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Abstract

Semidefinite Programming (SDP) is currently one of the most ac-
tive areas of research in optimization. SDP has attracted researchers
from a wide variety of areas because of its theoretical and numerical
elegance as well as its wide applicability. In this paper we present
a survey of two major areas of application for SDP, namely discrete
optimization and matrix completion problems.

In the first part of this paper we present a recipe for finding SDP re-
laxations based on adding redundant constraints and using Lagrangian
relaxation. We illustrate this with several examples. We first show
that many relaxations for the Max-Cut problem (MC) are equivalent
to both the Lagrangian and the well-known SDP relaxation. We then
apply the recipe to obtain new strengthened SDP relaxations for MC
as well as known SDP relaxations for several other hard discrete op-
timization problems.

In the second part of this paper we discuss two completion prob-
lems, the positive semidefinite and the Euclidean distance matrix com-
pletion problem. We present some theoretical results on the existence
of such completions and then proceed to the application of SDP to
find approximate completions. We conclude this paper with a new
application of SDP to find approximate matrix completions for large
and sparse instances of Euclidean distance matrices.
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1 Introduction

There have been many survey articles written in the last few years on semidef-
inite programming (SDP) and its applicability to discrete optimization and
matrix completion problems [2, 5, 37, 38, 39, 62, 77, 78, 106, etc.] This high-
lights the fact that SDP is currently one of the most active areas of research
in optimization. In this paper we survey in depth two application areas where
SDP research has recently made significant contributions. Several new results
are also included.

The first part of the paper is based on the premise that Lagrangian relax-
ation is “best”. By this we mean that good tractable bounds can always be
obtained using Lagrangian relaxation. Since the SDP relaxation is equivalent
to the Lagrangian relaxation, we explore approaches to obtain tight SDP
relaxations for discrete optimization by applying a recipe for finding SDP
relxations using Lagrangian duality. We begin by considering the Max-Cut
problem (MC) in Section 2.2. We first present several different relaxations
of MC that are equivalent to the SDP relaxation, including the Lagrangian
relaxation, the relaxation over a sphere, the relaxation over a box, and the
eigenvalue relaxation. This illustrates our theme on the strength of the La-
grangian relaxation. The question of which relaxation is most appropriate
in practice for a given instance of MC remains open. Section 2.5 contains
an overview of the main algorithms that have been proposed to compute the
SDP bound, and Section 2.6 presents an overview of the known qualitative
results about the quality of the SDP bound. We then proceed in Section
2.7 to derive new strengthened SDP relaxations for MC. To obtain these re-
laxations we apply the recipe for finding SDP relaxations presented in [101].
This recipe can be summarized as: add as many redundant quadratic con-
straints as possible; take the Lagrangian dual of the Lagrangian dual; remove
redundant constraints and project the feasible set of the resulting SDP to
guarantee strict feasibility. We also present several interesting properties of
this tighter SDP relaxation. In particular, we show that it always improves
on the well-known SDP relaxation whenever the latter is not optimal [7, 8].
In Section 3 we discuss the application of Lagrangian relaxation to general
quadratically constrained quadratic problems and in Section 4 we present
applications of the recipe to other discrete optimization problems, including
the graph partitioning, quadratic assignment, max-clique and max-stable-set
problems.

The second part of the paper presents several SDP algorithms for the pos-



itive semidefinite and the Euclidean distance matrix completion problems.
The algorithms are shown to be efficient for large sparse problems. Sec-
tion 5.1 presents some theoretical existence results for completions based on
chordality. This follows the work in [42]. An approach to solving large sparse
completion problems based on approximate completions [57] is outlined in
Section 5.2. In Section 5.3 a similar approach for Euclidean distance matrix
completions [1] is presented. However, the latter does not take advantage
of sparsity and has difficulty solving large sparse problems. We conclude in
Section 5.4 with a new characterization of Euclidean distance matrices from
which we derive an algorithm that successfully exploits sparsity [3].

1.1 Notation and Preliminaries

We let §™ denote the space of n X n symmetric matrices. This space has
dimension #(n) := n(n + 1)/2 and is endowed with the trace inner product
(A, B) = trace AB. We let Ao B denote the Hadamard (elementwise) matrix
product and A > 0 denote the Lowner partial order on &7, i.e. for A € ™,
A > 0 if and only if A is positive semidefinite. We denote by P the cone of
positive semidefinite matrices.

We also work with matrices in the space S{"*1. For given Y € S+,
we index the rows and columns of Y by 0,1,...,¢(n). We will be particularly
interested in the vector x obtained from the first (Oth) row (or column) of YV’
with the first element dropped. Thus, in our notation, x = Y§ 1.4(n)-

We let e denote the vector of ones and E = ee’ the matrix of ones; their

dimensions will be clear from the context. We also let ¢; denote the 'i,th unit

vector and define the elementary matrices E;; := %(e,’e? +e;el), if i # g,

E;; = %(e,@?—l— e;el). For any vector v € R", we let ||v] := VvTv denote the
f5 norm of v.
We use operator notation and operator adjoints. The adjoint of the linear

operator A is denoted A" and satisfies (by definition)
(Az,y) = (z, A7y), Va,y.

Given a matrix S € 8", we now define several useful operators. The operator
diag (S) returns a vector with the entries on the diagonal of S. Given v € R”,
the operator Diag (v) returns an n X n diagonal matrix with the vector v on
the diagonal. It is straightforward to check that Diag is the adjoint operator
of diag. We use both Diag(v) and Diagv provided the meaning is clear,



and the same convention applies to diag and all the other operators. The
symmetric vectorizing operator svec satisfies s = svec(S) € R where s
is formed column-wise from S and the strictly lower triangular part of S is
ignored. Its inverse is the operator sMat, so S = sMat (s) if and only if
s = svec (S). Note that the adjoint of svec is not sMat but svec* = hMat
with hMat (s) being the operator that forms a symmetric matrix from s like
sMat but also multiplies the off-diagonal terms by % in the process. Similarly,
the adjoint of sMat is the operator dsvec which acts like svec except that
the off-diagonal elements are multiplied by 2.

For notational convenience, we also define the symmetrizing diagonal vec-
tor operator

sdiag (z) := diag (sMat (z))
and the vectorizing symmetric vector operator
vsMat (z) := vec (sMat (z)),
where vec (S) returns the n?-dimensional vector formed column-wise from §

like svec but with the complete columns of the matrix S. Note that the
adjoint of vsMat is:

1
vsMat *(z) = dsvec 5 (Mat (z) + Mat (:z:)T) )

Let us summarize here some frequently used operators in this paper:

diag® = Diag
svec* = hMat
svec ™! = sMat
dsvec™ = sMat
vsMat™* = dsvec [% (Mat (1) + Mat ()T)] )

We will frequently use the following relationships between matrices and
vectors:

X = po’ & sMat (z) € 8", and YV = < y; ) (yo 27) € ST yy € R



2 The Max-Cut Problem

We begin our presentation with the study of one of the simplest NP-hard
problems, albeit one for which SDP has been successful. The Max-Cut
Problem (MC) is a discrete optimization problem on undirected graphs with
weights on the edges. Given such a graph, the problem consists in finding a
partition of the set of nodes into two parts, which we call shores, to maximize
the sum of the weights on the edges that are cut by the partition (we say
that an edge is cut if it has exactly one end on each shore of the partition).
In this paper we shall assume that the graph in question is complete (if not,
non-existing edges can be added with zero weight to complete the graph
without changing the problem) and we require no restriction on the type of
edge weights (so, in particular, negative edge weights are permitted).

Following [87], we can formulate MC as follows. Let the given graph G
have node set {1,...,n} and let it be described by its weighted adjacency
matrix A = (w;j). Let L := Diag(Ae) — A denote the Laplacian matrix
associated with the graph, where the linear operator Diag returns a diagonal
matrix with diagonal formed from the vector given as its argument, and e
denotes the vector of all ones. Let us also define the set F, := {£1}", and
let the vector v € F, represent any cut in the graph via the interpretation
that the sets {i : v; = +1} and {7 : v; = —1} form a partition of the node set
of the graph. Then we can formulate MC as:

« 1T
pr = max v’ Lv
(MC1) s.t. v € Fa, (21)

where here and throughout this paper p* denotes the optimal value of the

MC problem.
It is straightforward to check that

1 1 —vv;
pe = Y ()

1<J

and that the term multiplying w;; in the sum equals one if the edge (1, )
is cut, and zero otherwise. Analogous quadratic terms having this property
will be used in our formulations of MC.

We can view MC1 as the problem of maximizing a homogeneous quadratic
function of v over the set F,,. We show that this problem is equivalent to
problem MCQ below which has a more general objective function. This



equivalence shows that all the results about MC1 also extend to MCQ. Fur-
thermore, the formulation MCQ will help us derive relaxations for MC in
Sections 2.2 and 2.3.

Let us therefore consider the quadratic objective function

q(v) == v Qv — 2cTw

(the meaning of the subscript 0 will become clear at the beginning of Section
2.2) and the corresponding +1-constrained quadratic problem MCQ:

(MCQ)  maxgo(v). (2.2)

Clearly, MC1 corresponds to the choice @@ = iL and ¢ = 0. Conversely,
we can homogenize the problem MCQ by increasing the dimension by one.
Indeed, given ¢o(v), define the (n41) x (n+1) matrix Q° obtained by adding
a 0% dimension to () and placing the vector ¢ in the new row and column,

so that
0 —cT ]

e 23)

If we consider the variable v = <7;0> € F.+1 and the new quadratic form

45(0) =07 Q = vT Qv — 2vo(cTv),

then we get an equivalent MC problem.

2.1 Higher-dimensional Embeddings of MC

We can express the feasible set F,, in several different ways by appropriately
embedding all its points in spaces of varying dimensions. In this section
we take a geometrical view of several such embeddings and the respective
formulations of MC. Relaxations of these formulations will be considered in
the remainder of Section 2.

1. If we define
Fa(l):={veR":|v|=1,i=1,...,n}, (2.4)

then clearly F,(1) = F, and the formulation MC1 corresponds to op-
timizing fv” Lv over F,(1).



For later reference, we note here that F,,(1) is the set of extreme points
of the unit hypercube in R" (the /, norm unit ball). Furthermore, all
the points v € F,(1) satisfy the constraints

villz =1V i, |owj| = |v] vl =1Vi< .

We have deliberately added the transpose, even though the variables v;
are all scalars, to emphasize the similarity with the next embeddings.

. For any given positive integer p, we can lift each of the variables v;
from a scalar to a vector of length p by defining

Falp) = {VERP:V =]vy,.. o7,

[villa = 1V 4, [v]v;] = 1V i < j}. (2.5)

Note that if p = 1 then we simply recover F,,(1). For p > 1 the con-
straints on the inner products restrict the cosines of the angles between
any two vectors v; and v; to equal +1. Hence for 1 = 2,... n, either
v; = vy or v; = —vy, and we can obtain a cut by choosing the sets
{i:vlvy = +1} and {i : vlv; = —1} as the shores. Thus the objective
function may be written as:

1 —vlv;
> wi (72 ])
i<y

or, in terms of the Laplacian, as:

1
Ztrace VTLV.

We have thus derived our second formulation of MC:

@ = max itrace VILV
st v €RP vl =1 Vi
lvlv;] =1 Vi<j
V=[vy...00)"

(MC2) (2.6)

The commutativity of the arguments inside the trace means that
1 T 1 T
ZtraceV LV = trace ZL Vve,

9



and this observation leads us to an embedding of MC into &, the
space of symmetric n X n matrices, by rewriting MC2 in terms of the

variable X € §™ which is defined by
X;;:=v]v;, or equivalently, X :=VVT,
Then the constraint ||v;||; = 1 is equivalent to diag (X) = e and
lwlv;| =1 |X;| =1, Vi<j.

Finally, X = VVT & X > 0, and our third formulation of MC is:

p* = max itrace LX (: %E w;;(1 — X,))

i<J
(MC3) s.b. diag (X) =e (2.7)
Xl =1, Vi<
X >0

Note that although each X;; can be interpreted as the cosine of the
angle between some vectors v; and v;, the length p of these vectors
does not appear explicitly in the formulation MC3.

Having derived MC3, we can obtain yet another formulation by apply-
ing the following Theorem:

Theorem 2.1 (/8, Theorem 3.2]) Let X be an nxn symmetric matriz.
Then

X >0,X € {+1}™"  if and only if X = zz’, for some x € {+1}".

Thus we can replace the +1 constraint on the elements of X by the
requirement that the rank of X be equal to one. Hence we obtain our
fourth formulation of MC:

@* = max itrace LX
s.b. diag (X) =e
(MC4) rank(X) = 1 (2.8)
X>0,Xes".

10



3. We now introduce an embedding of MC in a space of even higher di-
mension. This embedding is interesting because of its connection to
the strengthened SDP relaxations that we present in Section 2.7.

For any given positive integer ¢, let us define the set:

Fimy+1(q) = {U € RUECIHDX [T = [ug, uyg, . . .,ut(n)]T,
|lwill2=1Ve=0,1,...,¢t(n),
lulu;] =1Vi=1,...,t(n),
sMat (uo Uy ... uOTut ) = 0},

(2.9)

where t(i) = i(i;'l). The constraints

lugu;l =1Vi and sMat (ugui,...,uduym) = 0

imply (by Theorem 2.1) that the matrix X = sMat (uo U, ... ,uOTut(n))
has rank equal to one. By analogy with the previous embedding in ™,
we can therefore write the following interpretation:

uOTut(j_l)_H' = X;;=vlv;, V1<i<j<n. (2.10)

This means that we can think of the cosines of the angles between ug,
the first row of U, and every other row w;;_1)4i,1 <@ < 7 < n, as
being equal to the cosines of the angles between the vectors v; and v;
(corresponding to the indices ¢ and j) in the previous embedding. We
can thus write down the objective function in terms of the entries in
the first row of U:

1— UoTUt(j—1)+i
Z Wi 2 '

i<J

Let us now define the matrix:

o 0 %dsvec (L)T
Hy, = <%dSV6C(L) 0 '

Then, since

i 1 1
szg ( uo Ut(] D+ ) = Ztrace HLUUT = Ztrace UTHLU,

1<J

11



we can write down our fifth formulation of MC:

*

@ = max itrace UTH, U
st u; € R |uilla =1 Vi
(MC5) luguil =1 Vi=1,....t(n) (2.11)
sMat (uOTul, e uOTut(n)) =0
T

U= [uo .. .ut(n)]

As for the remaining entries of U, we can interpret them as:

UtT(j_1)+,'Ut(l—1)+k = (v v))(viw),V1<i<j<n,VI<k<I<n.

(2.12)
This interpretation is particularly interesting if we use again the anal-
ogy with the previous embedding as in (2.10). If X = VV7T with
V € F.(1) (so V is a column vector) then the elements of X always
satisty the equation X = %Xz, i.e. each entry of X is equal to the aver-
age of n products of entries of X. Using the interpretations (2.10) and
(2.12), this is equivalent to the constraint that for each k = 1,...,¢(n),
uluy, be equal to the average of n specific elements u! u; with 7,7 > 1.
For the verification of the equation relating X and X? and a much
detailed discussion of these interpretations, see Section 2.7.

We have thus embedded the feasible set F,, of MC in several different
spaces and obtained corresponding formulations for MC. We now illustrate
in the next three sections what we mean when we claim that the Lagrangian
relaxation is “best”. First, we introduce in Sections 2.2 and 2.3 a variety of
(seemingly different) tractable relaxations obtained from these formulations.
Then in Section 2.4 we present the Lagrangian relaxation and Theorem 2.3,
which states that (surprisingly) the (upper) bounds on p* yielded by these
relaxations, i.e. their optimal values, are all equal to the optimal value of
the Lagrangian relaxation.

2.2 Relaxations for MC using v; € R

Let us begin our study of relaxations for MC by considering the embedding
Fa(1) of the MC variables and the problem MCQ. We have already argued
that MCQ is equivalent to MC. Before we continue, we show why it is helpful
to allow a more general quadratic objective in this Section.

12



Consider the formulation MC1:

p* = max v!Qu

st v e Fu(l),

where ) = iL, and recall that F,,(1) is the set of extreme points of the unit
hypercube in #". One obvious relaxation is to optimize v’ Qv over the entire
hypercube. If we do so, the resulting relaxation falls into one of the following
two cases:

1. f @ <0, i.e. @ is negative semidefinite, then the maximum over the
hypercube is always equal to zero and is attained at the origin.

2. If @ is not negative semidefinite then (at least) one eigenvalue of @ is
positive and Pardalos and Vavasis [99] showed that in this case the max-
imization of vTQu over the hypercube is NP-hard. So the relaxation is
no more tractable than the original problem.

Clearly we do not obtain a useful relaxation in either case.

By considering instead the problem MCQ), the objective function go(v) =
vTQuv — 2¢Tv has a linear term and this allows us to consider perturbations
of go(v) of the form

qu(v) := v (Q 4 Diag (u))v — 2cTv — u’e, (2.13)

with v € R®". It is important to note that if v € F,(1), then v} = 1V i and
therefore

¢u(v) = qo(v) VoeF.(l),YueR".

Hence,
p* = max qu(v)
s.t. v e F,(1)
u € R".

We now show how these perturbations help.

2.2.1 The Trivial Relaxation in "

For given u € R” let us maximize the perturbed objective function without
any of the constraints on v, i.e. let us consider the function

folu) := max qu(v).

13



For any choice of u, this function gives us an upper bound on p*, since
p* < fo(u). Hence, minimizing fo(u) over all u € R" gives us a (trivial)
relaxation of MC:

p* < By = Irtinfo(u). (2.14)

Remark 2.2 Note that fo(u) can take on the value +oo. In particular,
this will happen whenever the matriz () + Diag (u) has at least one positive
eigenvalue, since a quadratic function is unbounded above if the Hessian is
not negative semidefinite. (In fact, a quadratic function is bounded above if
and only if the Hessian is negative semidefinite and the stationarity equation
is consistent. A proof of this well-known fact is given, for example, in [80,
Lemma 3.6].) However, since (2.14) is a min-maxz problem, we can add
the (hidden) semidefinite constraint () + Diag(u) = 0 without changing the
value of the bound By. The resulting problem is tractable since it consists
of minimizing a convex function over a convex set. The trivial relazation is
thus equivalent to:

By = i . 2.15
"= oz (215)

Furthermore, let us define the set
S = {u:uTe:(), @ + Diag (u) j()}.

Provided that S # (), it is shown in [102] that the optimality conditions for
min-maz problems imply that:
By = min fo(u) = min fo(u).

uTe=0 Q+Diag (u)=<0
uTe=0

2.2.2 The Trust-Region (Spherical) Relaxation in R"

Next let us relax the feasible set F,(1) to the sphere in R” of radius \/n and
centered at the origin. (Note that all the points of F,(1) are contained in
this sphere.) If we define the function

filw) = max (o), (2.16)

llv][?=n

then p* < fi(u) for all u. This maximization problem is a trust-region
subproblem and is tractable since its dual is a concave maximization problem
over an interval [108, 111, 121]. Therefore we obtain the (tractable) trust-
region relaxation:

p* < By = m;llnfl(u) (2.17)

14



2.2.3 The Box Relaxation in R"

Alternatively, we can replace the spherical constraint with the box constraint
or {5 norm constraint (all the points of F,(1) also lie in this unit box) and
consider the function

po < falu) = max Gu(v). (2.18)

Since the maximization of a non-convex quadratic over the box constraint is
NP-hard [99], we must add the hidden semidefinite constraint to make the
calculation of fy(u) tractable and obtain the box relaxation:

*< By = i . 2.19
WS Bai= ) g o fe®) (219)

It 1s worth mentioning that it is precisely the addition of the hidden semidef-
inite constraint (to make the box relaxation tractable) that makes the bound
B; equal to all the other bounds we are currently presenting (see Theorem

2.3).

2.2.4 The Eigenvalue Relaxation in R"!

We showed at the beginning of Section 2 how the problem MCQ can be
homogenized at the price of increasing the dimension by 1. This homoge-
nization yields three more bounds B§, Bf and Bj via the same derivations
used to obtain the bounds By, By and B,.

Given @ and ¢, recall the (n + 1) X (n + 1)-matrix

Q= 0 —cT
= . o
and the vector v = <1;0>. By analogy with the previous relaxations, we
define

(2.20)

¢5(v) := v7(Q° + Diag (u))v — u”e (2.21)
and the functions f{(u),i = 0,1,2. Note that if vy, the first component of v,
equals 1 then ¢(v) = qu(v).
For brevity we discuss only the relaxation Bj analogous to the trust-
region relaxation. This particular relaxation is interesting because it turns
out to be equivalent to an eigenvalue bound for p*. Indeed, since

filu) = max  g,(v).

15



it follows from the Courant-Fisher Theorem ( e.g. [55], Theorem 4.2.11) that
fi(u) = (n+1) Anax(Q° + Diag (u)) — u'e,

where Apmax(-) denotes the maximum eigenvalue of the matrix argument.
Hence f{(u) is tractable and the (tractable) eigenvalue bound is

p* < By :=min f7(u). (2.22)

2.3 Matrix Relaxations for MC using v; € R

We now introduce relaxations arising from the formulations of MC using the
feasible set F,(p) with p > 1.

2.3.1 The Goemans-Williamson Relaxation

This relaxation is obtained by considering the formulation MC2 and removing
the (hard) 41 constraint on the inner products v} v;. The resulting relaxation
gives us the bound Bs:

B; := max % S w;i(1 — vlv,)
& (2.23)
st uille =1, V.

We note that in their well-known qualitative analysis of the SDP relaxation
(the next relaxation we present), Goemans and Williamson [40] proved and
used the fact that this relaxation and the SDP relaxation are equivalent.
(For more details on their qualitative analysis, see Section 2.6.)

2.3.2 The Semidefinite Relaxation

This relaxation can be derived in (at least) two different ways. One way is to
relax the formulation MC3 by removing the +1 constraint on the elements
of X. The result is the semidefinite programming problem

By := max traceQX

(SDP1) s.b. diag (X) =e (2.24)
X0,
where () = iL. SDP1 is a convex programming problem and is therefore

tractable [93].

16



Alternatively, this relaxation can be obtained from the formulation MC1
using the fact that the trace is commutative:

v Qv = trace vT Qu = trace QuovT

and that for v € F,, X;; = v;v; defines a symmetric, rank-one, positive
semidefinite matrix X with diagonal elements 1. Therefore, we can lift the
problem MC1 into the (higher dimensional) space 8™ of symmetric matrices.
This is an alternative way to derive the formulation MC4:

*

p* = max trace QX

s.b. diag (X) =€
rank(X) =1
X>0,Xed".

(MC4) (2.25)

Removing the rank-one constraint from MC4 yields the SDP1 relaxation and
the bound Bj.

2.4 Strength of the Lagrangian Relaxation

Consider the problem MCQ and replace the constraint v € F,, with the
equivalent constraints v? = 1,Vi. The result is yet another formulation of

MC which we refer to as MCg:

*

(Mcg) T e q?(”) (2.26)

st vi=1

It is straightforward to check that the Lagrangian dual of the problem MCg
1s

minmax go(v) + Z ui(v; —1)

and that it yields precisely our first bound Bj.

It is shown in [102, 101] that all the above relaxations and bounds for
MC are equivalent to the Lagrangian dual of MCg. The strong duality result
for the trust-region subproblem [111] is the key for proving the following
theorem:

Theorem 2.3 All the bounds for MCQ discussed above are equal to the op-
timal value of the Lagrangian dual of the equivalent problem MCg.
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Hence our theme about the strength of the Lagrangian relaxation.

The application of Lagrangian relaxation to obtain quadratic bounds has
been extensively studied and used in the literature, for example in [70] and
more recently in [71]. The latter calls the Lagrangian relaxation the “best
convex bound”. Discussions on Lagrangian relaxation for non-convex prob-
lems also appear in [30]. More references are given throughout this paper.

2.5 Computing the Bounds

While it is true that all the relaxations we have presented so far yield the same
bound, it is not necessarily true that all are equally efficient when it comes
to computing bounds for MC. Since the qualitative analysis of Goemans
and Williamson (see Section 2.6), a lot of research work has focused on the
semidefinite relaxation SDP1. For this reason, and since all the bounds we
have presented so far are equivalent to the SDP1 bound, we shall change our
notation at this point and from now on denote the optimal value of SDP1 by
vy (our subsequent SDP relaxations will be similarly indexed). It is also for
that reason that this Section mostly focuses on algorithms for computing the
bound v;. Nonetheless, we believe that it is still unclear at this time which
are the best relaxations to use.

2.5.1 Computing the semidefinite programming bound

From a theoretical point of view, given a semidefinite programming prob-
lem, we can find in polynomial-time an approximate solution to within any
(fixed) accuracy using interior-point methods. This follows from the semi-
nal work of Nesterov and Nemirovskii much of which is summarized in [93].
They also implemented the first interior-point method for SDP in [92]. In-
dependently, Alizadeh extended interior-point polynomial-time algorithms
from linear programming to SDP and studied applications to discrete opti-
mization [4, 5]. Non-smooth optimization methods for solving semidefinite
programming problems have also been proposed (see e.g. [47]).

Before we proceed let us observe that X = [ is a strictly positive definite
feasible point for SDP1 (usually refereed to as a Slater point) and therefore
strong duality holds, i.e. both SDP1 and its dual DSDP1:

vy = min ely
(DSDP1) s.t. Z =Diag(y) — Q (2.27)
Z =0,y R,
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have the same optimal value vj. Hence to compute the bound it suffices to
solve either one of these SDPs.

Most efficient interior-point methods available for solving SDPs (e.g.
[49, 46, 114, 6, 94, 32, 89, 88, 20, 112]) are primal-dual methods that re-
quire solving a dense Newton system of dimension equal to the number
of constraints. The solution of this system is then used as a search direc-
tion. Typically some form of line search is performed and it requires a few
Cholesky factorizations of the matrix variables concerned to ensure the pos-
itive semidefinite constraints are not violated by the next iterate. Although
current research is exploring ways to exploit sparsity in this framework (see
e.g. [33, 34]), most interior-point approaches are still very slow when applied
to large (n > 1000) instances of SDP1. (Practical applications typically have
at least a few thousand variables.)

One important weakness of interior-point methods is that the matrix
variables are usually dense even when the matrix () and the linear constraints
of the SDP are sparse and structured, as is the case for SDP1. Several
researchers have therefore proposed alternative approaches to evaluate the
bound v} which seek to exploit the structure of SDP1. We summarize here
several promising approaches in this direction.

2.5.2 Solving the primal problem SDP1

A successful approach in this direction was introduced by Homer and Peinado
[54] and improved on by Burer and Monteiro [21].

These algorithms can be interpreted as projected gradient methods ap-
plied to a constrained nonlinear reformulation of SDP1. More specifically,
Homer and Peinado use the fact that the constraint X = 0, X € 8" is equiv-
alently formulated as X = VVT V € R™" (recall the connections between
formulation MC2 with p = n and formulation MC3). Burer and Monteiro
improve on the efficiency of this approach by observing further that V' can
be restricted to be a lower triangular matrix, and hence simplify the compu-
tations involved in each iteration of the projected gradient method. We refer
the reader to the above references for more details.

2.5.3 Solving the dual problem DSDP1

Another alternative to interior-point methods is the use of bundle methods for
min-max eigenvalue optimization. As seen in Section 2.2.4, the MC problem
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is equivalent to the min-max eigenvalue problem

min eTy +n )\maX(Q - Dlag (y))

.t y € R". (2.28)

Helmberg and Rendl [48] develop a suitable bundle method for solving this
problem and report numerical results for relaxations of MC instances with
up to n = 3000 nodes. A detailed survey of their work and related results
appears in [47]. The min-max eigenvalue approach for more general SDPs is
discussed in Section 3.1.

Finally, back in the realm of interior-point methods, Benson, Ye and
Zhang [17] derived and implemented an efficient and promising potential-
reduction affine scaling algorithm to solve DSDP1. This polynomial-time
algorithm generates the Newton system very quickly by virtue of the spe-
cial structure of the n linear constraints of SDP1. This approach is further
improved by Choi and Ye [22] via the use of a preconditioned conjugate gra-
dient method to accelerate the generation of an approximate solution for

the Newton system. Computational results for problems of dimension up to
n = 14000 are reported in [22].

2.5.4 Other relaxations

We conclude this section by recalling that there has been very little numerical
experimentation with the other relaxations we have presented even though,
for example, fast and efficient quadratic programming algorithms are avail-
able and could be used to compute the bound B, from the box relaxation.
Furthermore it is possible that other relaxations could be better numerically
in certain circumstances and therefore that the choice of tractable bound to
use should dependent on the particular instance of the problem. We believe
that more research is needed in this direction.

2.6 Qualitative Analysis of the Bounds

Several interesting results on the quality of the bound vy, and hence (by The-
orem 2.3) on the quality of the Lagrangian relaxation, have been published in
recent years. We have already mentioned the celebrated proof of Goemans
and Williamson that, under the assumption that all the edge weights are
non-negative, the SDP bound always satisfies

wr > avy, (2.29)
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where o = ming<g<r %Jﬁ ~ 0.87856. This immediately implies that v} <
1.14 p*, i.e. vf is guaranteed to overestimate y* by at most 14%.

Alternatively, we can state this result as follows. Let us define the quan-
tity p. as the optimal value of the problem:

s = min v’ Quv

s.t. v EF,, (2.30)

where Q) = iL. (Note that p. = 0 in the absence of negative edge weights.)

Goemans and Williamson [40] proved that

* *
B~

P =

< (1-a)=~0.1214. (2.31)

Nesterov [91] proved that without any assumption on the matrix @), the
following result holds:
o
P =
This line of analysis is extended further in [122, 95].
We now proceed to illustrating the application of Lagrangian relaxation

to obtain tighter bounds for the MC problem.

4
< - 2.32
<: (232

2.7 Strengthened SDP Relaxations for MC

The results in Sections 2.2-2.4 may give the impression that we have the
tightest possible tractable bound for MC. It turns out that this is not the
case because adding redundant quadratic constraints to the MC formulations
before applying Lagrangian relaxation makes it possible to obtain stronger
bounds. In fact, the addition of redundant quadratic of the type that we use
here was shown in [11, 10] to guarantee strong duality for certain problems
where duality gaps can exist.

The process we employ to obtaining a strengthened SDP relaxation for
MC is an illustration of the recipe to find SDP relaxations presented in [101].
This process also illustrates the power of using the Lagrangian relaxation to
derive SDP relaxations. The recipe is roughly the following:

e Add redundant constraints to the MC formulation;

e Take the Lagrangian dual of the Lagrangian dual to obtain the SDP
relaxation;
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e Finally, remove all the redundant constraints in the SDP relaxation.

The first step of the recipe asks that we add redundant constraints to the
MC formulation. In order to apply the recipe effectively, we shall make a
particular choice of formulation from among the various formulations of MC
presented in Section 2.1. Indeed, if we restrict ourselves to formulating MC
over the feasible set F,(1), then it is not clear what redundant constraints
one can add. However, when MC is formulated over F,(p), there are many
constraints that can be added. Let us therefore recall the formulation MC3:

*

p* = max trace@ X

s.b. diag (X) =€
| Xijl =1, Vi<y
X*>0

(MC3)

where () = iL.

First we may consider adding linear constraints. Among the many linear
inequalities we may add are the well-known triangle inequalities that define
the metric polytope M, [46, 48, 49]:

M, ={X € 8" : diag(X) = e, and
Xij+ Xig + Xjp 2 =1, X5 — Xop — Xjp 2> —1,
= X+ X — Xjp 2 =1, -X;; — Xy + Xy 2 —1,
Vi<i<j<k<n}

These inequalities model the easy observation that for any three mutu-
ally connected nodes of the graph, only two or none of the edges may be cut.

There are 4 [ - | such inequalities, which is a rather large number of con-

3
straints to add to the SDP, and it is not the case that adding a certain subset
of triangle inequalities will improve every instance of MC. Instead of adding
these constraints to MC3, we will instead add certain quadratic constraints
(see below) that are closely related to these inequalities.

Beyond the addition of linear constraints, the addition of redundant
quadratic constraints can be particularly effective, as was already mentioned
above. In fact, the appropriate choice of quadratic constraints will play an
important role in our derivation of tighter bounds for MC.

Several interesting choices of quadratic constraints are available. One ob-
vious possibility is to formulate the constraints |X;;| = 1 in MC3 as quadratic
constraints using the Hadamard product:

XoX=F

?
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where E € 8™ is the matrix of all ones. Let us in fact replace the absolute
value constraints with these quadratic constraints and obtain the formula-
tion:
p* = max trace@ X
s.t. diag X = e
XoX=F
X = 0.

(2.33)

1

Michel Goemans" recently suggested the following very interesting set of

quadratic constraints:

One interpretation for these constraints arises from the alternative derivation
of MC4 in Section 2.3.2. If X;; = v;u; and vi =1 for k =1,...,n then

2
X,']‘ = VU5 = U;ULV; = UV * VpU; = X,'k . Xk]‘.

There is also a connection between these constraints and the triangle inequal-
ities in the definition of the metric polytope above. This connection is used
in the proof of Theorem 2.13.

For reasons that will be clear later, we do not add these constraints ex-
actly as we have stated them. We shall instead add a weaker form of these
constraints by virtue of the observation that

(X%)ij =Y XuXij.
k=1
If, according to equation (2.34), each of the elements in the sum on the right
equals X;;, then (X?);; = n X;; or equivalently
X?=nX.

This very useful quadratic constraint can alternatively be obtained by consid-
ering the formulation MC2 with p = 1 (or formulation MC4) and observing
that if X = vo? v € {£1}", then

X? = (UUT)(UUT) = (vTv)va = nX.

!Presented at The 4th International Conference on High Performance Optimization
Techniques, June 1999, Rotterdam, Netherlands.
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Therefore we can add the redundant quadratic constraint X — nX = 0 and
obtain the formulation:

p* = max  trace@ X
st.  diagX =e
XoX=F (2.35)
X?—nX =0
X = 0.

The constraint X* — nX = 0 will play a central role in the rest of this
Section. In fact, we shall use it right away to argue that we can drop the
constraint X > 0 from our formulation (2.35) of MC. Indeed, because we can
simultaneously diagonalize X and X?, the constraint X? — nX = 0 implies
that the eigenvalues of X must satisfy the equation A2 — nX = 0. Therefore
the only possible eigenvalues for X are 0 and n and we conclude that X > 0
holds. (Let us note here that, by virtue of Lemma 2.8, we incur no loss by
removing this constraint before proceeding.)

Hence after the first step of the recipe we have the following formulation

of MC:

*

@ = max trace@ X

s.b. diag (X) =e
XoX=F
X% —nX =0.

(MC6) (2.36)

The next step in the recipe is to form the Lagrangian dual of MC6 and
then the dual of the dual. Before we construct the Lagrangian dual, we must
pay special attention to the linear constraints diag (sMat (z)) = e in order
to avoid increasing the duality gap when we go to the dual. The following
simple example illustrates what may happen.

Example 2.4 Consider the problem

max .Tz

s.t. x=0.

Obuviously the optimal value is 0. However the Lagrangian dual has optimal
value
iI/\lfIIlaXZL'Z + Axr = +o0,
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so we have introduced a duality gap by lifting the linear constraint as it is.
However, if we first replace the linear constraint by x* = 0 then the La-
grangian dual yields

irl\lfmfmx:zjz + Xz =0.

Hence squaring the linear constraint eliminates the duality gap.

It is perhaps surprising that the trick illustrated in the Example works
in general in our framework, i.e. replacing the constraints Az = b by ||Az —
b||* = 0 before taking the dual ensures that Az = b holds in the dual. More

precisely,

Theorem 2.5 ([101, Theorem 9]) Let K C R be a finite set, let q(z) =
2TQx —2cTx, A € R™*" and b € R*. Then there exists A € R such that

max{q(v) : [|[Az — b||* = 0} = max{q(z) — Al| Az = [[*¥ A > \.
reER reK

Hence
: — 2 = = 1 — — 2
max{g(z) : [|Az = b[[" = 0} = minmaxg(z) — A[|Az — b]]
and strong duality holds. [ |

In fact, the proof of the theorem shows that the quadratic penalty function
is exact in the case that K is a finite set; thus by changing linear constraints
to the norm squared constraint before lifting them we are ensuring that they
hold after taking the dual [101]. This observation sheds some light on the
success of SDP relaxation in discrete optimization. Finally, let us note that
the effectiveness of this approach to lift the linear constraints can also be
argued via the use of an augmented Lagrangian, i.e. the exactness can be
obtained in this alternate way [30].

Let us now return to the application of the recipe. To reduce the number
of variables by taking advantage of the symmetry in the problem, let us
rewrite MC6 using the variable € £ such that = = svec (X):

p* = max trace @ sMat ()
s.t.  diag (sMat (z)) =€
sMat (z) o sMat (z) = E
(sMat (z))* — nsMat (z) = 0
z e R,

25



Replacing the linear constraint by the norm constraint and homogenizing
the problem using the scalar variable yy, we have:

*

p* = max trace (Q sMat (z)) yo
s.t.  sdiag (z)Tsdiag (z) — 2eTsdiag (z)yo +n = 0
E — sMat (z) o sMat (z) =0
sMat (z)? — nsMat (2)yo = 0
1—y2=0
z € R gy € R

(2.37)

Note that this problem is equivalent to the previous formulation since we can
change = to —z if yp = —1.
We now write down the Lagrangian dual of 2.37 using Lagrange multipli-

ers w,t € Rand T,5 € S":

p* <vi:= min maxtrace (QsMat (z))yo
t,w, T,S z,yo

+ w(sdiag (z)Tsdiag (z) — 2eTsdiag (z)yo + n)
+ trace T(E — sMat (z) o sMat (z)) (2.38)
+ trace S((sMat (z))? — nsMat (x)yo)
+ (1 — y5).

The inner maximization of the above relaxation is an unconstrained pure
quadratic maximization whose optimal value is +oc unless the Hessian is
negative semidefinite in which case x = 0, yo = 0 is optimal. Therefore let us
calculate the Hessian.

Using trace @ sMat (z) = zTdsvec(Q), and pulling out a 2 (for conve-
nience later), we can express Hg, the constant part (without Lagrange mul-
tipliers) of the Hessian as:

1 svec T
2H, ::2<%dSV2C(Q) 7 0@) ) (2.39)

For notational convenience, we let H(w,T,S,t) denote the negative of the
non-constant part of the Hessian, and we split it into four linear operators
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with the factor 2:

_ 0 (dsvec Diag e)T
- (dsvecDiage) —sdiag “sdiag

0 0
+2 (O dsvec (TosMat)>

P 0 Zdsvec (S)T
Zdsvec (S) (MatvsMat )" S (Mat vsMat )

10
(1Y
(2.40)
We can cancel the 2 in (2.40) and (2.39) and get the (equivalent to the
Lagrangian dual) semidefinite program DSDP2:

vy = min nw + trace ET + trace 05 + ¢

(DSDP2) s.t. H(w,T,S,t) = Ho.

(2.41)

If we take T sufficiently positive definite and ¢ sufficiently large, then we can
guarantee Slater’s constraint qualification. Therefore the dual of DSDP2 has
the same optimal value vj and it provides a strengthened SDP relaxation of

MC:

v; = max trace HgY
s.t. Hi(Y)=n
Hy(Y)=F
SDP2 2 2.42
(spP2) it (242
Hi(Y)=1

Y >0, € SHI+!
To help define the adjoint operators we partition Y as

(Yo 2T 5 t(n)
e (B ) ves

It is straightforward to check that
H;(Y) = sMat diag (Y') and H;(Y) = Yoo,

so the constraints H;(Y) = E and H;(Y) = 1 are equivalent to diag (Y') = e.
Also, Hi(Y) is twice the sum of the elements in the first row of Y corre-
sponding to the positions of the diagonal of sMat () minus the sum of the
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same elements in the diagonal of Y, i.e.

H:(Y) = 2svec (I,,) 2 — trace Diag (svec (I,,))Y.

The constraint Hj(Y') = n requires that Yy, =1, Vi =1,...,n, as shown
in the proof of Lemma 2.7 below.

Finally, to find H}(Y), recall that by definition,
(H3(S),Y) = ndsvec(S) 'z — ((MatvsMat )" S (Mat vsMat ),Y) .
Taking adjoints,

(S,H3(Y)) = trace SnsMat (z) — (S, (Mat vsMat ) Y (Mat vsMat )")
= <S, nsMat (z) — (Mat vsMat ) Y (Mat vsMat )*> i

Note that (MatvsMat)® = vsMat "vec is essentially (and in the symmet-
ric case reduces to) sMat™ except that it acts on possibly non-symmetric
matrices. Hence,

H;(Y) = nsMat (z) — (Mat vsMat ) Y (Mat vsMat )" . (2.43)

Equivalently, H3(Y') consists of the sums in SDP2 below. The constraint
H;(Y) = 0 is key to showing that for Y feasible for SDP2, sMat () is always
positive semidefinite (and in fact feasible for SDP1).

The end result as an SDP with linear constraints. The last step of the
recipe consists of removing the redundant constraints in this SDP. This is
usually done using the structure of the problem. The result after deleting
redundant constraints is the following SDP relaxation of MC (see [7] for
details):

v; = max trace HgY

s.b. diag (V) =¢e
1/0775(1') = ]_7@ = 1,...,n

(SDP2) :
Yorey) = = 2 Yram e, Vijst.1<i<j<n
k=1
Y > 0,Y € St+!,
(2.44)
where ( )
o (G- i<
T(,g) = { t(i — 1) + j, otherwise. (2.45)
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Remark 2.6 The indices for the linear constraints in SDP2 may be thought
of as the entries of a matriz T constructed in the following way. Ezpanding
the relationship X = sMat(x) we have:

Lt(n)

Let us now keep only the indices of the entries of ¥ and thereby define the
matriz T':

In fact, there is still some redundancy in the constraints of SDP2 as we
now show that Slater’s constraint qualification does not hold.

Lemma 2.7 IfY is feasible for SDP2, then Y is singular.

Proof.  Let Y be feasible for SDP2. The constraints H3(Y) = E and
H;(Y') = 1 together imply that diag (Y) = e. The constraint H;(Y) = n can
be written as

2svec (In)T.TL‘ — trace Diag (svec (In))ff =n,

T _
with ¥V = <i £§7 ) Since diag (Y) = e, trace Diag (svec([,))Y = n and

Tz = n, or equivalently > Yo,y = n. Now Y > 0 implies every
i=1

principal minor of Y is nonnegative, so |Yg(;)| < 1 must hold (again because

diag (Y) = €). So > Youi = n = You = 1,0 = 1,...,n. Hence each of
=1

so svec (I,,)

the 2 x 2 principal minors obtained from the subsets of rows and columns
{0,t(¢)},2 =1,...,n equals zero. Hence Y is not positive definite. [ |

This result makes it possible to further reduce the number of constraints
in SDP2 by projecting the problem onto the positive semidefinite cone of
dimension t(n — 1) + 1. This is done in detail in [7].
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2.7.1 Properties of the Strengthened Relaxation

We now state and prove some of the interesting properties of the relaxation
SDP2.

One surprising result is that the matrix obtained by applying sMat to the
first row of a feasible Y is positive semidefinite, even though this nonlinear
constraint was not explicitly included in the formulation MC6.

Lemma 2.8 Suppose that Y s feasible for SDP2. Then
sMat (Y5, 1.4(m)) = 0

and so s feasible for SDP1.

Proof. For Y feasible for SDP2, write

1 2T
=L v),

with z = Y§ 1.4(n). Note that Y is a principal submatrix of Y and therefore
Y > 0.
By (2.43), the constraint H3(Y') = 0 is equivalent to

1
(Mat vsMat ) Y (Mat vsMat )*

n

sMat (z)

and thus sMat () is a congruence of the positive semidefinite matrix Y. The
result follows. [ |

We now prove some of the interesting and useful properties of the quadratic
constraint X? — nX = 0. These properties will help us in the proof of the
strengthening result for SDP2 (Theorem 2.10).

Lemma 2.9 Suppose that X, X are both feasible for SDP1. Then

trace (X% — nX)(X? —nX) > 0. (2.46)
Suppose, in addition, that both

(X?—nX)#0, (X*—nX)#£0,

and both X, X € F, a face of the positive semidefinite cone P, with X €
relint 7. Then ) )
trace (X? — nX)(X? —nX) > 0. (2.47)
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Proof. By pulling out a square root, we see that

trace (X? —nX)(X? — nX) = trace {VX(nI — X)\/)_(}{\/)T((nf— X’)\/)T(}

Each of the matrices on the right-hand side is now a congruence of a posi-
tive semidefinite matrix, and hence is itself positive semidefinite. The first
inequality now follows from the fact that P is a self-polar cone:

P=Pt.={Z:(Z,X)>0, VXEP}.

To prove the second (strict) inequality, let U = [P|Q] be an orthogonal
matrix such that the columns of P span the range space of X, while the
columns of Q span the null space of X. A face can be characterized by either
the range space or the null space of any matrix in its relative interior (see e.g.
[14]). Therefore PXP = D = 0 and PTXP = D = 0, while QTXQ = 0
and QTXQ = 0. This implies
D 0

0 0 (2.48)

TY717r —
UXU—{ 00

], UTXU:{DO].

Our hypothesis implies (X? — nX) # 0 and therefore, by Theorem 2.1,

rank (X) > 2 which implies that n] — D > 0. Similarly, n] — D > 0.
Therefore,

trace (X? — nX)(X2 — nX) trace (D? — nD)(D2 — nD)

> 0.
|
We now have all the ingredients necessary to prove that, unless there is

no gap between the relaxation SDP1 and MC, the relaxation SDP2 always
provides a strict improvement over SDP1.

Theorem 2.10 The optimal values satisfy
v; <v' oand vy =vi=uv; =ut. (2.49)

Proof. Suppose that



solves SDP2. From Lemma 2.8, it is clear that sMat (2*) is feasible for SDP1.
Therefore,

v, = trace HQY”"
= (dsvec@)'z"
= trace @sMat (")
< v

This establishes the inequality in (2.49).
Now assume that we also have

vy =V~ (2.50)

Then feasibility of X* := sMat (z*) implies that it must, in fact, be optimal
for SDP1. Recall that v} is defined in (2.38). Also, we can assume that
X** —nX* #£ 0, or we are done. Therefore, we can sandwich the optimal
values and see that X* = sMat (z*) is also optimal for the min-max problem

w* = msinqb(S), (2.51)
where
d(S) = g (oMt (gl)i};sMat (50 F(S,z) := trace (QsMat (z))
+ trace S((sMat (:1:))2 — nsMat (2)),
(2.52)

i.e. since more Lagrange multipliers gives us a better bound, we get
V>t >

which then implies equality actually holds for all three values. For S optimal
in (2.51), now define the feasible set of the inner maximization problem as

G := {z : diag (sMat (z)) = e, sMat (z) > 0}
and the optimal set for the given S
R(S)={z € G :F(S,z)=¢(9)}.

It is clear that G is a convex compact set. Therefore, R(.S) is also compact
by continuity of F. Moreover, R(S) is a subset of the optimal set of SDP1,

32



a subset of a minimal face F of P, and, in fact, a feasible subset for SDP1.
Let X € R(S) Nrelint F. We now get the strict inequality

trace (X* —nX)(X* —nX) >0, Ve R(9), (2.53)

from Lemma 2.9.
We now will apply [26, Theorem 2.1, page 188]. We see that the direc-
tional derivative of ¢(9) in the direction ¢ = —(X?* —nX) exists and is given

by
OF (S, z)
cers)\ 08 Y/

By (2.53) and compactness we see that this must be negative, i.e. the direc-
tional derivative is negative which contradicts the fact that the two optimal
values are equal. [ |

2.7.2 A Further Strengthening of the Relaxation SDP2

We now examine SDP2 more closely and show how an even tighter relaxation
can be obtained. It may be helpful to the reader at this point to reexamine
the formulation MC5 since both SDP2 and the upcoming relaxation SDP3
have connections to that formulation.

Let us begin by recalling the alternative derivation of MC4 in Section 2.3.2
and the rank-one matrices X = vvl, v € {£1}". We know that these matri-
ces X have all their entries equal to £1. Hence the corresponding matrices
Y feasible for SDP2 have all their entries in the first row and column equal
to +1. Looking back to the formulation MC5 this statement corresponds to
the (hard) constraints |ulu;| = 1 for all 4.

Now let us consider the following constraints of SDP2:

1 @ o
Yoruj = - ZYT(i,k),T(k,j)v Vi<i<j<n, (2.54)
k=1
1 27 T ..
for Y = . v and z = svec(vv'). The entry Yo7 ;) is in the first

row of Y and therefore it is equal to 1 in magnitude. The corresponding
constraint in (2.54) says that it must be equal to the average of n specific
entries in the block Y. But each of these n entries has magnitude at most
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1, and hence for equality to hold, they must all have magnitude equal to 1,
and in fact they must all equal Y 7(; ;.

Let us state this observation in a different way. If Y and X are both rank-
one, then the block Y = zz7 and Y7(ik)T(kj) = TTGR)TT (k) = Vilk * VRV;.
But if Uz = 1, then YT(i,k),T(k,j) = V05 = X,'j = YEJ,T(i,j)-

There is yet another interpretation for this observation. Recall that we
obtained the quadratic constraint X? = n X by appropriately adding up (and
thereby weakening) the quadratic constraints (2.34). What we are observing
here is that the constraints (2.54) consist of sums that originate in this weak-
ening of the constraints (2.34). Hence we can now “undo” these sums and
retrieve a linearized version of the constraints (2.34) in terms of the entries
of the matrix variable Y.

This discussion leads us to define the relaxation SDP3 as:

v; = max trace HoZ
s.t. diag (Z) = e
(SDP3) Zogiy=1,0=1,...,n (2.55)

Zo1(j) = ZT(k)T(ky) VEVI<i<j<n
Z = 0,2 € St

We proceed to prove that SDP3 is a strict improvement on the addition
of all the triangle inequalities to SDP1. First, let us define:

F,:={X €8" : X = sMat (Zy1.(n)), Z feasible for SDP3}.

Since the feasible set of SDP3 is convex and compact, and since F), is the
image of that feasible set under a linear transformation, it follows that F, is
also convex and compact.

For completeness, we begin by proving that SDP3 is indeed a relaxation of
MC. This is not guaranteed a priori since SDP3 is a strengthening of SDP2.

Lemma 2.11 C, C F,,.

Proof. Consider an extreme point of C,, X = vvl,v € {£1}". Let

T
z =svec(X) and Z = <i) <i> . We show that Z is feasible for SDP3.

Clearly Z = 0 and Zyo = 1. Since z7(; jy = vv;, for 1 <@ < j < n,

i,5)
Zrairen = (o) = vl = 1
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Therefore diag (Z) = e. Also, Zos) = Zor(iz) = T1¢,) = vi° = 1. Finally,
for 1 <1<y <n,

ZTGR)T(ki) = TTEERTT (k)
vivkvkvj

V05
TT(i,j)
= Zor(j):

Hence, each X = vvl,v € {£1}" has a corresponding Z feasible for
SDP3, and so X € F,,. Since C,, and F,, are convex, we are done. [}

Clearly, every Z feasible for SDP3 is feasible for SDP2. Therefore, by

Lemma 2.8 above, we have the inclusion:

Corollary 2.12 F, C¢&,. [ |

Using Lemma 2.11, we observe that p* < vi <) < vy. Furthermore the
strengthening result of Theorem 2.10 also holds for SDP3.

We now exploit the fact that there is a strong connection between the
quadratic constraints (2.34) and the triangle inequalities to prove the next
theorem.

Theorem 2.13 F, C M,.

Proof. Suppose X € F,, then X = sMat (Zy1.(»)) for some Z feasible for
SDP3. Since Zg iy = 1 V4, it follows that diag (X) = e holds.

Given 1,7,k such that 1 <1 < 5 < k < n, let Z; ;; denote the 4 x 4
principal minor of Z corresponding to the indices 0,7(z,7),T (¢, k), T(j, k).
Let a = X,'j = ZO,T(i,j)7 b= X,k = ZO,T(i,k)a Cc = Xjk = ZO,T(j,k)- Then

Zijk =

a ot =
SN0 = Q
X =0
— Q o0

Sil’lCG dlag (Z) = € ELl’ld ZO,T(i,j) = ZT(i,k),T(k,j)7 ZO,T(i,k) = ZT(i,j),T(j,k) and
Zo 1 k) = Z7(54),1 6.k all hold for Z feasible for SDP3. Now:
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b a
a | —| b (abc)t()
1

1
Z,'J‘JC -~ 0 & c
b c

Q 0

1—a® ¢c—ab b—ac
& c—ab 1 -5 a—bec | =0
b—ac a—be 1—c?
1—a®* ¢c—ab b—ac

= €el'| ¢c—ab 1 -0 a—bec |e>0.
b—ac a—bc 1—c?
Hence,
Zi,j,kto = 3—(a—|-b—|—c)2—|—2(a—|—b—|—c)20
& A4 —2y—-3<0,wherey:=a+b+c
& (r=3)(ry+1) <0
< —1<+9<3
= a+b+c>—1.

Therefore, X;; + Xixr + Xjx > —1 holds for X.

Because multiplication of row and column ¢ of Z; j; by —1 will not affect
the positive semidefiniteness of Z; ;, if we multiply the two rows and two
columns of Z; ; with indices T'(¢, k) and T'(7, k) and apply the same argument
to the resulting matrix, we obtain the inequality
Xi; — Xix — Xjr > —1. Similarly, the inequalities —X;; + Xy — Xjp > —1
and —X;; — X, + X > —1 also hold. [

We have thus proved the following:

Corollary 2.14 C,, C F, C &, N M,,. [ |

Appropriate examples are provided in [§] to prove the following theorem:

Theorem 2.15 C, ¢ F,, ¢ £, N M, forn >5. [ |

2.7.3 Numerical Results

The relaxations SDP1, SDP2 and SDP3 were compared for several interesting
problems using the software package SDPPACK (version 0.9 Beta) [6]. For
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completeness we also solved the linear relaxation over the metric polytope:

s.t.

max trace Q X

XeM,.

This relaxation is easily formulated as an LP and we solved it using the
Matlab solver LINPROG. The results are summarized in Table 1. The value
p equals the value of the optimal cut divided by the bound, and R.E. denotes
the relative error with respect to the optimal cut.

Graph | p* SDP1 SDP2 M, E. N M, SDP3
bound bound bound bound bound
Cs 4 4.5225 4.2889 4.0000 4.0000 4.0000
p = 0.8845 p = 0.9326 p = 1.0000 p = 1.0000 p = 1.0000
R.E.: 13.06% | R.E.: 7.22% R.E.: 0% R.E.: 0% R.E.: 0%
Ks\e 6 6.2500 6.1160 6.0000 6.0000 6.0000
p = 0.9600 p = 0.9810 p = 1.0000 p = 1.0000 p = 1.0000
R.E.: 417% | R.E.: 1.93% R.E.: 0% R.E.: 0% R.E.: 0%
K 6 6.2500 6.2500 6.6667 6.2500 6.2500
p = 0.9600 p = 0.9600 p = 0.9000 p = 0.9600 p = 0.9600
R.E.: 417% | R.E.: 417% | R.E.: 11.11% R.E.: 4.17% R.E.: 4.17%
Given | 9.28 9.6040 9.4056 9.3867 9.2961 9.2800
by p = 0.9663 p = 0.9866 p = 0.9886 p = 0.9983 p = 1.0000
A(G) R.E.: 3.49% | R.E.: 1.35% | R.E.: 1.15% R.E.: 0.17% R.E.: 0%
12 13.5 12.9827 12.8571 12.6114 12.4967
AW? p = 0.8889 p = 0.9243 p = 0.9333 p = 0.9515 p = 0.9603
R.E.: 12.50% | R.E.: 8.19% | R.E.: 7.14% R.E.: 5.10% R.E.: 4.14%
12 12.5 12.3781 12.0000 12.0000 12.0000
Pet. p = 0.9600 p = 0.9695 p = 1.0000 p = 1.0000 p = 1.0000
R.E.: 417% | R.E.: 3.15% R.E.: 0% R.E.: 0% R.E.: 0%
Rand. | 88 90.3919 89.5733 89.3333 88.0029 88.0000
gen. p = 0.9735 p = 0.9824 p = 0.9851 p = 1.0000 p = 1.0000
RE.:2.72% |R.E.: 1.79% | R.E.: 1.52% |R.E.: 3.3E -5 | R.E.: 99F — 7

Table 1: Numerical comparison of all MC relaxations for small test problems

The test problems in Table 1 are as follows:
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1. The first line of results corresponds to solving the three SDP relaxations
for a 5-cycle with unit edge-weights.

2. The second line corresponds to the complete graph on 5 vertices with
unit edge-weights on all edges except one, which is assigned weight
zZero.

3. The third line corresponds to the complete graph on 5 vertices with
unit edge-weights. In this example, none of the four SDP relaxations
attains the MC optimal value, and in fact they are not distinguishable.
Only the linear relaxation M, gives a noticeably weaker bound.

4. The fourth line corresponds to the graph defined by the weighted ad-
jacency matrix

0 1.52 1.52 1.52 0.16

1.52 0 1.60 1.60 1.52

A(G)=] 1.52 1.60 0 1.60 1.52
1.52 1.60 1.60 0 1.52

0.16 1.52 1.52 1.52 0

This problem is interesting because it shows a significant difference
between SDP3 and all the other relaxations; in this case, SDP3 is the
only relaxation that attains the MC optimal value.

5. The fifth line corresponds to the graph in Figure 1 with unit edge
weights. This graph is the antiweb AWZ and it is the hardest example?
that the authors know for the relaxation &, N M,,. It is interesting that
SDP3 performs better on this example than on the K5 with unit edge
weights.

6. The last two lines correspond to slightly larger graphs. The graph on
10 vertices is the Petersen graph with unit edge-weights. The graph on
12 vertices is a randomly generated graph that gives slightly different
results for each relaxation (the exact description of the graph is in [§]).

In Table 1, a relative error equal to zero means that the relative error was
below 107!, the value of the smallest default stopping criteria used by SDP-
PACK.

2We thank Franz Rendl for suggesting this interesting example.
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Figure 1: Antiweb AW

We conclude by pointing out that solving the relaxations SDP2 and SDP3
using an interior-point method becomes very time-consuming and requires
large amounts of memory even for moderate values of n. Nonetheless their
constraints are very sparse and have a special structure therefore it is hoped
that research efforts like those mentioned in Section 2.5, or perhaps even
entirely new approaches, will allow these relaxations to be solved efficiently
for larger values of n.

3 SDP and Lagrangian Relaxation for Q?Ps

We now move on to illustrate the Lagrangian relaxation approach for gen-
eral quadratically constrained quadratic problems (Q*P ). In this Section we
briefly outline the approach for the general QP and specific instances are
considered in some detail in Section 4. This general quadratic problem is
also studied in e.g. [31, 68, 67, 69, 116] and [104, 74, 72, 84, 16]. The more
general polynomial optimization problem is considered in [75] which presents
a relaxation very similar to SDP3 but motivated by result results in the
theory of moments and positive polynomials.
The quadratic problem we consider is the following Q*P :

¢ = max q(z):=2TQoz +2¢lz + ag
9 st qr(x) = T Qrx + 29,{:1: 4+ ar <0
(Q°P,) keT:={1,...,m} (3.56)
r € R,
where the matrices Qr # 0,k = 0,...,m, are symmetric.
Let us define T
O gy
b, = 3.57
. [ g Qk } ( )
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and (by abuse of notation)

aw(y) =y Py, k=0,1,...,m

Using the technique for proving the equivalence of MC and MCQ at the
beginning of Section 2, we obtain a homogenized formulation of Q?P _ in
terms of the new variable y and we denote it Q*P

¢" = max qo(y)
st qly) <0,keZ

(Q°P,) yo =1 (3.58)

— Yo n+1
y—<$>€% .

If yo = 1 is optimal for Q?P ,» then y is optimal for Q?P , and if yg = —1 is
optimal for Q*P ,, then —y is optimal for Q*P ,. Hence the optimal values
of Q*P , and QzPy are equal.

The Lagrangian relaxation of the homogenized problem Q*P, provides
a simpler path for obtaining the SDP relaxation. Indeed, the Lagrangian of

Q*P, is
L(y, i, A) =y Poy — p(ys — 1) + > Mey" Pry

kel

and therefore the Lagrangian relaxation of Q*P, is
(DQ’P,) d":= rrhinmax yT Poy — p(y2 — 1) + Z Myl Pry.
>0 ! ke

Note that

d* = minminmaxy’ Pyy — p(ys — 1) + Z Aoy’ Pry
AZ0 ey keT

= minmaxy Poy—l—Z)\ky Py,
A>0 y2=1 Pt

by the strong duality of the trust-region subproblem [111]. Therefore

(DQ*P,) d" = IIllIl max go(x) + Z Aeqr (T

A>
kel

and we have shown the equivalence of the dual values for the problems in x
and in y. (This is similar to the approaches in [120, 110].)
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By weak duality, we have

d* > ¢ = maxminy” Poy — p(yg — 1) + > _ My Pry.
Y 250 keT
If we can find the optimal values p* and A* for the dual variables, then we
obtain a single quadratic function whose maximal value is an upper bound
on ¢*:
¢ < d"=maxy Py — (g — 1)+ >_ Ny Puy. (3.59)
Y kel
Furthermore the Lagrangian L(y,u, A) is a quadratic function of y and
therefore we can add the following hidden semidefinite constraint to the outer
minimization of DQ?P Y

Py~ pEoo+ Y AP 20, A >0, (3.60)

kel

where Eqyg is the zero matrix with 1 in the top left corner. The maximum
of the maximization subproblem is attained for y = 0 and thus the dual
problem DQ?*P , 18 equivalent to the SDP

d*= min p
s.t. ILLEOO - ZkEI )\kPk t PO
A > 0.

One important observation is that a greater number of quadratic con-
straints g(y) means that we obtain a stronger dual. This is equivalent to
our earlier claim that adding redundant quadratic constraints strengthens the
SDP relaxation. An excellent illustration of the effectiveness of this strategy
is presented in Section 4.4 where this approach achieves strong duality.

Another approach is presented in detail in Kojima and Tuncel [68, 67]. For
problems that also have linear equality constraints the notion of copositivity
can be used to strengthen the SDP relaxation [103]. However the result is
not a tractable relaxation in general.

3.1 Solving SDPs arising from Q’Ps

There are many existing packages for solving SDPs in the public domain (see

e.g. Christoph Helmberg’s SDP web page
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http://www.zib.de/helmberg/semidef .html
or The Handbook of Semidefinite Programming [119].) However we already
alluded in Section 2.5 to the limitations of many algorithms when it comes to
solving large SDPs. We outlined in that Section several research directions
that seek to exploit the sparsity and structure of SDP1 and/or DSDP1. For
more general SDPs Kojima et al [66, 33, 34] have made promising advances
and Borchers [20, 19] exploits the BLAS routines. Nonetheless, the question
of efficiently exploiting sparsity is still very much an open question.

We briefly outline one approach that may help exploit structure and spar-
sity for SDPs in discrete optimization. Recall from Section 2 that the SDP
relaxation SDP1 gives the same bound for MC as the eigenvalue bound (2.22).
In fact this equivalence of the bounds holds for any SDP for which trace X
is constant over all feasible matrices X [48, 47]. (Note that many SDPs
that arise in applications satisfy this property.) In particular the constant
trace condition holds for all SDPs that arise from problems which have a
bounded feasible set. We can see this by homogenizing Q?P as in (3.58) and
then adding the redundant constraint ||y||? < K with K sufficiently large.
Now the identity [ is in the range of the linear operator A* and this is
precisely equivalent to the constant trace condition. Therefore Q?Ps with
bounded feasible set can all be phrased as min-max eigenvalue problems for
which the inherent structure and sparsity can be exploited. Clearly all 0,1 or
+1 problems satisfy this boundedness condition and in particular the Graph
Partitioning and the Quadratic Assignment Problem that we study in the
next Section fall into this class.

4 Specific Instances of SDP Relaxations

We now study in some detail four specific problems and show how to apply
the recipe for SDP relaxations. In each case we derive a min-max eigenvalue
problem from the Lagrangian dual of an appropriately chosen quadratically
constrained problem. The dual of this min-max eigenvalue problem then
provides an SDP relaxation for the original problem. Adding redundant
quadratic constraints at the start helps in reducing the duality gap. Once we
obtain the SDP relaxation, any remaining redundancy in the constraints is
eliminated if we ensure that the linear constraints have full row rank and that
Slater’s condition holds. This illustrates again the strength of this Lagrangian
approach.
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4.1 The Graph Partitioning Problem

Let G = (V,E) be an undirected graph as in the description of the MC
problem. The graph partitioning problem is the problem of partitioning the
node set V into k disjoint subsets of specified sizes to minimize the total
weight of the edges connecting nodes in distinct subsets of the partition. Let
A = (a,j) be the weighted adjacency matrix of G, i.e.
. Wi 5 Z] € E
@i = { 0 otherwise.

The graph partitioning problem can be described by the following 0,1 quadratic
problem [107]:

W( Eyneut) = max %trace XtAX
s.t. Xek = €n
XTe, =m

Xi; € {0,1}, Vi,

where ¢ is the vector of ones of appropriate size and m is the vector of
ordered set sizes

(GP)

my>...>mp>1 and k < n.

The columns of the 0,1 n x k matrices X are the indicator vectors for the
sets. If we replace the 0,1 constraints by quadratic constraints and the linear
constraints taking their norm squared, we obtain the equivalent problem:

W( Eyneut) = max %trace XtAX
s.t. | Xer —enl)? + | XTe, —m||> =0
X2~ X;; =0, Vij.

ij
The Lagrangian relaxation yields the following bound.
Bop = ran%lmfx trace [
IXTAX + ofepef XTX + XTe,el X) + WT(X 0 X) (4.61)
—2a(ekeZX + meZX) —-WTX ]
+a(n + 32, mi).
We can now homogenize the problem by adding a variable z.

Bop = m%lm)?xtrace[
a,
z2=1

%XTAX + oz(ekegXTX + XTeneZX) + WT(X o X)
+z(—2a(epel X + mel X) — WTX) ]
+a(n + 32, mj).
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We now lift the variable x into the Lagrangian to get a min-max eigenvalue
problem.

Bgp = mv%/% max trace [
LXTAX + a(ere! XTX + X e,el X) + WT(X 0 X) + 627
+z(—2a(erel X + mel X) - WTX)]
+a(n+ Y, m?) — 6.

The above has a hidden semidefinite constraint.

min oz(n—l—zim?) -4

s.t. L+ Arrow (6, vec(W)) + aL, <0, (4.62)

where we define the matrices

0 0
LA.:[O %I@)A], (4.63)

v = vece,m?,

—| 0 —(e+0)"
Lo = [ —(e+4wv) (ekezf@) I+1I® eneg) ] ’ (4.64)
and the linear operator
) —L(vec(W))T
o 2
Arrow (6, vec(W)) := [ “L(vec(W)) Diag (vec(W)) | (4.65)
The dual problem yields the semidefinite relaxation of (GP).
max trace LY
s.t. diag (V) = (1,Y5.10)7
traceYL, =0 (4.66)
Y = 0.

4.2 The Quadratic Assignment Problem

While MC can be considered the simplest of the NP-hard problems, the
quadratic assignment problem (QAP) can be considered the hardest. This
is an area where n = 30 is a large-scale problem. We shall use the trace
formulation of the QAP where the variable X is a permutation matrix, i.e.
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X is a 0,1 matrix and all row and column sums are equal to one. The
formulation is:

p* = max q(X) = trace(AXB —2C)XT
s.t. Xe=e
(QAP) Xe—c (467

Xij € {0, 1} Vi,j.

(See [98] for applications and other formulations of the QAP.)

Let us apply the recipe. We first add redundant quadratic constraints to
the model. Since the set of permutation matrices is equal to the intersection
of the set of orthogonal matrices with the 0,1 matrices [123], we can add
both of the following (equivalent) definitions of orthogonality: XX7T = T
and XTX = I. The recipe also requires the application of Theorem 2.5 to
the linear constraints before taking the Lagrangian dual. We thus obtain the
following formulation for the QAP:

p*:= min trace AXBXT —20XT

st. XXT =1
XTX =1
(QAPE) ||Xe—e||2:0
|XTe—el” =0

X2 —X,; =0, Vij

3

Other relaxations and bounds can be obtained by adding redundant con-
straints such as trace XXT =n or 0 < X;; <1, Vi, 7.

It turns out that the squared linear constraints are eliminated by the
projection later so we can add them together without any loss: || Xe —e||* +
| XTe —¢||* = 0. We first add the 0,1 and row-column sum constraints to
the objective function using Lagrange multipliers W;; and ug respectively.

po = min max {trace AXBXT —20XT 4 37, W (Xjj — Xyy)

+uo([|Xe — e + [ XTe —¢]*)}.
(4.68)

Interchanging min and max yields

o > [ig = max min {traceAXBXT—QC'XT—I—ZU W/,'j(ij - Xij)

Wuo XXT=XTX=]
+uo([[Xe — el + | XTe —ef*)}.
(4.69)
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We now homogenize the objective function using the constrained scalar vari-
able zy and increasing the dimension of the problem by 1. This simplifies
the transition to an SDP:

Lo > [ig = max min {trace [AXBXT + W (X o X)T
Wug XXT:XTX:I,ngI
+uo([| Xel|* + | XTel|?) — wo(2C + W) XT]

—2zqupel (X + XT)e + 2nugzl}.
(4.70)
Introducing a Lagrange multiplier wq for the constraint on z¢ and Lagrange
multipliers Sy for XXT = I and S, for X7X = I we get the lower bound

[R:

po > g > [IR = max  min{trace [AXBXT + uo(|| Xe||? + || XTe||?)
W,Sb,So,uo,wo ){7 xo

+ W(X o X)T + wozd + Sy X XT + 5, XTX]
— trace 2(2C + W)XT — 2zqupe (X + XT)e

— wg — trace Sy — trace S, + 2nuexd}.

(4.71)

Note that we grouped the quadratic, linear, and constant terms together in

(4.71). Now we define x := vec (X), yT := (zg,27) and w! := (wy, vec (W)T)

to obtain:

pR = max min {yT [Lg + Arrow (w) + B®Diag (Sp) + 0°Diag (So) + uoD]y

W,Op,900,U0 Yy
— wg — trace S — trace S, },

(4.72)
where Lg 1s as above and we used the linear operators
1, T
N Wo W2
Arrow (w) := [ Ly, Diag (W) ] , (4.73)
O |10 0
B"Diag (S) := [ 0 I2S, | (4.74)
O |10 0
O"Diag (5) := [ 0 S oIl (4.75)
and T o T T o T
L n —e" e n —e" e
D=1 _cge 10E } + { —e@e E@I }
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There is a hidden semidefinite constraint in (4.72): the inner minimization
problem is bounded below only if the Hessian of the quadratic form is positive
semidefinite. And in that case the quadratic form has minimum value 0.
Hence we have the equivalent SDP:

max —wgy — trace S, — trace .S,

(Do) s.t. Lo + Arrow (w) + B°Diag (Sp) + 0°Diag (S,) + uoD = 0.

We now obtain our desired SDP relaxation of (QAPp) as the Lagrangian
dual of (Dp). We introduce the (n? + 1) x (r* + 1) dual matrix variable
Y > 0 and derive the dual problem to the SDP (Dp).

min trace LgY

s.t. bPdiag (V) =1, o%diag (V) =1
arrow (Y') = eg, trace DY =0
Y =0,

(SDPo) (4.76)

where the arrow operator, acting on the (n? + 1) x (r? + 1) matrix Y, is the
adjoint operator to Arrow (-) and is defined by

arrow (V) := diag (V) — (O, (Ym:nz)T) , (4.77)

1.e. the arrow constraint guarantees that the diagonal and the first (Oth) row
(or column) are identical.
The block-0-diagonal operator and off-0-diagonal operator acting on Y are

defined by

bdiag (V) 1= ) Yoy (k) (4.78)
k=1
and .
o’diag (V) := > Yk (- (4.79)
k=1

These are the adjoint operators of BDiag (-) and O°Diag (-), respectively.
The block-0-diagonal operator guarantees that the sum of the diagonal blocks
equals the identity. The off-0-diagonal operator guarantees that the trace
of each diagonal block is 1, while the trace of the off-diagonal blocks is 0.
These constraints come from the orthogonality constraints, X X7 = I and
XTX = I, respectively.
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We have expressed the orthogonality constraints with both XX7 = T
and XTX = I. It is interesting to note that this redundancy adds extra
constraints into the relaxation which are not redundant. These constraints
reduce the size of the feasible set and so tighten the bounds.

Proposition 4.1 Suppose that Y is feasible for the SDP relazation (4.76).
Then Y 1is singular.

Proof.  Note that D # 0 is positive semidefinite. Therefore Y has to be
singular to satisfy the constraint trace DY = 0. [ |

This means that the feasible set of the primal problem (SDPy) has no
interior. It is not difficult to find an interior-point for the dual (De), which
means that Slater’s constraint qualification (strict feasibility) holds for (Do).
Therefore (SDPp) is attained and there is no duality gap in theory, for the
usual primal-dual pair. However if Slater’s constraint qualification fails, then
this is not the proper dual, since perturbations in the right-hand-side will not
result in the dual value. This is because we cannot stay exactly feasible, since
the interior is empty (see [105]). In fact we may never attain the supremum
of (Do), which may cause instability when implementing any kind of interior-
point method. Since Slater’s constraint qualification fails for the primal, the
set of optimal solutions of the dual is an unbounded set and an interior-point
method may never converge. Therefore we have to express the feasible set
of (SDPp) in some lower dimensional space. We study this below when we
project the problem onto a face of the semidefinite cone.

However, if we add the rank-one condition, then the relaxation is exact.

Theorem 4.2 Suppose that Y is restricted to be rank-one in (SDPo), i.e.
Y = < i ) (1 2T), for some = € R . Then the optimal solution of (SDPp)
provides the permutation matriz X = Mat () that solves the QAP.

Proof. The arrow-constraint in (SDPp) guarantees that the diagonal of
Y is 0 or 1. The 0-diagonal and assignment constraint now guarantee that
Mat (z) is a permutation matrix. Therefore the optimization is over the
permutation matrices and so the optimum of QAP is obtained. [ |

We now devote our attention to homogenization since that results in a
min-max eigenvalue problem and an equivalent SDP. We have seen that we
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can homogenize by increasing the dimension of the problem by 1. We first
add the 0,1 constraints to the objective function using Lagrange multipliers

Wi;.

: T 2

min max trace (AXB —2C)X" + Z Wi (X5 — Xij). (4.80)
ij

We now homogenize the objective function by multiplying by a constrained

scalar z.

min max trace [AXBXT +W(Xo X)T —z(2C + W)XT] . (4.81)

W XXT=]az2=1

We can now use Lagrange multipliers to get a parameterized min-max eigen-
value problem in dimension n*+ 1. We get the following bound. The param-
eters are: the symmetric n X n matrix A = AT, the general n x n matrix W
and the scalar a.

Bgap := min maxtrace |
AWa X

AXBXT + AXXT + WT(X 0 X) + az? (4.82)
—z(2C + W)XT | — a — trace A.

We have grouped the quadratic, original linear, and constant terms together.
The hidden semidefinite constraint now yields an SDP:

min —trace A — o 483
s.t. Lo + Arrow (a, vec (W)) 4+ B®Diag (A) < 0, (4.83)
where we define the matrix
o 0 —vec(C’)T
Lg:= { —vec (C) Bo A } , (4.84)
and the linear operators
«a —lvec(W)T
’ — 2
Arrow (o, vec (W)) : [ “Lyec(W) Diag (vec(W)) | (4.85)
O~ 10 0
B"Diag (A) := [ 0 IoA ] : (4.86)
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We can now introduce the (r? + 1) x (n* + 1) dual variable matrix ¥ = 0
and derive the dual problem to this min-max eigenvalue problem, i.e.

max [{nv%/r; —trace A — a + trace Y (Lg + Arrow (a, vec (W)) + B°Diag (A)).
The inner minimization problem is unconstrained and linear in the variables.
Therefore, after reorganizing the variables, we can differentiate to get the
dual problem to this dual problem, or the semidefinite relaxation to the
original QAP. (Recall that Y; ;. refers to the i-th row and columns j to k of
the matrix Y'; and b%diag (V) is the block diagonal sum of ¥ which ignores
the first row.) The derivatives with respect to o and W yields the first
constraint and the derivative with respect to A yields the second constraint
in the following problem. Equivalently, the constraints are the adjoints of
the linear operators Arrow and B°Diag .

max trace LoY
s.t. diag (V) = (1, Y5 1.02)7
bOdiag (V) = I
Y = 0.

(4.87)

Another primal-dual pair can be obtained using a trust-region subproblem
as the inner maximization problem, rather than homogenizing to an eigen-
value problem. This is done by adding the redundant trust-region constraint
trace XXT = n. As mentioned above, we can also add the redundant con-
straint

|| Xe— e||2—|— ||XT€— e||2 = 0.

A primal-dual interior-point method based on these types of dual pairs of

problems, such as (4.87) and (4.83), is tested and studied in [123].

4.3 The Max-Clique and Max-Stable-Set Problems

Consider again the undirected graph G = (E,V) defined above. The max-
clique problem consists in finding the largest connected subgraph. We let
w(G) denote the size of the largest clique in G. A stable set is a subset of
nodes of V such that no two nodes are adjacent. We denote the size of the
largest stable set in G, the complement of G, by a(G). Clearly

a(G) = w(G).
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Bounds for these problems and relationships to the theta function, or Lovasz
number of the graph, are described in the expository paper of Knuth [65]
(see also [109]).

In this section we show that the Lovdsz bound on w(G) can be alter-
natively obtained from two distinct 0,1 problems (4.88) and (4.91) by La-
grangian relaxations. Let A be the incidence matrix of the graph, i.e. A =
(ai;) with a;; = 1ifij € E and 0 otherwise. If x is the indicator vector for the
largest clique in G of size k, A then 27 (I+ A)z/xTz = k*/k = k. A quadratic

formulation of the max-clique problem is the following 0,1 quadratic prob-

lem. .
w(G@) = max = (xITZA)r
st wx;=0,ifi5¢ E, i #£j (4.88)
i € {0,1}, Vi.

Therefore, a quadratic relaxation of the max-clique problem is the following
quadratic constrained problem.

w(G) < wf:= max :L'T(I—I— A)x
st zx;=0,ifi5¢ E, 147 (4.89)
eTe =1.
The Lagrangian relaxation for this problem is the perturbed min-max eigen-
value problem and the equivalent SDP:

. T

wi < min Amax(I + A+ W) —az'z+ «
w;;=0, if ijeE, or i=;
= minmax CL’T(I + A+ D> wymr — oarlz + o

w,a T .. L,

iJEE, i#]
= min «a
T+ A+W <ol
w;;=0, if ijeE, or i=;

i.e. minimize the max eigenvalue over perturbations in the off-diagonal el-
ements corresponding to disjoint nodes. This bound is equal to the Lovasz
theta function on the complementary graph:

J(G) = min Amax(A), (4.90)

AeA

where

A ={A: A symmetric n x n matrix with A,; =1, iftj € E, or 1 = j}.
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By considering the (optimal) indicator vector for the largest clique, we
see that the following 0,1 quadratic problem describes exactly the max-clique
problem. Note that if node ¢ is not in the largest clique, then necessarily,
z;x; = 0 for some j with node j in the clique, i.e. necessarily x; = 0 in the
indicator vector.

w(G@) = max xlx
s,b. wix;=0,ifi5 ¢ E, i #£j (4.91)
z? —x; =0, Vi.

The Lagrangian relaxation yields the bound
Bchque = IIVIlll/{lmaX.Z‘ xr + Z Wi T;T 5 + Z/\ .TL‘ — )
ij¢E, i#]

We let W be an n x n matrix with zeros in positions where 715 € E. We
can homogenize by adding the constraint y?> = 1 and then lifting it into the
Lagrangian.

min max J;—I—Zw,]l':p]—l—Z)\J: +ay —yZ)\:z:,

a, WA xy
ij¢E

We now exploit the hidden semidefinite constraint to obtain the SDP:

B clique = gvn)l\% o
s.t. La+ Lw(W)+ Arrow (a, ) <0 (4.92)

VVz'j:Ov VZ.]EEa Ori:ja

where the matrix

00
L, = { 0 I } , (4.93)
and the linear operators

0 0

Ly (W) := { 0 W } , (4.94)
_IZT
Arrow (a, A) [ _ozl/\ Diazg)\()\) ] (4.95)
2
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The dual of the above min-max eigenvalue problem yields the semidefinite
relaxation for the max-clique problem with ¥ € §,,41.

max trace LY
s.t. diag (V) = (1,Y5.1:)7
Y;;=0,Viy¢ E (4.96)
Y »0.

The equivalence of the bounds (4.90) and (4.96) was shown in lemma 2.17
of [82].
Consider the problem (4.88) with an additional redundant constraint

zixj > 0foriy € E (4.97)
That is

w(G) = max IT(QEITi-I'f)z
st wx;=0,ifi5¢ E, i #£j
TiZ 5 Z 0, if Z] € E,
z; € {0,1}, Vi.

A quadratic relaxation of the max-clique problem is the following quadrati-
cally constrained problem:

(4.98)

w(G@) < wf = max J}T(I—I- A)x
st wx;=0,ifi5¢ E, 147
TiZ 5 Z 0, if Z] € E,
Ty =1.

(4.99)

The Lagrangian relaxation for this problem is equal to Schrijver’s im-
provement [109] of the theta function on the complementary graph:

#'(G) = min Anas(4).

where

A" ={A: A symmetric n x n matrix with A;; > 1, ifij € E, ori = j}.

Haemers [44] constructed graphs where ¢'(G) is strictly smaller than J(G).

Analogously, it is possible to modify the problem (4.91) by adding the
constraint (4.97).

33



4.4 Orthogonally Constrained Problems: Achieving Zero
Duality Gaps

As a final illustration of the strength of Lagrangian relaxation and the power
of adding appropriate redundant quadratic constraints we consider the or-
thonormal type constraints:

XTX:.[, XEJMm,n-

(This set is sometimes known as the Stiefel manifold. Applications and al-
gorithms for optimization over orthonormal sets of matrices are discussed in
[27].) We also consider the trust-region type constraint

XTX j -[7 X € -/Mm,n-

We follow the approach in [11, 10, 9] and show that if m = n then strong
duality holds for certain (non-convex) quadratic problems defined over or-
thonormal matrices after adding some quadratic redundant constraints. Be-
cause of the similarity of the orthonormality constraint to the (vector) norm
constraint 272 = 1, the results of this section can be viewed as a matrix gen-
eralization of the strong duality result for the well-known Rayleigh Quotient
problem [100].

Let A and B be n x n symmetric matrices, and consider the orthonormal
constrained homogeneous problem:

(QQPo) ,LLO := min trace AXBXT

st. XXT =1 (4.99)

This problem can be solved exactly using Lagrange multipliers [43] or the
classical Hoffman-Wielandt inequality [18].

Proposition 4.3 Suppose that the orthogonal diagonalizations of A, B are
A =VIVT and B = UAUT, respectively, where the eigenvalues in ¥ are
ordered non-increasing, and the eigenvalues in A are ordered nondecreasing.
Then the optimal value of QQPo is u° = trace TA, and the optimal solution
s obtained using the orthogonal matrices that yield the diagonalizations, i.e.

X*=VUT. ]

o4



The Lagrangian dual of QQPo is

max II}(iIl trace AXBXT — trace S(XXT —I). (4.100)
S=S

However, there can be a nonzero duality gap for the Lagrangian dual, see
[123] for an example. The inner minimization in the dual problem (4.100)
is an unconstrained quadratic minimization in the variables vec (X), with
hidden constraint on the Hessian

BRA-I®S =0.

The first order stationarity conditions are equivalent to AXB = SX or
AXBXT = S. One can easily construct examples where the semidefinite
condition and the stationarity conditions are in conflict and thus a dual-
ity gap occurs. In order to close the duality gap, we need a larger class of

quadratic functions.
Note that in QQPo the constraints XX = I and X7 X = I are equiva-
lent. Adding the redundant constraints X7 X = I, we arrive at

QQPoo p® = min trace AXBXT
st. XXT=1 XTX=1

Using symmetric matrices S and T to relax the constraints X X7 = I and
XTX = I, respectively, we obtain a dual problem

DQQPoo p? > pP ;= max trace S + traceT
st. I@S)+(T®I) X (B®A)
S=5T T=1".

Theorem 4.4 Strong duality holds for QQPoo and DQQPoo,
ie., p? = % and both primal and dual are attained. [ |

A further relaxation of the above orthogonal relaxation is the trust-region
relaxation studied in [64]:

Hoapr ‘= min trace AXBXT
st XXT <L
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The constraints are convex with respect to the Lowner partial order and so
it 1s hoped that solving this problem would be useful. The set

{X:W=XXT"<1T1}

is studied in [97, 29] and is useful in eigenvalue variational principles. Further-
more the problem (4.100) is visually similar to the trust-region subproblem
so we would like to find a characterization of optimality.

We study the matrix trust-region relaxation of QAP:

fsppr = min trace AXBXT
st XXT <L

The following generalization of the Hoffman-Wielandt inequality holds.

Theorem 4.5 For any XX < I, we have
S min{ X p—ip1,0} <trAXBXT <577 max{\p,, 0}

and the upper bound is attained if

X = PDiag (e1,€2, ) Q7, (4.100)
where
17 /\lluz > 07
&, = a € [0, 1], )\,/J, = 0, (4100)
0, Aipti < 0;

The lower bound is attained if

X = PDiag (1, €2, -, €,) Q7, (4.100)
where
17 AiMn—i-I—l < 07
E; = a € [0, 1], )\,',un_H_l = 0, (4100)
0, )\,’,LLn_,'_H > 0.
[ |
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The lower bound in the above theorem states that u5,pr = > o, [Nip] -
Since the Theorem provides the feasible point of attainment, i.e. an up-
per bound for the relaxation problem, we will prove the theorem by proving
another theorem that shows that the value p,pp is also attained by a La-
grangian dual problem. Note that since XX7 and X7X have the same
eigenvalues, X X7 < I if and only if X7 X < I. Explicitly using both sets of
constraints, as in [11], we obtain

QAPTR fgapr i= min trace AXBXT
st XXT<1I, XTX<I.

Next we apply Lagrangian relaxation to QAPTR, using matrices S > 0 and
T > to relax the constraints XX7 < I and XTX < I, respectively. This
results in the dual problem

DQAPTR HoApT 2 ,ugAPT := max —traceS — traceT
st. (BRA)+(I08)+(Tal) =0
S =0, Tx»0.

To prove that pf ,pr = /~‘8APT we will use the following simple result:

Lemma 4.6 Let A € R™, Ay < X\ < ... < \,. For~y € R" consider the

problem
min  z, = ZP‘””(")]_’
i=1
where ©(+) is a permutation of {1,...,n}. Then the permutation that mini-
mizes z, satisfies Yr(1) 2 Vr(2) = -+ Vr(n)- [ ]

Theorem 4.7 Strong duality holds for QAPTR and DQAPTR:

D %
HoarpT = HQAPT

and both primal and dual optimal values are attained. [ |

These results conclude the first part of the paper which illustrated the
strength of the Lagrangian relaxation. We now proceed to our second appli-

cation of SDP.
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5 Matrix Completion Problems

Semidefinite programming problems arise in surprisingly many different ar-
eas of mathematics and engineering where they sometimes have different
names. In engineering they are often referred to as linear matrix inequalities
problems. In matrix theory, the class of problems called matrix completion
problems is closely related to SDP. In this last Section we study application
of SDP to this class of problems.

A symmetric partial matriz is a symmetric matrix where certain entries
are fixed or specified while the remaining entries are unspecified or free. The
symmetric matrix completion problem endeavors to specify the free elements
in such a way that the resulting matrix satisfies certain required properties.
For example, the positive semidefinite matrix completion problem (PSDM)
consists of finding a completion so that the resulting matrix is symmetric
positive semidefinite, while the Euclidean distance matrix completion prob-
lem (EDM) seeks a completion that forms a Euclidean distance matrix (a
precise definition of this class of matrices is given below).

In this Section we show how successful SDP has been in solving matrix
completion problems. We begin in Section 5.1 with theoretical existence
results for completions based on chordality. This follows the work in [42].
We then present an efficient approach to solve PSDM completion problems
[57]. This approach successfully solves large sparse problems. In Section
5.3 this approach is extended to the EDM completion problem (based on
the work in [1]) but is shown to exhibit difficulties in the large sparse case.
Hence we conclude by presenting in Section 5.4 a new characterization of
Euclidean distance matrices and new algorithms that efficiently solve large
sparse problems.

5.1 Existence Results

Both the PSDM and EDM problems have been extensively studied in the
literature. Let us first phrase the completion problem using the graph of the
matrix. Suppose that G(V, E) is a finite undirected graph. The edges of the
graph correspond to fixed elements in the matrix, i.e. A(G) is a G-partial
matric
if a;; is defined if and only if {7,j} € E.

A(G) is a G-partial positive matriz if a;; = a;;,V{i,7} € E and all existing
principal minors are positive. With J = (V, E), E C E a J-partial matrix,
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B(J) extends the G-partial matrix A(G) if b;; = a;;,¥{i,j} € E, i.e. the
missing (free) elements in the matrix are filled in.

G is positive completable if every G-partial positive matrix can be extended
to a positive definite matrix. With this definition we look at the pattern of
fixed elements in the matrix rather than specific elements. The following is
the key property to guarantee that a completion is possible.

Definition 5.1 G is chordal if there are no minimal cycles of length > 4.
(every cycle of length > 4 has a chord)

Theorem 5.2 ([42]) G is positive completable if and only if G is chordal. W

When a positive definite completion is possible, then the one of maximum
determinant is unique and can be characterized.

Theorem 5.3 ([42]) Let A be a partial symmetric matriz oll of whose di-
agonal entries are specified, and suppose that A has a positive definite com-
pletion. Then, among all positive definite completions, there is a unique one
with mazimum determinant.

The 1990 survey paper [56] presents many of the theoretical results for com-
pletion problems. Similar existence results are known for the EDM com-
pletion problem, see e.g. the comparison of the two problems [77], as well
as the survey paper [78] and [12, 15, 36, 63]. Related results appear in
[76, 81, 79, 36, 28, 61, 13, 35, 53, 52, 41, 58, 23, 25, 85, 15, 60, 96, 59].

One can use determinantal inequalities (e.g. [36]) or semidefinite pro-
gramming techniques to find completions. For example, to find a positive
semidefinite completion, with fixed elements a;;,{i,7} € E, one can solve
the following (feasibility) problem.

max trace CX
subject to trace E;;P = a;;, Y{i,j} € E
P*>0
where Ej; = el 4 ejep, and C is an arbitrary symmetric matrix. To

find the solution with maximum determinant, one can use the objective
max log det(X) in the above problem, see e.g. [117]. (These problems can be
solved very efficiently.)

It 1s not clear that finding completions this way is efficient for large sparse
problems, since current SDP codes cannot yet handle the general large sparse
case very well.
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5.2 Approximate Positive Semidefinite Completions

However, one can reformulate the completion problem as an approzimate
positive semidefinite completion problem. This trick, which we now outline,
allows efficient solution of the large sparse case, see [57].

Suppose we are given the real, nonnegative (element-wise) symmetric
matrix of weights H = H' > 0 with positive diagonal elements H;; > 0, Vi.
The positive element H;; provide a weighting on the importance of fixing the
element a;; in the partial symmetric matrix A = A" (For notational
purposes, we assume that the free elements of A are set to 0 if not specified
otherwise.)

Recall that ||A||r = Vtrace A*A is the Frobenius norm, and o denotes
Hadamard product. Define the objective function

f(P):=||Ho (A= P)|E.

This function weights the fixed elements while ignoring the free elements.
The weighted, best approximate, completion problem is

pr o= min f(P)
(CM) subject to KP =1b
P 0,

where K : S — R™ is a linear operator, and b € ™. We include the linear
operator K to allow for additional constraints, e.g. when certain elements
need to be exactly fixed.

To solve CM, we present a dual problem and a primal-dual interior-point
algorithm that can exploit sparsity. Following is the Lagrangian for CM.

L(P,y,A)= f(P)+ (y,b— KP) — trace AP.
The primal problem can be obtained from

wo= H}Dlnl'[]ilggiL(PyayAay)7

while the dual problem comes from

v = I[{l;ié( mPin L(P,a, A y),

le.
max f(P)+(y,b— KP) —trace AP
(DCM) subject to Vf(P)—K*'y—A=0
A>x0.
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Theorem 5.4 Suppose that Slater’s constraint qualification holds, i.e. there
exists a positive definite feasible solution X. The matriz P > 0 and vector-

matriz iy, A = 0 solve CM and DCM if and only if

) KP =50 ) primal feas.
2H® o (P — A)—K*y—A=0  dual feas.
trace AP =0 compl. slack.

Primal-dual interior-point methods are based on solving a perturbation
of the above optimality conditions.

KP=b primal feas.
2H® o (E —A)- Ky - A=0 dual feas. (5.1)
P—uAt=0 pert. compl. slack.

Remark 5.5 In fact, most algorithms use the
AP —pul =90

perturbed version of complementary slackness. We specifically use (5.1),
since it allows us to exploit sparsity. (However, we pay for this with some
loss of accuracy near the optimum.) See [113] for a discussion of the many
different choices for search directions.

Two algorithms can be derived. The dual-step-first exploits sparsity if
many elements are free; while the primal-step-first exploits sparsity if many
elements are fixed. The details are given in [57]. We will follow a similar
strategy below when deriving algorithms for the (approximate) EDM com-
pletion problem, see Sections 5.3 and 5.4.

Numerical tests show that large sparse problems can be solved very effi-
ciently. We include a few tests done on a Sparc 20 using Matlab 5.3 . The
time per iteration (though not included) was directly proportional to the
number of fixed elements (non-zeros) in the dual-step-first method, e.g. for
n = 155 this was typically 16 seconds cpu time. Similar results held for the
primal-step-first algorithm, i.e. the time was proportional to the number of
free elements. The details for several of the tests follow in Tables 2 and 3.
(Each test appears on one line and includes 20 test problems.)
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dim | toler | H dens. / infty | A > 0 | cond(A) | H > 0 | min/max | iters
83 | 10°° .007/.001 no 235.1 no 24/29 25.5
85 | 107° .008/.001 yes 94.7 no 11/17 | 131
85 | 107° .0075/.001 no 299.9 no 23/27 25.2
87 | 107° .006/.001 yes 74.2 yes 14/19 16.9
89 | 10°° .006/.001 no 179.3 no 23/28 15.2
110 | 10°° .007/.001 yes 172.3 yes 15/20 17.8
155 | 107 .01/0 yes 643.9 yes 14/18 15.3
655 | 107° .017/0 yes 1.4 no 13/16 14.
755 | 1076 .002/0 yes 1.5 no 14/17 15.

Table 2: PSD completion data for dual-step-first method (20 problems per
test): dimension; tolerance for duality gap; density of non-zeros in H/ density

of infinite values in H; positive semidefiniteness of A; positive definiteness of

H; min and max number of iterations; average number of iterations.

5.3 Approximate EDM Completions

We now look at the EDM completion problem. We follow the successful
approach above and use some known characterizations of EDMs. (The details
can be found in [1].)

An n X n symmetric matrix D = (d;;) with nonnegative elements and

zero diagonal is called a pre-distance matriz (or dissimilarity matrix). A

dim | toler | H dens. / infty | A > 0 | cond(A) | H > 0 | min/max | iters
85 | 107° .0219/.02 yes 1374.5 no 16/23 18.9
95 | 107° .0206/.02 yes 2.7 no 8/14 11.1
95 | 107° 1/.999 yes 196. yes 14/18 16.8
145 | 107° .01/.997 yes 658.5 yes 13/17 14.9

Table 3: PSD completion data for primal-step-first (20 problems per test):
dimension; tolerance for duality gap; density of non-zeros in H/ density of
infinite values in H; positive semidefiniteness of A; positive definiteness of

H; min and max number of iterations; average number of iterations.
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pre-distance matrix such that there exists points z!, 2%, ..., 2" in R" with
i in2 .o
dij = |l =2, 4,7=1,2,...,n

is called a (squared) Euclidean distance matriz (EDM). The smallest value
of r is called the embedding dimension of D. (r is always <n — 1.)

Given a partial symmetric matrix A with certain elements specified, the
Fuclidean distance matriz completion problem (EDMCP) consists in finding
the unspecified elements of A that make A a EDM. In other words, we wish
to determine the relative locations of points in Euclidean space, when we are
only given a subset of the pairwise distances between the points.

There are surprisingly many applications for this problem, sometimes
called the molecule problem. These applications include NMR data, deter-
mination of protein structure, surveying, satellite ranging, and molecular
conformation; e.g. the survey [24] and the discussion in [51] and the related
papers [50, 90, 115, 118, 45].

We now consider the approximate EDMCP and follow the approach in
[1], where the reader will find all the proofs and details omitted here. Let
A be a pre-distance matrix and let H be an n X n symmetric matrix with
nonnegative elements (weights). Consider the objective function

f(D):= | H o (A~ DIz,

where o denotes Hadamard product. The weighted, closest Euclidean distance
matriz problem is

pr = min f(D)
(CDMo) subject to D € €&,

where £ denotes the cone of EDMs.

5.3.1 EDM Model

The cone of EDM is homeomorphic to a face of the cone of positive semidef-
inite matrices. This can be seen from the fact that a pre-distance matrix D
is a EDM if and only if D is negative semidefinite on

M::{J:E?R”::L’te:()},

where e is the vector of all ones. (For these and other related results see the
development in [1].) Now, define

Visnx (n—1) full column rank with Vie=0. (5.2)
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Then

t

Ji=vvi=1-25 (5.3)

n

is the orthogonal projection onto M, where V! denotes the Moore-Penrose
generalized inverse.
Define the centered and hollow subspaces

S¢ = {BeS":Be=0},
Sy = {D € S" :diag (D) = 0},

and the two linear operators
K(B) := diag(B)¢€' + ediag(B)" — 2B,

T(D) := —%]DJ.

The operator —27 is an orthogonal projection onto S¢.

Theorem 5.6 The linear operators satisfy

K(S¢) = Su,
T(SH) = 807
and Kis.. and Js, are inverses of each other. [}

Lemma 5.7 The hollow matriz D € £ if and only if
vTe=0 = vIXv<o.

From the above we see that a hollow matrix D is EDM if and only if it is
negative semidefinite on the orthogonal complement of e, i.e. if and only
if B="T(D) = 0 (positive semidefinite). Alternatively, D is EDM if and
only if D = K(B), for some B with Be = 0 and B > 0. In this case the
embedding dimension r is given by the rank of B. Moreover if B = X X',
then the coordinates of the points x',z%, ..., 2" that generate D are given
by the rows of X and, since Be = 0, it follows that the origin coincides with
the centroid of these points.
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The cone of EDMs, £, has empty interior. This can cause problems for
interior-point methods. We can correct this by projection and moving to a

smaller dimensional space [1]; note that
V.-V: Sn—l — Sn
V-V:Pui— P,
Define the composite operators

Kv(X) = K(VXVH,

and

Tv(D) = VIT(D)(VH) = —-iVID(VT

Lemma 5.8

Kv(Sn-1) = Sm,
TV(SH) = Sn—17
and Ky and Ty are inverses of each other on these two spaces. [ |
Corollary 5.9
Kv(P) = €&,
Tv(E) = P.
[

We can summarize the above and obtain the model used in [1] (Re)Define

the closest EDM problem:

fo(X) = || H o (A = Ky (X))l
= || H o Kv(B — X)||7,

where B = Ty (A). (Ky and Ty are both linear operators)
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ppi= min fo(X)
(CDM,) subject to AX =b
X > 0.

The additional constraint using A4 : §,_1 — R™, could represent some of
the fixed elements in the given matrix A.

Numerical tests for this model are given in [1]. The number of iterations
are comparable to those for the semidefinite completion problem (Section
5.2), though the time per iteration was much higher, i.e. sparsity was not
exploited efficiently.

5.4 Alternate EDM Model for the Large Sparse Case

The above model appears to be quite efficient for solving the EDM completion
problem. It handles the lack of interiority and actually reduces the dimension
of the problem. There is one major difference between this model CDMq and
the one used in Section 5.2. That is, the operator Ho in the objective function
is replaced by H o Ky. This change allows one to reduce the dimension of the
problem and obtain Slater’s constraint qualification for both the primal and
dual problems. However, one cannot exploit sparsity as one did in CDM. As
is often the case in modelling, a model that appears to be simpler is often
not more efficient in computations. We now outline a different approach that
increases the dimension of the problem but can exploit sparsity. The details
can be found in [3]. (Recall that e denotes the vector of ones.)

Lemma 5.10 Let

F = {Xe8 :vle=0 = oTXv<0},
Fo = {X eS8 : X —aee' <0, for some a >0},
Fi = {Xe8" : X —aee! 20, Va>a, for somea > 0}.
Then o
1 (F)Cc Fo=F CFC Fo. (5.4)

Proof.  Suppose that X € 1i(F) (i.e. vTe =0,v # 0 = vIXv < 0) but
X ¢ Fo. Then, for each a > 0, there exists w, with ||w.|| = 1, such that
Wy — w, as @ — 0o and

wl(X — aee')wy >0, Va>0,

e
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le.
Ty T, t
wy, Xw, > aw, ee'wy, YV a>0.

Since w, converges and the left-hand-side of the above inequality must be
finite, this implies that e'w = w!Xw = 0, a contradiction. Therefore,
11 (F) C Fo. That Foy = Fi is clear.

Now suppose that X — aee! < 0, a > 0. Let v"e = 0. Then 0 >
vT(X — aee')v = vTXv, i.e. Fy C F. The final inclusion comes from the
first and the fact that F is closed. [ |

Unfortunately, we cannot enforce equality in (5.4). This can be seen from
the fact that Fo = P + span {ee'} = P + spanF, where F = cone {ee'} is
a face (actually a ray) of the positive semidefinite cone generated by ee’. P
and the sum of P and the span of a face is never closed, see [105, Lemma
2.2]. If we assume that X is hollow, then the same result holds. This is used
in the algorithm for large problems.

Corollary 5.11 Let

£ = {XcSg:vle=0 = vTXv <0},
& = {XeSy: X —aee' <0, for somea},
& = {XeSy: X —ae' <0, Va>a, for some a}.
Then B
ri(§ycE=EcCcécCE. (5.5)

Proof. The proof is similar to that in the above Lemma 5.10. We only
include the details about the closure.

Suppose that 0 # X € &, i.e. diag(Xz) = 0, Xy = apE, for some ay;
and, suppose that X; — X. Since X} is hollow it has exactly one positive
eigenvalue and this must be smaller than . However, since X}, converges to
X, we conclude that X < Apax(X)E, where Apax(X) is the largest eigenvalue
of X. [ |

We can now use a different simplified objective function to obtain a new

model. We let E = ee’ and

f(P):=|Ho (A~ P)|p,
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and
pr o= min f(P)
(CDM) subject to KP =5
aF — P > 0,

where K is a linear operator. We assume that this linear equality constraint
contains the constraint diag (P) = 0, i.e. that P is a hollow matrix.

We now derive the dual problem for CDM. For A € 8™ and y € R™, let
L(P,a,\y) = f(P)+ (y,b— KP) — trace A(oE — P) (5.6)

denote the Lagrangian of CDM. It is easy to see that the primal problem
CDM is equivalent to

p* = minmax L(P, o, A, y). (5.7)
Pa A%0

We assume that the generalized Slater’s constraint qualification,
da,P with P—aFE <0, KP =1,

holds for CDM.

Slater’s condition implies that strong duality holds, i.e. this means

P =v" :=maxmin L(P,a,A,y) (5.8)
A%0 P

and v* is attained for some A > 0,y see e.g. [83]. The inner minimization
of the convex, in P, Lagrangian is unconstrained and we can differentiate to
get the equivalent problem

v = max f(P)+ (y,b— KP) — trace A(aE — P). (5.9)
VL(PA();AO,y)zo

We can now state the dual problem.

v = max f(P)+ {y,b— KP)— trace A(oE — P)
subject to Vpf(P)—K*y+A=0
(DCDM) —trace AE =0
A» 0.
(5.10)
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The above pair of dual problems, CDM and DCDM, provide an opti-
mality criteria in terms of feasibility and complementary slackness. This
provides the basis for many algorithms including primal-dual interior-point
algorithms. In particular, we see that the duality gap, in the case of primal
and dual feasibility, is given by the difference of the primal and dual optimal
values:

—(y,b— KP) + trace A(aE — P) = trace A(aE — P). (5.11)

Using the derivative Vp f(P) = 2H® o (P — A), and primal-dual feasibility,

we see that complementary slackness is given by
trace (aE — P) (—QH(Z) o(P—A)+ K*y) =0. (5.12)

Theorem 5.12 The pair P > 0,a and A = 0,y solve CDM and DCDM if
and only if

) KP =b primal feasibility
2H® o (P - A) — K*y— A =0, —traceAE =0 dual feasibility
trace A (&E — P) =0 compl. slack.

The above yields an equation for the solution of CDM. (Recall that the
primal feasibility constraint is assumed to include the fact that P is a hollow
matrix.) However, we do not apply a Newton type method directly to this
equation but rather to a perturbed equation which allows us to stay interior
to P and .. We note that though the generalized Slater’s constraint quali-
fication holds for the primal, it fails for the dual since A > 0 = trace AE > 0.
Therefore, there is no duality gap between the optimal values, but numerical
complications can arise. We address this later on.

5.4.1 Interior-point algorithms

We now present the interior-point algorithms for CDM. We present a dual-
step-first. (A primal-step-first version can be similarly derived.) The differ-
ence in efficiency arises from the fact that the primal variable P does not
change very much if few elements of A are free, while the dual variable A
does not change very much if many elements of A are free.
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Since we can increase the weights in H to try and fix certain elements of
P, we restrict ourselves to the case where the only linear equality constraints
are those that fix the diagonal at 0.

5.4.2 The Log-Barrier Approach

We now derive a primal-dual interior-point method using the log-barrier ap-
proach, see e.g. [49]. This is an alternative way of deriving the optimality
conditions in Theorem 5.12. The log-barrier problem for CDM is

min B,(P):= f(P) — plogdet(aE — P),
diag (P)=0
P>0

where 11 | 0. For each p > 0 we take one Newton step toward minimizing
the log-barrier function. The Lagrangian for this problem is

f(P) — y'diag (P) — plog det(aE — P).

Therefore, we take one Newton step for solving the stationarity conditions

Vp = 2H® o(P — A)— Diag(y)+ p(aE—~P)"' =0
V. = —ptrace E(aE —P)' =0 (5.13)
diag (P) = 0.

After the substitution —pu(aE — P)™" = 2H® o (P — A) — Diag (y), the
first two equations become the perturbed complementary slackness equations.
The new optimality conditions are

(aE — P) (~2H® o (P — A) + Diag (y)) = pl,
trace E (2H® o (P — A) — Diag(y)) = 0 (5.14)
diag (P) = 0.

And, the estimate of the barrier parameter is
np = trace(aE — P)(—2H® o (P — A) + Diag (y)) . (5.15)

The Newton direction is dependent on which of the equations (5.13),(5.14)
we choose to solve. The equation (5.14) is shown to perform better in many
applications. A discussion on various choices is given in [113]. (See also [73].)
However we choose (5.13) below in order to exploit sparsity. The linearization
to find the Newton direction is done below.
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5.4.3 Primal-Dual Feasible Algorithm - Dual Step First

The algorithm essentially solves for the step h,w and backtracks to ensure
both primal and dual strict feasibility. This yields the primal-step-first algo-
rithm since we only solve for the step h, w for changes in the primal variables
P, a. We do need to evaluate the dual variable to update the barrier param-
eter p using the perturbed complementarity condition.

Alternatively, we can work with dual step and perturbed complementary
slackness. (We follow the approach in [49]. See also [86].) We keep primal
feasibility, identify A

A =p(aE - P) (5.16)

and replace equations (5.13) and (5.14). This yields

diag (P) =0 primal feasibility
2H® o (P — A) — Diag (y) + A =0, —traceAE =0  dual feasibility
—(aE — P)+puA~t =0, pert. compl. slack.
(5.17)

Remark 5.13 Dual feastbility implies that trace AE = 0. Therefore,
A=VAV: A0,

where V' is defined in (5.2). There are many choices for V. In particular, we
can make a sparse choice, i.e. one with many zero elements. Therefore, in
an interior-point approach we cannot maintain dual feasibility, e.q. during
the algorithm trace AE > 0 with = 0 only in the limit.

Alternatively, we could eliminate the troublesome equation in the dual to
obtain the following equivalent characterization of optimality

diag (P) =0 primal feasibility
2H® o (P — A) — Diag (y) + VAV =0  dual feasibility (5.18)
—(aE — P)+ puVA'VE=0 pert. compl. slack.

We apply Newton’s method to solve (5.17). We let

denote the step for P
denote the step for «
denote the step for A
denote the step for y.

CIJNS:‘
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(By abuse of notation, we use [ as a matrix here and also as an index. The
meaning is clear from the context.) We get

diag (k) = —diag (P), (5.19)

i.e. the diagonal (linear) constraint will be satisfied if we take a full Newton
step or if we start with the initial diag (P) = 0. Therefore, we may as well
start with diag (P) = 0 and restrict diag (h) = 0. Then linearization of the
complementary slackness equation yields

—(a4+w)E+ (P +h)+pA~t —pA~HATY = 0,

" (a+w)E—-P—h = pA~" — pA7HATY (5.20)
where diag (P) = diag (h) = 0. We get
h = —pA™ '+ pA AT = P+ (a +w)E. (5.21)
and .
Z:;A{P—I—h—(a—l—w)E}A—l—A. (5.22)

The linearization of the dual feasibility equations yields

2H® o h — Diag (s)+1 = —(2H® o (P — A) — Diag (y) + A),

—tracelE = trace AF, (5.23)

with diag (P) = diag (h) = 0. We assume that we start with an initial primal-
dual feasible solution. However, we include the feasibility equation on the
right-hand-side of (5.23), because roundoff error can cause loss of feasibility.
(Since Newton directions maintain linear equations, we could theoretically
substitute for A in this linearization with the right-hand side being 0. We do
however forcibly maintain a zero diagonal.)

We can eliminate the primal step h and dual step s and solve for the dual
step [, w. From the linearization of the dual in (5.23) and the expression for

hin (5.21),

—Diag(s)+1 = —2H® oh - (2H®@ o (P — A) — Diag (y) + A)
—2H®@) o (—pA™ + puATHAT — P+ (a4 w)E)
— (2H® o (P — A) — Diag (y) + A)
diag (h) = diag (—pA '+ pATHAT = P4 (a+w)E) =0
trace (IE) = —trace(AE).

(5.24)
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Since we have the constraint diag (P) = 0 in CDM, we can, without loss of
generality, set the diagonal of the weight matrix H to zero, i.e. diag (H) = 0.
We can start with initial diag (P) = 0 and diag (A) = y. Therefore

s = diag (1).
We can now eliminate s from the first equation.

—Diagdiag(I)+1 = —2H® o (—pA™ + pATHAT + (a+ w)E)
— (2H® o (—A) — Diag (y) + A).
(5.25)
and, assuming that diag (P) =0,

0 = diag (—pA '+ puA AT — P+ (a+w)E)

= pdiag (—A™'+ ATHATY + (a + w)e (5.26)

From this we already see that if A started sparse and H was similarly sparse,
then A stays sparse and [ is sparse.
We can now move the variables to the left and get the Newton equation

2H® o (wE + pA~'IA"") — Diagdiag (I) +1 = 2H® o {uA~' 4+ A — aE}

+Diag (y) — A
diag (pATHATY) 4+ we = diag (uAT) — ae
trace (IE) = —trace(AE).
(5.27)

This system is square, order 1+t(n) = 1+ @

the strictly upper triangular part in the first equation and A, [ are symmetric

, since we need only consider

matrices.

We can now solve this system for [, set s = diag (1),t = —trace (A+])E—X,
and substitute to find A, w. We then take the primal-dual step and backtrack
to ensure both primal and dual positive definiteness. Note that we cannot
maintain dual positive definiteness if we maintain dual feasibility. However,
we can maintain dual positive definiteness on the orthogonal complement of
e, i.e. maintain VAV > 0.

Let nnz denote the number of nonzero, upper triangular, elements of
H. We assume that the diagonal of H is zero and H is symmetric. Let F
denote the nnz + n X 2 matrix with row p denoting the indices of the p-th
nonzero, upper triangular, element of H + I ordered by columuns, i.e. for
p=1,....nnz+ n,

{(Fp1, Fpa)p=1,..nnz4n } = {17 : Hij # 0,1 < j, ordered by columns}. (5.28)
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Let d;; denote the Kronecker delta function, i.e. it is 1 if 1 = j and 0 otherwise;
dijer is 1 when all 2 = j = k = [ and 0 otherwise; d(;jxry is 1 when (i7) = (ki)
and 0 otherwise. Let E;; = (e,'ez + ezei) /\/§ denote the ¢7 unit matrix in
S§", where E;; = (eiez + e;ei) /2 if © = j. (This set of matrices forms an
orthonormal basis of S”.) Then trace EE;; = /2 (resp. 1) if i # j (resp.
i = 7). From (5.27) the first ¢(n) rows, with w = 0, & # [, and k& = [,

components of the left-hand-side are, respectively,

k#1,i+#jLHS (5.27) = trace By {2H® o (WA~ E;;A™")
—Dlag dlag (El]) + E,]}
= ptrace (exe} + eel) (H(z)
oA‘l(eie; + 6]‘65)/\_1) + 6(@3)(kl)
e (BP0 ATA) ot
2ef, (H® o AZTAGY) @] + 8y a);
k#1Li#j LHS (5.27) = 2uHg (A7 AR+ AGAL) + Ssens
k 7£ Z,Z :j LHS (527) = trace Ekl {QILLH(Z) o) [A_lEj]‘A_l]
—Diag diag (E;;) + Ej;}
= 2\2utrace exel (H(Z) o A‘lejezA_l)
= 2V2uHg (A'AR);
k=1,i# j LHS (5.27) V2uhG AL, k=1, n;
k=1,i=7LHS (5.27) = pAA;, k=1

ye .M
(5.29)
The last column of LHS, with the matrix = 0 and w =1, is:
w=1k#1LHS (5.27) = trace (Ekl(QH(z) o E)) ; (5.30)
w=1Fk=1LHS (527) = 1. ’
While the last row of LHS is:
i # j LHS (5.27) = trace (E;;E)) = /2; (5.31)
i =7 LHS (5.27) = 1. '
Suppose that we represent the Newton system as
sMat [L(svec (1))] = sMat [svec (RHS)], (5.32)

where svec (S) denotes the vector formed from the nonzero elements of the
columns of the upper triangular part of the symmetric matrix S, where the
strict upper triangular part of S is multiplied by /2. This guarantees that
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trace XY = svec (X)'svec(Y), L.e. svec is an isometry; the operator sMat
is its inverse, and RHS is the matrix on the right-hand-side of (5.27). The
system is order nnz + n. From (5.32), we can write the system as a matrix
and column vector equation with matrix L and vector of unknowns svec (7).

L(svec(l)) = svec (RHS). (5.33)

Then for
p=kl,k <1, q=1j5,i <},

the pg component of the matrix L is

QFLH}(il Fpy (AEPZ Fa Aﬁ; Fy T Aﬁpll Fa Afgqlg ,sz) ifp#gq k#1,

L #

2\/§NH§§,)2 Fpy (AEPZ Fa Aﬁ; ,Fm) fp#q k#1,

L= J;

2\/§’LLH}(7§7)27FP1 (A;‘PIqugA;‘qlvam) ifp=yq, k 7£ L

Lpg = L=

(2) -1 -1 -1 -1 o —
2’LLHFP2 +Fpy (Asz Fay AF<12 Fpy T AFm Fay Aqu vaz) +1 dp=qk#,
L 7

V2uA Fp1 Fg 1«1112,}«;1 ifk=1,1i%#7j;
'LLAFPqul F<111Fp1 lfk:l’@:]
2\/2 FP2FP1 fw=1, k#1

(5.34)

The p-th row can be calculated using the Hadamard product of pairs of
columns of A™1,

AfyFy @ ME E (5.35)
This allows for complete vectorization and simplifies the construction of the
linear system, especially in the large sparse case.
The p = kI, k <, and last row, component of the right-hand-side of the
system (5.32) is

\/_<2H o {uA; 4, —a} —A,), k£
RHS, = pAgl —a if k=1
—trace (AE) last row
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The above provides a sparse system of linear equations for the search
direction in a primal-dual interior-point algorithm. One would then take a
step in this direction, backtrack to guarantee positive definiteness and then
repeat the process with a new system, i.e. follow the standard paradigm for
these algorithms.

5.4.4 Primal-Dual Feasible Algorithm - Primal Step First

Alternatively, if many elements of H are sufficiently large, i.e. if we fix (or
specify) elements of A, then it is more efficient to eliminate / and solve for h
first. The algorithm is similar to the dual-step-first one. The details can be
found in [3].

6 Conclusion

In this paper we showed the strength of Lagrangian relaxation for obtain-
ing semidefinite programming relaxations for several discrete optimization
problems. We have presented a recipe for finding such relaxations based on
adding redundant quadratic constraints and using Lagrangian duality and
illustrated it with several examples, including the derivation of new strength-
ened SDP relaxations for MC. We also discussed the application of SDP to
matrix completion problems. We showed how SDP can be used to find ap-
proximate positive semidefinite and Euclidean distance matrix completions
and we concluded by presenting a new SDP algorithm which exploits spar-
sity and structure in large instances of Euclidean distance matrix completion
problems.
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