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Abstract

Current successful methods for solving semidefinite programs, SDP, are based on primal-dual
interior-point approaches. These usually involve a symmetrization step to allow for application
of Newton’s method followed by block elimination to reduce the size of the Newton equation.
Both these steps create ill-conditioning in the Newton equation and singularity of the Jacobian
of the optimality conditions at the optimum.

In order to avoid the ill-conditioning, we derive and test a backwards stable primal-dual
interior-point method for SDP. Relative to current public domain software, we realize both a
distinct improvement in the accuracy of the optimum and a reduction in the number of iterations.
This is true for random problems as well as for problems of special structure. Our algorithm is
based on a Gauss-Newton approach applied to a single bilinear form of the optimality conditions.
The well-conditioned Jacobian allows for a preconditioned (matrix-free) iterative method for
finding the search direction at each iteration.

1 Introduction

We derive and test a backwards stable primal-dual interior-point method for semidefinite pro-
gramming. Relative to current public domain software, we realize both a distinct improvement in
accuracy and a reduction in the required number of iterations. This is for random problems as well
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as for problems of special structure. The algorithm is based on using a Gauss-Newton approach
with a preconditioned iterative method for finding the search direction.

Primal-dual interior-point methods are currently the methods of choice for solving semidefi-
nite programming, SDP, problems. However, current primal-dual interior-point methods are quite
unstable. They cannot provide high accuracy solutions in general; and, they often fail for ill-
conditioned problems. The instability arises from two steps. Since the optimality conditions for
SDP are an overdetermined system of nonlinear equations, a symmetrization step is applied so that
Newton’s method can be used. This symmetrization changes a (possibly) well-posed problem into
an ill-posed one where the Jacobian at optimality is singular. Then, block elimination is used in
order to reduce the size of the resulting Newton system. However, this block elimination does not
use any type of partial pivoting and again singularities are introduced. Therefore, these algorithms
are not backwards stable. (This is discussed in [6, 23]. Further details are also given in Section 1.1,
below.)

We study the Gauss-Newton method for solving SDPs and illustrate that high accuracy solutions
can be obtained dependably for medium sized problems. We follow the approach in [11, 23] and
use a matrix free, inexact Gauss-Newton method to solve the perturbed optimality conditions.

1.1 Motivation and Central Problem

The primal-dual SDP pair we consider is

(PSDP)
p∗ := min C ·X

s.t. A(X) = b,
X � 0,

(1.1)

and

(DSDP)
d∗ := max bT y

s.t. A∗(y) + Z = C,
Z � 0,

(1.2)

where: C,X,Z ∈ Sn, Sn denotes the space of n × n real symmetric matrices equipped with the
trace inner product, C ·D = trace(CD); and A : Sn → R

m is a linear transformation, with A∗ its
adjoint transformation.

Under a suitable constraint qualification assumption such as Slater’s condition or strict feasi-
bility, the primal-dual solution (X,y,Z) with X,Z � 0 is optimal for the primal-dual pair (1.1)
and (1.2) if and only if

F (X ,y,Z) :=





A∗(y) + Z −C

A(X)− b

ZX



 = 0. (1.3)

Primal-dual interior-point methods maintain X,Z ≻ 0, and with the barrier parameter µ ↓ 0, they
find approximate solutions to the following perturbed optimality conditions:

Fµ(X ,y,Z) :=





A∗(y) + Z −C

A(X)− b

ZX − µI



 = 0, µ > 0. (1.4)

Thus, these methods are based on path following. The perturbed system in (1.4) is overdeter-
mined. Under nondegeneracy assumptions, the Jacobian is full rank at optimality, e.g., [1]. Current
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methods use Newton’s method applied to various symmetrizations of (1.4). The two most pop-
ular symmetrizations are the so-called HRVW/KSM/M [8, 10, 17] and NT [19, 20] methods, see
for example, [18]. But, the linearizations (Jacobian) of the symmetrized optimality conditions for
both of these methods is singular at an optimum. This and the block elimination schemes used for
finding the search directions both imply that one is solving an increasingly ill-conditioned linear
system to find a search direction. Thus, it is extremely difficult to obtain high accuracy solutions;
these algorithms are not backwards stable under finite precision arithmetic. Similarly, finding rea-
sonable preconditioners for iterative methods is difficult if not impossible. In addition, the block
eliminations make it difficult to exploit sparsity in the data. In this paper we propose a robust
primal-dual interior/exterior-point method which uses an inexact Gauss-Newton approach with a
matrix-free preconditioned conjugate gradient method. We do not change a well-conditioned system
of optimality conditions to an ill-conditioned system. The method is able to attain high accuracy
solutions as well as exploit sparsity.

1.2 Outline

The Gauss-Newton approach is described in Section 2. The infeasible starting point variation follows
in Section 2.2. We include a proof of asymptotic convergence in Section 2.3, and a description of
the preconditioning techniques in Section 2.4.

We apply our techniques to the Lovász Theta Function Problem in Section 3. Numerics and
concluding remarks are given in Section 4.

2 Gauss-Newton Method

2.1 Matrix-Free Formulation

Let us consider the primal-dual SDP pair in (1.1) and (1.2). We assume the linear transformation
A has full rank m. It can be represented as

A(X) = b⇔ Ai ·X = bi, ∀ i = 1, . . . ,m.

The adjoint transformation A∗ is then defined as A∗(y) =

m
∑

i=1

yiAi, for all y ∈ R
m. Here Ai ∈

Sn,∀i.
The mapping vec : Mn → R

n2

, where Mn is the set of all square n × n matrices, takes
a matrix M ∈ Mn and forms a vector v ∈ R

n2

from its columns. The inverse mapping is
Mat := vec−1, which takes a vector v ∈ R

n2

and forms a matrix M ∈ Mn column by column.
Indeed M = Mat(vec(M)), for all M ∈Mn.

We also define the triangular number, t(n) = n(n + 1)/2 and the mapping svec : Sn → R
t(n)

that takes a symmetric matrix S ∈ Sn and forms a vector v ∈ R
t(n) by concatenating n vectors

sj−1 =
√

2 (sij)1≤i<j
for all j = 2, . . . , n and sn = diag(S). This mapping is an isometry under

the 2-norm. The inverse mapping sMat = svec−1 maps a vector v ∈ R
t(n) into a symmetric matrix

S ∈ Sn. We also have sMat∗ = svec, since

〈sMat(v),S〉 = trace (sMat(v)S) = vT svec(S) = 〈v, svec(S)〉.
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From setting A ∈ R
m×t(n) with rows Ai,: = svec(Ai), for all i = 1, . . . ,m, we have:

A(X) = b⇔ A svec(X) = b.

The nullspace of A, null(A), has dimension t(n) − m. Let us consider an orthonormal basis
{q1, . . . ,qt(n)−m} of null(A) and assume that we could find a primal feasible solution X̂ ≻ 0. Then

A(X) = b⇔ svec(X) = x̂ + Qv,

where x̂ = svec(X̂), v ∈ R
t(n)−m and the columns of Q ∈ R

t(n)×(t(n)−m) are taken from the basis
of null(A).

Let us consider now the dual feasibility condition:

A∗(y) + Z = C ⇔ svec(Z) = c−AT y,

where c = svec(C). The optimality conditions in (1.4) are now equivalent to the following condi-
tions:

Gµ(v,y) := sMat(c−AT y) sMat(x̂ + Qv)− µI = 0 (⇔ vec(Gµ(v,y)) = 0) . (2.1)

This is a single bilinear overdetermined system with t(n) variables and n2 equations and can be
solved by the Gauss-Newton method. For each µ > 0, there exists a unique primal-dual solution
(Xµ,yµ,Zµ) of (1.4), with Xµ ≻ 0,Zµ ≻ 0, that lies on (and thus defines) the central path. The

corresponding svec(Zµ) = c−AT yµ and svec(Xµ) = x̂ + Qvµ, for appropriate vµ, uniquely solves
(2.1).

Assume that we can find a dual feasible solution ŷ such that Ẑ = C − A∗ŷ ≻ 0. Then (0, ŷ)
can be used as the initial solution (v0,y0) for the Gauss-Newton method. For each iteration, the
search direction (∆v,∆y) is calculated by (approximately) finding the least-squares solution of the
Gauss-Newton equation

−Gµ(v,y) = G′
µ(v,y)

(

∆v

∆y

)

, (2.2)

where G′
µ(v,y) : R

t(n)−m×R
m →Mn. We now compute the Jacobian J := G′

µ and its adjoint J∗.

For all v ∈ R
t(n)−m, y ∈ R

m, define X : R
m →Mn and Z : R

t(n)−m →Mn by:

Z := C − sMat(AT y), X := X̂ + sMat(Qv),

Z(v) := Z sMat(Qv), X (y) := − sMat(AT y)X.
(2.3)

We then have J = [Z | X ] and the Gauss-Newton equation can be written as follows:

−Gµ(v,y) = Z(∆v) + X (∆y)

= Z sMat(Q∆v)− sMat(AT ∆y)X

=
[

C − sMat(AT y)
]

sMat(Q∆v)− sMat(AT ∆y)
[

X̂ + sMat(Qv)
]

.

(2.4)

This is again an overdetermined (linear) system with t(n) decision variables (∆v,∆y), and with

n2 equations. In order to find the least squares solution, we need to compute J∗ =

[

Z∗

X ∗

]

and

J∗ ◦ J =

[

Z∗ ◦ Z Z∗ ◦ X
X ∗ ◦ Z X ∗ ◦ X

]

, (2.5)
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since the final system of linear equations we (implicitly) solve is the normal equations

J∗ ◦ J

(

∆v

∆y

)

= −J∗ ◦Gµ(v,y).

Consider M ∈Mn, we have:

〈M ,X (y)〉 = − trace(MT sMat(AT y)X)

= − trace(sMat(AT y)(XMT ))

= − trace

(

sMat(AT y)
1

2

(

XMT + MX
)

)

= −1

2
yT A svec(XMT + MX)

= 〈y,−1

2
A svec(XMT + MX)〉,

since sMat(AT y)X ∈Mn, sMat(AT y),X ∈ Sn, and in addition XMT + MX ∈ Sn. Thus

X ∗(M ) = −1

2
A svec(XMT + MX). (2.6)

Similarly, we have:

〈M ,Z(v)〉 = trace(MT Z sMat(Qv))

= trace(sMat(Qv)(MT Z))

= trace

(

sMat(Qv)
1

2
(MT Z + ZM)

)

=
1

2
vT QT svec(MT Z + ZM)

= 〈v,
1

2
QT svec(MT Z + ZM)〉,

since MT Z ∈Mn, sMat(Qv),Z ∈ Sn, and in addition MT Z + ZM ∈ Sn. Thus

Z∗(M ) =
1

2
QT svec(MT Z + ZM). (2.7)

Finally, the main operator J∗J that is implicitly used for solving the Gauss-Newton equation
(2.2) can be computed using the composition of Z∗ and X ∗ (and Z and X ). We let Qj := sMat(Q(:
, j)) denote the symmetric matrix corresponding to the j-th column of Q, and for S ∈ Sn, let

|S| :=
(

S2
)

1

2 . We get the weighted Gram matrices

Z∗ ◦Z(v) =
1

2
QT svec

(

sMat(Qv)Z2 + Z2 sMat(Qv)
)

=
(

〈|Z|Qi, |Z |Qj〉
)

v

= (QT WZQ)v

X ∗ ◦X (y) =
1

2
A svec

(

sMat(AT y)X2 + X2 sMat(AT y)
)

= (〈|X|Ai, |X |Aj〉) y

= (AWXAT )y

Z∗ ◦X (y) =
1

2
QT svec

(

Z sMat(AT y)X + X sMat(AT y)Z
)

X ∗ ◦Z(v) =
1

2
A svec (X sMat(Qv)Z + Z sMat(Qv)X) ,

(2.8)
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where WZ ,WX are defined implicitly. Using a congruence with U =

[

QT svec 0
0 A svec

]

, we get the

form

J∗ ◦ J =
1

2

[

QT svec 0
0 A svec

] [

(·)Z2 + Z2(·) Z(·)X + X(·)Z
X(·)Z + Z(·)X (·)X2 + X2(·)

] [

QT svec 0
0 A svec

]T

. (2.9)

2.2 Algorithm Initialization

The approach described in the previous sections assumes that we have a feasible solution (X̂, Ẑ).
However, finding a feasible solution (X̂, Ẑ) to start the algorithm is not an easy task; and, in
general, it is as hard as solving the problem completely. In this section, we propose an algorithm
with infeasible initial solutions. Given an initial (infeasible) solution (X0,Z0) with X0,Z0 ≻ 0,
and corresponding x0 = svec(X0) and z0 = svec(Z0), we would like to find an optimal (and clearly
feasible) solution (X∗,Z∗). The feasibility of a solution (X,Z) or equivalently, (x,z), is equivalent

to the existence of (v,y) such that x = x̂ + Qv and z = c −AT y, where x̂ = AT
(

AAT
)−1

b,
the least-squares solution of Ax = b. Since we start the algorithm with an infeasible solution, the
perturbed optimality conditions need to be written with (v,y,x,z) as decision variables:

Fµ(v,y,x,z) :=





z − c + AT y

x− x̂−Qv

sMat(z) sMat(x)− µI



 =:





rd

rx

Rc



 = 0. (2.10)

To start the Gauss-Newton algorithm, the initial solution for v and y could simply be v0 = 0 and
y0 = 0. In each iteration, the search direction (∆v,∆y,∆x,∆z) is calculated by (approximately)
finding the least-squares solution of the Gauss-Newton equation

F ′
µ(v,y,x,z)









∆v

∆y

∆x

∆z









= −Fµ(v,y,x,z) = −





rd

rx

Rc



 .

The above linearization yields





∆z + AT ∆y

∆x−Q∆v

Z sMat(∆x) + sMat(∆z)X



 = −Fµ(v,y,x,z) = −





rd

rx

Rc



 ,

where X = sMat(x) and Z = sMat(z).
We can now use the first two equations and substitute for ∆x = Q∆v−rx and ∆z = −AT ∆y−

rd in the last equation to get:

G′
µ(v,y)

(

∆v

∆y

)

:= Z sMat(Q∆v − rx)− sMat(AT ∆y + rd)X = −Rc.

Moving constants to the right-hand side yields the equation

Z sMat(Q∆v)− sMat(AT ∆y)X = Z sMat(rx) + sMat(rd)X −Rc. (2.11)
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This system of equations is similar to (2.4) and we can solve it again using the Jacobian J =
[Z | X ] and its adjoint J∗, where as above we have X (y) = − sMat(AT y)X, ∀y ∈ R

m, and
Z(v) = Z sMat(Qv), ∀v ∈ R

t(n)−m.
We can also check the change in the residual when taking a step α. We have, x + αp∆x =

x + αp(Q∆v − rx) and z + αd∆z = z − αd(A
T ∆y + rd). The new residuals are

rd ← (z − αd(A
T ∆y + rd))− c + AT (y + αd∆y) = (1− αd)rd,

rx ← x + αp(Q∆v − rx)− x̂−Q(v + αp∆v) = (1− αp)rp.

This emphasizes the importance of taking a steplength of αp = αd = 1 early in the algorithm as
we can then obtain exact feasibility from that point on.

2.3 Local Convergence

In this section, we would like to study the convergence of the Gauss-Newton method with infeasible
initial solutions. Consider the following general problem

F (x,y) =

(

L(x,y)
R(x)

)

= 0,

where L(x,y) = x− x̂− Ty is a linear function in x and y, T is full-rank. We would like to solve
the following linearized system of equations, and its equivalent system, in each iteration.

{

F ′(x,y)

(

∆x

∆y

)

= −F (x,y)

}

⇔
{

∆x− T∆y = −L(x,y)
R′(x)∆x = −R(x)

}

. (2.12)

Thus ∆x = T∆y − L(x,y) and the second equation becomes:

R′(x)T∆y = −R(x) + R′(x)L(x,y),

which is assumed to be an overdetermined system. We use the Gauss-Newton method to solve this
equation and update (x,y) with (∆x,∆y). We obtain the following local convergence result.

Theorem 1. Let R,L, T be defined as in (2.12), with Jx(x) := R′(x) and Jy(x) := Jx(x)T .

Let R(x) be twice continuous differentiable in an open convex set D. Let Jx(x) ∈ Lipγ(D) with

||Jx(x)|| ≤ α, for all x ∈ D; and, suppose that there exists x∗ ∈ D, y∗, and λ, σ ≥ 0, such that

L(x∗,y∗) = 0, Jx(x∗)
T R(x∗) = 0, λ is the smallest eigenvalue of Jy(x∗)

T Jy(x∗), and
∣

∣

∣

∣(Jx(x)− Jx(x∗))
T R(x∗)

∣

∣

∣

∣

2
≤ σ ||x− x∗||2 , ∀x ∈ D.

Define the iteration

∆xk = T∆yk − L(xk,yk),∀k, ∆yk = (Jy(xk)
T Jy(xk))

−1Jy(xk)
T (−R(xk) + Jx(xk)L(xk,yk)),

xk+1 = xk + ∆xk, yk+1 = yk + ∆yk.

Let τ := ||T ||2 and c ∈ (1, λ/(τ2σ)). If τ2σ < λ, then there exists ǫ > 0 such that ∀x0 ∈ N(x∗, ǫ)
and y0 arbitrary, we have that: the sequences {xk}, {yk} are well-defined; they converge to (x∗,y∗)
with L(xk,yk) = 0,∀k ≥ 1; and

||xk+1 − x∗|| ≤
τ2c

λ

(

σ ||xk − x∗||+
αγ

2
||xk − x∗||2

)

,

||xk+1 − x∗|| ≤
λ + τ2cσ

2λ
||xk − x∗|| < ||xk − x∗|| .
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Proof. Using induction and the formulations ∆yk = (Jy(xk)
T Jy(xk))

−1Jy(xk)
T (−R(xk) +

Jx(xk)L(xk,yk)), ∆xk = T∆yk − L(xk,yk), we see that L(xk,yk) = 0,∀k ≥ 1 Thus we have:

xk − x∗ = T (yk − y∗), ∀ k ≥ 1.

We now continue using induction. We have:

y1 − y∗ = y0 − y∗ + (Jy(x0)
T Jy(x0))

−1Jy(x0)
T [−R(x0) + Jx(x0)L(x0,y0)]

= (Jy(x0)
T Jy(x0))

−1M ,

where M = −Jy(x0)
T R(x0) + Jy(x0)

T Jx(x0)L(x0,y0) − Jy(x0)
T Jy(x0)(y∗ − y0). Rewriting, we

obtain

M = −Jy(x0)
T R(x∗) + Jy(x0)

T [R(x∗)−R(x0)− Jy(x0)(y∗ − y0) + Jx(x0)L(x0,y0)]

= −Jy(x0)
T R(x∗) + T T Jx(x0)

T [R(x∗)−R(x0)− Jx(x0)(Ty∗ − Ty0 − x0 + x̂ + Ty0]

= −T T (Jx(x0)− Jx(x∗))
T R(x∗) + T T Jx(x0)

T [R(x∗)−R(x0)− Jx(x0)(x∗ − x0)] .

According to Dennis and Schnabel [3, Theorem 3.1.4], there exists ǫ1 > 0 such that Jy(x)T Jy(x)
is nonsingular and

∣

∣

∣

∣(Jy(x)T Jy(x))−1
∣

∣

∣

∣ ≤ c

λ
, ∀x ∈ N(x∗, ǫ1),

where c ∈ (1, λ/σ). We also have:

∣

∣

∣

∣T T (Jx(x0)− Jx(x∗))
T R(x∗)

∣

∣

∣

∣ ≤ ||T ||
∣

∣

∣

∣(Jx(x0)− Jx(x∗))
T R(x∗)

∣

∣

∣

∣ ≤ τσ ||x0 − x∗|| , ∀x ∈ D.

Applying the Lipschitz condition of Jx(.), we obtain the following equation

||R(x∗)−R(x0)− Jx(x0)(x∗ − x0)|| ≤
γ

2
||x0 − x∗||2 .

Thus we have:

∣

∣

∣

∣T T Jx(x0)
T [R(x∗)−R(x0)− Jx(x0)(x∗ − x0)]

∣

∣

∣

∣ ≤ ταγ

2
||x0 − x∗||2 .

Combining these inequalities gives the following bound

||y1 − y∗|| ≤
c

λ

(

τσ ||x0 − x∗||+
ταγ

2
||x0 − x∗||2

)

.

Or equivalently, we have:

||x1 − x∗|| ≤
τ2c

λ

(

σ ||x0 − x∗||+
αγ

2
||x0 − x∗||2

)

, ∀x0 ∈ N(x∗, ǫ1).

Now let ǫ = min

{

ǫ1,
λ− τ2cσ

τ2cαγ

}

. We have:

||x1 − x∗|| ≤ ||x0 − x∗||
(

τ2cγ

λ
+

τ2cαγ

2λ
||x0 − x∗||

)

≤ λ + τ2cσ

2λ
||x0 − x∗||

< ||x0 − x∗|| , ∀x0 ∈ N(x∗, ǫ).
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From these results, clearly x1 ∈ N(x∗, ǫ) and the induction step is exactly the same as in the
case k = 0 above. �

Applying Theorem 1 to the Gauss-Newton equation (2.10), we have:

L(z,x,y,v) =

(

z − c + AT y

x− x̂−Qv

)

,

where in the theorem (z,x) takes on the value x and (y,v) takes on the value y, with T =
(

−AT 0

0 Q

)

. We also have

Rµ(z,x) = sMat(z) sMat(x)− µI.

The optimal solution (z∗,x∗) satisfies the condition Rµ(z∗,x∗) = 0. Therefore, we can set

σ = 0. We have: τ = ||T || =
√

||A||2 + ||Q||2. Now consider R′(z,x). We have:

R′(z,x)

(

∆z

∆x

)

= Z sMat(∆x) + sMat(∆z)X,

where Z = sMat(z) and X = sMat(x). For all (∆z,∆x), we have:
∣

∣

∣

∣

∣

∣

∣

∣

R′(z,x)

(

∆z

∆x

)∣

∣

∣

∣

∣

∣

∣

∣

≤ ||Z|| ||∆x||+ ||∆z|| ||X|| ≤
√

||Z||2 + ||X||2
√

||∆z||2 + ||∆x||2.

Thus, ||R′(z,x)|| ≤
√

||Z||2 + ||X||2 = ||(z,x)||. Thus the parameter α can be calculated using

the formulation α = sup
(z,x)∈D

||(z,x)||. Similarly, we have:

[

R′(z1,x1)−R′(z2,x2)
]

(

∆z

∆x

)

= (Z1 −Z2) sMat(∆x) + sMat(∆z)(X1 −X2).

Thus for all (∆z,∆x),
∣

∣

∣

∣

∣

∣

∣

∣

[

R′(z1,x1)−R′(z2,x2)
]

(

∆z

∆x

)∣

∣

∣

∣

∣

∣

∣

∣

≤ ||(z1,x1)− (z1,x1)|| ||(∆z,∆x)|| ,

which implies that ||R′(z1,x1)−R′(z2,x2)|| ≤ ||(z1,x1)− (z1,x1)||. We can set the parameter γ
to be 1. The remaining parameter is the smallest eigenvalue λ of Jy(z∗,x∗)

T Jy(z∗,x∗). Kruk et
al. [11] show that under the strict complementary slackness condition of a unique optimal solution,
the Jacobian J at the optimal solution is full rank (λ > 0). This implies that the algorithm
is well-behaved under the strict complementary slackness condition. Theorem 1 indicates that
there is a neighborhood around the optimal solution where the Gauss-Newton method converges
quadratically. However, it is difficult to estimate the value of λ. We need all of these parameters to
define the neighborhood N(x∗, ǫ) in which one can simply use affine scaling and the Gauss-Newton
method instead of damped Gauss-Newton method, i.e. we can set the barrier parameter µ = 0 and
take full step lengths equal to one. We call this the crossover technique. A heuristic rule could
be built based on the infeasibility of the current solution (z,x) since the damped Gauss-Newton
method with step sizes different from 1 (with infeasible initial solutions) will not guarantee the
feasibility after one step. (See [23] for more details on other possible heuristic rules.)
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2.4 Presolve and Preconditioning

The purpose of a presolve is to construct well-conditioned and sparse bases for both the range and
nullspace of A. These bases play an important role in the matrix-vector multiplications involved
in the algorithm. If A is sparse and A = [S | E], where S ∈ R

m×m is well-conditioned and

E ∈ R
m×(t(n)−m), then we can use the columns of Q =

[

−S−1E

I

]

for the basis of the nullspace

of A. The matrix inversion is fast and accurate if S is a well-conditioned triangular matrix. In
addition, we can also consider row and column permutations on A; therefore, the main task in the
presolve is to find an m ×m submatrix of A (up to a permutation of rows and columns) that is
well-conditioned and (approximately) triangular. In this case, S and E are considered to be the
main inputs to the algorithm.

If A is not sparse, it is better to keep A and P = −S−1E as the main inputs (with Q = [P ; I]).
And the major task of the presolve is to find a well-conditioned submatrix S. This can be done by
randomly picking m columns from A and reforming the submatrix S until the condition number
satisfies some given conditions.

The most expensive part of the algorithm is solving the overdetermined system (2.4), or equiv-
alently, (2.11). Preconditioning is essential to reduce the computational time when using iterative
methods for this part. Since we implicitly solve the normal equations, we want to find a nonsingular
transformation T : R

t(n) → R
t(n) such that (T−1)∗(J∗ ◦ J) ◦ T−1 is well-conditioned. Instead of

solving the least squares system of (2.4) or (2.11), we would like to solve the systems

{

(T−1)∗ ◦ J∗ ◦ J ◦ T−1(∆q) = (T−1)∗ ◦ J∗ ◦R

T (∆v,∆y) = ∆q,
(2.13)

where R is the corresponding right-hand side of the least squares problem.

Let T−1 = S =

[

Sv

Sy

]

where Sv : R
t(n) → R

t(n)−m and Sy : R
t(n) → R

m. We then have:

J ◦ T−1(q) = J(Sv(q), Sy(q)) = Z(Sv(q)) + X (Sy(q)) = Z ◦ Sv(q) + X ◦ Sy(q). (2.14)

To find the adjoint (J ◦ T−1)∗, we note that (T−1)∗ = S∗ = [S∗
v | S∗

y ] implies:

(J ◦ T−1)∗(M ) = (T−1)∗ ◦ J∗(M) = (T−1)∗
([

Z∗(M )
X ∗(M)

])

= S∗
v ◦ Z∗(M) + S∗

y ◦ X ∗(M), (2.15)

where X ∗ and Z∗ are formulated in (2.6) and (2.7), respectively.
Consider the special case in which T is a separable transformation with respect to ∆v and ∆y:

T (∆v,∆y) =

[

Tv(∆v)
Ty(∆y)

]

, where Tv : R
t(n)−m → R

t(n)−m and Ty : R
m → R

m are both nonsingular.

If q = (w,u) with w ∈ R
t(n)−m and u ∈ R

m, we then have:

J ◦ T−1(w,u) = Z ◦ T−1
v (w) + X ◦ T−1

y (u). (2.16)

And the adjoint is written as follows:

(J ◦ T−1)∗(M ) =

[

(T−1
v )∗ ◦ Z∗(M )

(T−1
y )∗ ◦ X ∗(M)

]

. (2.17)
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The first preconditioner we would like to consider is a simple diagonal scaling transformation
S. Since the original system of linear equations we need to solve is J∗ ◦ J(∆v,∆y) = J∗(R), we
would want to have S∗ ◦S approximate J∗ ◦J . We define the diagonal preconditioner S as follows:

S(ei) = ||J(ei)||F ei, ∀ i = 1, . . . , t(n), (2.18)

where ei is the i-th unit vector in R
t(n).

The second preconditioner is the separable transformation (block diagonal) Q such that Q∗
v ◦Qv

approximates Z∗ ◦ Z and Qy ◦ Qy approximates X ∗ ◦ X . Using the QR decomposition, we can
decompose Z into QZ ◦ RZ , where QZ : R

t(n) → Mn is a unitary transformation, and RZ :
R

t(n)−m → R
t(n), with an upper triangular transformation matrix RZ . Clearly, we can set Qv =

Pv ◦RZ , where Pv is the projection transformation from R
n2

to R
t(n)−m, since R∗

Z ◦RZ = Z∗ ◦ Z.
Similarly, we can set Qy = Py ◦ RX where X = QX ◦ RX under the QR decomposition and Py is

the projection transformation from R
n2

to R
m.

We now would like to consider the properties of these two particular preconditioners. Consider
the following measure of conditioning that depends uniformly on all the eigenvalues of a positive
definite matrix X,

ω(X) :=
trace(X)/n

det(X)
1

n

.

This measure is a pseudoconvex function. Note that a function is pseudoconvex if

(y − x)T∇f(x) ≥ 0 =⇒ f(y) ≥ f(x),

and for pseudoconvex functions, all stationary solutions are global minimizers (see for example,
[15]). We now show that we have obtained the optimal block diagonal preconditioner with respect
to the measure ω, thus extending the corresponding diagonal preconditioner result in [4].

Proposition 1. The measure ω(A) satisfies

1. 1 ≤ ω(A) ≤ κ(A) <
(κ(A) + 1)2

κ(A)
≤ 4ωn(A), where κ(A) = ||A||

∣

∣

∣

∣A−1
∣

∣

∣

∣,

with equality in the first and second inequality if and only if A is a multiple of the identity

and equality in the last inequality if and only if

λ2 = · · · = λn−1 =
λ1 + λn

2
;

2. ω(αA) = ω(A), for all α > 0;

3. if n = 2, ω(A) is isotonic with κ(A).

4. The measure ω is pseudoconvex on the set of s.p.d. matrices, and thus any stationary point

is a global minimizer of ω.

5. Let V be a full rank m× n matrix, n ≤ m. Then the optimal column scaling that minimizes

the measure ω, i.e.

min ω((V D)T (V D)),
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over D positive, diagonal, is given by

Dii =
1

‖V :,i‖
, i = 1, ..., n,

where V :,i is the i-th column of V .

6. Let V be a full rank m × n matrix, n ≤ m with block structure V =
[

V 1 V 2 . . . V k

]

.

Then the optimal corresponding block diagonal scaling

D =









D1 0 0 . . . 0
0 D2 0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . Dk









that minimizes the measure ω, i.e.

min ω((V D)T (V D)),

over D block diagonal, is given by

Di = {V T
i V i}−

1

2 , i = 1, ..., k.

Proof. Items 1 to 5 are proved in [4].
To prove 6, let the blocked V be given. Then the arithmetic-geometric mean inequality yields

ω((V D)T (V D)) =
trace(DT V T V D)/n

det(DT V T V D)
1

n

=
trace(V T V DDT /n

det(DDT )
1

n det(V T V )
1

n

.

Let D̄ = DDT , we have, D̄ is also a block diagonal matrix with D̄i = DiD
T
i for all i = 1, . . . , k.

Thus

ω((V D)T (V D)) =

∑k
i=1(V

T
i V i) · D̄i/n

det(V T V )
1

n

∏k
i=1 det(D̄i)

1

n

=

(

1

n det(V T V )
1

n

)

∑k
i=1 V̄ i · D̄i

∏k
i=1 det(D̄i)

1

n

,

where V̄ i = V T
i V i for all i = 1, . . . , k. Consider the function f(D̄1, . . . , D̄k) =

∑k
i=1 V̄ i · D̄i

∏k
i=1 det(D̄i)

1

n

,

we have:

∂f(D̄1, . . . , D̄k)

∂D̄i

=

k
∏

j=1

det(D̄j)
− 1

n

(

V̄ i −
∑k

j=1 V̄ j · D̄j

n
(D̄

−1
i )T

)

.

Let D̄i = V̄
−1
i for all i = 1, . . . , k, we have: D̄i is symmetric and

k
∑

i=1

V̄ i ·D̄i = n for all i = 1, . . . , k.

Thus
f(D̄1, . . . , D̄k)

∂D̄i

= 0 for all i = 1, . . . , k. The measure ω is pseudoconvex and similarly, the
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function f(D̄1, . . . , D̄k) is also pseudoconvex (quotient of a convex (linear) function and a positive

concave function). Thus the matrices (D̄1, . . . , D̄k) with D̄i = V̄
−1
i for i = 1, . . . , k, minimizes

f(D̄1, . . . , D̄k). This implies that the symmetric block matrix D with Di = (V T
i V i)

− 1

2 minimizes
the measure ω((V D)T (V D)). �

Note that the optimality condition only requires D̄i = V̄
−1
i for i = 1, . . . , k, which means we

can use QR decomposition to find the optimal Di instead of matrix square root. In other words,
if V i has the QR decomposition V i = QiRi, we can set Di = R−1

i for all i = 1, . . . , k to minimize
the measure ω((V D)T (V D)).

3 Lovász Theta Function Problem

In this section, we apply the Gauss-Newton method to the Lovász theta function problem. Let
G = (V, E) be an undirected graph; and let n = |V| and m = |E| be the number of nodes and edges,
respectively. The Lovász theta number (defined in [13]) is the optimal value of the following SDP

(TN)

ϑ(G) := p∗ := max E ·X
s.t. I ·X = 1

Eij ·X = 0, ∀ (i, j) ∈ E
X � 0

(3.1)

The dual SDP is

(DTN)

d∗ := min z

s.t. zI +
∑

(i,j)∈E

yijEij −Z = E,

Z � 0,

(3.2)

where y = (yij)(i,j)∈E ∈ R
m; I is the identity matrix; E is the matrix of all ones, Eij = (eie

T
j +

eje
T
i )/
√

2 is the ij-th unit matrix in Sn, and ei is the i-th unit vector.
The theta number has important properties, e.g., it is tractable (can be computed in polynomial

time) and it provides bounds for the stability and chromatic numbers of the graph, see e.g., [9, 12].
We now show how to use the Gauss-Newton approach to solve this Lovász theta function problem.

3.1 Matrix-Free Formulation

We define additional linear transformations on vectors and matrices for this problem. Let Gc =
(V, Ec) be the complement graph of G, i.e. Ec is the edge set complement to E . Let mc := |Ec| =
t(n) −m, where t(n) :=

(

n

2

)

, and consider two bijective index mappings, indE : E → {1, . . . ,m},

and indEc : Ec → {1, . . . ,mc} with their corresponding inverses, ind−1
E and ind−1

Ec .
We now define two linear transformations, sMatE : R

m → Sn and sMatEc : R
mc → Sn as follows:

sMatE(y) =

m
∑

i=1

yiEind−1

E
(i), sMatEc(v) =

mc
∑

i=1

viEind−1

Ec (i).

Let svecE := sMat†E denote the Moore-Penrose generalized inverse mapping from Sn to R
m,

svecE(S) = y, where yi = Sind−1

E
(i)

√
2 for all i = 1, . . . ,m. Similarly, we can also define svecEc :=
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sMat†Ec . The mapping svecEc (resp. svecE ) is an inverse mapping if we restrict to the subspace of
symmetric matrices with zero in positions corresponding to the edge set Ec (resp. E). The adjoint
operator sMat∗Ec = svecEc , since

〈sMatEc(v),S〉 = trace(sMatEc(v)S)

= vT svecEc(S) = 〈v, svecEc(S)〉,

and similarly, the adjoint operator sMat∗E = svecE .
Using these transformations, we can represent primal and dual feasibility as follows. Let the

matrix V :=

(

−eT

I

)

∈ R
n×(n−1), we have: X � 0 is primal feasible if and only there exists

w ∈ R
n−1 and v ∈ R

mc such that

X =
1

n
I + Diag(V w) + sMatEc(v),

where Diag : R
n →Mn is the diagonal transformation with its diagonal adjoint Diag∗ = Diag† =

diag :Mn → R
n. We could also use a different matrix V to maintain the isometry,

V :=

(

c1e
T

c2E + I

)

∈ R
n×(n−1),

where c1 = −1/
√

n and c2 = −1/(n +
√

n).
Now let us consider the dual feasibility. Similarly, Z � 0 is dual feasible if and only if there

exists z ∈ R and y ∈ R
m such that

Z = −E + zI + sMatE (y).

As in the general case, we would like to solve the perturbed optimality condition ZX −µI = 0

in each iteration of the primal-dual path following interior algorithm. We again use an inexact
Gauss-Newton approach with a matrix-free preconditioned conjugate gradient method.

The major operation of the Gauss-Newton approach is to calculate the Jacobian and its adjoint.
The Jacobian J := G′

µ can be written as J = [Z | X ], where Z and X are two transformations
defined as follows:

Z(w,v) = Z (Diag(V w) + sMatEc(v)) , X (z,y) = (zI + sMatE(y)) X .

In order to find the adjoint J∗, we need to compute Z∗ and X ∗. Consider M ∈Mn, we have:

〈M ,X (z,y)〉 = z trace(MT X) + trace(MT sMatE(y)X)

= z trace(MT X) + trace

(

sMatE(y)
1

2

(

XMT + MX
)

)

= z trace(MT X) +
1

2
yT svecE(XMT + MX)

= z trace(MT X) + 〈y,
1

2
svecE(XMT + MX)〉.

Thus we have:

X ∗(M) =

(

trace(MT X)
1

2
svecE(XMT + MX)

)

. (3.3)
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Similarly, we have:

〈M ,Z(w,v)〉 = trace(MT Z (Diag(V w) + sMatEc(v))

= trace(MT Z (Diag(V w)) + trace

(

sMatEc(v)
1

2
(MT Z + ZM )

)

= 〈diag(MT Z),V w〉+ 1

2
vT svecEc(MT Z + ZM)

= 〈w,V T diag(MT Z)〉+ 〈v,
1

2
svecEc(MT Z + ZM )〉,

Thus the adjoint Z∗ is

Z∗(M) =

(

V T diag(MT Z)
1

2
svecEc(MT Z + ZM)

)

. (3.4)

3.2 Presolve and Preconditioning

In this Lovász theta number problem, the bases are defined by the index mappings, indE and indEc .
There are many ways to index the edge set E and Ec. However, it is advantageous to index the
edge sets according to a good graph partitioning. In addition, we can also change the order of nodes
since the row permutation of the matrix V affects the bases. All of these issues will become clear
when we discuss the diagonal and block preconditioners in the following sections.

3.2.1 Diagonal Preconditioning

In order to construct the diagonal preconditioner, we need to calculate ||J(ei)||F for all unit vector
ei in R

t(n), i = 1, . . . , t(n). Since the variables are (w,v, z,y), we consider four different cases, each
of which corresponds to each variable.

(i) 1 ≤ i ≤ n − 1: J(ei) = Z Diag(V ew
i ), where ew

i is the i-th unit vector in R
n−1. We have:

V ew
i = [−1;ew

i ]. Thus

||J(ei)||F =

√

||Z:,1||2 + ||Z:,i+1||2, ∀ i = 1, . . . , n− 1.

(ii) i = n − 1 + j, where 1 ≤ j ≤ mc: J(ei) = Z sMatEc(ev
j ), where ev

j is the j-th unit vector in

R
mc . We have: sMatEc(ev

j ) = Eind−1

Ec (j). Let ind−1
Ec (j) = (kEc(j), lEc(j)), we have:

||J(ei)||F =
1√
2

√

∣

∣

∣

∣Z:,kEc(j)

∣

∣

∣

∣

2
+
∣

∣

∣

∣Z :,lEc(j)

∣

∣

∣

∣

2
, ∀ i = n− 1 + j, j = 1, . . . ,mc.

(iii) i = n + mc: J(ei) = X. Thus ||J(ei)||F = ||X||F .

(iv) i = n + mc + j, where 1 ≤ j ≤ m: J(ei) = sMatE(ey
j )X , where e

y
j is the j-th unit vector in

R
m. We have: sMatE(ey

j ) = Eind−1

E
(j). Similar to the previous case, we obtain the following

formulation:

||J(ei)||F =
1√
2

√

∣

∣

∣

∣XkE(j), :
∣

∣

∣

∣

2
+
∣

∣

∣

∣X lE (j), :
∣

∣

∣

∣

2
, ∀ i = n + mc + j, j = 1, . . . ,m,

where (kE (j), lE (j)) = ind−1
E (j).
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3.2.2 Block-Diagonal Preconditioning

For block preconditioner, we need to find the structure of the matrix representations of Z∗Z and
X ∗X . We first calculate the columns of Z∗Z. There are two cases:

1. Column i of of Z∗Z, 1 ≤ i ≤ n− 1:
Z(ei) = Z Diag(V ew

i ). Let M = Z(ei), we have: M has only two non-zero columns, the
first one, M :,1 = −Z:,1, and the (i + 1)-the one, M :,i+1 = Z :,i+1.

Now consider Z∗(M ), the first n− 1 elements is V T diag(MT Z). Let P = MT Z, we have:
P again has only two non-zero rows, the first and (i + 1)-th row. The elements of the first
row of P is

P1,k = −ZT
:,1Z :,k, ∀ k = 1, . . . , n,

and the elements of the (i + 1)-th row is

Pi+1,k = ZT
:,i+1Z:,k, ∀ k = 1, . . . , n.

Thus diag(P ) has two non-zero elements, the first, −ZT
:,1Z :,1, and the (i + 1)-th element,

ZT
:,i+1Z :,i+1. We then have V T diag(P ) = ZT

:,1Z :,1e + ZT
:,i+1Z :,i+1e

w
i . The first (n − 1) ×

(n − 1) block of Z∗Z can be written as Diag
(

||Z:,2||2F , . . . , ||Z:,n||2F
)

+ ||Z:,1||2F E. The

Cholesky decomposition of this block can be obtained using the faster rank-one update al-
gorithm since the Cholesky decomposition of diagonal matrices are easy to compute and
E = eeT . Another approach is to analytically find R−1 with a special structure such that

Diag
(

||Z :,2||2F , . . . , ||Z :,n||2F
)

+ ||Z :,1||2F E = RT R and R−1x is easy to compute for any

vector x. We apply the following result:

Lemma 1. Consider matrix A = D + uuT where D is a positive definite diagonal matrix,

then A can be decomposed as RT R with

R−1 = D− 1

2

(

I +
1

λ

(

1√
λ + 1

− 1

)

ppT

)

,

where p = D− 1

2 u and λ = ||p||2.

Proof. We have: A = D
1

2 D
1

2 + D
1

2 D− 1

2 uuT D− 1

2 D
1

2 = D
1

2

(

I + ppT
)

D
1

2 .

Assume ppT has the eigenvalue decomposition V (λE11)V
T , we have: V V T = I, thus

A = D
1

2 V (I + λE11) V T D
1

2 .

I + λE11 is a diagonal matrix; therefore, we can compute A−1 as follows:

A−1 = D− 1

2 V

(

I +

(

1

λ + 1
− 1

)

E11

)

V T D− 1

2 .

Applying the formulation for square roots of diagonal matrices, we have:

A−1 = D− 1

2 V

(

I +

(

1√
λ + 1

− 1

)

E11

)

V T V

(

I +

(

1√
λ + 1

− 1

)

E11

)

V T D− 1

2 .
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We also have λV E11V
T = ppT , thus

A−1 = D− 1

2

(

I +
1

λ

(

1√
λ + 1

− 1

)

ppT

)(

I +
1

λ

(

1√
λ + 1

− 1

)

ppT

)

D− 1

2 = SST ,

where S = D− 1

2

(

I +
1

λ

(

1√
λ + 1

− 1

)

ppT

)

.

Let R = S−1, clearly we have A = RT R and R−1 = S. �

Clearly, in order to calculate R−1x, we only need to calculate D− 1

2 x, D− 1

2 u. For this

particular matrix, we can set D = Diag
(

||Z:,2||2F , . . . , ||Z:,n||2F
)

and u = ||Z :,1||F e.

We now look at the remaining mc elements of the i-th columns, q =
1

2
svecEc(P +P T ). P has

two non-zero rows; therefore, P +P T has two non-zero rows and two non-zeros columns. The
elements of these rows and columns are the same as the elements of corresponding rows in P

except for four elements, (1, 1), (1, i + 1), (i + 1, 1), and (i + 1, i + 1). Note that the elements
(1, i+1) and (i+1, 1) are zeros as −ZT

:,1Z:,i−ZT
:,iZ :,1 = 0. Let Ec

i be the set of all edges in Ec

starting from node i, we have: for all j ∈ indEc(Ec
1) such that ind−1

Ec (j) = (1, lEc(j)) 6= (1, i+1),

qj = − 1√
2
ZT

:,1Z:,lEc(j). Similarly, for all j ∈ indEc(Ec
i+1) such that ind−1

Ec (j) = (i + 1, lEc(j)),

qj =
1√
2
ZT

:,i+1Z:,lEc(j). Other elements of q are zeros. Note that for all n−1 first columns, the

number of non-zeros depends on |Ec
1 |. Thus in order to increase the sparsity of the resulting

matrix, we should select the node 1 with the largest degree (in the original graph). This is
one of the operations that we can consider for the presolve.

2. Column i of of Z∗Z, i = n− 1 + j, where 1 ≤ j ≤ mc:
Z(ei) = Z sMatEc(ev

j ). Let M = Z(ei) and ind−1
Ec (j) = (k, l), we again have that M has only

two non-zero columns, the k-th column, M :,k =
1√
2
Z:,l, and the l-th column, M :,l =

1√
2
Z :,k.

Due to the symmetry of Z∗Z, we just need to look at the last mc elements of these columns.

Let q =
1

2
svecEc(P + P T ), where P = MT Z. We have P has two non-zero rows, the k-th

and l-th ones. The elements are Pk,p =
1√
2
ZT

:,lZ :,p and Pl,p =
1√
2
ZT

:,kZ:,p for all p = 1, . . . , n.

Similar to the previous case, we have that elements of P +P T are the corresponding elements
of P except for four elements (k, k), (k, l), (l, k), and (l, l). The element (k, l) (and (l, k)) has

the value
1√
2

(

||Z:,k||2F + ||Z :,l||2F
)

. Thus we have: qj =
1

2

(

||Z :,k||2F + ||Z :,l||2F
)

. Other non-

zero elements of q are the elements with indices in the set indEc(Ec
k∪Ec

l ) and the computation
of these elements is similar to the previous case. With this structure of non-zero elements for
each column, we can see that the index mapping indEc with a good graph partitioning results
in a block structure for this mc ×mc block of Z∗Z. More specifically, there are two cases in
which the block structure can be form. In the first case, three edges (i, j), (j, k), and (i, k)
(edges of a clique of size 3) are indexed consecutively and results in 3 × 3 block. However,
there is no special structure of this block to be exploited. We now focus on the second case
in which the set of edges from a node i, (i, j) with j ∈ Si, Si ⊂ Ec

i , are indexed consecutively.
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Let ZSi
be the n × |Si| submatrix of Z that consists of |Si| columns Z :,j, j ∈ Si, the block

we obtain is
1

2

(

||Z :,i||2F I + ZT
Si

ZSi

)

. And this is another operation we need to consider for

the presolve.

We continue with columns of X ∗X . We also have two cases:

1. i = 1: X (ei) = X. Thus the first column is X ∗(X) with the first element is trace(X2) and
the remaining m elements are svecE(X2).

2. i = j + 1, where 1 ≤ j ≤ m: X (ei) = sMatE(ey
j )X . Let M = X (ei) and indE(j) = (k, l),

we have: M has only two non-zero rows, the k-th row, M k,: =
1√
2
X l,: and the l-th row,

M l,: =
1√
2
Xk,:. Due to the symmetry of X ∗X , we do not need to reconsider the first elements

of these columns. Let P = MX, we have, the remaining m elements are q =
1

2
svecE (P+P T ).

Similarly, P has only two non-zeros rows, the k-th and the l-th ones with the elements

Pk,p =
1√
2
X l,:X :,p and Pl,p =

1√
2
X l,:X :,p for all p = 1, . . . , n. The elements of P + P T

can be derived from elements of P in a similar way shown before. The element (k, l) is
1√
2

(

||Xk,:||2F + ||X l,:||2F
)

. Thus we have: qj =
1

2

(

||Xk,:||2F + ||X l,:||2F
)

. Other non-zero

elements of q are the elements with indices in the set indE(Ek ∪ Ecl), where Ei is the set of all
edges in E starting from node i. With this structure of non-zero elements for each column, we
can again see that the index mapping indE with a good graph partitioning results in a block
structure for this m × m block of X ∗X , especially when edges in E from a single node are
indexed consecutively. Similarly, the presolve can help us obtain this good graph partitioning.

4 Numerics and Conclusion

4.1 Numerical Results

We test three versions of the Gauss-Newton algorithm and three different preconditioners. The
algorithm versions are: (i) a general version for full matrices; (ii) a sparse version for sparse
matrices; and (iii) a specialized version for the Lovász theta function problem. The preconditioners
are: (i) diagonal; (ii) two block diagonal; and (iii) multiple block diagonal. We start with the
sparse version of the code. Data inputs are C ∈ Sn, Ai ∈ Sn, i = 1, . . . ,m, and b ∈ R

m. The
algorithm is coded in MATLAB; and, the Gauss-Newton directions are computed using LSMR
developed by Fong and Saunders [5]. First, we compare different versions of the code with different
preconditioners before comparing it with different solvers. We generate data inputs randomly with
n from 10 to 100, m = ⌈n(n + 1)/4⌉; and, the sparseness density is set to be 1/(n + m). We run
the code without preconditioner (SRSDo), with diagonal preconditioner (SRSDDiag), and block
preconditioner (SRSDBDiag). The tolerance is set to be ǫ = 10−12 and crossover is used. As
expected, there is a reduction in the number of LSMR iterations when preconditioners are used.
This is due to the fact that the condition number of the overdetermined system that we need to solve
is decreased. Table 4.1 shows the reduction ratios in number of LSMR iterations of (SRSDDiag)
and (SRSDBDiag) as compared to that of (SRSDo). However, there is a trade-off between the
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time to compute the Gauss-Newton directions and the time to compute the preconditioners. Table
4.2 shows the ratios of total computational time of (SRSDDiag) and (SRSDBDiag) as compared
to that of (SRSDo); and, we can see that (SRSDDiag) is the best version of the code in terms
of computational time for these sparse instances. Note that for these instances, the accuracy of
the optimal solutions is approximately the same. However, for harder instances that we consider
in other tests, (SRSDBDiag) will be the choice over (SRSDDiag) to get better accuracy since the
block preconditioner produces better conditioned systems for LSMR to solve, so that we get more
accurate search directions in addition to a reduction in the number of iterations of LSMR. We also
test our code with LSQR, which is another code to solve overdetermined systems developed by
Paige and Saunders [21]. For these instances, the differences in number of iterations and accuracy
are not noticeable with only a slightly higher number of iterations for LSQR resulting in slightly
higher accuracy. Similar to the choice between (SRSDDiag) and (SRSDBDiag), if we need to solve
very hard instances, LSQR appears to be preferable.

n 10 20 30 40 50 60 70 80 90 100

(SRSDDiag) 0.67 0.55 0.55 0.39 0.42 0.42 0.47 0.36 0.34 0.32
(SRSDBDiag) 0.30 0.16 0.13 0.09 0.09 0.08 0.08 0.07 0.07 0.06

Table 4.1: Ratios of numbers of LSMR iterations of (SRSDDiag) and (SRSDBDiag) to (SRSDo)

n 10 20 30 40 50 60 70 80 90 100

(SRSDDiag) 0.63 0.58 0.59 0.45 0.49 0.51 0.62 0.45 0.48 0.44
(SRSDBDiag) 0.33 0.27 0.46 0.57 1.05 1.44 2.20 2.26 3.50 3.26

Table 4.2: Ratios of total computational time of (SRSDDiag) and (SRSDBDiag) to (SRSDo)

We now focus on solution accuracy for larger instances and then compare the performance of
our code with other solvers. For this test, we set n = 100 and m = 100 and again generate data
inputs randomly. We run N = 1000 instances and record the (average) of: the number of iterations,
the relative norm of ZX, and the relative minimum eigenvalues of X and Z, see Table 4.3. We
apply the crossover technique and use the diagonal preconditioner as the setting for our code. The
tolerance is again set to 10−12. The average shown for the two accuracy measures is log-average.
The two measures are

RelZXnorm =
||ZX||F
|C ·X |+ 1

, Relmineig =
min{λmin(X), λmin(Z)}

|C ·X|+ 1
.

Iteration RelZXnorm Relmineig

Average 18.66 2.62 × 10−15 −8.79× 10−16

Best 14.00 2.78 × 10−16 −3.86× 10−17

Worst 26.00 8.36 × 10−13 −1.97× 10−13

Table 4.3: Accuracy measures for random sparse instances
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We now select 20 hard instances in terms of number of iterations taken using our (SRSDDiag)
code. Using these 20 instances, we compare our solver and the four SDP solvers. (See e.g., the
URL www-user.tu-chemnitz.de/˜helmberg/semidef.html.)

SeDuMi 1.3, CSDP 6.1.0, SDPA 7.3.1, SDPT3 4.0.

The tolerances (for the relative trace of ZX) for these four solvers are set to be as small as
possible without running into numerical problems. For SDPT3, it could be 10−13 or 10−14. For the
remaining solvers, 10−12 is sufficiently small and there are some cases, where we had to reduce the
tolerance for SeDuMi or CSDP. The two accuracy measures are compared and in addition, we also
record all six DIMACS error measures [16]. (The last measure is only comparable if both X and
Z are positive semidefinite.) We also compare the computational times of all solvers for these 20
instances. Similarly, we also select 20 easy instances in terms of number of iterations taken using
our (SRSDDiag) code and compare with other solvers. The numerical results are shown in Table
4.4 and 4.5, respectively.

(SRSDDiag) SeDuMi CSDP SDPA SDPT3

Iteration 23.45 19.15 16.50 16.30 24.50

RelZXnorm 7.18 × 10−15 1.50 × 10−07 8.92 × 10−08 5.86× 10−08 1.01 × 10−10

Relmineig −1.12× 10−15 −8.72 × 10−15 3.28 × 10−13 1.46× 10−13 5.99 × 10−17

DIMACS1 1.28 × 10−15 7.93 × 10−11 1.24 × 10−13 2.48× 10−13 3.19 × 10−13

DIMACS2 2.28 × 10−14 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000

DIMACS3 9.39 × 10−16 3.53 × 10−16 1.64 × 10−08 1.44× 10−15 8.72 × 10−14

DIMACS4 3.22 × 10−15 3.42 × 10−13 0.00 × 1000 0.00 × 1000 0.00 × 1000

DIMACS5 1.19 × 10−15 9.72 × 10−13 1.54 × 10−09 4.96× 10−10 1.10 × 10−13

DIMACS6 4.65 × 10−16 2.84 × 10−14 1.16 × 10−09 4.96× 10−10 2.01 × 10−13

Time 61.89 1.23 0.60 0.74 1.13

Table 4.4: Performance measures for hard random sparse instances

(SRSDDiag) SeDuMi CSDP SDPA SDPT3

Iteration 15.20 17.50 15.10 15.55 22.40

RelZXnorm 1.64 × 10−14 1.66 × 10−07 1.04 × 10−06 2.17× 10−08 1.77 × 10−10

Relmineig −5.56× 10−15 −1.15 × 10−14 2.27 × 10−13 2.20× 10−13 1.21 × 10−16

DIMACS1 1.24 × 10−15 1.34 × 10−10 1.38 × 10−13 5.20× 10−14 2.74 × 10−13

DIMACS2 1.15 × 10−13 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000

DIMACS3 8.35 × 10−16 3.57 × 10−16 1.04 × 10−08 1.44× 10−15 8.95 × 10−14

DIMACS4 1.32 × 10−14 4.34 × 10−13 0.00 × 1000 0.00 × 1000 0.00 × 1000

DIMACS5 2.19 × 10−15 1.98 × 10−12 1.18 × 10−09 4.85× 10−10 9.34 × 10−14

DIMACS6 1.90 × 10−15 2.95 × 10−14 5.47 × 10−10 4.85× 10−10 1.86 × 10−13

Time 37.00 1.16 0.53 0.59 1.05

Table 4.5: Performance measures for easy random sparse instances
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The computational time for (SRSDDiag) is not competitive with the other solvers. One reason is
that the code right now is all MATLAB code with no pre-compiled subroutines. However, the main
reason is that the Gauss-Newton approach needs to solve a system of equations with n(n + 1)/2
variables regardless of the number of constraints. We now keep n = 100 fixed and vary the number
of constraints from m = 500 to m = 5000. The instances are generated randomly with the same
sparseness density 1/(4n). For larger instances, we need more accuracy for the LSMR subroutine
that iteratively solves for the Gauss-Newton direction. Therefore, for these instances, we use the
block triangular preconditioner instead of the diagonal one. The average number of iterations and
two accuracy measures for these instances are shown in Table 4.6. The corresponding computational
time ratios of (SRSDBDiag) to those of other solvers are then reported in Table 4.7.

(SRSDBDiag) SeDuMi CSDP SDPA SDPT3

Iteration 14.82 15.73 15.36 16.00 21.09

RelZXnorm 6.93 × 10−15 1.99 × 10−07 1.91 × 10−07 1.77× 10−08 2.27 × 10−09

Relmineig −3.69× 10−16 −4.94 × 10−15 4.06 × 10−13 9.06× 10−14 2.31 × 10−16

Table 4.6: Average measures for random instances with different numbers of constraints

m 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

SeDuMi 168.74 49.99 21.47 4.18 1.92 1.89 1.09 0.66 0.68 0.32
CSDP 144.02 39.62 21.64 7.58 5.89 5.56 3.53 2.40 2.88 1.62
SDPA 488.28 203.06 134.49 50.99 37.09 33.37 20.98 15.55 17.83 9.41
SDPT3 87.49 27.96 16.10 6.00 3.80 4.42 2.11 2.30 2.89 1.81

Table 4.7: Time ratios relative to (SRSDBDiag) for different numbers of constraints

In the previous test, we kept the sparseness density constant while changing the number of
constraints. We now test our code with instances created with different densities. We fix n = 100
and m = 2500 while varying the density with 1/(4sn), s = 1, . . . , 10. All parameter settings are the
same as in the previous test. In addition, we also run our code with the diagonal preconditioner
when the data is sparse enough. It turns out in this test, for s ≥ 3, (SRSDDiag) maintains the
same level of accuracy but is more efficient than (SRSDBDiag) with respect to time. This can be
explained as follows. (SRSDBDiag) in general requires fewer iterations of the LSMR subroutine
than (SRSDDiag) and, if the data is not sparse enough, this saving in time can compensate for
the more expensive construction of the preconditioner. On the other hand, if the data is sparser,
e.g., s ≥ 3, the reduction in the number of LSMR iterations of (SRSDDiag) gradually becomes
more significant than that of (SRSDBDiag), which makes (SRSDDiag) more efficient. The time
comparison between (SRSDDiag) and (SRSDBDiag) is shown in Table 4.8. Note that since with
s = 2, (SRSDBDiag) is already more efficient than (SRSDDiag), we do not run (SRSDDiag) for
the instance with s = 1. To compare with other solvers, we select the more efficient code between
(SRSDDiag) and (SRSDBDiag) for each instance. Basically, the first two instances are run with
(SRSDBDiag) while the remaining ones are with (SRSDDiag). The number of iterations and two
accuracy measures are reported in Table 4.9. Computational time ratios of (SRSDDiag)/2 to other
solvers are shown in Table 4.10.
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s 2 3 4 5 6 7 8 9 10

(SRSDDiag) 1080.72 201.44 182.98 230.35 102.31 76.47 80.29 57.92 52.29
(SRSDBDiag) 447.55 362.80 314.22 485.58 485.93 312.37 410.73 359.74 352.83

Time ratio 0.41 1.80 1.72 2.11 4.75 4.08 5.12 6.21 6.75

Table 4.8: Computational times for random instances with different sparsity

(SRSDDiag)/2 SeDuMi CSDP SDPA SDPT3

Iteration 13.80 16.80 16.20 16.20 24.30

RelZXnorm 4.47 × 10−15 5.59× 10−08 1.30 × 10−07 3.80 × 10−09 3.65× 10−11

Relmineig −7.59× 10−16 −2.24 × 10−16 4.96 × 10−13 8.71 × 10−14 8.51× 10−18

Table 4.9: Average measures for random instances with different sparsity

We have seen that for well-conditioned instances, our code can achieve solutions with very high
accuracy. We now move on to test the code with ill-conditioned instances, namely, the instances
without strict complementary slackness or instances with which Slater’s condition almost fails. To
generate instances without strict complementary slackness, we use the code developed by Wei and
Wolkowicz [22]. The instances are generated with n = 50 and m = 1000. The general version of
the code will be used since all matrices are dense. For these hard instances, we apply the block
preconditioner without crossover. The tolerance is set to be 10−14. The results are shown in
Table 4.11. We note that the GN-method has significantly smaller values for ‖ZX‖, RelZXnorm.
This increased accuracy is most probably a result of the fact that the GN-method is derived by
minimizing this measure.

The accuracy is indeed less for these hard instances, even for our code. And the stopping
criterion for all tested instances but one is when the number of iterations of the LSMR subroutine
reaches its maximum limit (set at 5n(n + 1)). SeDuMi and SDPA, and SDPT3 have various kinds
of numerical problems. CSDP controls the tolerance limit (around 10−08); therefore, it does not
incur any numerical problem even though the tolerance is set to be as small as 10−14.

For instances with which Slater’s condition almost fails, we generate the instances randomly
using the alternative theorem for Slater’s condition with respect to the dual problem. The settings
are the same as for the previous test, with tolerance 10−14, block preconditioner, and no crossover.
The results are in Table 4.12.

It turns out that for other solvers, instances with which Slater’s condition almost fails are
difficult to solve but not for our code. Even though no crossover is used, half of the instances have
negative relative minimum eigenvalue of X and Z with average DIMACS2 and DIMACS4 measures
being 1.05× 10−17 and 2.53× 10−16, respectively. We also solve these instances with the crossover
technique; the results are better in terms of computational time (number of iterations) with the
trade-off being negative relative minimum eigenvalues for both X and Z. The average performance
measures of (GRSDBDiag) with crossover is (13.70, 3.40×10−16 ,−1.41×10−13, 2.78×10−13, 5.17×
10−15, 1.61× 10−12, 9.97× 10−16, 1.72× 10−14, 4.71× 10−17, 22.50). This is probably due to the fact
that the problem is still well-conditioned even though Slater’s condition almost fails for the dual
problem. (The Jacobian is non-singular at the optimal solution.) In addition, for these instances,
the optimal solutions are not extremely large in magnitude, which helps the code maintain high
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s 1 2 3 4 5 6 7 8 9 10

SeDuMi 2.84 2.74 1.26 1.15 1.49 0.62 0.53 0.49 0.34 0.30
CSDP 7.33 12.17 6.07 6.77 8.06 4.14 3.21 3.39 2.49 2.17
SDPA 43.35 48.63 22.13 20.95 25.47 12.33 9.25 9.82 7.08 6.04
SDPT3 4.60 8.82 5.79 5.74 7.50 3.94 2.86 2.75 2.27 2.09

Table 4.10: Time ratios relative to (SRSDDiag) for different sparsity

(GRSDBDiag) SeDuMi CSDP SDPA SDPT3

Iteration 29.20 13.60 12.10 12.00 22.70

RelZXnorm 1.32 × 10−12 4.12 × 10−06 6.53 × 10−05 1.91× 10−07 2.97 × 10−08

Relmineig 5.96 × 10−20 6.20 × 10−14 1.44 × 10−15 3.25× 10−12 1.21 × 10−18

DIMACS1 2.16 × 10−12 2.01 × 10−07 3.50 × 10−10 3.79× 10−07 4.62 × 10−10

DIMACS2 0.00 × 1000 0.00× 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000

DIMACS3 1.81 × 10−11 6.34 × 10−15 2.10 × 10−08 2.09× 10−14 1.54 × 10−11

DIMACS4 0.00 × 1000 1.48 × 10−14 0.00 × 1000 0.00 × 1000 0.00 × 1000

DIMACS5 2.07 × 10−12 9.23 × 10−09 1.23 × 10−08 1.58× 10−07 5.70 × 10−11

DIMACS6 1.86 × 10−12 4.99 × 10−09 4.25 × 10−08 3.50× 10−07 1.06 × 10−10

Time 281.45 64.02 69.50 27.31 60.25

Table 4.11: Performance measures; random instances; strict complementarity fails

(GRSDBDiag) SeDuMi CSDP SDPA SDPT3

Iteration 26.00 17.10 13.80 15.20 20.40

RelZXnorm 9.90 × 10−16 6.14 × 10−07 4.61 × 10−07 2.05× 10−07 2.13 × 10−08

Relmineig 1.05 × 10−17 1.06 × 10−15 1.60 × 10−12 1.06× 10−10 1.47 × 10−15

DIMACS1 2.78 × 10−13 1.07 × 10−10 1.10 × 10−12 1.17× 10−13 8.41 × 10−11

DIMACS2 0.00 × 1000 (*) 0.00 × 1000 0.00 × 1000 0.00 × 1000 0.00 × 1000

DIMACS3 1.42 × 10−12 3.56 × 10−14 5.21 × 10−09 6.83× 10−08 2.59 × 10−13

DIMACS4 0.00 × 1000 (*) 1.48 × 10−14 0.00 × 1000 0.00 × 1000 0.00 × 1000

DIMACS5 1.09 × 10−14 2.77 × 10−12 1.38 × 10−09 2.02× 10−14 1.26 × 10−11

DIMACS6 3.44 × 10−15 3.16 × 10−12 8.54 × 10−10 4.43× 10−08 1.82 × 10−12

Time 58.04 75.02 76.42 32.32 48.98

Table 4.12: Performance measures; random instances; dual Slater’s CQ almost fails
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accuracy.
The next test is for the Lovász theta function problem. We generate a random graph with

n = 100 nodes and the number of edges is approximately n(n−1)/4. According to [7, 14], these are
the most difficult instances to solve. We first test the specialized version of the code and the special
block preconditioner that exploits the block structure of the problem. The tolerance is set to 10−12

and we run the code with crossover for 100 random instances. The results for (TRSDMBDiag) (with
multiple diagonal blocks) are shown in Table 4.13.

Iteration RelZXnorm Relmineig

Average 18.31 4.85 × 10−15 2.47 × 10−13

Best 16.00 6.42 × 10−17 −1.28× 10−15

Worst 23.00 9.74 × 10−13 −3.58× 10−11

Table 4.13: Accuracy measures for random Lovász theta function instances

We now select 10 hard instances in terms of number of iterations and compare the results using
other solvers including (SRSDDiag) and (TRSDDiag), both with crossover since all these instances
are well-conditioned. The results are in Tables 4.14 and 4.15. Similarly, 10 easy instances are
selected and the numerical results for these instances are shown in Table 4.16 and 4.17.

SeDuMi CSDP SDPA SDPT3 (TRSDMBDiag)

Iteration 21.00 17.10 16.00 22.60 21.00

RelZXnorm 5.00 × 10−08 1.56 × 10−08 2.38 × 10−07 1.73× 10−11 2.67 × 10−14

Relmineig 3.34 × 10−14 7.09 × 10−14 3.49 × 10−12 2.32× 10−18 6.74 × 10−13

DIMACS1 1.84 × 10−11 6.07 × 10−14 5.09 × 10−14 1.27× 10−13 1.25 × 10−16

DIMACS2 0.00 × 1000 0.00× 1000 0.00 × 1000 0.00 × 1000 3.11 × 10−15

DIMACS3 9.09 × 10−16 1.09 × 10−07 1.52 × 10−14 8.87× 10−13 8.75 × 10−15

DIMACS4 2.39 × 10−13 0.00× 1000 0.00 × 1000 0.00 × 1000 4.82 × 10−12

DIMACS5 9.09 × 10−12 4.44 × 10−10 9.61 × 10−09 1.47× 10−13 5.92 × 10−16

DIMACS6 9.93 × 10−14 2.10 × 10−10 9.61 × 10−09 7.08× 10−14 4.19 × 10−16

Time 90.46 13.05 6.02 12.91 158.09

Table 4.14: Performance measures for hard random Lovász theta function instances

The final test we consider is to solve some instances in SDPLIB (see Borchers [2]). Since these
instances are considered hard instances, we use block diagonal preconditioner without crossover.
In addition, LSQR will be used instead of LSMR and one of the stopping criteria is when the
number of LSQR iterations reaches the maximum limit, (set to be 5n(n + 1)). We run our code for
all instances with n ≤ 100, which include the set of control, hinf, gpp, mcp, qap, theta, and truss

instances. We report the main performance measure relZXnorm, and in addition, the number of
iterations, and the total computational time. Table (4.18) shows the results for the set of control

instances.
The hardness of the control instances is due to the failure of strict complementary slackness.

For well-conditioned problems, the (infeasible) starting points are set to be simply X0 = Z0 = I.
This controls the initial value of µ. Since we start with an infeasible solution, we would like to
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(SRSDDiag) (TRSDDiag) (TRSDMBDiag)

Iteration 23.90 21.00 21.00

RelZXnorm 5.62 × 10−14 3.26 × 10−14 2.67× 10−14

Relmineig 2.23 × 10−12 9.51 × 10−13 6.74× 10−13

DIMACS1 9.89 × 10−17 1.11 × 10−16 1.25× 10−16

DIMACS2 5.76 × 10−15 4.46 × 10−15 3.11× 10−15

DIMACS3 1.89 × 10−14 8.71 × 10−15 8.75× 10−15

DIMACS4 1.59 × 10−11 6.80 × 10−12 4.82× 10−12

DIMACS5 1.73 × 10−15 1.87 × 10−15 5.92× 10−16

DIMACS6 1.75 × 10−15 1.85 × 10−15 4.19× 10−16

Time 214.99 126.74 158.09

Table 4.15: Performance measures for hard random Lovász theta function instances

SeDuMi CSDP SDPA SDPT3 (TRSDMBDiag)

Iteration 20.20 16.10 16.00 21.40 16.30

RelZXnorm 7.34 × 10−08 8.33 × 10−08 9.61 × 10−08 6.76× 10−11 2.18 × 10−14

Relmineig 3.54 × 10−14 3.69 × 10−14 1.97 × 10−12 1.24× 10−17 5.36 × 10−13

DIMACS1 1.78 × 10−11 1.86 × 10−14 2.28 × 10−15 1.85× 10−13 1.23 × 10−16

DIMACS2 0.00 × 1000 0.00× 1000 0.00 × 1000 0.00 × 1000 4.02 × 10−15

DIMACS3 8.21 × 10−16 3.38 × 10−08 1.55 × 10−14 1.61× 10−12 8.70 × 10−15

DIMACS4 2.51 × 10−13 0.00× 1000 0.00 × 1000 0.00 × 1000 3.18 × 10−12

DIMACS5 1.57 × 10−11 1.35 × 10−10 5.28 × 10−09 2.92× 10−13 1.31 × 10−15

DIMACS6 1.13 × 10−13 8.91 × 10−11 5.28 × 10−09 1.88× 10−13 5.44 × 10−16

Time 88.95 13.09 6.01 12.37 63.43

Table 4.16: Performance measures for easy random Lovász theta function instances

(SRSDDiag) (TRSDDiag) (TRSDMBDiag)

Iteration 20.00 16.30 16.30

RelZXnorm 9.22 × 10−17 3.03 × 10−14 2.18× 10−14

Relmineig 3.41 × 10−15 1.72 × 10−12 5.36× 10−13

DIMACS1 1.35 × 10−16 1.23 × 10−16 1.23× 10−16

DIMACS2 2.48 × 10−17 1.71 × 10−14 4.02× 10−15

DIMACS3 1.74 × 10−14 8.56 × 10−15 8.70× 10−15

DIMACS4 2.41 × 10−14 1.26 × 10−11 3.18× 10−12

DIMACS5 1.91 × 10−16 2.13 × 10−15 1.31× 10−15

DIMACS6 2.67 × 10−17 1.34 × 10−15 5.44× 10−16

Time 96.39 47.34 63.43

Table 4.17: Performance measures for easy random Lovász theta function instances

26



(SRSDBDiag) SeDuMi CSDP SDPA SDPT3

control1
7.19 × 10−11

(36, 3.23)
1.24 × 10−04

(29, 0.57)
1.15× 10−06

(20, 0.15)
1.54 × 10−04

(28, 0.14)
3.72 × 10−06

(22, 0.84)

control2
6.50 × 10−07

(37, 37.12)
9.01 × 10−04

(30, 0.48)
2.86× 10−07

(23, 0.19)
1.13 × 10−04

(30, 0.43)
3.07 × 10−05

(21, 0.72)

control3
1.80 × 10−05

(37, 374.44)
4.10 × 10−03

(32, 1.43)
2.26× 10−06

(24, 1.07)
2.53 × 10−04

(35, 2.50)
3.96 × 10−04

(21, 1.32)

control4
4.84 × 10−05

(35, 1370.18)
4.82 × 10−03

(33, 1.83)
2.03× 10−06

(24, 2.83)
1.45 × 10−04

(37, 8.90)
7.67 × 10−05

(21, 2.68)

control5
2.73 × 10−05

(38, 5250.32)
2.08 × 10−02

(34, 4.48)
2.03× 10−06

(25, 5.36)
5.61 × 10−04

(38, 19.58)
1.36 × 10−04

(22, 5.25)

control6
9.67 × 10−06

(38, 18923.17)
3.70 × 10−02

(38, 9.77)
1.75× 10−04

(61, 30.64)
1.31 × 10−03

(41, 51.02)
3.58 × 10−04

(23, 10.10)

Table 4.18: Performance measures for control instances

reduce the residuals to zero quickly and this can be done if the step size is close to 1 in the first few
iterations. The step size is determined by the positive definiteness of the current solution. If we
start with X0 = Z0 = I for these control instances, the code does not converge since the step size
becomes smaller and smaller and the iterations are very close to the boundary of the semidefinite
cone. In order to remedy this situation, we start with larger starting solutions, X0 = Z0 = ǫ−α0I,
where α0 ≥ 0 and ǫ is the main tolerance. The above results are with these new starting points
with α0 = 0.25. We can see that (SRSDBDiag) performs well as compared to the other solvers,
but it does not scale well in terms of problem size since the values of m are small compared to
n(n + 1)/2.

The next instance is gpp100 and the results are show in Table 4.19. We show additional perfor-
mance measures, DIMACS1 (primal feasiblity), DIMACS3 (dual feasiblity), and DIMACS5 (duality
gap), and also the Frobenius norm of the dual optimal Z. For this instance, the Gauss-Newton
direction ∆y is extremely large and so is the dual solution Z. The dual feasibility performance
measure therefore is reduced significantly. These issues can be explained by the fact that Slater’s
condition almost fails for the primal problem. According to the alternative theorem, Slater’s condi-
tion for the primal problem fails when there exists a dual solution y such that A∗y � 0, y 6= 0, and
b′y = 0. If this is the case, if y∗ is an optimal dual solution, then y∗ + αy is also an dual optimal
solution for all α ≥ 0. Therefore, if Slater’s condition almost fails for the primal problem, the set of
(dual) optimal solutions can be very large, which can explain why Z has such an extremely large
magnitude. In the next version of the code, we will consider some preprocessing routines to detect
and resolve the issue of Slater’s condition for the primal problem.

The two following tables, Table 4.20 and 4.21, are for hinf instances. These instances appear
to have both issues that we mentioned above: stagnanation due to small step sizes, and Slater’s
condition almost fails for the primal problem. Since these are small instances, we can check Slater’s
condition for the primal problem by minimizing |b′y| subject to A∗y � 0 and the additional
constraint e′y = 1 to make sure that y 6= 0. The optimal values of these optimization problems are
in the first columns. We can see they are indeed very small except for hinf9 and hinf2 instances.
For these instances, we use α0 = 0.1 for most of them.
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(SRSDBDiag) SeDuMi CSDP SDPA SDPT3

gpp100
6.97 × 10−02

(41, 2414.59)
1.94 × 10−03

(31, 2.20)
1.27× 10−03

(19, 0.56)
9.20 × 10−04

(22, 0.76)
1.58 × 10−06

(18, 0.70)

DIMACS1 2.46 × 10−14 1.86 × 10−06 1.27× 10−08 4.80 × 10−10 1.50 × 10−09

DIMACS3 5.30 × 10−08 2.99 × 10−15 4.38× 10−10 1.01 × 10−11 1.12 × 10−11

DIMACS5 7.94 × 10−08 −1.08 × 10−06 −8.60 × 10−10 2.08 × 10−09 −2.05× 10−08

||Z||F 6.51 × 1008 1.71 × 1003 7.89 × 1005 2.88 × 1006 6.22× 1004

Table 4.19: Performance measures for gpp100 instance

(SRSDBDiag) SeDuMi CSDP SDPA SDPT3

hinf1

1.90× 10−10
5.13 × 10−02

(33, 1.38)
1.70 × 10−02

(21, 0.22)
1.37 × 10−03

(19, 0.04)
6.46 × 10−03

(15, 0.05)
2.32 × 10−02

(13, 0.24)

hinf2

4.16× 10−05
1.92 × 10−04

(26, 1.10)
1.35 × 10−02

(17, 0.13)
2.74 × 10−03

(61, 0.06)
3.15 × 10−05

(15, 0.05)
1.86 × 10−04

(15, 0.30)

hinf3

1.29× 10−10
3.13 × 10−01

(29, 1.35)
2.89 × 10−01

(18, 0.12)
7.22 × 10−04

(61, 0.08)
1.41 × 10−03

(13, 0.05)
6.08 × 10−04

(20, 0.36)

hinf4

2.47× 10−09
7.67 × 10−03

(45, 1.69)
1.10 × 10−02

(31, 0.34)
1.79 × 10−04

(17, 0.04)
8.95 × 10−04

(15, 0.05)
2.06 × 10−04

(21, 0.37)

hinf5

5.39× 10−10
1.17 × 10−01

(50, 1.55)
7.64 × 10−01

(18, 0.15)
1.34 × 10−02

(61, 0.09)
4.89 × 10−03

(14, 0.05)
7.57 × 10−03

(22, 0.37)

hinf6

2.28× 10−09
7.18 × 10−01

(50, 1.32)
3.78 × 10−01

(22, 0.25)
1.09 × 10−01

(61, 0.09)
4.82 × 10−01

(21, 0.07)
5.13 × 10−02

(21, 0.36)

hinf7

4.08× 10−09
6.78 × 10−02

(26, 1.96)
1.90× 1000

(19, 0.14)
1.95 × 10−03

(61, 0.08)
2.74 × 1000

(9, 0.04)
2.23 × 10−02

(19, 0.33)

hinf8

8.92× 10−10
2.25 × 10−01

(35, 2.84)
3.74 × 10−01

(21, 0.29)
5.01 × 10−03

(61, 0.08)
1.29 × 10−01

(14, 0.05)
4.15 × 10−03

(21, 0.37)

Table 4.20: Performance measures for the first eight hinf instances
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(SRSDBDiag) SeDuMi CSDP SDPA SDPT3

hinf9

1.53× 10−02
9.46 × 10−09

(29, 1.42)
5.28 × 10−03

(21, 0.21)
1.23 × 10−05

(61, 0.06)
2.40 × 10−09

(23, 0.08)
6.99 × 10−04

(22, 0.38)

hinf10

4.26× 10−11
3.06 × 10−01

(50, 9.25)
2.96 × 10−01

(25, 0.40)
6.27 × 10−03

(61, 0.07)
2.55 × 10−01

(28, 0.05)
8.13 × 10−01

(23, 0.45)

hinf11

7.10× 10−11
2.61 × 10−01

(50, 5.85)
3.23 × 10−01

(25, 0.40)
7.00 × 10−06

(61, 0.10)
1.87 × 10−02

(43, 0.12)
2.00 × 10−01

(24, 0.56)

hinf12

2.92× 10−11
2.29 × 1000

(50, 3.99)
5.34× 1000

(38, 0.36)
1.02 × 1001

(33, 0.07)
9.02 × 1000

(28, 0.26)
1.32 × 1001

(55, 1.40)

hinf13

4.42× 10−08
3.88 × 1000

(27, 13.59)
1.19× 1001

(15, 0.99)
1.15 × 1001

(61, 0.52)
5.63 × 1000

(12, 0.20)
6.56 × 1000

(30, 1.48)

hinf14

4.69× 10−09
4.93 × 10−02

(46, 32.00)
3.89 × 10−02

(23, 1.50)
1.55 × 10−02

(61, 0.75)
1.88 × 10−01

(15, 0.22)
8.18 × 10−02

(28, 1.50)

hinf15

3.16× 10−07
7.39 × 1000

(27, 47.83)
6.51× 1000

(16, 0.53)
7.08 × 10−01

(61, 0.90)
7.25 × 1000

(13, 0.26)
2.06 × 1001

(27, 1.28)

Table 4.21: Performance measures for the remaining seven hinf instances

The performance measure for the ZX norm is quite large for all these instances (for all solvers),
except for the hinf9 instance where Slater’s condition for the primal problem can be considered
to be satisfied. In order to compare more thorougly, we again look at DIMACS1, DIMACS3, and
DIMACS5. The two hardest instances are hinf12 and hinf5, which have optimal values with only
one or two signigicant digits (see Borchers [2]). The next two tables, Table 4.22 and 4.23, show the
results for these two instances.

(SRSDBDiag) SeDuMi CSDP SDPA SDPT3

hinf12

2.92× 10−11
2.29 × 1000

(50, 3.99)
5.34 × 1000

(38, 0.36)
1.02 × 1001

(33, 0.07)
9.02 × 1000

(28, 0.26)
1.32 × 1001

(55, 1.40)

DIMACS1 1.35 × 10−11 4.40× 10−12 7.33 × 10−09 1.43 × 10−08 2.30 × 10−11

DIMACS3 2.67 × 10−07 1.26× 10−07 2.66 × 10−09 4.28 × 10−09 6.24 × 10−06

DIMACS5 −9.96 × 10−05 −3.31 × 10−04 −3.08 × 10−02 −5.56 × 10−02 −1.34× 10−05

Table 4.22: Performance measures for hinf12 instance

For the hinf12 instance, the large magnitude of Z makes all the solvers have negative duality
gap. This can be explained by the fact that the dual feasibility error measure is quite large for all
solvers due to the large magnitude of the dual solutions. If we accept the primal feasiblity error
in the order of 10−11, SeDuMi and SDPT3 give the primal objective values of −3.14 × 10−03 and
−5.45×10−05, respectively. Our code (SRSDBDiag) gives the best objective value of −2.65×10−03.
For hinf5, it is clear that our code (SRSDBDiag) performs better than other solvers based on primal
and dual feasibility and duality gap. With both primal and dual feasibility in the order of 10−10,
the primal and dual objective value are −3.62208 × 1002 and −3.62218 × 1002, respectively, which
implies the optimal value is −3.6221 × 1002 with five significant digits.

For mcp100, theta1, theta2, truss1, truss3, and truss4 instances, our code (SRSDBDiag) can get
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(SRSDBDiag) SeDuMi CSDP SDPA SDPT3

hinf5

5.39× 10−10
1.17 × 10−01

(50, 1.55)
7.64 × 10−01

(18, 0.15)
1.34 × 10−02

(61, 0.09)
4.89 × 10−03

(14, 0.05)
7.57 × 10−03

(22, 0.37)

DIMACS1 3.66 × 10−10 2.87 × 10−05 1.35 × 10−06 8.65 × 10−05 1.37 × 10−04

DIMACS3 4.55 × 10−10 1.66 × 10−12 1.11 × 10−07 5.30 × 10−09 4.00 × 10−09

DIMACS5 1.31 × 10−05 −4.07× 10−04 −8.55× 10−05 5.20 × 10−04 −4.26 × 10−04

Table 4.23: Performance measures for hinf5 instance

to 10−14 for the relative ZX norm while all other solvers reach the order of 10−09. The remaining
test is for the set of qap instances. We again observe the issue of Slater’s condition for the primal
problem which causes the Gauss-Newton direction ∆y (and the dual solution Z) to have extremely
large magnitude. Table 4.24 shows the results for these instances. Except for qap5, the relative
ZX norm error measures obtained from our code (SRSDBDiag) are quite large. However, if we
consider primal and dual feasibility and duality gap, it performs as well as other solvers if not
better. For example, Table 4.25 shows these results for qap7 instance. If we allow primal and dual
feasibility to be in the order of 10−14 and 10−08, we obtain the primal and dual objective values
are 4.248199× 1002 and 4.248196× 1002 for our code (SRSDBDiag), which has only one significant
digit less than reported in Borchers [2].

(SRSDBDiag) SeDuMi CSDP SDPA SDPT3

qap5

4.43× 10−11
2.72 × 10−08

(45, 15.64)
2.58 × 10−05

(12, 0.31)
7.92 × 10−07

(14, 0.08)
2.84 × 10−04

(12, 0.05)
4.51 × 10−10

(12, 0.56)

qap6

6.74× 10−11
8.70 × 10−03

(34, 51.21)
5.00 × 10−03

(25, 0.97)
3.27 × 10−05

(16, 0.19)
2.04 × 10−02

(17, 0.15)
9.07 × 10−06

(18, 1.47)

qap7

2.12× 10−10
7.37 × 10−03

(36, 322.15)
1.69 × 10−03

(23, 1.24)
1.11 × 10−05

(16, 0.43)
1.18 × 10−02

(16, 0.46)
1.26 × 10−05

(18, 2.56)

qap8

1.17× 10−09
9.87 × 10−03

(40, 2859.53)
2.53 × 10−03

(27, 3.09)
9.89 × 10−06

(16, 0.98)
8.93 × 10−04

(21, 1.19)
8.06 × 10−05

(17, 1.32)

qap9

1.79× 10−09
2.01 × 10−03

(40, 7116.94)
1.10 × 10−03

(26, 6.09)
3.21 × 10−06

(17, 1.82)
2.56 × 10−03

(13, 1.44)
5.62 × 10−05

(18, 4.13)

Table 4.24: Performance measures for qap instances

(SRSDBDiag) SeDuMi CSDP SDPA SDPT3

qap7

2.12× 10−10
7.37 × 10−03

(36, 322.15)
1.69 × 10−03

(23, 1.24)
1.11 × 10−05

(16, 0.43)
1.18 × 10−02

(16, 0.46)
1.26 × 10−05

(18, 2.56)

DIMACS1 7.73 × 10−14 1.62 × 10−07 3.36 × 10−10 1.29 × 10−07 5.21 × 10−07

DIMACS3 4.91 × 10−08 2.36 × 10−13 1.70 × 10−08 1.72 × 10−11 3.21 × 10−09

DIMACS5 4.56 × 10−07 −2.86× 10−07 −3.37× 10−06 1.90 × 10−04 −1.88 × 10−05

Table 4.25: Performance measures for qap7 instance
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4.2 Concluding Remarks

We have presented a robust algorithm for SDP that is based on a matrix free, inexact Gauss-
Newton method. The method takes advantage of well posedness as well as sparsity. Our numerical
tests indicate that we get a reduction in the number of iterations (though each is generally more
expensive) and an improvement in the accuracy of solutions, compared to current public domain
software.

Though our algorithm is currently not competitive with regard to total solution time, it can be
used in comparison testing of other algorithms since it provides high accuracy solutions. Further
work on efficient preconditioning, scaling of the initial starting points, and parallelization is needed
to make the algorithm more competitive.
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Index

Mat, 4
X , 5
Z, 5
vec, 4
Qj := sMat(Q(:, j)), 6
ω condition number, 12
sMat, 4
svec, 4

|S| :=
(

S2
)

1

2 , 6
GRSDBDiag, block diagonal preconditioner, 23
SRSDBDiag, block diagonal preconditioner, 20
SRSDDiag, diagonal preconditioner, 19
SRSDo, no preconditioner, 19
TRSDDiag, diagonal preconditioner, 25
TRSDMBDiag, multiple diagonal block preconditioner,

25

adjoint linear transformation, 3

barrier parameter, 3
barrier parameter, µ, 3

central path, 5
CQ, constraint qualification, 3
crossover technique, 10, 20

DIMACS performance measures, 21
DSDP, 3

Jacobian, J , 5

local convergence theorem, 8
Lovász theta number, TN, 14

optimal block diagonal preconditioner, 12

path following, 3
primal-dual optimality conditions, 3
primal-dual SDP, 3
PSDP, 3

Slater constraint qualification, 3

TN, Lovász theta number, 14
triangular number, t(n) = n(n + 1)/2, 4
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