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Abstract

We study the computation and properties of a new measure for the condition number of
a positive definite matrix. This measure, the ratio of the arithmetic and geometric means of
the eigenvalues, depends uniformly on all the eigenvalues of the matrix. Moreover, it can be
evaluated easily and accurately. And, we see that: (i) it correlates better with the number of
iterations in iterative methods compared to the standard condition number which depends only
on the largest and smallest eigenvalues; (ii) it provides a criteria for obtaining optimal efficient
preconditioners; and (iii) it presents a more average relative error measure compared to the
worst case behaviour of the standard condition number.

1 Introduction

We study the properties of the following condition number measure, which can be computed accu-
rately and efficiently and which depends uniformly on all the eigenvalues of the matrix A:

ω(A) :=
trace(A)/n

det(A)
1

n

=

n
∑

i=1

λi(A)/n

(

n
∏

i=1

λi(A)

)
1

n

, A ∈ Sn
++, (1.1)

where Sn
++ is the cone of real symmetric positive definite matrices. The standard condition number

κ(A) depends only on the largest and smallest eigenvalues of A. It is generally used as an indicator
for whether the problem of solving the system of linear equations Ax = b is well-conditioned (low
condition number) or ill-conditioned (high condition number). In general, iterative algorithms used
to solve the system Ax = b require a large number of iterations to achieve a solution with high
accuracy if the problem is ill-conditioned. Preconditioners are introduced to obtain a better condi-
tioned problem. Currently, reducing κ(A) condition number is the main aim for preconditioners.
The condition number κ(A) is also a measure of how much a solution x will change with respect
to changes in the right-hand side b.

Our goal in this paper is to establish the basic properties of the ω-condition number and to
study whether it is a better indicator of whether the problem Ax = b is well- or ill-conditioned.
In addition, we present a procedure for efficiently calculating ω(A) and avoiding the difficulty of
evaluating the determinant of large matrices.
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1.1 Outline of Results

We continue in Section 2 with the basic properties of the condition number measure ω. We include
Section 2.1 with Algorithm 2.1 that calculates ω efficiently and accurately. Section 3 presents
results that relate the number of CG iterations for solving Ax = b with the magnitudes of the
two condition number measures. The better (inverse) correlation with ω is described in Items 1 to
4, page 7. Since the number of iterations depends on the number of distinct eigenvalues of A, we
illustrate the seeming paradox that with the value of κ fixed, then both (relatively) large and small
values of ω result in a low number of iterations. Section 4 compares how preconditioners arise from
the two measures and their effectiveness. The expense of finding an optimal ω preconditioner is
low compared to the optimal κ preconditioner. Section 5 discusses the role of the two condition
numbers in error analysis. We provide the analytic formulation for the expected relative error
under the assumption of independent normal distributions. We illustrate the known result that κ
is a bound for the worst case of roundoff error, and show that ω provides a better estimate of the
expected roundoff error. Concluding remarks are given in Section 6.

2 Basic Properties

The standard condition number of a nonsingular matrix A is defined as

κ(A) = ||A||
∣

∣

∣

∣A−1
∣

∣

∣

∣ ,

where ||.|| is a matrix norm. We let Sn denote the space of real n×n symmetric matrices equipped
with the trace inner product; Sn

+ denote the cone of positive semidefinite matrices; and Sn
++ is the

cone of positive definite matrices. If ||.|| is the ℓ2-norm, we then have: κ(A) =
σmax(A)

σmin(A)
, the ratio

of largest and smallest singular values; and, if A ∈ Sn
++, then κ(A) =

λmax(A)

λmin(A)
.

The ω-condition number has been studied in the context of scaling for quasi-Newton methods
in [1]. Some basic properties of ω(A) with respect to κ(A) are shown in the following.

Proposition 1 ([1]). Let A ≻ 0 be given. The measure ω(A) satisfies

1. 1 ≤ ω(A) ≤ κ(A) <
(κ(A) + 1)2

κ(A)
≤ 4ωn(A),

with equality in the first and second inequality if and only if A is a multiple of the identity
and equality in the last inequality if and only if

λ2 = · · · = λn−1 =
λ1 + λn

2
;

2. ω(αA) = ω(A), for all α > 0;

3. if n = 2, ω(A) is isotonic with κ(A).

For a full rank matrix A ∈ Rm×n we let σ denote the vector of nonzero singular values. Then
we can also define additional measures for general matrices.

ω2(A) :=
A(σ)

G(σ)
≥ ωc(A) :=

√

ω(ATA) =

√

trace(ATA)/n

det(ATA)
1

n

=

√

A(σ2)

G(σ2)
,
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where A,G, denote the arithmetic and geometric means respectively. These two condition numbers
are for least squares solutions of overdetermined systems Ax = b,m > n.

2.1 Numerical evaluation of ω

One issue with κ(A) is how to estimate it efficiently when the size of matrix A is large since
eigendecompositions can be expensive. A survey of estimates and, in particular, estimates using
the ℓ1-norm, are given in [4, 5]. Extensions to sparse matrices and block-oriented generalizations
are given in [3, 6]. Results from these papers form the basis of the condest command in MATLAB;
this illustrates the difficulty in accurately estimating κ(A).

On the other hand, the measure ω(A) can be calculated using the trace and determinant
function which do not require eigenvalue decompositions. However, for large n, the determinant is
also numerically difficult to compute as it could easily result in an overflow +∞ or 0 due to the
limits of finite precision arithmetic. In order to overcome this problem, we use the following simple
homogeneity property for the determinant: det(αA) = αn det(A),∀A ∈ Rn×n. Thus we have:

det(A)
1

n =
det(αA)

1

n

α
, ∀α > 0.

Our main task is then to appropriately select α > 0 such that det(αA) is well-defined within the

machine precision. Using the fact that det(A) = |
n
∏

i=1

uii|, where uii are the diagonal elements of

U in the LU decomposition of A, we can simplify the calculation of det(αA) by using the vector
diag(U). Since log det(αA) is a nondecreasing function in α > 0, we can use a simple binary
search (not necessarily with high accuracy) to find α such that log det(αA) ∈ (−∞,+∞), see
Algorithm 2.1, page 5. This technique is used in our numerical tests throughout this paper. A
MATLAB file for this evaluation is available with
URL: orion.math.uwaterloo.ca/˜hwolkowi/henry/reports/ABSTRACTS.html#unifcondnumb.

3 Iterations for Krylov Subspace Methods and ω

When the matrix A is large and sparse, then efficient methods to solve Ax = b are based on Krylov
subspaces. These methods perform repeated matrix-vector multiplications involving A, e.g., Ipsen
and Meyer [8]. The idea behind Krylov subspace methods is that after k iterations, the solution
xk lies in the Krylov space generated by a vector c,

Kk(A, c) := span(c,Ac, . . . ,Ak−1c).

If A ∈ Sn
++, then the solution x belongs to the Krylov space Kd(A, b), where d is the number

of distinct eigenvalues of A. This implies that, theoretically, a Krylov subspace method finds the
solution x after d iterations. We would like to investigate how the ω-condition number relates to
the number of iterations of Krylov subspace methods. We first show that a small number of distinct
eigenvalues implies a small ω-condition number.

The ω-condition number can be defined as a function of the eigenvalue vector λ of the positive
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Algorithm 2.1: Evaluation of ωc(X) =
√

(ω(A)) =
√

(ω(XTX)) with given tolerance, tol.

1 Input(A = XT X, X full column rank), tolerance tol ;
2 Set: tA = trace(A)/n, [L,U ] = lu(A), dA = prod(diag(U )) ;
3 if dA and log(dA) are finite then

4 Set: ω =

√

tA

(dA)
1

n

, RETURN

5 end if

6 if dA is infinite then

7 Set: aL = 0, aH = 1 ;
8 else

9 Set: aL = 1, aH = 2, dA = prod(aH ∗ diag(U)), itercount = 1 ;
10 while dA is finite & log(dA) & is infinite & itercount < maxiter do

11 aL = aH, aH = 2 ∗ aH, dA = prod(aH ∗ diag(U)), index = index+ 1 ;
12 end while

13 end if

14 while (dA is infinite | log(dA) is infinite) & (aH − aL)/2 > tol do
15 Set: a = (aH + aL)/2, dA = prod(a ∗ diag(U)) ;
16 if dA is finite & log(dA) is finite then

17 Set: ω =

√

a ∗ tA

(dA)
1

n

, RETURN

18 end if

19 if dA is infinite then

20 Set: aH = a ;
21 else

22 Set: aL = a ;
23 end if

24 end while

25 if (aH − aL)/2 > tol then

26 Set: ω =

√

a ∗ tA

(dA)
1

n

;

27 else

28 Set: ω =
√

tA ∗ (aH + aL)/2 ;
29 end if

30 Output(ωc(X) =
√

(ω(A)) = ω) ;
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definite matrix A:

ω(A) = ω(λ) :=

(

n
∑

i=1

λi/n

)

(

n
∏

i=1

λi

)
1

n

.

By abuse of notation, we allow ω to act on Rn
++; and, for a subset S ⊆ {1, . . . , n}, we let λS :=

(λi)i∈S ∈ R|S|.

Proposition 2. Let the set ∅ 6= S ( {1, . . . , n} and the positive vector λ̄S > 0 be given. Then the
optimal solution of

min ω(λ)
s.t. λi = λ̄i, ∀ i ∈ S,

λ ∈ Rn
++,

(3.1)

is given by

λi =







λ̄i, if i ∈ S,
1

n− |S|

∑

i∈S

λ̄i, otherwise.

Proof. We can change the problem to the unconstrained minimization

min log

(

∑

i∈S

λ̄i +
∑

i/∈S

λi

)

−
1

n
log

(

∏

i∈S

λ̄i

)(

∏

i/∈S

λi

)

.

Let K∗ =
∑

i∈S

λ̄i +
∑

i/∈S

λ∗
i at an optimal λ∗. Then stationarity implies that

1

K∗
−

1

nλ∗
i

= 0, ∀ i /∈ S.

This means that (n− |S)|λi =
∑

i∈S

λ̄i, ∀ i /∈ S. �

Proposition 2 shows that the ω-condition number is minimized when all free eigenvalues are
equal, which means the number of distinct eigenvalues is reduced significantly. We emphasize the
comparison with the standard condition number κ(A).

Corollary 1. Let S = {1, n} in Proposition 2. Then the optimal solution of (3.1) is given by

λ∗
i =

1

n− 2

(

λ̄1 + λ̄n

)

.

Corollary 2. Let {1, n} ⊆ S in Proposition 2. And, consider the problem (3.1) with min replaced
by max and with the added constraints that the optimal vector λ must maintain the ordering λ1 ≥
λ2 ≥ . . . ≥ λn. Then the number of distinct numbers in the optimal solution λ∗ is given by |S|.

Proof. The result follows immediately from the pseudoconvexity 1 of the function ω, i.e., the
max must occur at an extreme point of the feasible set. �

1See Proposition 3 Item 1, below, for the statement on the pseudoconvexity of ω.
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Corollary 1 indicates that the number of distinct eigenvalues reduces when the ω-condition
number is minimized. It shows that the ω-condition number is likely positively correlated with the
number of iterations of Krylov subspace methods for solving the system of linear equation Ax = b

when the standard condition number is not kept constant. In fact, we expect a better correlation
for ω compared to κ since ω depends on all the eigenvalues. Surprisingly, Corollary 2 indicates
that when κ(A) remains the same, then we get a reduction in the number of iterations when ω is
maximized.

We now construct numerical results to test the relationship between the number of iterations
and the two condition numbers.

Random Procedure 1. Unless specified otherwise, in the following tests for Figures 1 to 4: we
generate random matrices with a particular number of distinct eigenvalues; we then solve the system
of linear equations with random right-hand sides using the preconditioned conjugate gradient method,
pcg, in MATLAB. The size of the matrices is n = 5000 with the number of distinct eigenvalues
chosen randomly in the interval [1, 500]. The tolerance for pcg is set to 10−10. We used 5000
random instances.

1. The scatter plot in Figure 1 shows, as expected, that the number of distinct eigenvalues (on
the horizontal axis) is positively correlated with the number of Krylov iterations to solve the
linear system (on the vertical axis).

Figure 1: (# distinct λi) vs (# Krylov iterations) is pos. correlated; 5000 random instances.

2. The scatter plot in Figure 2 indicates that when the number of iterations is large enough,
there is a positive correlation between the number of iterations and the ω-condition number
of matrix A. But this is only for small values of ω. In fact, the relatively large values of
ω correspond to very low iteration counts. This confirms the results about maximizing in
Corollary 2.
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3. The maximization of ω observation in Corollary 2 is illustrated further in the scatter plot in
Figure 3, where we fix λ1, λn. We see the low number of Krylov iterations (on the vertical
axis) when ω (on the horizontal axis) is small. But, in addition, as ω gets large, the number
of Krylov iterations decrease dramatically.

Figure 2: (ω) vs (# Krylov iterations) is pos. correlated for large iterations

4. Figure 4 shows the relationship between the number of iterations and the standard condition
number. In sharp contrast to the results in Figures 2 and 3, We can see that there is no clear
correlation between the number of Krylov iterations and the standard condition number.

4 ω-Condition Number and Preconditioning

If the matrix A is ill-conditioned, one way to achieve solutions with high accuracy is with precon-
ditioners. Consider the overdetermined system Ax = b with a full rank matrix A ∈ Rm×n, where
m > n. The least squares solution is the solution of the system ATAx = ATx. A nonsingular pre-
conditioner D ∈ Rn×n is used to create a new overdetermined system ADy = b, where y = D−1x,
such that the least squares solution y will be solved by a better-conditioned system of linear equa-
tions, DTATADy = DTATb. We could try to find D that minimizes κ(DTATAD) since the
standard condition number is an indicator of whether the problem is well- or ill-conditioned. Lu and
Pong [9] shows that the diagonal preconditioner D that minimizes κ(DTATAD) can be compute

8



Figure 3: (ω) vs (# Krylov iterations) is neg. correlated for large ω; λ1, λn fixed

Figure 4: (κ) vs (# Krylov iterations) not correlated
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by solving a conic optimization problem with semidefinite and second-order cone constraints:

min s

s.t.

(

I A diag(x)

diag(x)AT sI

)

� 0,
(

I diag(y)

diag(y) ATA

)

� 0,




(xi + yi)/2
(yi − xi)/2

1



 ∈ Q3, i = 1, . . . , n,

(di − η)t ≤ xi ≤ (di + η)t, i = 1, . . . , n,
t ≥ 0, x,y ≥ 0,

(4.1)

where K � 0 denotes positive semidefiniteness, Qn is the n-dimensional second-order cone, di =
1

||A:,i||
for all i = 1, . . . , n, and η > 0 is large enough.

With respect to the ω-condition number, Dennis and Wolkowicz [1] show that the simple scaling
diagonal preconditioner (see [11]) is the optimal preconditioner. Doan et al. [2] extend the result
for block diagonal preconditioners. The details are shown in the following proposition.

Proposition 3. The following statements are true.

1. The measure ω is pseudoconvex 2 on the set of s.p.d. matrices, and thus any stationary point
is a global minimizer of ω.

2. Let A be a full rank m× n matrix, n ≤ m. Then the optimal column scaling that minimizes
the measure ω, i.e.

min ω((AD)T (AD)),

over D positive, diagonal, is given by

Dii =
1

‖A:,i‖
, i = 1, ..., n,

where A:,i is the i-th column of A.

3. Let A be a full rank m×n matrix, n ≤ m with block structure A =
[

A1 A2 . . . Ak

]

,Ai ∈
Rm×ni . Then an optimal corresponding block diagonal scaling

D =









D1 0 0 . . . 0
0 D2 0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . Dk









, Di ∈ Rni×ni ,

that minimizes the measure ω, i.e.

min ω((AD)T (AD)),

2Note that a function is pseudoconvex if

(y − x)T∇f(x) ≥ 0 =⇒ f(y) ≥ f(x),

and for pseudoconvex functions, all stationary solutions are global minimizers (see for example, [10]).
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over D block diagonal, is given by the factorization

DiD
T
i = {AT

i Ai}
−1, i = 1, ..., k.

Proof. Items 1 to 2 are proved in [1] and Item 3 is proved in [2]. For clarity, we present the proof
again here for the general block diagonal preconditioners (which include the diagonal case).

Let the blocked A be given. Then the arithmetic-geometric mean inequality yields

ω((AD)T (AD)) =
trace(DTATAD)/n

det(DTATAD)
1

n

=
trace(ATADDT /n

det(DDT )
1

n det(ATA)
1

n

.

(4.2)

Let D̄ = DDT , Āi = AT
i Ai. We have D̄ is also a block diagonal matrix with D̄i = DiD

T
i for

all i = 1, . . . , k, and trace(ATADDT ) = trace

k
∑

i=1

ĀiD̄i. Since the minimum of the function ω in

(4.2) is scale free, we can ignore the constants 1/n,det(ATA)
1

n , take logs, and equivalently solve

max

{

k
∑

i=1

log det D̄i :

k
∑

i=1

Āi · D̄i = 1

}

.

Using a Lagrange multiplier λ and Cramer’s rule applied to the gradient of the objective function,
we get an implicit expression for the optimum in

D̄i
−1

− λĀi = 0, i = 1, . . . k.

�

Note that the optimality condition only requires D̄i = Ā
−1

i for i = 1, . . . , k, which means we
can use the QR decomposition to find the optimal Di instead of the matrix square root. In other
words, if Ai has the QR decomposition Ai = QiRi, we can set Di = R−1

i for all i = 1, . . . , k to
minimize the measure ω((AD)T (AD)). We let Dω,Dκ denote the optimal column scaling for the
measures ω, κ, respectively.

We now generate random matrices A of size 1000 by 500 with random singular values. Figures
5 and 6 show that Dω and Dκ indeed reduces the ω-condition number and the standard condition
number, respectively. We continue and generate random sparse matrices with random singular
values. We then consider the overdetermined system Ax = b with no preconditioner, the diagonal
preconditioner Dω, and the diagonal precoditioner Dκ. We solve 1000 random sparse matrix
instances with the least squares solver LSQR in MATLAB to achieve the accuracy of 10−10.
Figure 7 shows that both preconditioners reduce the number of iterations significantly with the
average change of −58.77%. The preconditioner Dκ is slightly better than Dω with about 0.84%
reduction in number of iterations. However, we can see that the preconditioner Dω is much easier
to compute as compared to the preconditioner Dκ, which requires solving a conic optimization
problem of size 2n.

We now test the reduction in number of iterations and compare the computational times. We
again generate random (sparse) matrices of size 1000 by 500 and solve the system with no precondi-
tioner (p = 0), and block diagonal preconditioners with the block size p = 1, 2, 5, 10, 20, 25, 50, 100,

11



Figure 5: κ with two different diagonal preconditioners

Figure 6: ω with two different diagonal preconditioners
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Figure 7: # Krylov iterations with two different diagonal preconditioners for sparse matrices

and 250. The results are shown in Table 4.1 for random sparse matrices, where ni is the number
of iterations, tp is the time to compute the preconditioner, and tt is the total time to find the least
squares solution. We can see that block diagonal preconditioners improve the number of iterations
and also the computation time.

p 0 1 2 5 10 20 25 50 100 250

ni(×104) 5.89 1.31 1.01 0.66 0.53 0.46 0.45 0.38 0.30 0.11

tp - 2.46 1.36 0.70 0.50 0.42 0.42 0.42 0.44 0.26

tt 39.00 14.50 11.15 7.94 6.76 6.28 6.20 5.89 5.60 4.14

Table 4.1: Average # iterations; computational time block preconditioners; sparse matrices

5 ω-Condition Number and Relative Error

We now focus our attention again for A ∈ Sn
++, positive definite, and the system of linear equations

Ax = b. We would like to consider the following ratio of the relative errors

re(A, b,∆b) :=

∣

∣

∣

∣A−1∆b
∣

∣

∣

∣

∣

∣

∣

∣A−1b
∣

∣

∣

∣

(

||∆b||

||b||

)−1

. (5.1)

The condition number κ(A) provides an upper bound of this ratio

κ(A) = max
b,∆b

re(A, b,∆b).

The bound is attained when b = βv1 and ∆b = ∆βvn, where v1 and vn are the eigenvectors
corresponding to the largest and smallest eigenvectors. Clearly, if b and ∆b are arbitrary vectors,
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this bound is unlikely to be attained. We would like to consider the expected value of re(A, b,∆b)
when b and ∆b are random vectors. We assume that b and ∆b are independent normal random
vectors, b,∆b ∼ N(0, I). Let us consider the expectation

r(A) = E [re(A, b,∆b)] .

The following proposition provides the analytic formulation for r(A).

Proposition 4. If b and ∆b are independent normal random vectors, then r(A) can be calculated
as follows:

r(A) =

(

∞
∑

i=0

(−1/2)i
(n/2)i

di(I − βB)

)(

∞
∑

i=0

(1/2)i
(n/2)i

di(I − βB)

)

, (5.2)

where B = (A−1)TA−1, β = λ2
min(A), (a)b =

Γ(a+ b)

Γ(a)
, and dk(A) is the normalized top-order

zonal polynomial,

dk(A) =
∑

ki≥0:
∑

n

i=1
ki=k

(

n
∏

i=1

(

1

2

)

ki
λi(A)ki

ki!

)

, ∀ k ≥ 0.

.

Proof. We have: since b and ∆b are independent,

r(A) = E

[
∣

∣

∣

∣A−1∆b
∣

∣

∣

∣

||∆b||

]

E

[

||b||
∣

∣

∣

∣A−1b
∣

∣

∣

∣

]

. (5.3)

These two expectations has the same form; they are the expectations of ratios of quadratic forms,
(xTAx)p

(xTBx)q
, where p and q are positive real number, A,B ∈ Rn×n. Smith [12] shows the exact

formulation for the expectation with x ∼ N(µ,Q) which involves top-order invariant polynomials.
The formulation can be simplified if µ = 0 and B = I in which top-order invariant polynomials are
replaced by simpler top-order zonal polynomials (see Smith [12] for details). In our particular case,

we have: p = q =
1

2
since for arbitrary A and x, ||Ax|| =

(

xTATAx
)

1

2 . In addition, there is at

least an identity matrix, either in the denominator or numerator. Deriving directly from the general

formulation presented in Smith [12], we obtain the following formulation for E

[

(∆bTB∆b)
1

2

(∆bT∆b)
1

2

]

,

which only involves top-order zonal polynomials:

E

[

(∆bTB∆b)
1

2

(∆bT∆b)
1

2

]

= β− 1

2

∞
∑

i=0

(−1/2)i
(n/2)i

di(I − βB),

where B = (A−1)TA−1 and β = λ2
min(A). Similarly, we have:

E

[

(bTb)
1

2

(bTBb)
1

2

]

= β
1

2

∞
∑

i=0

(1/2)i
(n/2)i

di(I − βB).

14



Thus we obtain the exact formulation of r(A) as shown in (5.2). �

The formulation (5.2) involves infinite sums. Following the approach in Hillier et al. [7], we
now attempt to find an upper bound for r(A) with partial sums. We have: (−1/2)k < 0 for all
k ≥ 1. In addition, C = I − βB � 0; therefore, dk(C) ≥ 0 for all k ≥ 1. Thus for M ≥ 0,

∞
∑

i=0

(−1/2)i
(n/2)i

di(I − βB) ≤
M
∑

i=0

(−1/2)i
(n/2)i

di(C).

We have: n ≥ 1, thus
(1/2)k
(n/2)k

≤
(1/2)M+1

(n/2)M+1

for all k ≥ M + 1. Using the generating function of

dk(C), we have:

[det(I − tC)]−
1

2 =
∞
∑

k=0

dk(C)tk.

Let t = 1, we have:

[det(βB)]−
1

2 =

∞
∑

k=0

dk(C).

Thus for M ≥ 0,

∞
∑

i=0

(1/2)i
(n/2)i

di(I − βB) ≤
M
∑

i=0

(1/2)i
(n/2)i

di(C) +
(1/2)M+1

(n/2)M+1

[

1

β
n

2 [det(B)]
1

2

−
M
∑

i=0

di(C)

]

.

We then have the following upper bound for r(A) for each M ≥ 0:

r(A) ≤

(

M
∑

i=0

(−1/2)i
(n/2)i

di(C)

)(

M
∑

i=0

(1/2)i
(n/2)i

di(C) +
(1/2)M+1

(n/2)M+1

[

1

β
n

2 [det(B)]
1

2

−
M
∑

i=0

di(C)

])

(5.4)

Let M = 1, we have: d0(C) = 1 and d1(C) =
trace(C)

2
. In addition, eigenvalues of C are

γi = 1−
λ2
n

λ2
i

. Thus

∞
∑

i=0

(−1/2)i
(n/2)i

di(I − βB) ≤ 1−
trace(C)

2n
=

1

2

(

1 +
λ2
n

n

(

n
∑

i=1

1

λ2
i

))

.

We also have:

∞
∑

i=0

(1/2)i
(n/2)i

di(I − βB) ≤
3(n− 1)

2n
−

n− 1

2(n + 2)

(

λ2
n

n

)

(

n
∑

i=1

1

λ2
i

)

+
3

n(n+ 2)

n
∏

i=1

(

λi

λn

)

.

We obtain an upper bound for r(A):

r(A) ≤
1

2

[

1 +
λ2
n

n

(

n
∑

i=1

1

λ2
i

)][

3(n − 1)

2n
−

n− 1

2(n + 2)

(

λ2
n

n

)

(

n
∑

i=1

1

λ2
i

)

+
3

n(n+ 2)

n
∏

i=1

(

λi

λn

)

]

.

Unfortunately, this upper bound in general is not very tight and there are examples in which we need
very large M to obtain a decent approximation of r(A). We now empirically calculate the sample

15



approximation r̄(A) of r(A) with a large number of samples and check the relationship between
r̄(A) and ω-condition number of A as well as the standard condition number. We generate random
matrices of the size 1000 by 1000 and we calculate r̄(A) with N = 10, 000 samples. Figures 8 and
9 show the ratios of the ω-condition number and standard condition numberof A, respectively, to
the sample approximation of r(A). The maximum value of ratios is limited to 10 in both figures
for the purpose of comparison.

Figure 8: Ratio of ω and the relative error r̄(A)

Clearly, the standard condition number is an upper bound of r̄(A); however, the average stan-
dard condition number is 1.03 × 103 while the maximum relative error is just 4.41. On the other
hand, the ω-condition number is not always an upper bound of r̄(A) but it is in more than 90% of
all instances. In addition, the average ω-condition number is 1.49, which is very close to the average
relative error of 1.18. The average ratio of ω-condition number is 1.31 with the standard deviation
of 0.35 while these two measures of κ-condition number are 487.92 and 3.82×103, respectively. We
can conclude that the ω-condition number is a good indicator for the expected relative error r(A)
in this random setting.

6 Conclusion

We have presented computational and theoretical properties to show that the condition number
measure ω(A) is a better indicator than the standard condition number κ for the conditioning
of A when it comes to: (i) evaluation, (ii) predicting the number of iterations in Krylov iterative
methods, (iii) finding optimal preconditioners for iterative methods, and (iv) estimating the expected
roundoff error when solving linear equations.

In addition, we have shown that ω is a simpler function (measure) to use when finding optimal
preconditioners, as it is easy to differentiate. And, motivated by the fact that the number of
iterations in Krylov type methods depends directly on the number of distinct eigenvalues, we
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Figure 9: Ratio of κ and the relative error r̄(A)

showed empirically that if κ is fixed, then both small and large values of ω lead to lower iteration
numbers; this follows since both maximizing and minimizing ω leads to clustering of eigenvalues
when κ is fixed. Therefore, an interesting conjecture is that: maximizing ω subject to keeping κ
constant leads to good preconditioners. However, the problem of maximizing the pseudoconvex
function ω is difficult and so heuristics will have to be used.
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