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Abstract

The trust region subproblem (the minimization of a quadratic ob-
jective subject to one quadratic constraint and denoted TRS) has
many applications in diverse areas, e.g. function minimization, se-
quential quadratic programming, regularization, ridge regression, and
discrete optimization. In particular, it determines the step in trust
region algorithms for function minimization. Trust region algorithms
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are popular for their strong convergence properties. However, a draw-
back has been the inability to exploit sparsity as well as the difficulty
in dealing with the so-called hard case. These concerns have been
addressed by recent advances in the theory and algorithmic develop-
ment.

This paper provides an in depth study of TRS and its properties as
well as a survey of recent advances. We emphasize large scale problems
and robustness. This is done using semidefinite programming (SDP)
and the modern primal-dual approaches as a unifying framework. The
SDP framework solves TRS efficiently; and it shows that TRS is always
a well-posed problem, i.e. the optimal value and an optimum can be
calculated to a given tolerance. This is contrary to statements in
the literature which label TRS ill-posed or degenerate, if the so-called
hard case holds. We provide both theoretical and empirical evidence to
illustrate the strength of the SDP and duality approach. In particular,
this includes new insights and techniques for handling the hard case.
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1 Introduction

We are concerned with the following quadratic minimization problem:

*

¢ = min q(z):=z2TAz — 24"z

(TRS) st |zl < s.

Here, A is an n x n symmetric (possibly indefinite) matrix, a is an n-vector,
s 1s a positive scalar and x is the n-vector of unknowns. All matrix and vec-
tor entries are real. This problem is referred as the trust region subproblem
(denoted TRS). This problem has many applications in e.g.: forming sub-
problems for constrained optimization [4], regularization of ill-posed problems
[32], and regularization for ill-conditioned linear regression problems (called
ridge regression, [15]). In addition, it is important in a class of optimization
methods called trust region (TR) methods for minimization where, at each
iteration of the method, the algorithm determines a step by (approximately)
finding the minimum of a quadratic function (a local quadratic model of a
given function f) restricted to a given ball of radius s. (This is called the
spherical trust region. We do not discuss scaled, ellipsoidal, trust regions.)
The radius s increases or decreases depending on how well the decrease in the
quadratic model predicts the true decrease in f. The data, A and a, respec-
tively, represent the Hessian and the gradient of the modeled function. Trust
region methods have advantages over e.g., quasi-Newton methods. Under
mild assumptions, the trust region algorithms produce a sequence of iter-
ates with an accumulation point that satisfies both first and second order
necessary optimality conditions (e.g. [8]). Furthermore, if the accumulation
point satisfies the second order sufficient optimality conditions, the method
reduces to Newton’s method locally and convergence is q-quadratic. (For
more details see e.g. the recent books [22, 4].)

However, the popularity of trust region methods for unconstrained min-
imization has lagged behind quasi-Newton methods. Numerical difficulties
in standard algorithms for TRS can arise when a is (approximately) perpen-
dicular to the eigenspace of the smallest eigenvalue of A. This is referred to
as the (near) hard case in the literature. In addition, sparsity of the Hes-
sian was not exploited efficiently, whereas algorithms such as limited memory
quasi-Newton methods proved to be successful, e.g. [18, 21].

Though TRS appears to be a simple problem, there is a long history
of elegant theory and algorithms. (The recent books [3, 4] contain exten-
sive bibliographies. See also the bibliographical database for [4] at URL
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www.fundp.ac.be/ phtoint/pht/trbook.bib.) In this paper, we consider TRS
using modern primal-dual approaches. In particular, we study three methods
that consider the above mentioned concerns, i.e. the dual based algorithm
of Moré-Sorensen 1983 (MS), the semidefinite programming (SDP) based al-
gorithm of Rendl-Wolkowicz 1997 (RW), and the generalized Lanczos trust
region method 1999 (GLTR) of Gould, Lucidi, Roma and Toint [13]. The
classical (MS) algorithm [20] was the first algorithm able to handle the hard
case efficiently. (The algorithm of Gay [9] also treats the hard case.) We re-
visit and modify the RW primal-dual algorithm [27] which is based on SDP
and duality and designed specifically to handle large sparse problems; it also
handles the hard case efficiently. The SDP formulation allows for a (con-
vex) pair of primal-dual programs that are equivalent to (TRS). Therefore,
one considers iterations using the modern elegant approach of primal-dual
optimality conditions and duality gaps. In particular, the SDP and duality
approach illustrates that, contrary to statements in the literature (e.g. [13])
TRS in the hard (or near hard) case is not an ill-posed problem. (The hard
case occurs when the vector from the linear term a is orthogonal to the null
space of A — A*I. where A\* is the optimal Lagrange multiplier. Note that
a = 0 is a hard case instance, but this is a symmetric eigenvalue problem
with condition number 1, e.g. [6].) The optimal value and an optimum can
be found to a specified accuracy, though the optimum may not be unique for
hard case examples. In fact, the SDP pair both satisfy the Slater constraint
qualification and strict complementarity; thus they are stable convex pro-
grams. (Though the optimum for TRS may not be unique, the optimal set
for the SDP formulation is convex and bounded and the optimum found by
an interior-point method is the analytic center, which is unique.) However,
the formulation used for many algorithms results in an ill-posed problem.
(See Section 2.1.)

GLTR (or coincidently GLRT) is the last algorithm we look at, see [13].
This algorithm uses the Lanczos procedure to obtain a restricted TRS prob-
lem with a tridiagonal matrix. This subproblem can can be solved quickly
using the MS algorithm.

Several other recent approaches deserve mention. The method by Sorensen
[5] is similar to the RW algorithm in that it uses a parametric eigenvalue ap-
proach. The DC (difference of convex functions) method of An and Tao [31]
and the method of Hager [14] are both designed to exploit sparsity. The
method in [14] is similar in spirit to GLTR, i.e. they both solve a sequence
of subproblems where TRS is restricted to a special Krylov subspace. The
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method of Ye [37] exploits a new efficient line search technique.

We include several dual programs to TRS. Surprisingly, strong Lagrangian
duality holds for TRS, a nonconvex program. Thus TRS sits on the boundary
between convex and nonconvex programs and is an important theoretical
tool, see e.g. [23]. With strong duality, we can use a modern primal-dual
approach to derive algorithms for TRS. Advantages and disadvantages can
be viewed through the choices of using the primal and/or dual programs, e.g.
using a pure dual algorithm allows for sparsity considerations. Semidefinite
programming (SDP) and the primal-dual methods will be the link between
the above mentioned MS, RW, GLTR algorithms.

One contribution of this paper is a novel approach to handling the hard
case using a shift of the eigenvalues and deflation. More precisely, if the
hard case holds and A is not positive definite, then the optimum occurs
on the boundary of the ball. We can therefore shift A to make it positive
semidefinite, and also deflate eigenvectors that arise that are orthogonal to a.
We thus obtain an equivalent stable convex program with Slater’s condition
and with a unique Lagrange multiplier.

We also include numerical comparisons between the algorithms and ex-
amples that illustrate the performance on the hard case. In particular, we
try to answer questions posed in [13] about the desired accuracy in solving
the TRS within a TR minimization algorithm.

1.1 Outline

We continue in Section 2 with the optimality conditions and definitions of
the easy and hard cases for TRS. In particular, Section 2.1 describes the
shift process that yields the equivalent well-posed convex program. The MS
algorithm is described in Section 3, while the GLTR algorithm is described
in Section 4. In Section 5 we present several dual programs to TRS ex-
ploiting the strong Lagrangian duality for TRS. These provide the unifying
framework for the different algorithms. In Section 6 we present the SDP
frameworks for both the MS and GLTR algorithms. The RW algorithm with
our modifications is presented in detail in Section 7. The numerical tests ap-
pear in Section 8 with special hard case instances in 8.1. Concluding remarks
are given in Section 9.



2 Optimality Conditions

It is known (see [10] and [28]) that z* is a solution to TRS if and only if

(A= XMDz*=a -
A— NI 0\ <0 dual feasibility o)
|z*]|* < s? primal feasibility ’
M (s —||z*|)) = 0, complementary slackness

for some (Lagrange multiplier) \*. These conditions are surprising in two
respects. First, these conditions characterize optimality of a possibly non-
convex problem, i.e. they are necessary and sufficient. Second, the usual
second order positive semidefinite necessary conditions hold on all of R”
rather than just the tangent plane at the optimal point.

Remark 2.1. We have added the descriptive three phrases in (2.1) since
this coincides with the framework in [27] and with the modern primal-dual
optimization approach, though no dual program appeared in the earlier papers
[10, 28]. It is interesting to start with these equations and derive a possible
dual program for TRS, i.e. for some function h(x) the dual program would
be

maxh(A) s.t. (A—A)z=a, A=A »0,) <0. (2.2)

The standard paradigm is that the duality gap is zero if and only if comple-
mentary slackness holds. Here this means that for a feasible primal dual pair
we have

h(A) = q(z) = A(s* = [|=[]),

t.e. we can substitute using the dual feasibility equation and get

h(X) = 2T Az — 24z + X — M2lx
= J}T(A — Az — 20Tz + \s?
= —aT(A - )\I)Ta + As?,

where -1 denotes the Moore-Penrose generalized inverse. (In fact, any gener-
alized inverse would do here.) This is the mazimization of a concave function
of one variable over an interval. Can we determine whether this is a correct
dual program for TRS? We could then apply modern interior-point methods;
i.e. we would apply a damped Newton method to the primal-dual optimality



conditions after perturbing the right hand side of the complementary slack-
ness equation to p > 0; simultaneously, we would drive p, the measure of the
duality gap, down to 0.

However, though the equations (2.1) characterize optimality of TRS, one
glaring missing equation here is a complementary slackness equation for the
dual semidefinite inequality constraint. A true primal-dual path-following
method exploits such an equation to speed up convergence. This suggests a
weakness in this characterization of optimality. This 1s discussed further
below in the sections on SDP.

2.1 The Hard Case

If A— M1 > 0in (2.1), then z* is the unique solution to TRS, (this is true
generically) i.e. * = (A — A*I)~'a. In general, we denote

z(\) = (A — A)ta. (2.3)

Also, there will be a solution to TRS on the boundary of the ball {z : ||z||* <
s?} unless A is positive definite and [[A™'a|| < s, i.e. unless the unique
unconstrained minimizer of ¢ lies in the interior of the ball, ||z*|| < s. If we
assume that there exists a solution to TRS on the boundary of the ball, it
would seem natural to search for a A such that

(A= ADla] =5, A< M(A), A <0, (2.4)

using a fast algorithm such as Newton’s method. (Ax(A) denotes the k-th
smallest eigenvalue of A. This is to distinguish between the k-th iterate
A for estimating A*.) This raises the question of singularity of A — A*I.
The conditions for this to occur are well known in the literature. We let
N () denote the null space, and R(-) denote the range space. We define the
following (see also Table 2.1):

1. Easy Case: If a is not perpendicular to N'(A — A\ (A)I) (equivalently
a ¢ R(A—X(A)I)), then we have the easy case; this implies A — A\*I >
0. In particular A — A*I is invertible and we can therefore work with
(2.4). The optimum z* = z(\*) is unique.

2. Hard Case: If a is perpendicular to N (A — A(A)I) (equivalently
a € R(A— M (A)I)), two possibilities can occur:



(a) Hard Case (case 1): If \* < A;(A), no obvious difficulties occur.
We can still work with (2.4). The optimum z* = z(\*) is unique.

(b) Hard Case (case 2): If \* = A\;(A), then there are two possibil-
ities:

i. When ||[(A — X*I)fal]| = s or A* = 0, then the pair z* =
x(A*), \* satisfies the optimality conditions (2.1). Therefore,
We can still work with (2.4) and use the Moore-Penrose gen-
eralized inverse for the singular case.

ii. When z(\*) = [|[(A — XD)ta| < s,A* < 0, it almost ap-
pears that the optimality conditions fail. However, we can
choose an eigenvector z € N (A — A*I) and calculate 7 ap-
propriately so that s = ||x(A*) + 7z||. (Note that z(A\*) L z,
ie. s = ||[z(A)||* + ||7=z||*.) This is the only case where
the optimum is not unique. The manifold of optimal solu-
tions is given by the intersection of the generalized eigenspace

{z : (A= XI)z — a = 0} with the boundary of the ball, {z : ||z|| = s}.

1. Easy case 2.(a) Hard case (case 1) | 2.(b) Hard case (case 2)
a Y N(A=XAI) | a L NA- X NAI) al N(A—=X\(A)I)
and and
(implies \* < A1 (A)) | A* < A (A) A=A (A)
(i) [(A—=XDta|| =sor \* =0
(i) |(A = M Dfa]| < s,A* <0

Table 2.1: The three different cases for the trust region subproblem. We
include two subcases (i) and (ii) for the hard case (case 2).

2.1.1 Shift, Deflation, Robustness

First, we note that A\;(A) > 0 implies that \* < 0 < A;(A), i.e. the hard
case (case 2) cannot hold. Second, if \* = 0 and the hard case (case 2) holds,
then A = 0 and ||z*|| = ||Afa]| < s. These two situations can be handled
by our algorithm in a standard way. The following deflation technique forms
the basis for our approach to handling the hard case. It shows that we can
deflate and/or shift eigenspaces that are orthogonal to the linear term a.



Lemma 2.1. Let: A = > "

=1

Mi(A)vwl = PAPT be the spectral decom-
position of A, with v; orthonormal eigenvectors and P = [v; vy...v,] an
orthogonal matriz. Set the vector a := PTa, the sets

Sy o= {ita#£0, N(A) > \(A)}
Sy = {ita;=0, N(A) > A\ (A)}
Sy = {ita;#0, N(A) = M(A)}
Sy = f{ira =0, N(A)=\(A)},

and, fork = 1,2,3,4, the matrices Ay := Y. Ni(A)vv!, and the (A-invariant

subspace) projections Py, := > vjvl, where Ay = P, =0, if Sy = 0. Then

the following holds.

1. If S3 £ 0 (easy case), then
(x*, X*) solves TRS
iff
(x*, X*) solves TRS when A is replaced by A1 + As.
2. Suppose S3 =0 (hard case). Then ig:=1¢€ S, and
(z*, X*) solves TRS
iff
(x*, X*) solves TRS when A is replaced by A1 + Ay, viovg.
3. Letu* = (A — XI)Ta. Then
(x*, X*), with 2* = u* + z,2 € N(A — X\*I) solves TRS
iff
(u*, \* — A (A)) solves TRS when A is replaced by A — M (A)I.
4. Suppose that A\i(A) > 0. Then
(z*, X*) solves TRS

iff

(z*, %) solves TRS when A is replaced by A+ Y a;vl, with a; > 0.
iES4
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z* solves TRS and vlz* # 0, for somei € S,
iff
the hard case (case 2(ii)) holds.

Proof: Consider the equivalent problem to TRS obtained after the rotation
by PT and diagonalization of A:

* = min (PTJZ)TA(PTCL') — Q&T(PT:L') = wlAw — 2aTw

q
(TRSp) st Juw|| <s, w= Pz,

(2.5)

Note that the Py form a resolution of the identity, I = 22:1 Py.. Moreover, x*
solves TRS if and only if w* = PTz* solves (2.5). We set w* = PTz* and, for
k=1,2,3,4, By = ) e, eel, Ay = > ies, Neel )zt = Pyr* wy = Epw*,

where the e; are unit vectors, and E, = Ay, = 0,2, = w, = 0,if S, = 0. In
addition,

4 4 4
A=) Apw =) wp, I=)Y Ey By = PTP.Pwj = PTaj.
=1 =1 =1

1. Necessity: Assume that (z*, A*) solves TRS. From the definitions, a; =
0,Vi € S2USy. Since S3 # @, the easy case holds and w* = (A—M*T)™'a.
We conclude wj = wj = 0. It follows from the optimality conditions
that

w* = w} +wi = (A= XI)""a= (A + A3 — X I)a,

o | = s, (A—=AT)=0, (Ar+As—MI)= 0. (2:6)

Therefore, w* is still optimal for TRSp if we set Ay = Ay = 0, 1.e. z*
is still optimal if we set A, = A, = 0.

Conversely, suppose that z* is optimal if we set Ay = A4 = 0. Then
(2.6) still holds, i.e. w* is optimal for TRSp.

This completes the proof of Item 1.

2. Note that S3 = @) implies iy € Sy, since S3U Sy = {1 : \,(4) = M (A)}.
Necessity: Assume that (z*, A\*) with 2* = v* 4+ 2,2 = av;, € N (4 —
M*I), solves TRS. Therefore, w* = PTu* + PTz, PTz € N(A — X*I)

11



solves TRSp. From the definitions, a; = 0,V: € S, U Sy. It follows from
the optimality conditions that
w* = PTu* 4+ PT; = (A + /\,'OeioeT - /\*I)TZL + P72,

%0

N (| PTu*? + |PT2|2 = %) =0, (A—AI) = 0. (2.7)

The conclusion follows.

To see the converse, we reverse the above steps. This completes the
proof of Item 2.

. Note that u* € R(A — XI) L N (A — XI).
Necessity: Assume that (z*, \*) with 2* = u* 42,2 € N(A—X*I) solves
TRS. Then w* = (A — /\*I)fa + P72, P72 € N(A — XI). Tt follows

from the optimality conditions that

w* = (A — /\*I)f& + PTz = PTu* + P72, (2.8)
A (IPTa [+ [PT2? = %) =0, (A= A°T) = 0. '
By adding and subtracting A;(A), we see that (PTu*, A* — X\;(4)) is
optimal for TRSp if we replace A by A — A\ (A)].

Conversely, suppose that (u*, \*—A;(A)) solves TRS when A is replaced
by A— A (A)I. Then

PTu* = (A - XDta, ||u*||<s, (A—=X\(A)I)=0. (2.9)

We can find an appropriate z € N (A — A\ (A4)]) if needed so that
lu*||* + ||z]|* = s%, i.e. (z* = u* + 2z, A*) solves TRS.

. Note that if the hard case holds, since we assume A;(A) > 0, this
implies A* = 0 and the hard case (case 2(ii)) does not hold. Therefore,
the equivalence is clear by considering TRSp, i.e. w* = (A — X\*I)fa =
w* = (A; + As — X\*I)ta. (See also the proof of Ttem 1.)

. Assume that z* = Pw* solves TRS and vlz* # 0, for some i € S.
Equivalently, el w* # 0, for some 7 € S4. From the definitions, a; =

0,Vi € Sy USy. Therefore w* = (A — M\ I)ta + Eqv, for some v € R".
The assumption implies that E v # 0.

Conversely, suppose that the hard case (case 2(ii)) holds. Then w* =
(A — M I)ta + Eqv, for some v € R™ with Eqv # 0. The conclusion

follows.
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Remark 2.2. Assume that X\(A) < 0. We can draw several conclusions
from the above lemma. In particular, we can shift using the eigenvectors and
avoid the hard case (case 2). The items from the Lemma yield:

1. We can ignore eigenvectors that satisfy v; L a if A\;(A) > A (A4), e.g.
we can set them to 0. (We can deflate all of them.)

2. We can ignore eigenvectors that satisfy v; L a if A;(A) = M (A),1 # 1,
e.g. we can set them to 0. (We can deflate all but one of them.)

3. We can shift the eigenvalues by replacing A with A—X(A)I. This guar-
antees that the hard case (case 2(ii)) does not hold. (See also Lemma
2.3 below.)

4. After the shift, we can further perturb A to obtain Sy = () so that the
hard case (case 2) does not hold.

Lemma 2.2. Suppose that x* solves TRS and ||z*|| = s. Let € > 0 and
v € R™ with ||v|]| = 1. Let u*(e) be the optimal value of TRS when a is
perturbed to a + ev. Then

—2se < " — pr(e) < 2se.

Proof:

p*(€) = minjg=sq(z) — 2e0Tx
> minyg=, ¢(7) + min)y=, —2evTx
= u* — 2es.

This proves the right-hand-side inequality.
Since x* is optimal for TRS and on the boundary of the ball, we get

prle) < pt—2ev’a”
< pt 4 2es.

13



The literature often labels the hard case (case 2) as an ill-posed or degen-
erate problem, e.g. [13, 14]. Suppose that we consider the perturbed problem

(€)== min q(z):=2TA(e)x — 2a(e)Tx
st |z < s(e),

where the perturbed data v(e) = (A(e),a(e), s(e)) are sufficiently smooth

functions of the perturbation vector e. Except for the hard case (case 2), we

get a unique solution from the linear equation

(A(e) — X (e)D)x™(e) = ale), (2.11)

since (A(e)—A*(e)I) > 0. This appears to imply that we can find a condition
number for TRS based on the condition number of the Hessian of the La-
grangian, cond(A(0)—A*(0)I). If this were true, then we would conclude that
TRS in the near hard case (case 2) is an ill-conditioned problem. However,
this ignores the norm constraint ||z*|| < s. For example, when A;(A(0)) < 0
and e is small, the norm constraint implies that

l==(e) — 2(0)f] _ 2(s +¢)

lz = s
independent of the other data. More precisely, suppose that the easy case
holds. As s increases, A* — Ay, ||[z*|| — oo and the relative error of the
system (2.11) stays bounded. If the hard case holds, then as s increases
we still have \* — A;. However, there exists an s such that s > s implies
A* = A1 and the optimum z* can be found from the bounded best least squares

(TRS.) (2.10)

solution z = (A — X\, (A)I)%a plus a scaled eigenvector 2.

Adding a norm constraint to an ill-posed problem is a well-known regu-
larization processes, e.g. [32]. Thus it would appear to be contradictory for
TRS to be an ill-posed problem. In fact, we can orthogonally diagonalize the
quadratic form and, as mentioned above, the symmetric eigenvalue problem
has a condition number of 1, [6]. Then TRS can be shown to be equivalent
to a linearly constraint convex programming problem, see [2]. The following
lemma and example illustrate that TRS is always a stable program.

Lemma 2.3. Suppose that the hard case (case 2 (ii)) holds for TRS. Let

w = (A- XD =u +2,2€ N(A—XI). Then z # 0,2 (A) <0 and

TRS is equivalent to the following stable convex program

* L : 2T o o T 2

(TRS,) ¢ := min ¢ (z) =z (A—M(A)z —2a"z + s*X1(4)
st x| < s.

(2.12)
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The equivalence is in the sense that the optimal values satisfy ¢* = ¢&; and

(z*,X*) solves TRS if and only if (z*,0) solves TRS,.

Proof: Since the hard case (case 2 (ii)) holds, we get z # 0 and A\ (A) =
A* < 0. From Lemma 2.1, Item 3 we get (u*,0) solves TRS,. We can then
addzE./\/(A—/\*I) to get ||u* + z|| = s. [}

Convex programs for which Slater’s CQ holds are called stable, e.g. [11, 7].
They are equivalent to convex programs for which the optimal dual solu-
tions form a convex compact set which further implies that the perturba-
tion function (optimal value function subject to linear perturbations in the
data) is convex and Lipschitz continuous. In our case we have the additional
strong linear independence C(Q) which implies that the optimal dual solution
is unique and the perturbation function is differentiable. We also have a
compact convex feasible set. (See e.g. [7, 11].

We now summarize a procedure for solving the hard case TRS. We first
find A\ (A) (a well-conditioned problem). If A;(A) > 0, then the hard case,
case 2 does not hold. If A\j(A) < 0, then we shift and obtain the convex
program TRS,. We then solve the best least squares problem (least squares
solution of minimum norm) and check ||u*|| = |[(A — M\ (A))fa]| < s. If
not, then the hard case, case 2(ii) does not hold. Otherwise, we find an
eigenvector z € N(A — X*I) so that ||[u* + z|| = s. Thus, the condition
number of TRS in the hard case depends on the condition number of finding
an eigenvector z and the best least squares solution u*. For example, we
know that A — X\{(A)[ is singular. If the next eigenvalue is well separated,
A2(A) >> A (A), then u* can be found and the problem is well-conditioned.
(See e.g. [6, Section 3.5.1] for a detailed discussion.)

Example 2.1. Let

I 0 | 24« _
=[5 L) = [70] e

where o, 3,7, are perturbations in the data. First suppose that the per-
turbations are all 0. Then the hard case (case 2(ii)) holds; the optimal La-
grange multiplier is \* = A\ (A) = —1; and the best least squares solution is

= (A-XI)ta= [ (1) ] with ||z|| = 1 < s. The optimal solution is obtained
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from

f:xwm:x+[fl]:[£1} (2.13)

For (small) nonzero perturbations, the optimal Lagrange multiplier X\* is
still unique and —1 + & is the smallest eigenvalue. If 3 = 0, then the hard
case still holds; the optimum is obtained from \* = —1 + 6, and

2+Oé 0
:E* :x*(OZ,’)/,é) = |: 1+’YO_/\* :| —I_ |: ej:l :| ?

where € is chosen to obtain ||z*|| = s, e.g. with +1
24+« 2
R (kL R )
( +6)+<2+7—5> ’

Depending on the choice of sign, these solutions converge to a solution in
(2.13), as the perturbations converge to zero. Moreover, a Taylor series ex-
pansion shows that ||x*(0) — z*(a, v, 0)|| < 2(a| + |v| + |8]) for small pertur-
bations.

If B # 0, then we have the easy case. The unique optimal Lagrange
multiplier \* < —1 4+ & and the unique optimum is obtained from

24«
* 14+y—A*

B v

where X\* satisfies the positive definiteness condition as well as ||z*|| = s.
This tmplies that

2 2
T+~ — M 16— x
24«

Since \* — —1 and v
optimal solutions converge appropriately.

— 1, as the perturbations go to 0, we see that the

3 The Moré-Sorensen (MS) Algorithm

This algorithm features efficient handling of the easy and the hard case. It is
dual-based in that it iterates on the dual variable A. The main work in the
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iterations is a Cholesky factorization used in the evaluation of a Newton step
for A, as well as in a safeguarding and updating scheme that produces either
a point A from which quadratic convergence ensues, or reduces the interval
of uncertainty for the optimal A. In the latter case, optimality is reached by
taking primal steps to the boundary of the ball. In both cases, given two
parameters oy and og in (0,1), the algorithm terminates in a finite number
of iterations with an approximate solution ¥ which satisfies

4(2) - ¢ <2 —o)maxflglo} , el <Q+o)A (3)

Outline:

(i) Use a safeguarding and updating procedure to reduce the in-
terval of uncertainty [Ar,, Ayy] for A* and improve the upper bound
As for A (A).

(i1) Take a Newton step to implicitly solve ||(A — AI)7ta| = s for
A.

(iil) If the possibility of the hard case (case 2) is detected (||z(N)]| <
s), take a primal step to the boundary while simultaneously re-
ducing the objective function.

(iv) If a unique unconstrained minimizer exists and is in the strict
interior of the trust region, then in at most two iterations the al-
gorithm will terminate and find this optimal solution.

Assume A — Al > 0. There are disadvantages in applying Newton’s
method to find a root of the function ¥ (A) := ||z(A)|| —s. For A < A(A)
and close to A;(A), the orthogonal diagonalization of A shows that

P(3) = QA = A1) QTa] — s ~

1

Ay
MA) -

for some constants ¢; > 0,d. This function is highly nonlinear for values
of A near A;(A), which equates to slow convergence for Newton’s method.
Moré-Sorensen solve the equivalent so-called secular equation

1 1
o) = e =
s [lz(Ml
(See Reinsch [24],[25] and Hebden [26].) The rational structure of ||z())]|?,

shows that this function is less nonlinear, i.e.

o0~ - M

S Co

0. (3.2)
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for some ¢y > 0. Therefore, Newton’s method applied to this function will be
more efficient. One can also show ¢()) is a convex function strictly increasing
on (—oo, A(A4)).

In practice, the MS algorithm uses the algorithm below to compute the
Newton sequence {A;} whenever A; < 0 and strictly satisfies the strength-
ened second order optimality conditions A — Axl > 0 (so that the Cholesky
factorization can be used).

Algorithm 3.1. Assume A\, <0 and A — M\ I = 0 (i.e. M\ < Ai(A)).
1. Factor A — M\ I = RTR (Cholesky factorization).
2. Solve, forz, RTRx =a (z=z()\)).

3. Solve, fory, RTy = z.

4. Let Apy1 = Mg — [%r [(”rll_s)] (Newton step).

If a unique unconstrained minimizer exists in the strict interior of the
trust region, the optimal A* is 0. If the initial A is strictly less than 0, since
A 1s positive definite and A — Al > 0, the convexity and monotonicity of ¢
implies that the next Newton iterate for A is strictly greater than 0. The
safeguarding scheme then resets A to the upper bound Ay which is now 0
and the algorithm terminates in at most two iterations (|20, Pg 562]).

If the optimal solution is on the boundary of the trust region and one
can find a Ag such that Ao < A(A4) and ¢(XAg) > 0, then Algorithm 3.1 has
g-quadratic convergence asymptotically, again by the convexity and mono-
tonicity of ¢ on (—oo, A1(A)) and since ¢ is negative for large negative values
of A. Hence it has a unique root and Newton’s method converges monoton-
ically when initiated from Ag. We illustrate this in Figure 3.1. The current
intersection with the z-axis of the tangent line to the convex function yields
the next iterate in Newton’s method. However, if ¢(A\g) < 0, then the Newton
step may not provide a good prediction of a root, since the dual constraints
on A are not taken into account when evaluating the Newton step. (This is
discussed in the RW approach below.)

Generically it is always possible to find a Ag < A;(A) with ¢(Xg) > 0, since
small perturbations of the data avoid the orthogonality condition of the hard
case. In the easy case |[z())| is a function that takes all values from 0 to

oo when A varies from —oo to A;(A), and thus, for A* < A < A (A4), ¢(N) is
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Figure 3.1: Newton’s method with the secular function, ¢(X).

positive. Yet we have to be careful when the orthogonality condition almost
holds, the so-called almost hard case. In the almost hard case, problems occur
if A* is close to A1(A), since the A for which A < A(A4) and ¢(A) > 0 are
contained in a small interval, i.e. it is hard to find the )y discussed above.
Furthermore, Algorithm 3.1 may have computational difficulties, since the
matrices A — A\l become ill-conditioned. On the other hand, in the easy
case, the function is smooth near A*. Fortunately, the MS algorithm has an
efficient way to handle the hard case.

3.1 Handling the Hard Case in MS Algorithm

From Figure 3.1, we get the following indicator of the easy case for TRS.

Lemma 3.1. Suppose that A < min{0, \{(A)} and ¢(A) > 0 (equivalently
|z(A)|| > s) . Then the hard case (case 2) cannot occur for TRS, i.e. \* <
A (A). |

However, Figure 3.1 also shows that Newton’s method can provide a poor
prediction for A\* if ¢(A) < 0 and A* is close to 0 and/or A;(A). This would

result in many backtracking steps to find the above Ag (each of which involves
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an attempted Cholesky factorization) and make the algorithm ineflicient. As
discussed above in Section 2.1, in the hard case (case 2), a solution to TRS
can be obtained by first finding a solution z(A;(A)) to the system

(A-M(A))z=a (3.3)

with ||z|| < s. If strict inequality holds, ||z|| < s, then we need an eigenvector

z€ N(A—X(A)I), and 7 € R, such that ||z(A\(4)) + 72| = s, L.e.
" =x(M(A))+ T2 (3.4)

satisfies the optimality conditions. The following lemma by Moré-Sorensen
[20] is the key to implementing this idea numerically.

Lemma 3.2 (Primal step to the boundary). Let 0 < o < 1 be given and
suppose that

A— M =R"R, (A-X)z=a, X<O. (3.5)
Let z € R” satisfy
|z + 2||* = s (3.6)
and
|R=|1* < o(|[Re]* = As?) (3.7)
Then
lqg(z + 2) —q(z7)| < olq(z7)]. (3.8)
where x* is optimal for TRS. [ |

We will get back to this Lemma in Section 6.1 below, where we show that
this lemma is measuring a duality gap. Note that (3.5) and (3.6) guarantee
the dual and primal feasibility constraints in the optimality conditions (2.1).

A consequence of this lemma is that if we can choose a z with a cor-
responding o that is small, then = + z is nearly optimal. In the almost
hard case (case 2), when A is close to Aj(A), we can expect this to hap-
pen as R will be nearly singular. The authors used a LINPACK (now up-
graded to LAPACK) technique (see [20, p.571], and NMTR at NEOS: www-
neos.mcs.anl.gov/neos/solvers/UCO:NMTR/) to construct a vector Z such
that ||Rz|| is small. A vector e, where each component of e has an absolute
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value of 1, is constructed such that the solution w to RTw = e is large. Then,
a solution v to Rv = w is obtained and 2 := v/||v|. Recall A — A\I = RTR.
If R is singular, RZ = 0 is obtained. Otherwise

|R2|| < V(1 + p)min{ Ry : 1 <k < n}, (3.9)

where n is the dimension of A, p is an upper bound on the sum of the absolute
value of the components of R and the Ry;’s are the diagonal elements of R.
If A is near A;(A), some element on the diagonal of R is near zero and || RZ||
is near zero. Moreover, given a feasible solution inside the trust region, the
direction 4+2 which improves the objective function value is chosen.

3.2 Summary of MS Algorithm

The MS Algorithm tries to solve TRS using Newton’s method Algorithm 3.1
applied to the secular equation ¢(A) = 0, (3.2). This is a dual algorithm
in the sense that it is iterating on the dual variable A\. However, the two
dual inequality constraints in the optimality conditions (2.1) are not taken
into account when finding the Newton step. Instead, a safeguarding and
updating scheme either reduces the interval of uncertainty for A or finds
a value of A where quadratic convergence takes over; in both cases these
inequality constraints are eventually satisfied up to a tolerance, i.e. the
algorithm maintains dual feasibility using heuristic schemes. Furthermore,
the algorithm is such that if the solution to TRS is unique and lies inside
the trust region (i.e. it is a unique unconstrained minimum), then after
at most two iterations, A = 0 is tried and an optimal solution is found.
If the almost hard case (case 2) is detected, i.e. z(A) lies in the interior
of the trust region, then a primal step to the boundary is taken and the
stopping criteria is checked. Few iterations are needed in practice if this case
occurs. (Typically, only 2-3 iterations are needed for low accuracy solutions.
However, high accuracy solutions can result in many backtracking steps since
the information from the primal steps are lost at the end of each iteration.)
The algorithm has been successfully implemented and is available using the
NEOS Server with URL: www-neos.mcs.anl.gov/neos/solvers/UCO:NMTR/.

Many advances have been made in recent years in the efficiency of sparse
Cholesky factorizations. This was stimulated by its use within interior-point
methods. However, this step can still be a bottleneck for large sparse prob-
lems. For example, if a few dense rows are not handled properly, then the
factorization can be dense, see e.g. [12].
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Further details are included within the semidefinite framework in Sec-
tion 6.1 below, as well as in the original paper [20] and in [4, Chapter 7].
Comparisons with the RW algorithm are included in Section 7 below.

4 The Generalized Lanczos Trust Region (GLTR)
Algorithm

We now present the GLTR method of Gould, Lucidi, Roma and Toint [13].
As mentioned above, current attempts to solve TRS focus on exploiting spar-
sity. The main work of the GLTR algorithm involves a Lanczos tridiagonal-
ization of the matrix A. Therefore, this method requires only matrix-vector
multiplications and exploits sparsity in A. The method solves a sequence of
restricted problems

min ¢(x)
st z]] <s (4.1)
r e S,

where the S are specially chosen (Krylov) subspaces of R™. (A similar ap-
proach based on Krylov subspaces is presented in [14].) The way S is chosen
is inspired by the Steihaug algorithm of [29] (see also [13] and [33]). The
conjugate-gradient method is applied to the quadratic function ¢(-) until
the piecewise linear path, formed by connecting the conjugate-gradient it-
erates, hits the boundary. This will occur unless a global minimizer exists
for ¢(-) and lies in the interior of the trust region or unless a direction of
nonpositive curvature is detected for the Hessian A (i.e. for some direction
p, (p, Ap) < 0). The algorithm then returns either an approximate global
minimizer or, in the latter case, moves to the boundary in the direction of
the nonpositive curvature.

Suppose that zj lies inside the trust region boundary, i.e. it is obtained
using the conjugate gradient method and suppose that the method cannot
produce another iterate inside the trust region (either a direction of negative
curvature is detected or the next iterate lies outside of the trust region).
Then the GLTR method continues its search of an approximate solution to
the TRS by solving the subproblem

min ¢(x)
sho x| < s (4.2)
x €85 =Ky,
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where

Ky := span{a, Aa, A%a, A%a, ..., A*a}. (4.3)

It then keeps increasing k, or equivalently the size of the Krylov subspace S,
and solves problems of the type (4.2) and terminates when a good approxi-
mate solution to the TRS is found (see the stopping criteria in Algorithm 4.1).
The efficiency of the algorithm is based on efficient approximate solutions of
(4.2). Using the basis of K given by the orthonormal columns of the matrix
Qk in (4.5) below, and the substitution @ = Qgh, [13] shows that problem
(4.2) is equivalent to the following tridiagonal trust region subproblem

min ATT.h — 27061Th

st. [h] <s, (44)

where €7 is the first column of the identity matrix of dimension k& + 1, T}, is
the tridiagonal matrix

do Bi!
Bi! [
T, = .
Op—1 VE
Y o Ok

O = g Age, vo = lall, ¢-1 = 0, g0 = a/lal|, e = (A — ¢i_; Agr-1D) g1 —
Ye1qk—2||, and gx = (A — ¢/ Age_1D)qr—1 — Ye-1Gr—2)/ 7, for k > 1. An
optimal solution hy to (4.4) yields an optimal solution zy = Qxhi, where

Qk = (qos @1, -, qk) (4.5)

and where {qo, q1,...,qx} is an orthonormal basis for S = K. The Lanczos
method (see [12]) can be used to build the Lanczos vectors ¢; for i =1.. .k,
but as mentioned in [13], these vectors can be recovered from the conjugate
gradient iterates (see equation (4.9) below), since the conjugate gradient and
Lanczos method are intimately linked and generate different bases of the
same Krylov space K.

The advantage of solving problem (4.4) is that Algorithm 3.1 may be
used to find the approximate optimum, even for large problems, since the
Cholesky factorization can take advantage of the tridiagonal form of T} to
preserve sparsity. The algorithm implicitly searches for a Ax and hj which
satisty the conditions

(T + Medrsr) b = v0er ||he]| = s,
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where Ty 4+ AgIxs1 is positive definite. The authors use heuristics to find a
starting value of A, for Algorithm 3.1, which satisfies

1 1 S
s |[(Te = M)t yoen ||

A<0,A < A(Tg) and 0. (4.6)

Such a starting value of A ensures asymptotic q-quadratic convergence of the
Newton iteration to Ax.
It is shown in [13] that

(A - )‘kI)xk —a = ’Yk+1€£+1thk+1 (4.7)
and (A= MDzx —al = palepgalul, (4.8)

where epi1 is the last column of the identity matrix of dimension k + 1.
Therefore, when 7k+1|e£+1hk| is small, the relationship (A — A\gl)xp = a is
almost satisfied and zj is considered a good approximation to an optimal

solution of TRS.

4.1 Handling the Near Hard Case in GLTR Algorithm

If the near hard case (case 2) occurs for (4.4), then finding a A that satisfies
(4.6) may be difficult and time consuming, since the interval for the A which
satisfy the conditions (4.6) can be small. This is illustrated in Figure 4.1.
(The GLTR algorithm fails if the hard case (case 2) occurs.) In addition, ill-
conditioning will slow down both the Algorithm 3.1 and therefore the GLTR
method (see [13], pp. 515).

4.2 Summary of GLTR Algorithm

Algorithm 4.1 (GLTR Method). Let 2o = 0, go = —a, vo = ||go|| and
po = —go. Set the flag INTERIOR as true. For k = 0,1,... until conver-

gence, perform the iteration:

or = llgull/ (0} Api).

Obtain Ty from Ty_q.

If INTERIOR is true, but a < 0 or ||zx + cxpi|* > 2,
reset INTERIOR to false.

If INTERIOR 1s true,

Tk41 = Tk + QgPk,
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Figure 4.1: An example of the function ¢()), for the problem (4.4) in the
near hard case (case 2). In this example, A (T}) = —12. The figure illustrates
for this case that the values of A for which ¢(A) > 0 are contained in a small
interval.

else
solve the tridiagonal trust region subproblem (4.4), using
Algorithm 3.1, to obtain hy,.
end if
Jk+1 = Gk + arApy.
If INTERIOR 1s true,
stop if ||gk41|| < max(107%,1077|q|)),
else
stop if fyk+1|e£+1hk| < max(107%,1075]|a]|).
end if
B = llgr+111*/ll 9k
Pr+1 = —Gr+1 + Brp-
If INTERIOR 1s false, set x = Qrhy.

The Lanczos vectors are obtained from the relation

I

qr = o9k /||grl|, where o = —sign(ag_1)ok—1 and g = 1. (4.9)

Further details are included within the semidefinite framework in Section 6.2
below.
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As mentioned above, the method in [14] is similar in spirit to GLTR.
The main difference is the choice of vectors to put into the Krylov subspaces
Kk. The vectors include the direction found from a sequential quadratic

programming (SQP) model for TRS.

5 Duality and a Semidefinite Framework for
the Trust Region Subproblem

Duality plays a central role in designing optimization algorithms. In this
section, we focus our attention on different dual programs associated with
TRS. We will show below that both the MS and GLTR algorithms can be
explained using dual programs and that these explanations reveal some of
the weaknesses of the algorithms.

For simplicity, we restrict ourselves to the equality TRS, i.e. we minimize
over the sphere rather than the ball. (To extend to the standard TRS we
would need to add the dual constraint A < 0.) Precisely, consider the slightly
different problem

*

(TRs.) ¢ = min (@) (5.1)

st. x| = s.

A key result shown in [30] is that strong Lagrangian duality holds for this
problem (see also [31]). In fact, [30] shows the deeper result that strong
duality holds if the constraint in TRS_ 1is replaced by the more general
constraint 3 < 27 Cz < a, where C is a symmetric matrix (no definiteness is
assumed) and where  and « are constants such that 8 < a. (This allows for
indefinite inner product scaling. See also [19].) This property of trust region
subproblems permits the construction of equivalent dual problems. These
duals, closely related to semidefinite programs, are the key for new insights
into the previous algorithms. The duals have been used in [27] to explain
the steps of the MS algorithm. We recall some of their results in Section 6.1.
This can also be done for the GLTR method, see Section 6.2, where we show
that their stopping criteria is in fact measuring a duality gap between a pair
of dual programs.
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5.1 Lagrangian Duality and SDP

From [30], we know that strong Lagrangian duality holds for TRS_ | i.e.
¢ =v" = max min L(z, A), (5.2)

where the Lagrangian is L(z,\) := 27 (A — M)z — 2aTx + As%. Since L(z, ))
is a quadratic, the inner min problem is unbounded below unless the hidden
constraints,

A—X >0, a€R(A-A), (5.3)
hold. (This can be seen by moving in a direction of an eigenvector corre-
sponding to a negative eigenvalue or, if A — A = 0, a ¢ R(A — A), then
moving in a direction d € N(A — AI) such that d”a > 0.) This yields the

equivalent dual problem

q = max min L(z, A).
A=A >0, x
a € R(A =)

The inner min is attained if bounded, i.e. define (Recall Remark 2.1 and the
definition of the Moore-Penrose generalized inverse.)

R(A) = As? —aT(A— M)a.
We get
min L(z,\) = L((A = ADfa,\) = h()), if A— M >0,a € R(A— ).

(5.4)
Therefore we have to modify the conjectured dual (2.2) (in the TRS= case),
i.e. we use (5.4) and get an equivalent expression to the strong duality (5.2)

¢  =maxh(A) s.t. A=A = 0,a € R(A - XI). (5.5)
In the hard case, a € R(A — A\ (A)I), we deduce
q = AI_I{\E}}QO h(A), if the hard case (case 2) holds. (5.6)

However, possible discontinuity in 2(A) at A = A;(A), in the case A= *I > 0,
requires the equivalent dual

¢ = L(2",\") =maxmin L(z,A\) = sup minL(z,A) = sup h(}).
Az A-X[=0 7 A-AI+0
(5.7)

Problems (5.6) and (5.7) are similar and the next theorem, which can be
found in [30], combines both problems into a single one.
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Theorem 5.1. The Lagrangian dual for TRS_ is

(D) g = sup h(X). (5.8)

A=AI+0
In the easy case and hard case (case 1), the sup can be replaced by a max.

Proof: Let \; be the smallest eigenvalue of A such that a ¥ N (A—X(A)I).
Such a A; may not exist, but this implies that a = 0 and h(\) = As? and the
theorem trivially holds. Thus, assume )\; exists. Note that in the easy case,
M = M(A). Also, let A = QAQT, where Q is an orthogonal matrix with
columns formed from the normalized eigenvectors of A, and A is a diagonal
matrix having the eigenvalues of A on its diagonal in nondecreasing order,
that is
A= M(A) <... <A =M (A).

Since a L N(A — X;(A)I) for j = 1...1 — 1, we see that a is perpendicular
to q1...q—1, where g; is the j-th column of (). Hence, (Qfa)j =v; =0, for

j=1...1—1. Now let (\,) be a sequence converging to A\ € (—oo, A;] such
that, for all w, A\, € (—o0, ;) and A — A, [ is invertible. Then

h(dw) = —a"(A = XoD)7'a + Aus® = —(QTa)T (A = X\ )T'QTa + Nys®

= —Z o _A As?. (5.9)

Note that A; — A, > 0 for j =1...n. Note also that by the definition of A,
if r is the multiplicity of A (i.e. Moy < X = N1 = oo = Agrm1 < Aigr),
then there exist v; # 0 for j € {I,I+1...1+r—1}. As a consequence, when
A = ), we have h(Ay) = —oco. Therefore, h(-) has a vertical asymptote and
1s not continuous in A;.

When \ € (—o0, Ar), by equation (5.9) and since A; — A>0forj=1...n

we have
—aT(A — /\wI)_la + Aws® — —aT(A — /N\I)Ta + :\32,

ie. h(:) is a continuous function over (—oo, ;). In the hard case, since
At > Ai(A), then A(+) is a continuous function over (—oo, A;(A)]. Therefore

¢*= max h(A) = sup h(X).

A=XI-0 A—XT%0
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Combining this result with (5.7) yields the dual program (D). Equation (5.7)
also implies that in the easy case and the hard case (case 1) the sup can be
replaced by a max. [ |

Corollary 5.1. The Lagrangian dual for TRS is equivalent to

(D) q = sup h(\) (5.10)
A=Al+0
A<0

In the easy case and hard case (case 1), the sup can be replaced by a max.

Note that h(-) is a concave function on (—oo, A;), which diverges to —oo
as A — A, where ); is as in the above proof, i.e.

BN =s*—al(A— X2 SZ—ZW,

j:

R"(A) = —2aT(A — M) a = —22 A o A
For A; — X > 0, we conclude that
R'(A) = —2a" ((A— AD))%a < 0.

This shows that TRS_ is equivalent to finding the supremum of a concave
function over an open interval.

In addition, if the current point A. is on the hard side (h'(A.) > 0), we
could use the derivative information to verify the existence of an easy side
point, i.e. a point A with A'(A) < 0 is guaranteed to exist if

R'() + B"(A) (M (A) — ) < 0, (5.11)
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5.2 Dual of Dual in the Hard Case

The next dual we consider is the Lagrangian dual of the Lagrangian dual

(5.1) when the hard case holds, i.e.

g = max h(}\)
A-XI>0 (5 12)
= minmaxh(A) + trace X (A — AI). ‘
X»0 A<
The inner max is a maximum of a concave function over an open interval.
Therefore, we can differentiate with respect to A and add the stationarity
condition to replace the sup, i.e. we get the Wolfe type dual

g = inf h(X) + trace (X(A — A]))
s.t. s —al((A— AI)")2%a — trace (X) =0
(DD) A< N (5.13)
trace (X) < s?
X = 0.

Remark 5.1. The equality constraint allows for s* — ||z(\)]|* = trace X > 0,
which occurs in the hard case even at A = \*. As mentioned above, we could
add the constraint A < 0 to get the corresponding dual for TRS.

5.3 Unconstrained and Linear Duals

The dual problem (5.8) shows that TRS_ is equivalent to finding the supre-
mum of a concave function over an open interval. This dual problem will
show that TRS= is also equivalent to the maximization of a single variable
concave function over R, i.e. an unconstrained concave maximization prob-
lem.

We start by homogenizing TRS- and obtain

¢ = min 2T Az — 2yea’x
s.b. ||z]|? = s, (5.14)
o = 1.
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Therefore

¢ = max min 2z’ Az —2yealz 4+ t(yd — 1)
t flelP=s%u3=1
> max min T Az — 2yoax 4+ t(yd — 1) (5.15)

t|lzlP+yg=52+1

sup min 27 Az — 2yoa’ x + t(yd — 1) + A(||z||* + y2 — s> — 1)

t7,\ Z,Y0

v

sup min 2T Az — 2y0aT£L’ + r(yé -1)+ )‘(Hl’”z - 32)

r7}\ Z,Y0

= sup (sup min 27 Az — 2yoa” x4 r(yd — 1) + A(||z||* — 52)> ,

A e
where r = ¢t + A. Because strong duality holds ([30, Theorem 5.1]),

g* = sup <min sup z7 Az — 2ypa’x 4+ r(yd — 1) + M(||z||* - 32)>
A

Z,Yo r

= sup min 2’ Az —2yoa’ x4+ A(||z]|* — 5*)

A z7yg:1
= min sup z7 Az — 2yoa’z + A(||z]|* — s?)
z'7y(2):1 A
= min T Ax — 2y0aTx
|lz[[2 =5 y5=1
e q*

So all the above turn out to be equal. Now, if we consider (5.15), then

¢" = max min eT Az — 2yoaTl’ + t(yg - 1)
t el +yg=s2+1

= max min ZTD(t)Z —t = max (32 + DA (D(¢)) — ¢,

tflzlP=s>+1

Yo t —a”
where z = and D(t) = . If we define
x —a A

E(t) == (s> + )M (D(t)) — ¢, (5.16)
then we have the following unconstrained dual problem for TRS:

max E(t). (5.17)

One can show A;(D(+)) is a concave function and therefore k(-) is concave
as well. This shows that TRS_ is equivalent to an unconstrained concave

31



maximization problem in one variable. We can also rewrite (5.17) in the
following way so that it becomes a linear semidefinite program:

P+ 1Nt 1
e (s"+1) (5.18)
Equivalently,
¢ = max (s*+1)A—t

where FEyg 1s the zero matrix except for 1 in the top left corner. Because
Slater’s constraint qualification holds for this problem, one can take the La-
grangian dual and get a semidefinite equivalent for TRS= (which correspond
to its semidefinite relaxation, but here the relaxation is exact, see e.g. [27]).

¢ = min trace D(0)Y
s.t. traceY =s2 41
—Ypo = -1
Y = 0.

(5.20)

Theorem 5.2. The Slater constraint qualification and strict complementar-

ity hold for the primal-dual SDP pair (5.19) and (5.20).

Proof: That Slater’s CQ holds is clear, i.e. choose A and Y appropriately.
Now suppose that A,t,Y are optimal for the SDP pair (5.19) and (5.20).
Then Z := D(t) — AI > 0 and singular. Let k be the multiplicity of Ay (D(¢))
and yi, ...,y be an orthonormal basis for its eigenspace. Set V = [y; ... yi]
and redefine Y + Y +VVT, We can scale DY D using a diagonal matrix D to
guarantee that Y is feasible for (5.20). By construction ZY =0,Z 4+ Y > 0.
|

Corollary 5.2. The SDP (5.20) has a rank one optimal solution Y™*.

Proof: Let z* be an optimum for TRS, y* = ( ;* ), and Y* = y*(y*)7T.
|
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Remark 5.2. This primal-dual linear pair provides important information
for mazimizing the concave function k(t). In particular, it may be too expen-
sive to find Ay (D(t)) accurately. However, Slater’s CQ) and strict complemen-
tarity hold for both primal-dual SDP programs. Therefore, these SDPs can
be solved to any desired accuracy in polynomial time, see e.g. [35], i.e. this
shows that TRS is a well-posed problem, contrary to statements made in the
literature. (See e.g. [13].) In fact, from the formulation (5.17), solving TRS
involves a parametric eigenvalue problem. Though the formulation (5.17) can
wnvolve a nondifferentiable concave function if the smallest eigenvalue is not
a singleton, using (5.19) is a stable reformulation of TRS.

6 Semidefinite Framework

Primal-dual interior-point methods have revolutionized our view of optimiza-
tion during the last 15 years. In particular, path-following methods have
proven to be an efficient approach for many classes of optimization problems.
The main idea for these methods is to apply Newton’s method to a pertur-
bation of the primal-dual optimality conditions. (The recent books [34, 36]
describe this approach for both linear and semidefinite programming.) Of-
ten, compromises have to be made to deal with large sparse problems. In
particular, for SDP one often uses a dual based method to exploit sparsity
since the primal variable is usually dense, see e.g. [1].

We can describe the MS and GLTR Algorithms using SDP and the mod-
ern primal-dual approach. We see that compromises are made and a full
primal-dual path-following method is not used.

6.1 A Semidefinite Framework for the Moré-Sorensen

Algorithm
We follow [27] and use the pair of dual programs
(D) ¢ = sup h(}) (6.1)
A=AI0

33



and

g = inf h(X)+ trace (X(A — A]))
s.t. s?—al((A—M)")%a — trace (X) =0
(DD) A< N\ (6.2)
trace (X) < s?
X > 0.

We use (D) to explain the main step, i.e. how we change A at each iteration
of the MS algorithm. This completely explains the steps in the easy case.
For the additional step done in the (near) hard case, we use the duality gap
trace (X (A — AI)) between (D) and (DD).

In the easy case and the hard case (case 1), the sup in (6.1) can be
replaced by a max, 1.e. we are finding an unconstrained maximum in the
open interval for A defined by the positive definite constraint. Therefore we
need to find a stationary point for the concave objective function in A. We
can differentiate and obtain, for \* € (—oo0, A1(A4)),

B(A) = —am((A=NDNHYa+ s = —||(A=NI)la|? + s =0,

i.e. stationarity for (6.1) corresponds to feasibility for TRS=. The MS al-
gorithm solves this equation for A* by applying Newton’s method on the
function ¢(A) (see (3.2)), a less nonlinear function. As discussed in Section
3, if we have an iterate with ¢(A) > 0, then we obtain quadratic (monotonic)
convergence and x(A) is infeasible during the iterations. Therefore, we do
not discuss a duality gap in this case.

Things are different in the hard (or near hard) case (case 2). The in-
dication for this is ¢(A) < 0 at the current iterate A. Equivalently, this
means that ||z(A)]| < s, i.e. we have a strictly feasible iterate x()\) for the
inequality constrained form TRS. Therefore, we can reduce the duality gap
between our pair of dual programs. We use the same strategy to predict
the new value for A with safeguarding to maintain positive definiteness of
A — M. However, as mentioned in (3.3) and (3.4), if we are given a feasible
vector x = (M (A)) = (A — X (A)I)ta, the idea to handle this case is to find
a proper z to reduce the primal objective and move to the boundary (i.e.
|z + z||* = s?). The framework of Section (5.1) suggests how such a z should
be chosen and the result follows from the equation
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gz +2) = (z+ z)TA(:v +2)— ZaT(:z: + 2)
(x + z)TA(:v +2z)— 2aT(:L' +z)+ As? — Az + Z||2
= As2+ xT(A — M)z + 2.TL‘T(A — Az + ZT(A — Az — 2Tz — 24" 2.

Using = = (A — A )ta we get
g(z+2z) =h(X) + ZT(A — Al)z.

This implies that z should be chosen to make 27(A — M)z small. For a
fixed feasible A for (6.1), the duality gap between (6.1) and (6.2) is dependent
on X and equals trace (X (A — A)). If we set X = 2z then trace (X (A —
M) = 2T(A—AI))z. Note that in the MS algorithm, ||Rz||* = zT(A—\I))=.
Therefore, when a z is found such that ||z + z||* = s* and ||Rz|| is small, the
algorithm is trying to reduce the duality gap between (6.1) and (6.2), while
maintaining feasibility for (6.2).

6.2 A Semidefinite Framework for the GLTR method

As in the previous section, we now show that the Lanczos method can also
be explained using the Lagrangian dual (6.1). Here we show that their stop-
ping criteria is in fact measuring the duality gap between TRS- and this
Lagrangian dual.

Recall that the GLTR method solves a problem of the type (4.2) when
it i1s known that the solution to the TRS lies on the boundary and that
TRS= needs to be solved. In the GLTR algorithm, a solution zj of (4.2) is
said to be a good approximation of TRS if y41]e], hk| is small (see (4.8))
and this 1s used as a stopping criteria for the algorithm. We now show the
relationship between the duality gap and this stopping criteria.

Recall A\; in the GLTR method is the root of the function ¢(\) obtained
by applying Algorithm 3.1 to the problem (4.4). Since ||zx|* = s?, we have

q(zy) = ng:z:k — 24Tz, — Me([|z])* = s%)

= "cz(A — Mg — 20T z1 + \is?.

35



If ), is feasible for (6.1), then equation (4.7) implies that z; = (A — M\.I)Ta +
Vrt1 egﬂhk(A — MeI)? ey and therefore

q(zr) = aT(A= MDY A= MD(A-MD)ia
+’le+1(e£+1hk)2qkT+1(A - /\kI)T(A — M) (A - /\kI)tQkH
+29416py hea’ (A = M)A = M I)(A = M) qrpn
—2aT(A — )\kI)ta — 2’yk+1e£+1hkaT(A — )\kf)qu_H + st

Some simplification and the properties of the generalized inverse yield

(](mk) = _aT(A - )‘kI)ta + )‘k52 + 713+1(€£+1hk)2qg+1(/4 - )‘kI)tqk-H
= h()‘k) + (7k+1|€£+1hk|)ZQkT+1(A - )‘k—f)tqk-l-l-

Thus
q(zk) = h(Ak) = (e lefprPul) iy (A = XMeI) e

If we assume )y, feasible for (6.1), then the right hand term is the duality gap
between TRS= and (6.1). When this term is small, we can therefore expect zy
to be almost optimal for TRS. This is in agreement with the stopping criteria
for the GLTR method, since ’yk+1|e£+1hk| appears in the duality gap. Note
though that qkTH(A — )\kI)qu_H 1s not taken into account in the measurement
of the gap. Furthermore, for M a positive definite symmetric matrix, define
the M-norm of a vector z as

|3, := 2" M.
Then, for M = A — A\ I, the duality gap can be written in the form

q(zr) — h(Ak) = || (vesr lefpr Pl @ |31 -

We see the stopping criteria used by the Lanczos method is an incomplete
measure of the duality gap. This suggests that one might find some example
where the GLTR method stops, but where ||qx41|3; is large enough so that
the duality gap is also large. The semidefinite framework we showed here for
the Lanczos Method, presents a clearer way to understand the algorithm. It
shows that it is mostly a primal algorithm, since simpler primal problems
are solved to approximate the solution to TRS. Yet, the strength of the
approximation is directly linked to the duality gap between TRS and the
dual problem (6.1). Furthermore, at each iteration, since feasibility is not
assured for A, the algorithm compares to a primal-dual infeasible algorithm.
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7 The Rendl-Wolkowicz (RW) Algorithm Re-
visited

We now present our modified form of the RW algorithm. This algorithm
exploits both the sparsity of A and handles the hard case (case 2). The
algorithm is based on the unconstrained dual program (5.17) and exploits
the properties of the eigenvalues and eigenvectors of the parametric matrix
D(t). Many ideas from the MS algorithm are transformed to the large sparse
case, e.g. the primal step to the boundary. We include information from
the primal-dual pair of linear SDPs (5.19),(5.20). In Section 7.4 we also
include new heuristics that take advantage of the structure of k(-), accelerate
convergence, and facilitate the handling of the hard case. We summarize the
algorithm in Sections 7.3, 7.4.

7.1 Three Useful Functions
711 k() = (s> + DA (D(1)) — ¢

This is the function that we (implicitly) maximize to solve TRS, see (5.17).
There is no equivalent function used in the MS algorithm, but we do show a
connection using the derivative of k(t). Since

lim A (D(1)) = \y(4) andTim (A (D(t)) — 1) = 0,

the asymptotic behavior of k(t) is

k(t) ~ (s*+ 1)\ (A) —¢t, ast — oo  (linear with slope —1)
k(t) ~ s*t, as t -+ —oo (linear with slope s?)

Therefore, asymptotically, as |[t| — oo, the behavior of k(t) is linear. Since
A1(D(t)) is concave, so is k(t). In the easy case, the function is also differen-
tiable. In the hard case, loss of differentiability occurs when the multiplicity
of the smallest eigenvalue for A\;(D(#)) changes. The three Figures 7.1, 7.2,
7.3 illustrate the three different situations. The following theorem tells us
when this happens.

Theorem 7.1. Let A = PAPT be an orthogonal diagonalization of A. Let
A (A) have multiplicity © and define

JE{k|(PTa)x#0}
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Figure 7.1: k(t) in the easy case
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Figure 7.2: k(t) in the hard case (case 1)

Then:

1. In the easy case, for all t € R, \(D(t)) < M\ (A) and A\ (D(t)) has
multiplicity 1.

2. In the hard case:
(a) fort < to, M(D(t)) < AM(A) and A (D(t)) has multiplicity 1;
(b) fort=to, M(D(t)) = M(A) and X\ (D(t)) has multiplicity 1 + i;
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Figure 7.3: k(t) in the hard case (case 2)

(c) fort>to, M(D(t)) = M(A) and A\ (D(t)) has multiplicity 1.

Proof: We can assume without loss of generality that A is a diagonal
matrix with diagonal elements oy and ¢ is the multiplicity of A;(A), i.e.

o =ag=...=0o; <oy < ... L ap.

In particular, we get the easy case if and only if 95 € {1...:} such that
a; # 0. We then have

det(D(t) = M) = (t = X) [J(ex = 2) = > <a,3 [I(e; - /\)) .

k=1 k=1 I#k

Let J = {i]a; # 0}. Then

(aj—A), for A& {a;lj € J}.
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Then

n

det(D(t) = M) = (t —d(N) [J(ay = A), for A g {aslj €T} (T.1)

=1

Note that the eigenvalues of A, the ay’s for k € {1...n}, are not necessarily
eigenvalues for D(t) since d(-) might not be defined for any of these values.
Yet, if oy & {oj|j € J}, then oy is an eigenvalue for D(t), since d(-) is
well defined at ap. In the easy case, there exists o), € {oj|j € J} with
h € {1...i}. Without loss of generality, assume oy € {a;|j € J}. Therefore

lim d()) =0
A=, A<y
and
lim d(\) = —c0.
A—=—o0
Moreover,
2
a4
dN) =1 S — 2
=1+ 3 = >0 (7.2)
jeJ
and
“ £
d"(\) = — i .
(\) ;(%_x)ﬁo’ if A <oy

Therefore, d(-) is strictly monotonically increasing and convex on (—oo, ay).
In the hard case, ap & {a;|j € J},for h € {1...:} and so, in particular, d(a;)
is well defined. If o := min(e; |7 € J), then a similar analysis shows that
d(+) is strictly monotonically increasing and convex on (—oo, oy). Figures 7.4
and 7.5 give a representation of d(-) in the easy and hard case, respectively.
We conclude from this analysis of d(-), that in the easy case, for t € R, the
equation t — d(A) = 0 always has a solution A < o and that this solution
is unique. Since the eigenvalues of A and D(t) interlace, if A < oy and
t —d()\) = 0, the equation (7.1) implies A = A;(D(#)). Since A is the unique
solution less than oy, A;(D(t)) has multiplicity one. Thus, in the easy case,
for any ¢, A\1(D(¢)) has multiplicity 1.

By (7.1), In the hard case with ¢ < to, the equation t — d(A) = 0 also has a
unique solution A;(D(t)) < ;. Therefore, in this case A\ (D(t)) < oy with
multiplicity 1. When ¢ = ¢y, we first note from (7.2) that d’(A) > 0, if A < a;.
Therefore,

A<ap=dA) <dla)) =0<ty—dA).
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Since
n

det(D(to) — M) = (to — d(N)) [J(a; — N, (7.3)

j=1
we get for A < oy, that det(D(tg) — AI) > 0. But det(D(to — a1 I) = 0, and
therefore A\q(D(t)) = oy with multiplicity ¢ + 1 by (7.3). When t > tg, the
equation t — d(X) = 0 does not have a solution A < ay. Since «; is a solution
to det(D(t) — AI) = 0, then again by equation (7.1) we get that A (D(t) = oy
with multiplicity . |

With the previous theorem in hand, we know that, in the hard case, loss of
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Figure 7.4: d()) in the easy case

differentiability will occur for k(t) at to. If we define t* by
t* = arg max E(t), (7.4)

then, in the hard case, we have shown that either t* < ¢y (which is referred
to as case 1) or t* =ty (which is referred to as case 2). Figures 7.1, 7.2 and

7.3 illustrate the behavior of k(t).

7.1.2 K(t)=(s* 4+ Dyo(t)* -1
We let y(t) be a normalized eigenvector for A (D(t)) and let yo(¢) be its first

component. If y(t) = ( %CO((;)) >, then y%(t)H;L’(t)H = s if and only if £'(¢) = 0.
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Figure 7.5: d()) in the hard case

To maximize the concave function k(¢) we need to set its derivative (subgra-
dient) to 0. We see below that this is equivalent to setting the derivative
of h(A) to 0 or to setting ¢(A) to 0. We now look at the differentiability of
the function k(). For this we use the above results on the eigenvectors of

A1(D(t)). We obtain the following, [27, Lemma 12, Lemma 15].

Theorem 7.2. Let y(t) be a normalized eigenvector for A\i(D(t)) and let
Yo(t) be its first component. Then:

1. In the easy case: fort € R, yo(t) # 0;
2. In the hard case:

(a) for t < t().' yo(t) % 0,'

(b) for t > to.’ yo(t) = 0,'

(c) for t = to: there exists a basis of eigenvectors for the eigenspace
of M(D(t0)), such that one eigenvector of this basis, w, has a non-
zero first component (wo # 0) and the other eigenvectors in the
basis have a zero first component (yo(t) =0).

It is known that the function Ai(D(¢)) is differentiable at points where
the multiplicity of the eigenvalue is 1. Its derivative is given by yo(t)?, where
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y(t) is a normalized eigenvector for A1 (D(t)), i.e. ||y(t)|| = 1 (see [16]). We
know from Theorem 7.1 that A;(D(¢)) has multiplicity 1 both in the easy
case and, when ¢ < t¢, in the hard case. Hence, for these two cases,

K(t) = (s* + D)yo(t)? — 1. (7.5)

In the hard case, when t > tg, equation (7.5) still holds. It is well defined
because yo(t) = 0 for all eigenvectors of A\;(D(t)). When ¢ = ¢, in the hard
case, k(+) is not differentiable and this is caused by a change in the multiplicity
of the eigenvalue \;(D(¢)). The directional derivative from the left is w?,
where w is defined as in Theorem 7.2; while the directional derivative from
the right 1s —1.

Since k() is a concave and coercive (i.e. diverges to —oo as [t| — o0)
function, to solve the dual (5.17) in the differentiable case we need simply
solve k'(t) = 0. This will always be possible except when the maximum
occurs at to, i.e. where k() is not differentiable. In the next section we will
see that k/(t) = 0 always has a solution in the easy case and the hard case
(case 1) and that otherwise, the hard case (case 2) occurs. To maximize the
concave function k(¢) we need to use its derivative (subgradient). To establish
the behavior of k'(t), we start by considering the function yo(t), where yo(t)
is the first component of the eigenvector for the smallest eigenvalue of D(t).
In the easy case, [27, lemma 13| proves that:

Yyo(t) is strictly monotonically decreasing,
Yo(t) > last — —oo
and yo(t) — 0 as t — oo.

In particular, yo(t) # 0 for all t € R. Figure 7.6 gives the representation
Yyo(t) for this case.

In the hard case, for t < to, the graph of yo(¢) is similar. For ¢t = ¢,
we know by [27, Lemma 15] that there exists an eigenvector for A;(D(t))
with yo(t) # 0. To analyze what happens when t > to, note that if vy is an
eigenvector for the smallest eigenvalue A;(A), then

R e e Y

This follows since a* v, = 0 1s the condition for the hard case to occur. These

last equations and Theorem 7.1 tell us that [ 0

] is an eigenvector for the
Uk
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Figure 7.6: yo(t) in the easy case

smallest eigenvalue of D(t). So for t = t¢, a basis for the space generated by
the eigenvectors of the smallest eigenvalue of D(#g) is { [ f ] ey [ 3 ] ,wl,
1 i

where {vy, ..., v;} is a basis for the space generated by the smallest eigenvalue
of A and where w is an eigenvector of D(t) with first component nonzero.
The existence of w is assured by [27, Lemma 15]. For ¢ > ¢q, the multiplicity
of the smallest eigenvalue of D(t), oy by Theorem 7.1, is 7 and a basis for

0

the space generated by its eigenvectors, is { o | 7(3 }. Therefore
1 i

yo(t) is well defined for ¢t > #; and is equal to 0. Figure 7.7 illustrates the
hard case for yo(t). Since k'(t) = (s* + 1)yo(t)* — 1 and since yo(t) € [0, 1],
then yo(¢)? has a similar behavior to yo(t) and therefore, so does k'(¢). In
the easy case we see this in Figure 7.8. Depending if the equation £k'(t) = 0
has a solution or not, we have two cases to consider for the hard case. If the
equation has a solution, then we must have &'(#9) < 0 and the following.

E'(t)) <0 & (s>+1)yj(te) —1<0
& yolto)s” <1 —yg(t)

2 _ 1-93(t)
= s K Rlo)

which is equivalent to case I of the hard case (see [27, pg. 288] ). Similarly,
the nonexistence of a solution implies we are dealing with case 2 of the hard
case (see [27, pg 289]). See Figure 7.9 for the behavior of £'(¢) in the hard

case.

44



1.2
. |
-~ y=0
0.8 yo(:;
[ — yol(t 7
E *  (to,wo
§ 0.6} B
-
=
0.4 B
0.2 h
o - ]
T T30 0 10 0 20
t—values
Figure 7.7: yo(t) in the hard case
wl
Q
E
)
>
|
e

. . . . . . .
-80 -70 -60 -50 -40 -30 -20 -10 0 10 20
t—values

Figure 7.8: k/(¢) in the easy case

— ./ 1
7.1.3 ¢(t) = SZ—I—]_ _yo—(t)

Solving ¢ (t) = 0 or k'(t) = 0 is equivalent. There is always a solution in the
easy case, though not necessarily in the hard case. As we already know the
behavior of yo(t) for the easy and hard case, Figures 7.10, 7.11, 7.12 easily
follow. () converges to Va2 +1 —1 as t - —oo. In the easy case, ()
goes to —oo as t — oo in t. In the hard case, 1(¢) is undefined for ¢ > t.
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Figure 7.9: k'(¢) in the hard case (case 1)

051 R
0.4F E
Wl
g o3p E
®
1
5 o02f E
01f R
ol i
* (t",0)
— ()
-0.11 =52 F1—1
; ; ; . . . . . . .
-100 -90  -80  -70  -60  -50 =40  -30  -20  -10 o

t—values

Figure 7.10: t(¢) in the easy case

7.2 Unconstrained Maximization of k()

In this section, we see how the RW algorithm solves TRS- using problem
(5.17). The easy case is solved in a way similar to the MS algorithm, except
that the function used is not h(-), but k(-) for sparsity considerations. The
almost hard case (case 2) does not use the LAPACK routine to find the
step direction to the boundary. Instead, the direction is obtained from an
eigenvector previously computed. We use the following indicators of the easy
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Figure 7.11: ¢(¢) in the hard case (case 1)
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Figure 7.12: ¢(¢) in the hard case (case 2)

case. We assume that yo > 0.

Easy Case Indicators:

. . .
-16 -15 —114 -13
t—values

L
-12

(2 + 12 — 1< 0)

(A) > 0
P(t) < 0
E'(t) < 0
1
yo < 52+1
t > t*
A o> )
[z(M)]| > s
R'(A) < 0.
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7.2.1 The Easy Case and the Hard Case (case 1)

We start this section with a theorem, derived from [27, Theorem 14], showing
that, in these two cases, at each ¢ there corresponds a solution to TRS_ with
a certain radius, as well as solutions to the SDP pair (5.19),(5.20) with s?
changed appropriately.

Theorem 7.3. Let t € R and suppose y(t) = [yo(t), 2(1)T]7 is a normalized
eigenvector of D(t) corresponding to A(D(t)). Suppose yo(t) # 0. Let 2* =

Loz(t), y = ( 1,z* ), and s = ||z*||. Then s = NS TI0py

Yo (1) Yo (t)?

1. z* is an optimal solution of the TRS_ with s replaced by s, i.e.

min {g(x) o] = 5)
and \* = X\((D(t)) is its Lagrange multiplier.

2. Let s be replaced by 5 and let Y* = yyT. Then X = \(D(t)),t solve
(5.19) and Y™ solves (5.20).

From [27, Lemma 13], if the easy case holds and y(¢) is a normalized
eigenvector with yo(¢) > 0, then yo(¢) is a function mapping R — (0,1)
which is strictly monotonically decreasing. It is then easy to show that the

2
function 1;(?&()? is a strictly decreasing function mapping (0,1) — (0, c0).
Hence for a given s, we can solve TRS_ in the easy case by finding a ¢ such

that )
2 1-— yO(t)

s = 2

Yo(1)
Now note that &'(t) = 0 if and only if the previous equation is satisfied.

Hence TRS= in the easy case can be solved by finding ¢* that satisfies (7.7).
Setting

(7.7)

1
"= z(t*) and A" =X\ (D(t"
() (D)
gives an optimal solution to TRS= and its Lagrange multiplier, according to

Theorem 7.3.
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In the hard case, we can use the same approach, if at t* the function k(-)
is differentiable; hence k'(t*) = 0. Since k(-) is not differentiable only at o,
and since the directional derivatives from the left and right are, respectively,

E(ty) = (52 + 1)w§ —1 and k’(tg) = -1,

we get by the concavity of k(-), that this function is differentiable at the
optimum if and only if the directional derivative from the left of ¢, is negative,

l.e. )
Wo
2

2

(s 4+ 1ws —1<0& > s

“o
This implies that t* < #o. Since the function yo(-)? is strictly positive on
the interval (—oo,t9) and is the derivative of the function A{(D(-)), then
the latter is strictly increasing on the interval (—oo,tg). Ai(D(-)) is also a
continuous function, hence it is strictly increasing on the interval (—oo, to].

Therefore
" <to = M(D(t7)) < A (to).

The right inequality implies A* < A;(A) and the hard case (case 1) occurs.
This shows we can solve TRS= in the easy case and the hard case (case
1) by solving the equation

E'(t)=(s*+ Dyo(t)* = 1= 0.
The RW algorithm does this by finding the zero of the function

P(t) = VT T — —

Yo(t)’
Note that this trick is analogous to the use of the function ¢(-) in the MS

algorithm. The function ¢(-) has the advantage of being less nonlinear near
t* and therefore interpolating to find ¢ such that () equals 0 will be more

(7.8)

efficient.

7.2.2 The (Near) Hard Case (case 2)

In the hard case, when

1 —ws 2
7 < s,
“o
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then k'(-) is positive to the left of ¢; and is —1 on its right. Hence, by the
concavity of k(-), its maximum occurs at to and so t* = t5. Note also that
A = X (D(to)) = M(A). This is true since for w = [wp,]”, where w is as in
Theorem 7.2 and where w € R", & is by construction perpendicular to the
eigenvectors of A\j(A) and a short computation shows that

~ 2
w 1—w
0
¥ = — + 4 /52 — 2,
wWo wg

with z € §;, satisfies the optimality conditions for TRS_ with Lagrange
multiplier A* := A;(A) and we are in the hard case (case 2).

Now, we cannot solve k() = 0 anymore to find the optimum of k(-)
and the function (-) is positive on the interval (—oo,tg) and does not exists
for higher values of t. To handle this case, we take a primal step to the
boundary. Let ¢, be such that £'(t.) < 0, then ¢, is defined to be on the easy
side, since the easy side is where we want to be in the MS algorithm, that is
when ¢(A) > 0. Similarly, if for ¢, we have k'(¢5) > 0, then ¢} is defined to
be on the hard side. If we have a point t), from the hard side, then ¢, < tg
and this implies that yo(ts) # 0. Let y(t) = [yo(#), 2(#)]T. We have

1 — yo(tn)?
E'(th) >0 < (s>+1D)yo(tn)’—1 > 0 & yio(;) <s’& | z(th)||* < %
Yo(tn) Yo(tn)
Theorem 7.2 implies that
—e(n) (7.9
Thp = z .
" Yo(tn) "

1—yo (ts)?
vo(tp)?

In the next section, we will show, if \;(D(¢,)) > 0 for a ¢, on the hard
side, then an unconstrained minimum lies within the trust region and we can
solve TRS with the conjugate gradient method. For this section, we assume
A (D(th)) < 0. We can now apply Lemma 3.2 with the feasible solution x,
since (A — A (D(tn))I)xzp = a holds as well. Yet, we need to find a vector
z, with ||z|| = 1, such that z7(A — \;(D(¢y))I)z is small. Let . be a point
from the easy side. Then, by Theorem 7.2, in the hard case (case 2), for
any eigenvector y(t.) of A{(D(t.)), z(t.) is an eigenvector for A;(A) and has
a unit norm, since yo(t.) = 0 (notice that in the hard case (case 2), t. > to).

which is less than s.

minimizes ¢(-) on the sphere of radius
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Hence

2(te) (A= MD(tn)D)z(te) = 2(te)" (A= M(AT + (M (A) = MD(tn)))])z(te)

= (M(D(to)) — A(D(tn)))-
Therefore, for t, close to to, z(t.)T (A — M(D(¢s))I)z(t.) will be small and

z(te) is taken as a step direction to the boundary.

As in the MS algorithm, every time a feasible solution to TRS is obtained
(each new point #, from the easy side gives us a new feasible solution), if we
have a point ¢, from the hard side, we take a primal step to the boundary.
This handles the almost hard case (case 2), but may also prove to be of use
in the two other cases if a decrease in the objective function is obtained.

7.3 Flowchart

The details for the individual steps follow in Section 7.4 below.

INITIALIZATION:

1. Compute A1(A) and corresponding eigenvector vy. If A\ (A) < 0, shift
A+ A= MAIL. (A(A)||z*||* added to objective value at end.)

If aTvy is small (near hard case), then deflate, i.c. add the
vector y, = ( S > to the set ).
1

2. Obtain bounds on q*, \* and t*.

If \y > 0, test if the optimum is an unconstrained minimizer.

EXIT here if so.

3. Initialize parameters and the stopping criteria based on the optimality
conditions, duality gap, and intervals of uncertainty.

ITERATION LOOP: (until convergence to the desired tolerance or until

we find the solution is the unconstrained minimizer.)

1. FIND a NEW VALUE of ¢.

(a) Set t using Newton’s method on k(t) — M, if possible; otherwise
set it to the the midpoint (default) of the interval of uncertainty
fort.
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(b) If points from the hard and easy side are available:

i. Do TRIANGLE INTERPOLATION (Update upper bound on
g« and set t, if possible.)

ii. Do VERTICAL CUT (Update lower or upper bound for in-

terval of uncertainty for t.)

(¢) Do INVERSE INTERPOLATION (Set t, if possible)
2. UPDATE

(a) With new t, compute (with restarts using a previous eigenvector)
A = M(D(t)) and corresponding eigenvector y with yo > 0. (Use
y orthogonal to the vectors in Y, if possible.)

(b) If A\ > 0 and yo > 1/(s*+1) then the solution is the unconstrained
minimizer. Use CONJUGATE GRADIENT and EXIT.

(¢) Update bounds on interval of uncertainty of q*.
(d) i If yo is small, then deflate, i.e. add y to Y.

1. elseif t is on the easy side, update parameters. Take a primal
step to the boundary if a hard side point exists.

1. elseif t is on the hard side, update parameters. Take a primal
step to the boundary from this hard side point.

(e) Save new bounds and update stopping criteria t;,1 = 1..5

END LOOP

7.4 Techniques used in the algorithm

In this section, we clarify the techniques used in the algorithm for solving

(TRS).

7.4.1 Newton’s Method on k(t) — M, =0

We use the upper and lower bounds on k(t) and the Newton type method
presented in [17]. Note that Newton’s method applied to k(t) — M; = 0 at ¢,
yields

Kt = My _ (s* + )(td(t.) = ND(t) + M,
Pl (4 Dyl -1

t+:tc—
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We use this iteration for appropriate choices of M; in cases where the inverse
iteration on 1 fails, i.e. if the hard case holds.

7.4.2 Triangle Interpolation

Given k(t), if we have two values of ¢, ¢, and t, such that &'(¢.) < 0 and
E'(tn) > 0, then we try to find a better approximation tnew to the solution
of the program (7.4). The set of {¢: k'(t) < 0} is referred to as the easy side
and its complement as the hard side. A better approximation is found using
a technique we call triangle interpolation, i.e. we find the t coordinate of the
point where the secant lines intersect. (We use a tangent line on the side
where there is only one point.) This becomes our new approximation tnew-.
We also obtain an upper bound g, to ¢* := k(*) from the k coordinate of
the point where the secant lines intersect, see Figure 7.13.

-28 T T T
o interpolation points
* (tnew »qup)
— k(t)
-28.2 * q
12}
%]
=
<
>
| -28.4F B
<
-28.6
-28.8 L 1
-2 -1 o] 1 2 3 4 5 6
t—values

Figure 7.13: Triangle interpolation

7.4.3 Vertical Cut

Suppose we have two values of ¢t again, t. and t,, with k(¢.) < k(tn). (A
similar argument holds for the reverse inequality.) Then we can use the con-
cavity of £ to reduce the interval of uncertainty for t. We find the intersection
of the horizontal line through (¢p,k(¢4)) with the tangent line at the point
(te,k(te)), i.e.

thigh = te + (k(th) — k(1)) /K (1),
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where thigh is the upper bound on ¢*. See Figure 7.14.

-28

o easy and hard side points
* new upper bound on t*

-28.2 -

k—values

-28.4

—28.6

-28.8

.
2 3
t—values

Figure 7.14: Vertical cut

7.4.4 Inverse Interpolation

We use (quadratic or linear) inverse interpolation on 9 (t) = 0, in the case
that yo(t) # 0. Since t(¢) is a strictly monotonically decreasing function,
we can consider its inverse function, say #(v). We use (concave) quadratic
interpolation when possible, i.e. suppose the points (¢;,¢;),7 = 1,2,3. Then
we solve the system

¢% ¢1 ]_ a tl
77Z)3 77Z)2 ]_ b — tz
3 s 1 Inew i3

and get the new estimate tnew. We use the top 2 X 2 system in the linear
interpolation case. Figures 7.15 and 7.16 illustrate the process.

We see that in the hard case (case 2), inverse interpolation doesn’t provide
us with useful informations on ¢* and the estimate is somewhat irrelevant,
since ¥ (t) is not defined for ¢t > ¢, and is positive for ¢ < t5. So when we
extrapolate in this case, we extrapolate outside the domain of the function
(t). Since we cannot tell that this case 2 holds, if we are currently on the
hard side, this interpolation must be safeguarded, i.e. we have to maintain
that ¢ and A stay on the correct side of A;(A).
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Figure 7.15: Inverse interpolation in the easy case and hard case (case 1)
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Figure 7.16: Inverse interpolation in the hard case (case 2)

In the easy case and case 1 of the hard case, as we get values of ¢ such
that ¢ approaches 0 for those value, inverse interpolation will give a better
approximation for t*.

7.4.5 Recognizing an unconstrained minimum

Problem (TRS) has an inequality constraint, but generally the optimum
lies on the boundary and we can solve the same problem with the equality
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constraint to get the optimum. This does not hold if and only if the matrix
A is positive definite and the unconstrained minimum lies inside the trust
region. The following theorem is the key to recognizing this case.

Theorem 7.4. Let & be a solution to (A — M)z = a with (A — M) positive
semidefinite. If X < 0, then T is a solution to min{zT Ar—2a"z : ||z|| < ||z||}.
If X\ >0, then z is a solution to min{zT Az — 2aTz : ||z| > ||z||}.

Proof: The first part follows from the necessary and sufficient optimality
conditions and the second part follows easily knowing that the sign of A plays
no role in the positive semidefiniteness of the matrix A — AI when proving
these optimality conditions. [ |

Now suppose that z satisfies (A—AI)z = a with A—AI = 0, that ||z|| < s
and that A > 0. Then, by Theorem 7.4, z is a solution to min{z? Az —2a”z :
l|z|| > ||z]|} and A — AI is positive semidefinite, then A is positive definite.
Moreover, by the optimality of z, we know that the unconstrained minimum
lies inside the region {z : ||z|| < ||z||} which is included in the trust region
{z : ||z|| < s}. Therefore we can set the optimum to A™'a.

In our algorithm, we successively obtain solutions zx to (A — Az, = a
with A — A1 = 0. Therefore each zj is a solution to min{a:TA:L’ — 24Tz -
l|z|| = ||z«||}. Checking the sign of the multiplier Ay tells us if zy is a solution
to min{zT Azr — 2aTx : ||z| < ||z&]|} or min{zT Az — 2Tz : ||z|| > |||} I
the later case holds and ||| < s, then we know the unconstrained minimum
lies in the trust region.

7.4.6 Shift and Deflate

Let us consider the case when the optimum is on the boundary of the ball.
Once the smallest eigenvalue A;(A) is found in the initialization step, we can
use the shift in Lemma 2.1 Item 3 and Lemma 2.3. Therefore, for simplicity,
we can assume that A;(A) = 0.

During the algorithm we deflate eigenvectors y = (yo v1)T if yo is small
(essentially 0). This indicates that a’v is small. We perturb a < a — a”vv
and deflate using A < D + ayy”. This is done by adding a threshold value
times the matrix yy” during the Lanczos process. This uses the deflation in

Lemma 2.1 Item 4 and the perturbation analysis in Lemma 2.2.
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7.4.7 Taking a Primal Step to the Boundary

The interpolation and heuristics are used to find a new point ¢ and then a
corresponding A for the dual problem, i.e. we can consider this as a dual
step. Once the A is found, we can find a corresponding primal point x(A) for
the primal problem. This point will be primal feasible if ¢ (equivalently A) is
on the hard side; it will be infeasible on the other (easy) side. In either case,
we can now take a primal step, i.e. move to the boundary and improve the
objective value.

There are two similar steps to the boundary we can take depending if the
(almost) hard case holds or not. In the easy case, the step is motivated by
the following lemma:

Lemma 7.1. Let 0 < s; < s < 89 and let
en € axgmin{g(x) : o] < 51}
z. € argmin{q(z) : ||z| < s3}.

Assume ||zn|| = s1, ||7c|| = s2, L (zc — x1) # 0 and the Lagrange multiplier
A for xy, satisfies A — A = 0. Let

m(a) = q(zp + a(ze — 1)).

Then
m'(a) <0 for a € [0,1]

and therefore
g(zn + a(ze — 1)) < g(zp) for0<a <1

In particular, for a € [0,1] such that |z. + a(xz. — xp)|| = s we have that
zp + a(ze — xp) is feasible for TRS and has a smaller objective value than
Th.

Proof: Since ||z4]|> = s < s3, it is possible to find 2 different values oy
and ay such that

lzn + qi(ze — )| =55 i=1,2. (7.10)

A short computation shows that

—ajy(we — ) + /(eh (2 — 21))? + [l — 2a]|(53 — [J2a]]?)

e — aa]®

a] = ”
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—ajy(we — n) — /(@) (xe — 2n))? + [lze — 2n]|2(s3 — [|2a]]?)

[ze — aa]]®

a9 = .
Now suppose 7} (z. — ) < 0, then a; > 0, ay < 0 and |ay| < |a;]. By
(7.10) and using (A — Az, = a we get for 1 = 1,2

q(zn+ai(ze—xp)) = —(;L'f(A —M)zp—As)+al (. — :L’h)T(A —A)(ze—xp).

(7.11)
Since ||z.||* = s2, then o = 1 solves ||zp + a(x. — x1)||* = s3 and therefore
a; = 1. By the optimality of z., by equation (7.11) and because A — Al > 0,
we must have |a;| < |ag|. This is a contradiction, hence z] (z, — x3) > 0.
Now let

I? I

fle) = llzn — e(we — )"
Note f(0) = s7. Then
f'(e) = 2¢||xe — zp|* — 2:1:%(3:8 — p).

Therefore for € small enough f'(€) < 0 and this yields ||z —e(z. —zp)||* < st
Since

m(=e) = m(0) = m'(0)e + ofc) = glan) — m'(0)e + ofe),

if m'(0) > 0, then g(xp — e(x. — xp)) < q(xp) for € > 0 small enough. This
contradicts the optimality of x,. Hence m’(0) < 0.
Let

wle) = len + (1 — e — )P
Note w(0) = s3. Then

w'(€) = =2(1 — €|z — :vh||2 — 251?%(117@ — zp).
For 0 < e <1, w'(e) <0, hence ||z + (1 — €)(ze — z1)||* < s3. Now since
m(1 —e€) = m(1) — m'(1)e + o(e) = g(z.) — m'(1)e + ofe),

again, by the optimality of z., we have m’(1) < 0.
Since ¢(+) is a quadratic function, then m(-) is a parabola, i.e.

m(a) = aa® + ba+c¢, wherea,b,c€ R,

and we have

m'(0)=b<0 and m'(l)=2a+b<0.
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Let 0 < a < 1, then

if a>0, wehave:a <1= m'(a)=2aa+b< 2a+b<0;
if a <0, wehave: 0 < a = m'(a) =2aa+b<b<0;
if a=0, we have: m'(a) = b <0.

Therefore, these inequalities with m/(0) < 0 and m/(1) < 0 show that
m'(a) <0 for0<a<l.

Hence, by the definition of m(-),

d
d—q(:vh+oz(:ve —z3)) <0 for0<a<l
8

and the lemma follows. [ ]

The use of the previous lemma in the easy case is now clear: given two
values of the variable t, ¢;, and t., respectively on the hard side and the easy
side, assume A;(D(ty)) < 0 and A (D(t.)) < 0 (note that A;(D(ts)) is the
Lagrange multiplier for xp and that A — Ay (D(¢,))I > 0 holds) , and let

1 1
T = z(th), Te z(te).

Yo(tn) - Yo(te)

Then if :1:{(:1:6 — xp) # 0 and @ is defined as in the above lemma, taking a

step to the boundary from zp, to xp + a(x. — x) will decrease the objective
value.

Note that we assume the easy case to be able to justify yo(t.) # 0. We
may also extend this step to the boundary in the hard case (case 1) when this
condition is satisfied. However, in the hard case (case 2) yo(t.) = 0 always
holds. It seems we need a new strategy, but again, as we will explain later,
Lemma 7.1 is again involved. In section 7.2.2 we explained that from z, we
use z := z(t.) as a step direction to the boundary (if no point on the easy
side has yet been found, then we use the eigenvector of A found during the
initialization step). This choice was motivated by Lemma 3.2 and the desire
to make the quadratic form z7(A — X(D(#4))I)z small. Precisely, we take the
step x + 7z with 7 chosen to reduce the objective function and satisfy

z(th) + 72| = s.

1
Yo(tr)
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The explicit expression for 7 is

5% — ||
ol z + sgn(a]2) /(e[ 2) + (52 = [lan]]?)

T =

where sgn(-) equals 1 if its argument is nonnegative and -1 otherwise. Given
a direction z, there are two values of T for which x,+ 72z reaches the boundary.
[20] proves that to improve the objective, we should pick the one with smallest
magnitude. This is how 7 is built in the previous expression.

Now let’s assume again the easy case holds and consider the sequence of

points
Z(t,)
x(t;) == ,
(t:) Yo(t:)
where t; > t* (so {t;} are on the easy side, i.e. |z(#)| > s) and ¢; — oo.
As t; — oo, by [27, lemma 13] yo(t;) — 0, A\ (D(;)) — Ai(A) and the

boundedness of the z(¢;) implies that a subsequence converges. Let Z be the

limit. Since

o[ 50] - [ 7 1[0 - iy

Z is therefore an eigenvector of A;(A). Assuming A\ (D(¢;)) < 0, i.e. the
multipliers have the correct sign, we have

z(ti) € argmin{q(z) : [|z]| < [l=(:)[]}.
If we assume also for all i that =7 (z(¢;) — =) # 0, Lemma 7.1 says we may
g 2 ()

T yo(t) a Yo(tn)

as a direction for the step to the boundary. Now taking the limit of the
normalized direction as t; — oo, then

d
lim

I
tee [|d]| 2]

use

Hence, when we use an eigenvector for Aj(A4) (as z above) as a direction for
a step to the boundary from a hard side point, it is as if we are using in
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Lemma 7.1 a point from the easy side located at infinity. This also justifies
the use of a different step to the boundary in the ease case and potentially
the hard case (case 1), since using z in these cases for a step direction to the
boundary, as it was suggested in [27], does not take into account the local
information we have in hand, i.e. the information from the easy side.

To summarize, given two values of t, ¢, and ?., respectively from the hard
and easy side, we monitor yo(t.). If it is significantly above 0, we use the
direction z. — zp to move to the boundary. Otherwise, we use an eigenvector
z corresponding to A;(A)) as a direction to the boundary. If we have a value
of t, say t., from the easy side, we use z = z(t.), otherwise we use the
eigenvector for the smallest eigenvalue of A found during the initialization
step.

If no points have so far been found on the hard side, and a point from
the easy side has been found with correct Lagrange multiplier, then it does
not hurt to project this point on the feasible set and obtain a new feasible
point.

Let t. be the value of ¢ for the last point found on the easy side and A, its

associated Lagrange multiplier. If A, < 0, then by Theorem 7.4, if yo(t.) # 0,
7 1= YZntUle) 5q ) golution to
yO(te)
min{z” Az — 24"z : ||z||* < ||2||*}

The idea now is to project x on the feasible set of TRS. Let x,,,, be the new
feasible point, it is obtained by the following formula.

Lnew = :
[z ()l

This projection may not seem natural, as we might have thought of taking
ﬁ - s, but z is not defined in the hard case. On the contrary, the above
projection is always well defined.

There are two reasons for taking such a step. First, it is always a good thing
to obtain a new feasible point, because then we can check the objective value
at this point and we may improve the duality gap. Second, by the optimality
of z, q(z) < g*. Therefore, if ||z|| is close to s, we can expect ¢(Zpew) to be
close to g*.
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8 Numerical Experiments

8.1 The Hard Case

We now provide numerical evidence that the Rendl-Wolkowicz Algorithm
(our modified version) is better suited to handle the hard case (case 2) than
the Moré-Sorensen Algorithm. It is stated in [20] that the latter algorithm
requires few iterations (2-3) in the hard case. However, this appears to hold
only when the desired accuracy is low. Many more iterations are required
when higher accuracy is desired. Our tests were done using MATLAB 6.1 on
a SUNW Ultra—5_10 with 1 GIG RAM.

Let ¢* be the optimal objective value of TRS and ¢ be an approximation
for ¢*. The Moré-Sorensen Algorithm returns an approximate solution that
satisfies

(j g (]- - 0_)2(]*’
where ¢ is an input to the algorithm, and the approximate solution of the
Rendl-Wolkowicz Algorithm satisfies
- 1 .
1=7C 2dgaptol <
where dgaptol is the desired relative duality gap tolerance. Hence, to get
equivalent accuracy, we choose

/ 1
=1—y/—.
g 1 + 2dgaptol

We used randomly generated sparse hard case (case 2) trust region sub-
problems, where the density is of the order of 1/(20nlogn). The tolerance
parameter dgaptol was set to 1072, Each row in the following table gives the
average number of iterations and cpu time for 10 problems of size n. We did
not go beyond n = 640 for the Moré-Sorensen Algorithm to avoid the large
computation times. The results, given in Table 8.1 and plotted in Figure 8.1,
illustrate the improved performance in both the number of iterations and the
computation time.

We note that the GLTR Algorithm does not appear in the above compar-
ison. The reason is obvious: the algorithm was not designed to handle this
case. We also note that it is easy to construct examples where the GLTR al-
gorithm fails: randomly choose a and A and multiply A by increasing values

62



Dim. n | MS iters. | RW iters. | MS cpu | RW cpu
40 36.4 6.4 0.79 0.55
80 34.4 7.6 1.0 0.57
160 39.2 7.2 6.49 0.61
320 33.8 7.4 23.36 0.77
640 37.8 5.0 149.36 0.78
1280 - 7.6 - 2.06

2560 - 5.0 - 3.18

Table 8.1: Iterations; Modified-RW and MS Algorithms on hard case (case
2(ii)) examples.

T
—— More-Sorensen
— — Rendl-Wolkowicz

cpu-time

h I 1
1500 2000 2500 3000
problem size (n)

Figure 8.1: Cputime; Modified-RW and MS Algorithms on hard case (case
2(ii)) examples.

of @« = 1,2,3,.... This procedures makes a relatively small compared to A
and creates the near hard case. Generally, what one observes when « is large
enough, is that solving the tridiagonal trust region subproblem fails because
the algorithm cannot find a proper starting value of A to satisfy (4.6). The
algorithm uses an initial value of A = A;(T%) — (1 — A1 (T%))v/€, where € is the
unit roundoff. However, in this case, this value is still too large to start the
Newton iterations.
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8.2 An Example where the GLTR Algorithm Fails
Consider minimizing

n—1

(27 — 1) + (2, — 1)7,

M

=1

using a trust region method, starting at the initial point

zo =0,...,0,3/2] .

We have
0 -4 0 ... 0
: 2 0 - :
Vf(l’o) = Y f(%) = .
0 : —4 0
1 0 ... 0 2

We chose g so that the hard case (case 2) appears eventually. Indeed, the
gradient is perpendicular to the space spanned by the eigenvectors of the
smallest eigenvalue of the Hessian. Let so be the initial size of the trust
region, then a short computation shows the hard case (case 2) occurs if the
initial trust region radius so > 1/6.

Let us choose sp = 1 so the hard case (case 2) occurs initially and use
the GLTR Algorithm to solve the TRS for the unknown d (this would be the
first TRS to be solved within a trust region method)

min dTV2f(zg)d + 2V f(zo)Td

st ||d]] < so. (8.1)

Going through the computations of Algorithm 4.1 we obtain

a0 = ||90l?/ (g Apo) = 1/2,
|dy1|| = ||do + copol| = [|[0,...,0,—1/2]7|| = 1/2 < 50
g1 = go + apApo = [0,...,0]T.

The algorithm would stop since

lg1]l = 0 < max(107%,107°[|V f (o) |)-
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Thus we obtain the approximate solution d; to the TRS (8.1). Although we
may have expected the GLTR Algorithm to fail finding a good approximate
solution because the hard case (case 2) occurs, the cause of the failure is
different and our example illustrates a somewhat unexpected weakness of
the algorithm: the conjugate gradient method may converge to a saddle
point located within the trust region. Indeed, d; does satisfy V?f(xq)d; +
Vf(zo) = 0, but obviously V?f(zq) is indefinite so that the strengthened
second order optimality condition is not satisfied. Hence, we notice that
whenever sy < 1/2, the GLTR Algorithm will return d; as an approximate
solution to the TRS, independently of the tolerances used in the stopping
criteria.

We may ask what happens if sg < 1/2. In this case ag, d; and g, are
as previously computed, except that ||di|| > so and it is then known that
INTERIOR is false, i.e. the solution to (8.1) is on the boundary. Thus, the
tridiagonal trust region subproblem (4.4)

min 2h% + 2h

2 _ 2
s.t. b =s§,

which is one dimensional in this case, needs to be solved. Using our notation,
its optimal solution, ko with Lagrange multiplier Ag, is hg = —sg with g =
2—1/s¢. We then need v; to test convergence and a quick computation yields
~v1 = 0. Hence the convergence test would tell us we are done, since

fyl|e?h0| =0< max(l()_g, 10_5||Vf(:l:0)||).

Note that since the left hand side is zero, we stop independent of the tolerance
we choose on the right hand side. We finally recover the approximate optimal
solution d* for (8.1) with corresponding Lagrange multiplier A* from (4.9):

d* =V f(ze) *ho=1[0,...,0,—s0)7 and A" =2 —1/s.
In agreement with (4.7) d* satisfies stationarity, i.e.
(V2 f(zo) — X I)d* + V f(zo) = 0.

But unless so < 1/6, the strengthened second order optimality condition
is not satisfied, i.e. V2f(zo) — A*I is not positive semidefinite. If indeed
S0 < 1/6, then d* in this case is the correct optimum for (8.1).
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This example is interesting since it shows, when so > 1/6, that the GLTR
Algorithm cannot find an approximate solution to the TRS, independent of
the tolerances. When sy > 1/2 the cause of failure is from the conjugate

gradient converging to a saddle point. This does not seem to be a problem
caused by the hard case (case 2), unlike the situation when 1/6 < so < 1/2.

8.3 A Comparison of the RW and GLTR Algorithms
within a TR Framework

In [13], the authors suggest that the GLTR method may be stopped not only
if convergence occurs, but also after a limited extra number of iterations, say
N, once the solution is known to lie on the boundary of the trust region.
More precisely, the algorithm stops if the subspace S (see (4.1)) is increased
in dimension by N once the solution is known to be on the boundary of the
trust region and problems of the type (4.2) are solved. The reason for limiting
the size of the subspaces S once the boundary has been reached in the GLTR
Algorithm is motivated by the fact that the authors in [13] question whether
high accuracy is needed for the TRS within a trust region framework. For
the upcoming test problems, we used N = 2, 6 and n, where n is the problem
dimension.
Our test problems are of the following form
T Az

min f(2) = gy

(8.2)

where B is a positive definite matrix and A and B are generated randomly.
The minimum is attained at z*, an eigenvector corresponding to the smallest
eigenvalue of the generalized eigenvalue problem

Azx = \Bzx.

The optimal value is equal to A; (B_l/zAB_l/z).

To solve each problem we used the trust region method described by
Algorithm 8.1. In this algorithm, f represents the function to be minimized,
x; 1s an approximation of a minimizer after j iterations and s; is a positive
number - the radius of the trust region at iteration j.

Algorithm 8.1. (Trust Region Method)
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1. Given x; and s;, calculate V f(z;) and V*f(z;). Stop if

V()]

Tt S S

2. Solve for d;

§; € argmin g;(z;) = Vf(z;)T5+ %5TV2f(:z:j)5

s.t. 16112 < 5?.

flzj)—flz;+4;)

3. Evaluate r; = @ —a;@48;)"

4. (a) Ifr; >0.95, set sj41 = 2sj and xj11 = xj + ;.

(b) If0.01 <r; <0.95, set s;41 =8, and x,41 = xj+ 9.

(¢) If rj < 0.01, set s;41 = 0.5s; and x,41 = x;.

(8.3)

(8.4)

Except for the stopping criteria (8.3) which has been scaled here, this
algorithm is Algorithm 6.1 in [13]. We chose ¢ randomly and have fixed

80:1.

We ran five random problems for each problem size n = 20, 25 and 30,
where n is the size of the square matrices A and B. The problems were

generated with the following MATLAB code:

density = 0.5;

rc = 0.1; %(rc is desired reciprocal condition number)
A = sprandsym(n,density);

B = sprandsym(n,density,rc,1);

x0 = (0.5-rand(n,1));.

For each problem, we used different subroutines for solving the TRS (8.4)
within the trust region method. Either the RW or the GLTR Algorithms is

used.

If the RW Algorithm solves (8.4) and the solution is on the boundary
of the trust region, we stop if the duality gap, dgaptol, (between TRS and

(5.17)) satisfies

dgaptol < min(0.1, max(107%,107°||V f(z;)|).
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Otherwise, the solution is in the interior and we stop with an approximate
solution ¢, which satisfies

IV f(25) + V2 f(2;)d5]| < min(0.1, max(107%, 107V f(z;)])).  (8.6)

If the GLTR Algorithm is used, we stop within this algorithm if N itera-
tions have been done after knowing the solution lies on the boundary of the
trust region or if

fyk+1|eg+1hk| < min(0.1, max(107%,107% ||V f(z,)|)) (8.7)

or (8.6) is satisfied, depending if the solution is on the boundary of the trust
region or not (see Algorithm 4.1).

The motivation behind the stopping criteria (8.5) and (8.7) is to ask
approximately for the same accuracy in terms of the duality gap. Recall
from Section 6.2 that 41 |e£+1hk| is an approximation for the square root of
the duality gap between TRS and its dual (6.1). The stopping criteria (8.5)
and (8.7) are set to reflect this relationship.

For each problem, if the RW algorithm solves the TRS (8.4), we give the
number of iterations taken by the trust region method 8.1 to converge. If
the GLTR Algorithm is used, we give the number of iterations (iter in our
tables) taken by the trust region method 8.1 to converge, the average number
of conjugate-gradient steps (¢g in our tables) - recall the GLTR Algorithm
does pure conjugate-gradient steps until it converge or knows the solution to
the TRS lies on the boundary of the trust region - and the number of cases
where Algorithm 3.1 fails to solve the TRS (4.4) (see Algorithm 4.1). This
last output (hc2 in our tables) is an indicator of the (almost) hard case (case
2). The results are given in Tables 8.2, 8.3, 8.4.

To understand the results, we first need to specify the approximate so-
lution to (8.4) we took when Algorithm 3.1 failed to solve the TRS (4.4)
in the GLTR Algorithm. Say this occurred at the first iteration after IN-
TERIOR has been set to false. In this case, for an approximation to the
optimum of (8.4), we used the Cauchy point (see [13]), which is the mini-
mizer of the quadratic objective function of (8.4), within the trust region,
along the steepest-descent direction —V f(z;). If at least one iteration of the
GLTR Algorithm had been done once INTERIOR had been set to false, we
used the latest A computed to recover an approximate optimum Qrhy to
the optimum of (8.4).
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Algorithm used for solving the TRS (8.4)
RW | GLTR with N=2 | GLTR with N=6 | GLTR with N=n

problem | iter | iter ‘ he2 ‘ cg | iter ‘ he2 ‘ cg | iter ‘ he2 ‘ cg

1 16 |36 | 5 |136 25| 0 [125 (16| 0 | 9.6
33 122 | 0 [11.6 55|19 |13.5 |48 |16 |13.6
501210 (99 [15] 0 | 9.7 |52 |16 | 15.1
41 |39 | 8 |13.3 45|16 |13.6 |32 | 3 |12.0
25 (45110 {147 (19| 0 |11.1 (25| O | 11.7

O | | N

Table 8.2: RW and GLTR Algorithms; TR framework; size n=20.

Algorithm used for solving the TRS (8.4)
RW | GLTR with N=2 | GLTR with N=6 | GLTR with N=n

problem | it | it ‘ he2 ‘ cg it ‘ he2 ‘ cg it ‘ he2 ‘ cg
1 31 (48 | 17| 17 (34| 5 | 114 32| 2 | 10.1
2 38 (26| 0 | 13527 | 1 |119 (32| 2 |13.5
3 22 (251 0 |13.1122| 0 | 95 |22 0 | 94
4 20139 4 {121 (31| 1 |111 (20| 0 | 7.9
5 25 1261 0 [ 12022 | 0 |12.0 22| 0 | 11.8

Table 8.3: RW and GLTR Algorithms; TR framework; size n=25.

From the results in Tables 8.2, 8.3 and 8.4, we first observe that the
(almost) hard case (case 2) occurs in many problems. Algorithm 8.1, using
the RW Algorithm for (8.4), takes fewer iterations to converge compared to
using the GLTR Algorithm. This is independently of N. This suggests that
handling the hard case (case 2) should be en essential feature for a robust
trust region method, contrary to statements in [13]. However, we reach the
same conclusions mentioned in [13] when the hard case (case 2) does not
occur. We observe the surprising fact that inexact solutions may indeed lead
to less iterations in some cases. This clearly requires more study.

As we may expect, when the hard case (case 2) does not occur and N=n, a
trust region method, using either the RW Algorithm or the GLTR Algorithm
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Algorithm used for solving the TRS (8.4)
RW | GLTR with N=2 | GLTR with N=6 | GLTR with N=n

problem | it | it ‘ he2 ‘ cg it ‘ he2 ‘ cg it ‘ he2 ‘ cg

1 61 (14| 0 | 96 [36| 7 |16.2 |57 |24 |19.1
38 15017 [21.0(35| 2 |16.6 |37 6 |16.5
34 22| 0 | 15.7 | 27 15.3 145 | 17 | 20.2
34 {19 0 14 | 25 13.2 136 | 8 | 16.6
36 | 38| 7 |15.2 |26 11.8 132 | 3 | 13.7

Y | | N
O O b

Table 8.4: RW and GLTR Algorithms; TR framework; size n=30.

to solve the TRS (8.4), takes more or less the same number of iterations. This
should be the case since we are asking for the same accuracy in (8.5) and
(8.7).

Note that all the TRS (8.4) solved in all our problems were nonconvex, i.e.
the minimum eigenvalue of V?f(z;) was always negative. This is surprising
since we note that on average, many conjugate-gradient steps are taken before
the GLTR Algorithm notices that the solution to (8.4) lies on the boundary
of the trust region.

8.4 Solving Large and Sparse Trust Region Subprob-
lems

The goal of the previous numerical subsections was to illustrate the different
behaviors of the algorithms we are surveying and the size of the problems we
were solving was not so important for what we were investigating. So far,
the problems we have solved are considered to be small or medium size. The
purpose of this last subsection is to show we can solve much larger problems.
The following result show how we used the RW Algorithm to solve problems
of size n = 100000 of different density.

Precisely, in Table 8.5 below, each row corresponds to the density of
the problems (for example, if the density is 107, then at most n? x 107°
entries in the matrix A are non-zero) and each column to the value of the
parameter dgaptol. In each entry of the table is given the average taken
over 5 random trust region subproblems of the computation time (cpu), the
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number of matrix-vector multiplications (mvm) and the number of iterations
(it) taken by the RW Algorithm to find an approximate solution.

density dgaptol

10-12 10-10 10—8
cpu: 18.2 cpu: 145 cpu: 13.5
108 mvm : 185.6 mvm : 150.0 mvm : 140.0
it : 6.2 it : 5.4 it : 4.8
cpu: 21.1 cpu: 19.2 cpu: 20.0
106 mvm : 210.0 mvm : 196.0 mvm : 204.0
it : 6.4 it : 5.4 it : 5.6
cpu: 917 cpu: 78.8 cpu: 76.0
10~ mvim : 341.6 mvm : 294.0 mvm : 276.0
it : 5.8 it : 5.0 it : 5.6

Table 8.5: RW Algorithms; TRS framework; size n=100 000.

As we may expect, the computation time and the matrix-vector mul-
tiplications increase as the density increases and the duality gap tolerance
decreases. Furthermore, considering the reasonable length of the computa-
tion time taken to solve such TRS, we conclude that it is now within our
reach to use trust region methods to minimize functions with hundreds of
thousands of variables assuming the Hessian has a sparse structure.

9 Conclusion

In this paper we have presented a survey of the TRS. Our emphasis was
on robustness and on solving large sparse problems. We focused on three
algorithms using the modern primal-dual approaches: the classical MS algo-
rithm and two recent algorithms, the RW and GLTR Algorithms, designed to
solved large and sparse TRS. We have also studied many duals to TRS which
can be formulated as semidefinite programs. These were used to link all three
algorithms within a semidefinite framework. In addition to providing a clear
and simple unifying analysis between the different algorithms, this frame-
work, as we have seen, may be used to explain the strengths/weaknesses of
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the algorithms. For example, we have shown that the stopping criteria of
the GLTR algorithm is based on the approximation of a duality gap. The
framework may also be used to derive new methods as it was done for the
RW Algorithm.

We also presented a modified /Jenhanced RW algorithm, where new heuris-
tics and techniques were introduced, in particular when taking a primal step
to the boundary. However, the main improvement came from a new way of
treating the hard case based on Lemma 2.1. Surprisingly, the Lemma shows
that for each TRS, it i1s possible to consider an equivalent TRS where the
hard case (case 2) does not occur. Precisely, an equivalent problem to TRS is
first considered, where the eigenvalues of A are shifted so they become non-
negative. Second, eigenvectors corresponding to A;(A) are used to perturb
the matrix A. If the hard case occurs initially, after ¢+ consecutive perturba-
tion, where ¢ is the multiplicity of A;(A), we obtain an equivalent TRS where
the hard case (case 2) cannot occur.

Our final section included numerics which showed the advantage of using
the RW Algorithms over the MS Algorithms in treating the hard case when
high accuracy approximations are needed. We have also shown that handling
the hard case in the TRS within a trust region method may have an impact
on the total number of iterations if the hard case occurs frequently enough.
Thus, the robustness of a TRS Algorithm is indeed an important feature,
even though we should mention again that inexact solutions may lead to less
iterations in a trust region method when the hard case does not occur in the
subproblems. We finally showed 1t is possible to solve large sparse TRS with
hundreds of thousands of variables in a reasonable number of iterations.

A Notation

e TRS, the trust region subproblem

e q(z) := 2T Az — 24Tz, TRS objective function

e X\;(A), i-th smallest eigenvalue of A

e )\*, optimal Lagrange multiplier for TRS

e 2()\) = (A—A)ta, solution of A — Al = a of minimum norm

o h(A) = —aT(A — )\I)fa + As?,  dual functional
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o o(A) :=||z(N)|| — s, primal feasibility

RVIDYRES % — —t— =10, secular equation

ll=(Ml
e D(t), parameterized matrix using A, a
o k(t) = (s> +1)A\:(D(t)) —t, unconstrained dual maximization function
e yo(t), first component of normalized eigenvector of A;(D(t)
o k'(t) = (s* 4+ 1)yo(t)* — 1, equivalent primal feasibility

o (t)=+/s2+1— ——.  equivalent secular function

yo(t)’
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