
= H ◦D in problem (17), then

K(P2P
T
2 ) = K(AAT ).

Assuming, without loss of generality, that PT
2 e = 0 and AT e = 0, we have

that P2P
T
2 = AAT . As we now see, this implies that there exists an orthogonal

Q ∈ Rr such that P2Q = A. Since such an orthogonal transformation does not
change the distances between points, we have that PQ is a feasible solution of
the sensor network localization problem (17), with sensor positions X := P1Q,
i.e., we can safely ignore the positions of the anchors until after the missing
distances have been found.

The existence of such an orthogonal transformation follows from the clas-
sical Procrustes problem. Given A,B ∈ Rm×n, solve:

minimize ‖BQ−A‖F

subject to QT Q = I.
(19)

The general solution to this problem was first given in [106] (see also [62, 66,
75]).

Theorem 5.1 ([106]) Let A,B ∈ Rm×n. Then Q := UV T is an optimal
solution of the Procrustes problem (19), where BT A = UΣV T is the singular
value decomposition of BT A. ut

From Theorem 5.1, we have the following useful consequence.

Proposition 5.2 ([83, Prop. 3.2]) Let A,B ∈ Rm×n. Then AAT = BBT

if and only if there exists an orthogonal Q ∈ Rn×n such that BQ = A. ut

Therefore, the method of discarding the constraint P2 = A discussed above
is justified. This suggests a simple approach for solving the sensor network
localization problem. First we solve the equivalent low-dimensional Euclidean
distance matrix completion problem,

find Ȳ ∈ Sn
+ ∩ Sn

C

s.t. H ◦ K
(
Ȳ
)

= H ◦D
rank(Ȳ ) = r.

(20)

Note that without the anchor constraint, we can now assume that our points
are centred at the origin, hence the constraint Ȳ ∈ Sn

C . Factoring Ȳ = PPT ,
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for some P ∈ Rn×r, we then translate P so that PT
2 e = 0. Similarly, we

translate the anchors so that AT e = 0. We then apply an orthogonal trans-
formation to align P2 with the anchors positions in A by solving a Procrustes
problem using the solution technique in Theorem 5.1. Finally, if we translated
to centre the anchors, we simply translate everything back accordingly.

However, as problems with rank constraints are often NP-hard, prob-
lem (20) may be very hard to solve. In fact, we saw in Section 4.4 that the
general problem (20) can be reduced to the NP-complete problem Partition.
Therefore, we now turn to investigating semidefinite relaxations of the sensor
network localization problem.

Based on our discussion in this section, the relaxation that immediately
comes to mind is the semidefinite relaxation of the low-dimensional Euclidean
distance matrix completion problem (9), which is given by relaxing the rank
constraint in problem (20); that is, we get the relaxation

find Ȳ ∈ Sn
+ ∩ Sn

C

s.t. H ◦ K
(
Ȳ
)

= H ◦D.
(21)

However, as we will see in the next section, it is possible to take advan-
tage of the structure available in the constraints corresponding to the anchor-
anchor distances. We will show how this structure allows us to reduce the size
of the semidefinite relaxation.

Semidefinite relaxation of the SNL problem

To get a semidefinite relaxation of the sensor network localization problem,
we start by writing problem (17) as,

find X ∈ R(n−m)×r

s.t. H ◦ K
(
Ȳ
)

= H ◦D

Ȳ =
[
XXT XAT

AXT AAT

]
.

(22)

Next we show that the nonlinear second constraint on Ȳ , the block-matrix
constraint, may be replaced by a semidefinite constraint, a linear constraint,
and a rank constraint on Ȳ .

Proposition 5.3 ([46, 84]) Let A ∈ Rm×r have full column rank, and let
Ȳ ∈ Sn be partitioned as

Ȳ =:
[ n−m m

n−m Ȳ11 Ȳ12

m Ȳ T
12 Ȳ22

]
.

Then the following hold:
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1. If Ȳ22 = AAT and Ȳ � 0, then there exists X ∈ R(n−m)×r such that

Ȳ12 = XAT ,

and X is given uniquely by X = Ȳ12A
†T .

2. There exists X ∈ R(n−m)×r such that Ȳ =
[
XXT XAT

AXT AAT

]
if and only if Ȳ

satisfies 
Ȳ � 0

Ȳ22 = AAT

rank(Ȳ ) = r

 . ut

Now, by Proposition 5.3, we have that problem (17) is equivalent to

find Ȳ ∈ Sn
+

s.t. H ◦ K
(
Ȳ
)

= H ◦D
Ȳ22 = AAT

rank(Ȳ ) = r.

(23)

Relaxing the hard rank constraint, we obtain the semidefinite relaxation of
the sensor network localization problem:

find Ȳ ∈ Sn
+

s.t. H ◦ K
(
Ȳ
)

= H ◦D
Ȳ22 = AAT .

(24)

As in Proposition 4.2, this relaxation is equivalent to the Lagrangian relax-
ation of the sensor network localization problem (23). Moreover, this relax-
ation essentially allows the sensors to move into a higher dimension. To obtain
a solution in Rr, we may either project the positions in the higher dimension
onto Rr, or we can try a best rank-r approximation approach.

Further transformations of the SDP relaxation of the SNL problem

From Proposition 5.3, we have that Ȳ � 0 and Ȳ22 = AAT implies that

Ȳ =
[

Y XAT

AXT AAT

]
for some Y ∈ Sn−m

+ and X = Ȳ12A
†T ∈ R(n−m)×r. Now we make the key ob-

servation that having anchors in a Euclidean distance matrix problem implies
that our feasible points are restricted to a face of the semidefinite cone. This
is because, if Ȳ is feasible for problem (24), then

Ȳ =
[
I 0
0 A

] [
Y X

XT I

] [
I 0
0 A

]T

∈ UASn−m+r
+ UT

A , (25)
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where

UA :=
[ n−m r

n−m I 0
m 0 A

]
∈ Rn×(n−m+r). (26)

The fact that we must have

[ n−m r

n−m Y X
r XT I

]
∈ Sn−m+r

+

follows from Ȳ � 0 and the assumption that A has full column rank (hence UA

has full column rank). Therefore, we obtain the following reduced problem:

find Z ∈ Sn−m+r
+

s.t. H ◦ K
(
UAZUT

A

)
= H ◦D

Z22 = I,
(27)

where Z is partitioned as

Z =:
[ n−m r

n−m Z11 Z12

r ZT
12 Z22

]
. (28)

Since Y −XXT is the Schur complement of the matrix[
Y X

XT I

]
with respect to the positive definite identity block, we have that

Y � XXT ⇔
[

Y X
XT I

]
� 0.

Therefore, we have a choice of a larger linear semidefinite constraint, or a
smaller quadratic semidefinite constraint. See [38] for a theoretical discus-
sion on the barriers associated with these two representations; see [46] for a
numerical comparison.

The Biswas-Ye formulation

We now present the Biswas-Ye formulation [25, 26, 27, 28, 29] of the semidef-
inite relaxation of the sensor network localization problem. First we let
Y := XXT be the Gram matrix of the rows of the matrix X ∈ R(n−m)×r.
Letting eij ∈ Rn−m be the vector with 1 in the ith position, −1 in the jth

position, and zero elsewhere, we have
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‖xi − xj‖2 = xT
i xi + xT

j xj − 2xT
i xj

= eT
ijXXT eij

=
〈
eije

T
ij , Y

〉
,

for all i, j = 1, . . . , n−m. Furthermore, letting ei ∈ Rn−m be the vector with
1 in the ith position, and zero elsewhere. Then

‖xi − aj‖2 = xT
i xi + aT

j aj − 2xT
i aj

=
[
ei

aj

]T [
X
I

] [
X
I

]T [
ei

aj

]
=

〈[
ei

aj

] [
ei

aj

]T

,

[
Y X

XT I

]〉
,

for all i = 1, . . . , n−m, and j = n−m+1, . . . , n, where we are now considering
the anchors aj to be indexed by j ∈ {n−m + 1, . . . , n}. Let G = (N,E) be
the graph corresponding to the partial Euclidean distance matrix D. Let

Ex := {ij ∈ E : 1 ≤ i < j ≤ n−m}

be the set of edges between sensors, and let

Ea := {ij ∈ E : 1 ≤ i ≤ n−m, n−m + 1 ≤ j ≤ n}

be the set of edges between sensors and anchors. The sensor network localiza-
tion problem can then be stated as:

find X ∈ R(n−m)×r

s.t.

〈[
eij

0

] [
eij

0

]T

, Z

〉
= Dij , ∀ij ∈ Ex〈[

ei

aj

] [
ei

aj

]T

, Z

〉
= Dij , ∀ij ∈ Ea

Z =
[

Y X
XT I

]
Y = XXT .

(29)

The Biswas-Ye semidefinite relaxation of the sensor network localization prob-
lem is then formed by relaxing the hard constraint Y = XXT to the convex
constraint Y � XXT . As mentioned above, Y � XXT is equivalent to[

Y X
XT I

]
� 0. (30)

Therefore, the Biswas-Ye relaxation is the linear semidefinite optimization
problem
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find Z ∈ Sn−m+r
+

s.t.

〈[
eij

0

] [
eij

0

]T

, Z

〉
= Dij , ∀ij ∈ Ex〈[

ei

aj

] [
ei

aj

]T

, Z

〉
= Dij , ∀ij ∈ Ea

Z22 = I,

(31)

where Z is partitioned as in equation (28). Clearly, we have that the Biswas-
Ye formulation (31) is equivalent to the Euclidean distance matrix formula-
tion (27). This is, in fact, identical to the relaxation in (25). The advantage of
this point of view is that the approximations of the sensor positions are taken
from the matrix X in (30) directly. However, it is not necessarily the case
that these approximations are better than using the P obtained from a best
rank-r approximation of Y in (25). (See also the section on page 26, below.)
In fact, the empirical evidence in [46] indicate the opposite is true. Thus, this
further emphasizes the fact that the anchors can be ignored.

Unique localizability

The sensor network localization problem (17)/(29) is called uniquely localiz-
able if there is a unique solution X ∈ R(n−m)×r for problem (17)/(29) and if
X̄ ∈ R(n−m)×h is a solution to the problem with anchors Ā :=

[
A 0
]
∈ Rm×h,

then X̄ =
[
X 0

]
. The following theorem from [109] shows that the semidefi-

nite relaxation is tight if and only if the sensor network localization problem
is uniquely localizable.

Theorem 5.4 ([109, Theorem 2]) Let A ∈ Rm×r such that
[
A e
]

has full
column rank. Let D be an n-by-n partial Euclidean distance matrix satisfying
D22 = K(AAT ), with corresponding graph G and 0–1 adjacency matrix H. If
G is connected, the following are equivalent.

1. The sensor network localization problem (17)/ (29) is uniquely localizable.
2. The max-rank solution of the relaxation (27)/ (31) has rank r.
3. The solution matrix Z of the relaxation (27)/ (31) satisfies Y = XXT ,

where

Z =
[

Y X
XT I

]
. ut

Therefore, Theorem 5.4 implies that we can solve uniquely localizable in-
stances of the sensor network localization problem in polynomial time by solv-
ing the semidefinite relaxation (27)/(31). However, it is important to point
out an instance of the sensor network localization problem (17)/(29) which
has a unique solution in Rr need not be uniquely localizable. This is espe-
cially important to point out in light of the complexity result in [17] and [16]
in which it is proved that there is no efficient algorithm to solve instances of
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the sensor network localization problem having a unique solution in Rr, un-
less RP = NP . This means we have two types of sensor network localization
problem instances that have a unique solution in Rr: (i) uniquely localizable,
having no non-congruent solution in a higher dimension; (ii) not uniquely lo-
calizable, having a non-congruent solution in a higher dimension. Type (i)
instances can be solved in polynomial time. Type (ii) cannot be solved in
polynomial time, unless RP = NP.

Obtaining sensor positions from the semidefinite relaxation

Often it can be difficult to obtain a low rank solution from the semidefinite re-
laxation of a combinatorial optimization problem. An example of a successful
semidefinite rounding technique is the impressive result in [60] for the Max-
Cut problem; however, this is not always possible. For the sensor network
localization problem we must obtain sensor positions from a solution of the
semidefinite relaxation.

In the case of the Biswas-Ye formulation (31), or equivalently the Euclidean
distance matrix formulation (27), the sensor positions X ∈ R(n−m)×r are
obtained from a solution Z ∈ Sn−m+r

+ by letting X := Z12, where Z is
partitioned as in equation (28). By Proposition 5.3, under the constraints
that Ȳ � 0 and Ȳ22 = AAT , we may also compute the sensor positions as
X := Ȳ12A

†T . Clearly, these are equivalent methods for computing the sensor
positions.

Just after discussing the Procrustes problem (19), another method for
computing the sensor positions was discussed for the uniquely localizable case
when rank(Ȳ ) = r. Now suppose that rank(Ȳ ) > r. In this case we find a best
rank-r approximation of Ȳ . For this, we turn to the classical result of Eckart
and Young [51].

Theorem 5.5 ([30, Theorem 1.2.3]) Let A ∈ Rm×n and k := rank(A).
Let

A = UΣV T =
k∑

i=1

σiuiv
T
i

be the singular value decomposition of A. Then the unique optimal solution of

min {‖A−X‖F : rank(X) = r}

is given by

X :=
r∑

i=1

σiuiv
T
i ,

with ‖A−X‖2F =
∑k

i=r+1 σ2
i . ut

Note that Ȳ � 0, so the eigenvalue decomposition Ȳ = UDUT is also the
singular value decomposition of Ȳ , and is less expensive to compute.
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Comparing two methods

Let A ∈ Rm×r and D be an n-by-n partial Euclidean distance matrix with

D =
[
D11 D12

DT
12 K(AAT )

]
.

Let H be the 0–1 adjacency matrix corresponding to D. Suppose D has a
completion D̄ ∈ En having embdim(D̄) = r. Suppose Z is a feasible solution
of the semidefinite relaxation (31) (or equivalently, the Euclidean distance
matrix formulation (27)).

Using a path-following interior-point method to find Z can result in a
solution with high rank. Indeed, [61] show that for semidefinite optimization
problems having strict complementarity, the central path converges to the
analytic centre of the optimal solution set (that is, the optimal solution with
maximum determinant).

Let Ȳ := UAZUT
A , where UA is as defined in equation (26). Suppose that

k := rank(Ȳ ) > r. Then K(Ȳ ) is a Euclidean distance matrix completion of
the partial Euclidean distance matrix D, with embdimK(Ȳ ) = k. Moreover,
Ȳ ∈ Sn

+ and Ȳ22 = AAT , so by Proposition 5.3, we have that

Ȳ =
[

Y XAT

AXT AAT

]
,

where Y := Z11 = Ȳ11 and X := Z12 = Ȳ12A
†T . Let Ȳr ∈ Sn

+ be the nearest
rank-r matrix to Ȳ ∈ Sn

+, in the sense of Theorem 5.5. Let P̄ ∈ Rn×k and
P̄r ∈ Rn×r such that

Ȳ = P̄ P̄T and Ȳr = P̄rP̄
T
r .

Let P̄ and P̄r be partitioned as

P̄ =:
[ r k−r

n−m P̄11 P̄12

m P̄T
12 P̄22

]
and P̄r =:

[ r

n−m P̄ ′
r

m P̄ ′′
r

]
.

For the first method, we simply use X for the sensor positions. Since[
P̄T

12 P̄22

] [
P̄T

12 P̄22

]T = Ȳ22 = AAT =
[
A 0
] [

A 0
]T

, there exists an orthogo-
nal matrix Q̄ ∈ Rk×k such that

[
P̄T

12 P̄22

]
Q̄ =

[
A 0
]
. Let P̂ := P̄ Q̄ and define

the partition

P̂ =:
[ r k−r

n−m P̂11 P̂12

m A 0

]
.

Therefore, we see that the semidefinite relaxation of the sensor network local-
ization problem has allowed the sensors to move into the higher dimension of
Rk instead of fixing the sensors to the space Rr. Now we have that
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Ȳ = P̂ P̂T =
[
P̂11P̂

T
11 + P̂12P̂

T
12 P̂11A

T

AP̂T
11 AAT

]
,

implying that P̂11 = X, and Y = XXT + P̂12P̂
T
12, so Y −XXT = P̂12P̂

T
12 � 0.

Therefore, we have that∥∥∥∥Ȳ −
[
X
A

] [
X
A

]T∥∥∥∥
F

=
∥∥P̂12P̂

T
12

∥∥
F

=
∥∥Y −XXT

∥∥
F

.

For the second method, we use X̄ := P̄ ′′
r Qr for the sensor positions, where

Qr ∈ Rr×r is an orthogonal matrix that minimizes
∥∥P̄ ′′

r Qr −A
∥∥

F
. Further-

more, we let Ā := P̄ ′′
r Qr. Therefore, we have the following relationship between

the two different approaches for computing sensor positions:∥∥∥∥Ȳ −
[
X̄
Ā

] [
X̄
Ā

]T∥∥∥∥
F

= ‖Ȳ − P̄rP̄
T
r ‖F ≤

∥∥∥∥Ȳ −
[
X
A

] [
X
A

]T∥∥∥∥
F

.

Moreover, computational experiments given at the end of this section show
that we typically have∥∥∥∥Ȳ −

[
X̄
A

] [
X̄
A

]T∥∥∥∥
F

≈
∥∥∥∥Ȳ −

[
X̄
Ā

] [
X̄
Ā

]T∥∥∥∥
F

.

Note that we have no guarantee that X from the first method, or X̄
from the second method, satisfy the distance constraints. Moreover, we have
the following bounds on the approximation of the Euclidean distance matrix
K
(
Ȳ
)
: ∥∥∥∥∥K (Ȳ )−K

([
X
A

] [
X
A

]T
)∥∥∥∥∥

F

≤ ‖K‖F

∥∥∥∥∥Ȳ −
[
X
A

] [
X
A

]T
∥∥∥∥∥

F

= 2
√

n
∥∥Y −XXT

∥∥
F

; (32)∥∥∥∥∥K (Ȳ )−K
([

X̄
Ā

] [
X̄
Ā

]T
)∥∥∥∥∥

F

≤ ‖K‖F

∥∥∥∥∥Ȳ −
[
X̄
Ā

] [
X̄
Ā

]T
∥∥∥∥∥

F

= 2
√

n

(
k∑

i=r+1

λ2
i (Ȳ )

)1/2

. (33)

Clearly, the upper bound (33) for the second method is lower than upper
bound (32) for the first method, but this need not imply that the second
method gives a better r-dimensional approximation of the k-dimensional Eu-
clidean distance matrix K(Ȳ ). Indeed, numerical tests were run in [46] to com-
pare these two methods and often found better results using X̄ than when
using X, but this was not always the case.
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In Figure 1 we have given the results of a simple numerical test conducted
to investigate the differences between Method 1 (P = [X;A]), Method 2
(P = [X̄; Ā]), and Method 3 (P = [X̄;A]). In all three cases, we compared
the error in the approximation of the Gram matrix Ȳ (‖Ȳ −PPT ‖F ), and the
error in the approximation of the Euclidean distance matrix K(Ȳ ) (‖K(Ȳ )−
K(PPT )‖F ). In this test, we use 90 sensors and 10 anchors in dimension r = 2.
We had 10 of the sensors inaccurately placed in dimension k = 20, to various
degrees. We see that Method 2 and Method 3 are almost identical and may
improve the approximation error when some sensors are inaccurately placed.
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Fig. 1. Method 1 (P = [X; A]), Method 2 (P = [X̄; Ā]), and Method 3 (P = [X̄; A]).
The Gram matrix error is ‖Ȳ −PP T ‖F and the distance error is ‖K(Ȳ )−K(PP T )‖F ,
both normalized so that the maximum error is 100. We use n = 100 and m = 10
(90 sensors and 10 anchors) in dimension r = 2; ten of the sensors are inaccurately
placed in dimension k = 20, to various degrees based on Y −XXT = σP̂12P̂

T
12 for a

randomly generated matrix P̂12 ∈ R90×18 with exactly 10 nonzero rows.
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B[α], principal submatrix, 4
E, edge set, 8
G = (N, E, ω), graph, 8
H, adjacency matrix, 8
N , node set, 8
T ∗, adjoint of T , 4
De(Y ), De(y), 5
Diag, 4
En, Euclidean distance matrices, 4
K, 5
K†, 5
KV , 6, 14
◦, Hadamard product, 8
diag, 4
embdim, embedding dimension, 4
offDiag, 5
ω ∈ RE

+, edge weights, 8
Sn, space of n × n real symmetric

matrices, 3
Sn

C , centered subspace, 6
Sn

H , hollow subspace, 6
e, vector of all ones, 5
r-realization, 10

adjacency matrix, 8
adjoint of T , T ∗, 4
anchors, 19

Biswas-Ye SNL semidefinite relaxation,
23–25

chord, 9
chordal, 9
clique, 10

congruent, 10
conjugate face, F c, 4

dual cone, K∗, 4

EDMC problem, see Euclidean distance
matrix completion problem

embedding dimension, 4
Euclidean

distance matrix, 3
completion problem, 8
partial, 8

exposed face, 4

face, F E K, 4
facially exposed cone, 4
framework, 10

equivalent, 10

globally rigid, 11
Gram matrix, 5
graph

weighted undirected, 8
graph of the EDM, G = (N, E, ω), 10
graph realization, 10

Löwner partial order, 4

maximum cardinality search, 10
minimal vertex separator, 10

nuclear norm, 15

principal submatrix of D̄, 10
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principal submatrix, B[α], 4
Procrustes problem, 20
proper face, 4

rank minimization, 15

Schur complement, 23
sensor network localization, 19

sensors, 19

SNL, see sensor network localization

uniquely

localizable, 25

unit disk graphs, 12

universally rigid, 11


