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Abstract

Primal–dual interior-point (p–d i-p) methods for Semidefinite Programming (SDP) are
generally based on solving a system of matrix equations for a Newton type search direc-
tion for a symmetrization of the optimality conditions. These search directions followed the
derivation of similar p–d i-p methods for linear programming (LP). Among these, a computa-
tionally interesting search direction is the AHO direction. However, in contrast to the LP case,
existence and uniqueness of the AHO search direction is not guaranteed under the standard
nondegeneracy assumptions. Two different sufficient conditions are known that guarantee the
existence and uniqueness independent of the specific linear constraints. The first is given by
Shida–Shindoh–Kojima and is based on the semidefiniteness of the symmetrization of the
product SX at the current iterate. The second is a centrality condition given first by Monteiro–
Zanjácomo and then improved by Monteiro–Todd.

In this paper, we revisit and strengthen both of the above mentioned sufficient conditions.
We include characterizations for existence and uniqueness in the matrix equations arising
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from the linearization of the optimality conditions. As well, we present new results on the
relationship between the Kronecker product and the symmetric Kronecker product that arise
from these matrix equations. We conclude with a proof that the existence and uniqueness of
the AHO direction is a generic property for every SDP problem and extend the results to the
general Monteiro–Zhang family of search directions.
© 2005 Elsevier Inc. All rights reserved.

AMS classification: 90C22; 49K40; 65K05; 15A48; 15A24
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1. Introduction

Semidefinite Programming (SDP) has generated tremendous interest during the
last 15 years, e.g. [31], both for the many applications and the mathematical ele-
gance. Many of the early interesting algorithms were primal–dual interior-point (p–d
i-p) methods based on solving a system of matrix equations for Newton type search
directions. The search directions, after a symmetrization, followed the derivation of
similar p–d i-p methods for linear programming (LP), mainly based on the hope to
extend the computational and/or theoretical properties of successful p–d i-p meth-
ods for LP. However, in contrast to the LP case, existence and uniqueness of some
of these search directions were not guaranteed under the standard nondegeneracy
assumptions: (i) the linear transformation A from the linear constraints is onto and
(ii) Slater’s constraint qualification (strict feasibility with respect to the cone con-
straints) holds for both primal and dual programs. (We assume that condition (i)
holds throughout this paper.)

There are many search directions proposed for p–d i-p methods for semidefinite
programming. For an account up to 1997, see [11,26]. Some of the proposals describe
a set of search directions such as Kojima, Shindoh and Hara [12] (KSH family),
Zhang [32], Monteiro and Zhang [19] (denoted MZ family), Tunçel [29]. Another
general approach to search directions is to compute the Gauss–Newton direction for
the overdetermined optimality conditions, see Kruk et al. [13].

Among the earliest proposals were the HrvwKshM direction [9,12,15], NT direc-
tion [21], and the AHO direction [1]. For each value of the central path parameter (or
the barrier parameter),µ > 0, these search directions, under standard nondegeneracy
assumptions, are found by solving a particular (symmetrized) linear system of matrix
equations. The HrvwKshM and NT directions have the disadvantage that the linear
system becomes ill-conditioned asµ approaches zero (it is singular forµ = 0); while
the linear system for the AHO direction is nonsingular at µ = 0. On the other hand,
the HrvwKshM and NT directions are well-defined for every pair of primal–dual
interior-points, though the AHO direction is not.
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Two different sufficient conditions that guarantee existence and uniqueness of
the AHO direction are given in [24] (denoted SSK condition) and [18] (denoted
MZ condition; this was improved later in [17]). Both of these conditions assume
that the primal and dual matrices X, S are positive definite. Both conditions depend
only on X, S and not on the data from the linear constraints of the SDP. Further
conditions and proofs for the AHO direction are given in [28]; conditions for the
Monteiro–Zhang family of search directions are given in e.g. [16], [27, Theorem
3.1] and [24].

In this paper we revisit the two sufficient conditions cited above. We provide
several strengthened conditions as well as characterizations. In particular, we pro-
vide the strongest conditions using only the data matrices X, S; see, Theorems 3.9,
3.11 and 3.18. The results deal with (symmetric) matrix equations and, therefore,
the Kronecker and the symmetric Kronecker products are involved. Though the Kro-
necker product has been extensively studied in the literature, this is not true for the
(constrained version) symmetric Kronecker product. In Theorems 2.8 and 2.9, we
present the new results that the positive semidefiniteness of the symmetric Kronecker
product is equivalent to the positive semidefiniteness of the Kronecker product and
that the eigenvalues have a special relationship. We include topological properties on
the solutions, e.g. that the existence and uniqueness of the AHO direction is generic.
We conclude by extending the results to the general Monteiro–Zhang family.

The paper is organized as follows. After introducing some notation, we outline
the main results in Section 1.1. We include several illustrative examples. The Kro-
necker product is discussed in Section 2.2. The characterizations for existence and
uniqueness are given in Section 3.1. The strengthened sufficient conditions of SSK
type are given in Section 3.2.1. The strengthened sufficient conditions of MZ type are
given in Sections 3.2.2 and 3.2.3. We include results on topological properties and
genericity in Section 4 including the genericity results. We conclude by extending
the results to the general Monteiro–Zhang family of search directions in Section 5.

1.1. Preliminaries; outline of results

1.1.1. Notation
We use the following standard notation: Sn is the space of n× n real symmetric

matrices equipped with the trace inner-product for two matrices X, Y ,

〈X, Y 〉 := trace XTY ;
C ∈ Sn; the matrices Ai ∈ Sn, i = 1, . . . , m, are linearly independent; and b ∈
Rm. The dimension of Sn is t (n) := n(n+ 1)/2. Mn denotes the space of n× n

matrices over the reals. For M ∈ Mn with real eigenvalues,

λ1(M) � λ2(M) � · · · � λn(M)

denote its eigenvalues. We also use λmax := λ1 and λmin := λn. In the space Mn,
‖ · ‖ denotes the operator 2-norm and ‖ · ‖F denotes the Frobenious norm (thus,
‖M‖F = 〈M,M〉1/2). We use X ∈ Sn+ or X 
 0 (respectively, X ∈ Sn++ or X � 0)
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to denote symmetric positive semidefiniteness (and symmetric positive definiteness,
respectively). Then (X, y, S) ∈ Sn+ × Rm × Sn+ are the primal and dual variables
for the following SDP and its dual.

min 〈C,X〉
(P) s.t. 〈Ai,X〉 = bi, i = 1, . . . , m,

X ∈ Sn+,

max bTy

(D) s.t.
∑m

i=1 yiAi + S = C,

S ∈ Sn+.
The linear constraints in the primal (P), respectively dual (D), can be written using
the linear transformation notation

AX = b, A∗y + S = C, X 
 0, S 
 0,

where ·∗ denotes the adjoint transformation.
One of the first computationally interesting algorithms for SDP was based on

the Alizadeh–Haeberly–Overton (AHO) search direction [1]. At a point (X, y, S) ∈
Sn+ × Rm × Sn+ with centrality parameter σ ∈ (0, 1] and barrier parameter 0 <

µ := 〈X, S〉/n, this search direction (when it exists) is the solution (�X,�y,�S) ∈
Sn × Rm × Sn of the (symmetrized linearized optimality conditions) linear system

m∑
i=1

(�y)iAi +�S = C −
m∑
i=1

yiAi − S,

〈Ai,�X〉 = bi − 〈Ai,X〉, i = 1, . . . , m, (1.1)

X(�S)+ (�S)X + S(�X)+ (�X)S = 2σµI −XS − SX.

Let HP :Mn → Sn denote the linear transformation

HP (M) := PMP−1 + P−TMTP T,

where P is any n× n nonsingular matrix. If we replace (1.1) by

m∑
i=1

(�y)iAi +�S = C −
m∑
i=1

yiAi − S,

〈Ai,�X〉 = bi − 〈Ai,X〉, i = 1, . . . , m, (1.2)

HP (X(�S)+ (�X)S) = HP (σµI −XS),

then the solutions (�X,�y,�S) ∈ Sn × Rm × Sn are in the Monteiro–Zhang fam-
ily of search directions. If we choose P = I , then we get the AHO direction. The

choice P = S
1
2 gives the so-called HrvwKshM direction [9,12,15]; while any P with

P TP = X− 1
2 (X

1
2 SX

1
2 )

1
2X− 1

2 , e.g., P = (X
1
2 SX

1
2 )

1
4X− 1

2 gives the NT direction
[21].
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In this paper we focus on conditions for the AHO direction. We then show in Sec-
tion 5 that these conditions directly extend to the complete Monteiro–Zhang family
of directions.

We now look at two classes of sufficient conditions that guarantee existence and
uniqueness of solutions of (1.1).

1.1.2. Shida–Shindoh–Kojima (SSK) type sufficient conditions
It has been shown by Shida, Shindoh and Kojima [24] (see also [27]) that system

(1.1) has a unique solution, and hence that the AHO search direction is well-defined,
whenever

(SSKcond) X, S � 0 and XS + SX 
 0. (1.3)

We strengthen the (SSKcond) condition, see Theorem 3.9: AHO is well-defined
whenever

K := [I ⊗ (SX +XS)] + [(SX +XS)⊗ I ]
+2[X ⊗ S] + 2[S ⊗X] is definite, (1.4)

where ⊗ denotes the Kronecker product. We use K and derive the following suffi-
cient condition for existence and uniqueness independent of A, i.e. from (3.18), the
sufficiency of (1.4) is implied by the sufficiency of the condition

L := K + TK +KT is semidefinite with rank n(n+ 1)/2, (1.5)

where T is the matrix representation of the transpose operator, see (2.10). (The matrix
L in (1.5) has at least n(n− 1)/2 zero eigenvalues, for any K. Therefore we can use
the stable condition that rank � n(n+ 1)/2 implies (1.5).) These two new sufficient
conditions have the advantage that they hold on an open set. Note that the set where
existence and uniqueness holds is open (see Section 4 for related results).

1.1.3. Monteiro–Zanjácomo (MZ) type sufficient conditions
A different, centrality type, sufficient condition for existence and uniqueness is

given by Monteiro and Zanjácomo [18],

(MZcond) X, S � 0 and ‖S 1
2XS

1
2 − νI‖ � 1

2ν for some ν > 0, (1.6)

see Theorem 3.14. We note below that this latter condition is equivalent to the bound
on the condition number

(MZequivalent) X, S � 0 and γ (S
1
2XS

1
2 ) � 3; (1.7)

see Proposition 1.1.

Proposition 1.1. Let S,X ∈ Sn, S � 0 and α ∈ R+. Then the condition ‖S 1
2XS

1
2 −

νI‖ � αν for some scalar ν > 0, holds if and only if

(1 − α)ν � λmin(S
1
2XS

1
2 ) and λmax(S

1
2XS

1
2 ) � (1 + α)ν. (1.8)



36 L. Tunçel, H. Wolkowicz / Linear Algebra and its Applications 400 (2005) 31–60

Proof. Let S
1
2XS

1
2 := PDP T for some diagonal matrix D and some unitary matrix

P. Then D contains the eigenvalues of S
1
2XS

1
2 . Moreover, ‖D − νI‖ � αν and the

condition |λi(S 1
2XS

1
2 )− ν| � αν for all i = 1, . . . , n is equivalent to (1.8). �

Moreover, we strengthen these results. The constant 1
2 in (1.6) was strengthened

to 1√
2

in [17]. (This implies that 3 in (1.7) increases to 3 + 2
√

2.) We show that the
techniques of Monteiro and Todd in (1.6) can be used to further improve the constant

1√
2

to
√

3 − 1. (And 3 + 2
√

2 increases to 3 + 2
√

3.) Furthermore, we show that the
approach of Monteiro and Zanjácomo [17] can be used to further strengthen the
constant in (1.6) and the equivalent condition number bound in (1.7), i.e. we get

4
5 in (1.6), 9 in (1.7), respectively,

see Theorem 3.11. We also show that the constant 1
2 in (1.6) cannot be improved

beyond 0.9193, see Example 1.5. (A previous bound in this direction was 0.9837,
due to Tseng [28].)

1.1.4. Comparison examples
However, the relationships between the different conditions are not clear. Some

of these properties are seen in the following examples.

Example 1.2. From [27, p. 778], we see that m := 1, n := 2,

A1 :=
(−1

√
2√

2 0

)
, b := 3, X :=

(
1

√
2√

2 3

)
, S :=

(
1 0
0 11

)
provide an example where the AHO direction does not exist. Here µ := 〈X,S〉

2 = 17

and ‖S 1
2XS

1
2 − µI‖ = √

278, while the MZ result, Theorem 3.14, requires the RHS

to be at most 17
2 . The condition number of S

1
2XS

1
2 is 17+√

278
17−√

278
∼= 103.081. Note that

XS + SX is not positive semidefinite.

Example 1.3. From [18], we see that

X :=
(

8 1
1 .5

)
, S :=

(
1 0
0 16

)
provide an example where (MZcond) holds but (SSKcond) fails, i.e. S

1
2XS

1
2 =(

8 4
4 8

)
has eigenvalues 4, 12 and condition number 3. ButXS + SX =

(
16 17
17 16

)
is not positive semidefinite. (Though the new condition (1.4) holds.)

Example 1.4. From [18], we see that

X :=
(

1 0
0 10

)
, S :=

(
1 0
0 1

)
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provide an example where (SSKcond) holds but (MZcond) fails, i.e. the condition

number of S
1
2XS

1
2 is 10, while XS + SX is positive semidefinite.

Example 1.5. Using a special parametrized grid search, we found the examplem :=
1, n := 2,

A1 :=
(−1 a

a d

)
, a := −11.7078, d := −40.2704,

X := QT
(

30 0
0 1

)
Q, Q :=

(
β −√1 − β2√

1 − β2 β

)
,

with β := −0.99 and S :=
(

1 0
0 273

)
. The a, d were found using the solutions

of quadratic polynomials based on the parameter θ := 273 in S. We obtained the
better condition number value 23.7911, though still greater than 9. Also, this example
shows that the constant 1

2 in (1.6) cannot be improved beyond 0.9193.

2. Linear algebra results

2.1. Subspaces and linear operators

Definition 2.1. Define the linear (Lyapunov) operator on Sn:

LU(V ) := UV + VU for U,V ∈ Sn.

To investigate whether (1.1) has a unique solution, we choose to study the related
condition on the corresponding homogeneous system in the variables (�X,�y,

�S) ∈ Sn × Rm × Sn.

A∗(�y)+ (�S) = 0,

A(�X) = 0, (2.1)

LS(�X)+ LX(�S) = 0.

We single out the third equation

LS(�X)+ LX(�S) = 0. (2.2)

Equivalently, we need to establish nonsingularity of the linear operator with the block
structure

K :=
( 0 A∗ I

A 0 0
LS 0 LX

)
. (2.3)
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Define the one–one linear transformation Z : Rt (n)−m → Sn so that the range space
of Z is equal to the nullspace of A, i.e.

R(Z) = N(A), (2.4)

or equivalently

A(�X) = 0 iff �X = Z(�v) for some �v ∈ Rt (n)−m.
Then, we can substitute for �X,�S in (2.1) and see that nonsingularity of K is
equivalent to nonsingularity of the linear operator (on Rt (n))

K̄ := [
LSZ

...− LXA
∗], (2.5)

i.e. K̄ acts on

(
�v

�y

)
.

Lemma 2.2 (Also see Lemma 10.4.9 of [17]). Suppose that X � 0. Then, the linear
operator LX is one–one, onto, self-adjoint, and positive definite.

Proof. Let U,V ∈ Sn. That

〈XU + UX,V 〉 = 〈U,XV 〉 + 〈U,VX〉 = 〈XV + VX,U〉
shows LX is self-adjoint. That

〈U,LXU〉 = 2〈U,XU〉 = 2‖UX 1
2 ‖2

F � 0

(the last inequality is strict, unless U = 0) shows that LX is positive definite. Now,
LX(U) = 0 iff U = 0. Therefore, LX is one-one and onto. �

2.2. Kronecker and symmetric Kronecker algebra

The two linear operators LX,LS have been studied in the literature in relation to
matrix equations, e.g. [2], [10, Section 4.4] and [3,5,6]. The main tool is the Kro-
necker product. Some basic facts are given in [27, Appendix]. We also include the
relevant definitions and properties that we need. (Further properties are given in e.g.
[10,23,30].) We include new results on the symmetric Kronecker product.

It is well known that, for compatible matrices K,N,M , we can find the matrix
representations of certain linear transformations on Mn (identified with Rn2

) using
the Kronecker product, i.e.

vec(NKMT) = (M ⊗N)vec(K), (2.6)

where vec(K) is the vector formed from the columns of K and ⊗ denotes the Kro-
necker product. If λ,µ are the eigenvalues with corresponding eigenvectors v,w for
M,N , respectively, then an eigenvalue/eigenvector pair is given in

(M ⊗N)(v ⊗ w) = λµ(v ⊗ w); (2.7)
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see e.g. [10, Theorem 4.2.12]. For compatible matrices,

(A⊗ B)(C ⊗D) = (AC ⊗ BD); (A⊗ B)T = (AT ⊗ BT).

We have the following fact.

Lemma 2.3. Let A,B,C be n× n matrices. Then

2〈AT, BC〉 = [vec(B)T|vec(C)T]
[

0 I ⊗ AT

I ⊗ A 0

] [
vec(B)
vec(C)

]
.

Proof. We compute

〈AT, BC〉 = vec(C)Tvec(ABI)

= vec(C)T(I ⊗ A)vec(B)

= vec(B)T(I ⊗ A)Tvec(C)

= vec(B)T(I ⊗ AT)vec(C).

Therefore, using the second and the fourth equations, we obtain the desired result

2〈AT, BC〉 = vec(C)T(I ⊗ A)vec(B)+ vec(B)T(I ⊗ AT)vec(C). �

Recall t (n) = n(n+ 1)/2. Let s2vec(X) ∈ Rt (n) denote the isometry between Sn

and Rt (n) that takes the lower triangular part of X columnwise and multiplies the strict
lower triangular part by

√
2. Then the inner-product in Sn can be expressed as the

vector inner-product 〈X, Y 〉 = s2vec(X)Ts2vec(Y ). In addition, we can express the
matrix representations of certain linear transformations on Sn (identified with Rt (n))
using the symmetric Kronecker product. For U ∈ Sn we write, see [2,27],

(M
s⊗N)s2vec(U) := s2vec

( 1
2 (NUM

T +MUNT)
)
.

(We have changed the notation used in [2].) IfM,N ∈ Mn, then the matrix (M
s⊗N) ∈

Mt (n), while if A,B ∈ Sn, then (A
s⊗B) ∈ St (n). Note that by definition, M

s⊗N =
N

s⊗M and it is easily checked that (M
s⊗N)T = MT

s⊗NT.

We can express
s⊗ using ⊗; we consider Sn isomorphic to Rt (n). LetQ ∈ Rt (n)×n2

be defined as follows:

Q(i,j),(k,l) :=


1 if i = j = k = l,
1√
2

if i = k /= j = l or i = l /= j = k,

0 otherwise;
i.e. the columns of QT consist of vec(Pij ), where {Pij : 1 � i � j � n} is the set
of t (n) orthonormal basis matrices of Sn. Then QQT = I , QTQ is the matrix rep-
resentation of the orthogonal projection of Mn (as Rn2

) onto Sn (as a subspace
of Rn2

). Let u := QTv, v ∈ Rt (n), U := Mat(u), i.e. U ∈ Sn and u = vec(U). The
quadratic form with U ∈ Sn is
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1
2 〈U,NUMT +MUNT〉 = 1

2u
T[(N ⊗M)+ (M ⊗N)]u

= 1
2v

TQ[(N ⊗M)+ (M ⊗N)]QTv

= s2vec(U)T(M
s⊗N)s2vec(U)

= s2vec(U)T(M
s⊗N)Ts2vec(U)

= s2vec(U)T(MT s⊗NT)s2vec(U)

= s2vec(U)T(N
s⊗M)s2vec(U). (2.8)

A similar derivation with v1, v2 ∈ Rt (n), ui := QTvi , Ui := Mat(ui) yields

M
s⊗N = 1

2Q(M ⊗N +N ⊗M)QT = Q(M ⊗N)QT. (2.9)

We need a corresponding result to Lemma 2.3.

Lemma 2.4. Let A ∈ Mn and B,C ∈ Sn. Then

2〈AT, BC〉 = [s2vec(B)T|s2vec(C)T]
[

0 I
s⊗AT

I
s⊗A 0

][
s2vec(B)
s2vec(C)

]
.

Proof. We compute

〈AT, BC〉 = 1
2 traceC(ABIT + IBAT)

= 1
2 s2vec(C)Ts2vec(ABIT + IBAT)

= s2vec(C)T(I
s⊗A)s2vec(B)

= s2vec(B)T(I
s⊗A)Ts2vec(C)

= s2vec(B)T(I
s⊗AT)s2vec(C).

In the first equation we used B,C ∈ Sn. Using the third and the fifth equations, we
conclude

2〈AT, BC〉 = s2vec(C)T(I
s⊗A)s2vec(B)+ s2vec(B)T(I

s⊗AT)s2vec(C),

as claimed. �

Define the transpose operator T : Mn → Mn,

T(M) := MT with matrix representation T = (Tkl). (2.10)

Since T(Eij ) = Eji , where Eij is the zero matrix but for 1 in the ij position, we
see that the l = i + (j − 1)n column of T is the all zero vector except for a 1 in the
k = j + (i − 1)n position. Note that T is orthogonal, self-adjoint.
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〈T(M),N〉 = trace(MT)TN = traceMN = trace(MT)NT = 〈M,T(N)〉.
Thus the matrix representation satisfies T = T T, T 2 = I .

Instead of considering Sn isomorphic to Rt (n), we can consider it as a subspace
of Mn. Then for each X ∈ Mn, the orthogonal projection onto Sn is U = PSnX =
1
2 (X +XT). We can define a symmetric Kronecker product on Mn as

(M
T⊗N)vec(X) := vec[PSn(NPSn(X)MT)]

= vec
( 1

2

[
N 1

2 (X +XT)MT +M 1
2 (X +XT)NT]).

The matrix (M
T⊗N) ∈ Mn2

with rank the same as M
s⊗N . In fact, the two symmetric

Kronecker products agree on Sn and
T⊗ is identically zero on (Sn)⊥, the space

of skew-symmetric matrices in Mn. Identify x = vec(X). We can expand to get an
n× n matrix representation for the symmetric Kronecker product.

xT(M
T⊗N)x = 1

4x
Tvec

(
NXMT +NXTMT +MXNT +MXTNT)

= 1
4x

T[(N ⊗MT +M ⊗NT)+ 1
2 (N ⊗MT +M ⊗NT)T

+ 1
2T (N ⊗MT +M ⊗NT)

]
x

= 1
8x

T[(I + T )(N ⊗MT +M ⊗NT)

+(N ⊗MT +M ⊗NT)(I + T )]x.

Thus
T⊗ as an extension of

s⊗ to all of Mn has the same t (n) eigenvalues and eigen-
vectors when restricted to Sn ⊂ Mn and has an additional n(n− 1)/2 zero eigen-
values with eigenvectors corresponding to skew-symmetric matrices. Note that P :=
PSn(NPSn(·)MT) is a linear operator on Mn with invariant subspace Sn ⊂ Mn. In
fact, P(S) = λS, S ∈ Sn, implies that PSn(N(S)MT) = λS. This gives a relation-

ship between the eigenvectors of M
s⊗N and the eigenvectors of PSn(N(·)MT). In

summary, we can simply write

M
T⊗N = 1

2Q
TQ(M ⊗N +N ⊗M)QTQ = QTQ(M ⊗N)QTQ. (2.11)

See Theorem 2.9.

2.2.1. Eigenvalue inequalities
Since h ∈ Rt (n), ‖h‖ = 1 ⇒ ‖QTh‖ = 1, we see that (2.8) and the Rayleigh Prin-

ciple yield some simple bounds on the largest and smallest eigenvalues of the sym-
metric Kronecker product, e.g. for every A,B ∈ Sn we have

λ1(A
s⊗B) � λ1(A⊗ B) = max

i,j
(λi(A)λj (B))
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and

λt(n)(A
s⊗B) � λn2(A⊗ B) = min

i,j
(λi(A)λj (B)).

We emphasize that the latter yields

(A⊗ B) 
 0 ⇒ (A
s⊗B) 
 0, (2.12)

but says nothing about the converse implication. Also let λ,µ be the eigenvalues
of A,B with corresponding normalized eigenvectors a, b. Define H := abT + baT.
Then

s2vec(H)T(A
s⊗B)s2vec(H)

= [1 + (aTb)2]λµ+ (aTb)2λµ+ (aTBa)(bTAb).

Thus, a useful relation is

s2vec(H)T(A
s⊗B)s2vec(H)

traceHTH
= 1

2
λµ+ (aTb)2λµ+ (aTBa)(bTAb)

2[1 + (aTb)2] .

(2.13)

For commuting matrices we can say more.

Corollary 2.5 [2, Lemma 7.2]. Let A,B ∈ S such that A and B commute. Let
λi, µi, vi denote the eigenvalues and the corresponding (common) eigenvectors of
A and B, respectively. Then, for 1 � i � j � n, we get 1

2 (λiµj + λjµi) as the

eigenvalues and s2vec(vivT
j + vjv

T
i ) as the corresponding eigenvectors of (A

s⊗B).

Proof. Since A and B commute, we can use the same orthonormal system to describe
their eigenspaces. Therefore, using direct computation (as in obtaining the identity
(2.13)) we conclude the desired result, i.e. with a = vi, b = vj , the terms in the right
hand side of (2.13) become aTBa = µi, b

TBb = λj . �

Corollary 2.6. Let A,B ∈ Sn with eigenvalues λi, µj , respectively, and corre-
sponding eigenvectors ui, vj , respectively. Then{

s2vec(uiu
T
i ), s2vec(vj v

T
j ) : λi = 0, µj = 0

}
are eigenvectors of (A

s⊗B) corresponding to zero eigenvalues. Moreover, if two
eigenvalues λs, µt have the same eigenvector v, then s2vec(vvT) is an eigenvector

of A
s⊗B.

Proof. Direct computation. �
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We can add to the simple bounds above using the relation (2.13).

Theorem 2.7. Let A,B 
 0. Then

1
2 [λ1(A)λ1(B)+ λn(A)λn(B)] � λ1(A

s⊗B) � λ1(A)λ1(B) = λ1(A⊗ B)

and

λn2(A⊗ B) = λn(A)λn(B) � λt(n)(A
s⊗B) � 1

2 [λ1(A)λ1(B)+ λn(A)λn(B)].

Proof. First consider the (pseudoconvex/pseudoconcave) function

f (t) = αt + β

2(1 + t)
, t ∈ [0, 1].

Then f ′(t) = 2(α − β)/(. . .)2, i.e. the function is nondecreasing (resp. nonincreas-
ing) if α � β (resp. α � β).

Choosing λ := λ1(A), µ := λ1(B) in (2.13), and using aTBa � λn(B), bTAb �
λn(A) and (aTb)2 ∈ [0, 1], we get α = λµ � β = (aTBa)(bTAb). The minimum
value in (2.13) is therefore attained at t = (aTb)2 = 0.

λ1(A
s⊗B) � 1

2 [λ1(A)λ1(B)+ λn(A)λn(B)].
Similarly, choosing λ := λn(A), µ := λn(B) in (2.13), and using aTBa � λ1(B),
bTAb � λ1(A) and (aTb)2 ∈ [0, 1], we obtain α � β and the maximum value in
(2.13) is attained at t = (aTb)2 = 0.

λt(n)(A
s⊗B) � 1

2 [λ1(A)λ1(B)+ λn(A)λn(B)].
The remaining bounds were already established. �

The following theorem establishes the converse implication in (2.12), i.e. semi-
definiteness of the smaller matrix implies semidefiniteness of the larger matrix.

Theorem 2.8. Let A,B ∈ Sn. Then:
A

s⊗B 
 0 ⇐⇒ A⊗ B 
 0;

A
s⊗B � 0 ⇐⇒ A⊗ B � 0.

Proof. If the following Kronecker product A⊗ B 
 0 (resp. � 0), then necessar-

ily the (restricted) symmetric Kronecker product A
s⊗B 
 0 (resp. � 0). (This was

already established in (2.12); see also (2.9).)

To show the converse, we first consider the 
 0 result. Assume that A
s⊗B 
 0.

Since

s2vec(vvT)T(A
s⊗B)s2vec(vvT) = (vTAv)(vTBv) � 0 ∀v ∈ Rn,
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we get

(vTAv) > 0 ⇒ (vTBv) � 0; (2.14)

(vTBv) > 0 ⇒ (vTAv) � 0. (2.15)

Now suppose

λmin(A⊗ B) < 0. (2.16)

Without loss of generality, we can assume that λmin(A⊗ B) = λmin(A)λmax(B), i.e.
we assume that

λ := λmin(A) < 0 < µ := λmax(B), (2.17)

with corresponding normalized eigenvectors a, b, respectively. Note that aTAa < 0
implies aTBa � 0 and bTBb > 0 implies bTAb � 0, by (2.15), i.e. (bTAb)(aTBa) �
0. Therefore (2.13) implies that

〈B, (abT + baT)A(abT + baT)〉 < 0.

This contradicts the assumption A
s⊗B 
 0, i.e. (2.16) fails.

Sufficiency for the � 0 result follows similarly. We assume A
s⊗B � 0. The right-

hand sides in (2.14) and (2.15) both become > 0. If we assume that (2.16) holds,
then we get the desired contradiction. If we assume that (2.16) holds with equality,
= 0, and (2.17) is changed to λ = 0 < µ, then (2.13) now implies that〈

B, (abT + baT)A(abT + baT)
〉
� 0,

a contradiction to the assumption A
s⊗B � 0. �

Theorem 2.9. Let M,N ∈ Mn. For u ∈ Rt (n), we have the eigenpair relationship

(M
s⊗N)u = λu �⇒ 1

2 (M ⊗N +N ⊗M)(QTu) = λ(QTu). (2.18)

Proof. Directly follows from the identity (2.9). �

The last theorem is quite powerful in that it establishes that each eigenspace of
(M ⊗N +N ⊗M) always decomposes as the direct sum of symmetric and skew-
symmetric matrices (viewed in Rn2

).
In addition to the above, a tight, interlacing type of relationship seems to exist

between the eigenvalues of 1
2 (A⊗ B + B ⊗ A) corresponding to the skew-symmet-

ric eigenvectors and the eigenvalues of A
s⊗B; see Conjecture 2.12. We elaborate

below.
Note that u ∈ Rn2

corresponds to a symmetric matrix iff T u = u and it corre-
sponds to a skew-symmetric matrix iff T u = −u. Suppose u,w ∈ Rn2

such that
T u = u and Tw = −w. Then
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1
2u

T[(A⊗ B)+ (B ⊗ A)]u = uT(A⊗ B)u,

and

1
2w

T[(A⊗ B)+ (B ⊗ A)]w = wT(A⊗ B)w.

We conjecture:

Conjecture 2.10. Let A,B ∈ Sn. Then

min
T u=u

uT(A⊗ B)u

uTu
� min

Tw=−w
wT(A⊗ B)w

wTw

and

max
T u=u

uT(A⊗ B)u

uTu
� max

Tw=−w
wT(A⊗ B)w

wTw
.

If the above conjecture is true, then we will have

λ1(A
s⊗B) = 1

2λ1(A⊗ B + B ⊗ A)

and

λt(n)(A
s⊗B) = 1

2λn2(A⊗ B + B ⊗ A).

Another way of expressing this conjecture is as follows:

Conjecture 2.11. Let A,B ∈ Sn. Then

min
U∈Sn,‖U‖F=1

trace(BUAU) � min
W∈S̃n

,‖W‖F=1
trace(BWAWT)

and

max
U∈Sn,‖U‖F=1

trace(BUAU) � max
W∈S̃n

,‖W‖F=1
trace(BWAWT),

where S̃
n

denotes the space of n× n skew-symmetric matrices.

Note that ifB = I , then the conjecture is easy to prove using the well-known trace
inequality. For the first inequality, let U := uuT, where u ∈ Rn is the eigenvector of
A corresponding to λn(A); for the second inequality, let U := uuT where u ∈ Rn is
the eigenvector of A corresponding to λ1(A).

In fact, a stronger conjecture may be true:

Conjecture 2.12. Let A,B ∈ Sn. Also let w ∈ Rn2
such that Tw = −w and w

is the eigenvector of 1
2 [(A⊗ B)+ (B ⊗ A)] corresponding to its kth largest eigen-

value. Then λk−1 and λk+1 of the matrix are well-defined and they are determined

by some u, v ∈ Rn2
such that T u = u and T v = v.
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The statement of the above conjecture is clear when all eigenvalues are distinct.
In case of ties, they are to be broken (that is, the eigenvalues are numbered) in favor
of the conjecture. If true, the last conjecture 2.12 implies the other two equivalent
conjectures, 2.10 and 2.11.

3. Conditions for existence and uniqueness

3.1. Characterizations for existence and uniqueness

3.1.1. Conditions using a subspace
Definition 3.1. Let A : Sn !→ Rm be surjective. Define

AHO(A) := {
(X, S) ∈ Sn × Sn : the system (2.1), determined by

(X, S) and A, has a unique solution
}
.

For convenience, we define the complement of AHO(A):

AHO(A) := {
(X, S) ∈ Sn × Sn : (X, S) /∈ AHO(A)

}
.

If L = N(A), we also use the alternative notation

AHO(L) := AHO(A), AHO(L) := AHO(A).

The following is one characterization for existence and uniqueness in (1.1).

Proposition 3.2. Let (X, S) ∈ Sn × Sn and a subspace L ⊂ Sn be given. Then
(X, S) ∈ AHO(L) if and only if

LX(L
⊥) ∩ LS(L) /= {0}. (3.1)

Moreover, if LX is invertible (similar result if LS is invertible), then (3.1) holds if
and only if

L−1
X LS(�X) ∈ L⊥ for some 0 /= �X ∈ L. (3.2)

Equivalently, for L = N(A), (X, S) ∈ AHO(L) if and only if ∃�X ∈ N(A) \
{0} such that �S = L−1

X LS(�X) ∈ R(A∗).

Proof. It suffices to note that the system (2.1) can be equivalently written as

LX(�S) = −LS(�X)

�X ∈ L, �S ∈ L⊥.
� (3.3)
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The following fact was already established in Section 2.1.

Corollary 3.3. Suppose that X, S,A,Z are defined as in Proposition 3.2 and
(2.4). Then (X, S) ∈ AHO(A) if and only if the linear operator K̄ =
[LSZ

...− LXA
∗] is nonsingular.

3.1.2. Conditions using an indefinite trust region subproblem
To obtain further characterizations for existence and uniqueness in (1.1), we use

the following properties.

Lemma 3.4. Suppose that (�X,�y,�S) solves (2.1) for a given pair X � 0, S �
0. Then the following hold:
1. 〈�X,�S〉 = 0.
2. The matrix

M := X(�S)+ (�X)S (3.4)

is skew-symmetric.
3.

M = X(�S)+ (�X)S = 0
if and only if

�X = �S = 0, �y = 0.
(3.5)

Proof
1. This can be viewed simply as �X ∈ N(A) is orthogonal to �S ∈ R(A∗).
2. This follows from (2.2), the third equation in (2.1).
3. Sufficiency is clear. From the assumption we get �S = −X−1(�X)S. We now

compute the weighted norm of �X with this equation using part 1 above.

0 = 〈�X,�S〉 = −〈�X,X−1(�X)S〉
= −〈X− 1

2 (�X)S
1
2 , X− 1

2 (�X)S
1
2 〉

= −‖X− 1
2 (�X)S

1
2 ‖2

F.

This equation holds if and only if �X = 0. Using the equation for �S, it follows
that �S = 0 as well. That �y = 0 follows from the second equation in (2.1). �

Lemma 3.4 yields a second characterization of existence and uniqueness.

Proposition 3.5. Under the hypothesis in Proposition 3.2 and the assumptions X �
0, S � 0, we have (X, S) ∈ AHO(L) if and only if

(2.1) ⇒ M = X(�S)+ (�X)S = 0 (3.6)

if and only if
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0 = µ∗ := min trace{[X(�S)+ (�X)S]2} (= trace(M2))

s.t. (2.1).
(3.7)

Proof. The first characterization (3.6) is clear from Lemma 3.4. Necessity in the
second characterization is also clear. Now, suppose that (�X,�y,�S) is a solution
of the homogeneous system (2.1). Then Lemma 3.4 Part 2 implies that M2 % 0 and
trace(M2) � 0. Therefore,µ∗ = 0 implies that trace(M2) = 0, i.e. 0 = trace(M2) =
trace(−MMT). This further implies that MMT = 0 or M = 0. The conclusion now
follows from Lemma 3.4 Part 3. �

Corollary 3.6. Under the hypothesis of Proposition 3.5, we get
0 = µ∗ := min trace[(X(�S)+ (�X)S)2]

s.t. 〈�X,�S〉 = 0
‖LS(�X)+ LX(�S)‖2 = 0

(3.8)

if and only if

(2.1) implies �X = �S = 0, independent of A. (3.9)

Proof. The result follows since the feasible set in the quadratic program is smaller
in Proposition 3.5, i.e. it depends on the specific linear transformation A. �

Corollary 3.7{
0 = µ∗ := min trace[(XA∗(�y)+ Z(�v)S)2]

s.t. ‖LS(Z(�v))+ LX(A
∗(�y))‖2 = 0

(3.10)

if and only if

(2.1) implies �X = �S = 0. (3.11)

Proof. The result follows from Proposition 3.5 and the definitions of the transfor-
mations A,Z. �

3.2. Sufficient conditions independent of A

We present: (i) characterizations of existence and uniqueness; (ii) strengthened
conditions of the SSK type; and strengthened conditions of the MZ type.

Corollary 3.8. Suppose that X, S,L,A are defined as in Proposition 3.2. If LX is
invertible (similar result if LS is invertible), then(

L−1
X LS + (L−1

X LS)
∗) is definite ⇒ (X, S) ∈ AHO(A). (3.12)
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Proof. Note that (3.2) holds only if there exists 0 /= �X ∈ L such that〈
�X,L−1

X LS(�X)
〉 = 0.

This cannot happen if the quadratic form is definite. �

We now present sufficient conditions using the Kronecker product and then apply
this to get a strengthened SSK condition. These conditions do not take into account
the constraint transformation A but do use the orthogonality between �S and �X.

Theorem 3.9. Suppose that LX is invertible (similar results if LS is invertible) and
T, T are defined as above in (2.10). Let

K := [I ⊗ (SX +XS)] + [(SX +XS)⊗ I ] + 2[X ⊗ S] + 2[S ⊗X].
(3.13)

Then

the condition (3.14)
implies

the equivalent conditions (3.15), (3.16), (3.17), (3.18)
which imply

(X, S) ∈ AHO(L) for all subspaces L ⊆ Sn.

1.
K = [I ⊗ (SX +XS)] + [(SX +XS)⊗ I ]

+ 2[X ⊗ S] + 2[S ⊗X] is definite (3.14)

⇓ ⇓

2.

(a)

[I s⊗(SX +XS)] + 2[X s⊗S] is definite (3.15)

(b)

L−1
X LS + LSL

−1
X is definite (3.16)

(c)

LSLX + LXLS is definite (3.17)

(d)

2K + TK +KT is semidefinite with rank t (n) (3.18)

⇓ ⇓
3.

(X, S) ∈ AHO(L) for all subspaces L ∈ Sn. (3.19)
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Proof. That (3.16) implies (3.19) follows from Corollary 3.8. The equivalence of
(3.16) and (3.17) follows from the congruence by the nonsingular self-adjoint oper-
ator LX.

Now, we prove that (LSLX + LXLS) is definite if and only if
1
2 [I s⊗(SX +XS)] + [X s⊗S] is. Let U ∈ Sn, then

〈U, (LSLX + LXLS)(U)〉=〈U, [LS(XU + UX)+ LX(SU + US)]〉
=2〈U, SUX +XUS〉

+ 〈U, [(XS + SX)UI + IU(SX +XS)]〉
=4[s2vec(U)]T(X

s⊗S)s2vec(U)

+ 2[s2vec(U)]T(I
s⊗(XS + SX))s2vec(U).

Therefore, the equivalence of (3.15) and (3.17) follows.
With U = UT = 1

2 (V + V T), V ∈ Mn, the quadratic form under consideration
is

4〈U, (LSLX + LXLS)(U)〉
= 〈V + V T, (LSLX + LXLS)(V + V T)〉
= 2〈V, (XS + SX)V 〉 + 2〈V, V (XS + SX)〉

+ 4〈V,XV S〉 + 4〈V, SVX〉
+ 〈V T, (XS + SX)V 〉 + 〈V, (XS + SX)V T〉
+ 〈V T, V (XS + SX)〉 + 〈V, V T(XS + SX)〉
2〈V T, XV S〉 + 2〈V,XV TS〉 + 2〈V T, SVX〉 + 2〈V, SV TX〉. (3.20)

We have shown that

4〈U, (LSLX + LXLS)(U)〉 = 〈V, (2K + TK +KT )V 〉, (3.21)

if U = 1
2 (V + V T). We conclude that (3.14) implies (3.17), since we have ignored

the restriction of V to symmetric matrices in the Kronecker product. Let V ∈ Mn be
skew-symmetric. Also let v := vec(V ). Then T v = −v. Note that

vT(2K + TK +KT )v = 2vTKv − 2vTKv = 0.

Therefore, the rank of (K + TK +KT ) is always upperbounded by t (n). Using
(3.21), we conclude that (3.17) and (3.18) are equivalent. �

Remark 3.10. The equivalent condition (3.18) raises the question of finding a sim-
pler expression for the eigenvalues of the sum involving TK.
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The above conditions involve a similarity scaling and numerical range, see e.g.
[4,14,22]. We now present sufficient conditions for existence and uniqueness using
centrality and condition number measures. This strengthens the MZ result.

Theorem 3.11. Suppose that S,X � 0. Then the equivalent conditions, (3.22) and
(3.23), imply (X, S) ∈ AHO(L) for every L ⊆ Sn:
1.

‖S 1
2XS

1
2 − νI‖ � 4

5ν for some scalar ν > 0. (3.22)

2. The condition number

γ
(
S

1
2XS

1
2
)

� 9. (3.23)

Proof. Let

D2 := S−1/2(S1/2XS1/2)1/2S−1/2, (3.24)

and

V := DSD = D−1XD−1. (3.25)

Note that the eigenvalues of V 2 and S1/2XS1/2 are the same. We define

�X := D−1(�X)D−1 and �S := D(�S)D,

where �X,�S ∈ Sn satisfy the constraints of (3.8). Note that

〈�X,�S〉 = 〈�X,�S〉 = 0.

By Corollary 3.6, we only need to show that

0 � min
{
trace(M2) : 〈�X,�S〉 = 0

}
. (3.26)

trace(M2) = trace{[X(�S)+ (�X)S]2}
= trace[V (�S)V (�S)] + trace[V (�X)V (�X)]

+ 2trace[(�X)V 2(�S)]
= trace[V (�S)V (�S)] + trace[V (�X)V (�X)]

+ 2trace[(V 2 − µI)(�X)(�S)].
The parameter µ plays the role of a Lagrange multiplier for (3.26), see [20,25]. Let
s := s2vec(�S), x := s2vec(�X). Then using Lemma 2.4 yields

trace(M2) =
(
x

s

)T {(
V

s⊗V 0

0 V
s⊗V

)
+
(

0 I
s⊗(V 2 − µI)

I
s⊗(V 2 − µI) 0

)}(
x

s

)
.
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Therefore, it suffices to find conditions which guarantee that(
V

s⊗V I
s⊗(V 2 − µI)

I
s⊗(V 2 − µI) V

s⊗V

)

 0 for some µ. (3.27)

We can take the Schur complement in (3.27) to get the equivalent condition

V
s⊗V − (I

s⊗(V 2 − µI))(V
s⊗V )−1(I

s⊗(V 2 − µI)) 
 0. (3.28)

Note that the matrices V, (V 2 − µI) and I all commute. Thus, using Corollary 2.5,
we can diagonalize all four terms in (3.28) which yields the following result for the
eigenvalues λi of V:

4λ2
i λ

2
j − (

λ2
i + λ2

j − 2µ
)2 � 0 ∀i, j. (3.29)

Equivalently,

2λiλj �
∣∣λ2

i + λ2
j − 2µ

∣∣ ∀i, j. (3.30)

Equivalently,
1
2 (λi − λj )

2 � µ � 1
2 (λi + λj )

2 ∀i, j. (3.31)

Such µ exists iff (λmax − λmin)
2 � 4λ2

min. Equivalently, we see γ (V ) � 3 or
γ 2(V ) � 9. Since the condition numbers of V 2 and S1/2XS1/2 are the same, using
Proposition 1.1, we conclude the desired result. �

Remark 3.12. Note that in the above proof, we used the skew-symmetry condition
early in the proof, and then threw it away. In fact, we can substitute

s = s2vec(�S) = −(D s⊗D)s2vec(L−1
X LS(D(�X)D)).

This should lead to stronger results. Also, we could have used the usual Kronecker
product and employed Lemma 2.3 instead of the symmetric Kronecker product and
Lemma 2.4. This alternative proof leads to the bounds 3

5 for α and 4 for the condi-
tion number. Using the same proof technique with the symmetric Kronecker product
not only made the proof more elegant but it also improved the bounds. Finally, a
related but weaker bound was obtained by Monteiro and Todd [17], using different
techniques. We slightly improve their result in Theorem 3.18.

3.2.1. Shida–Shindoh–Kojima (SSK) sufficient condition
From Corollary 3.8 and Theorem 3.9, we get the Shida, Shindoh and Kojima

(SSK) sufficient condition [24], and see why this condition is so ‘weak’, i.e. it does
not use the positive definiteness of X ⊗ S or S ⊗X.

Corollary 3.13. Suppose that X, S,L,A are defined as in Proposition 3.2 and
X, S � 0. Then each of the conditions in Theorem 3.9 is implied by the Shida et al.
(SSK) hypothesis
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XS + SX 
 0.

Proof. The results follow immediately from Theorem 3.9. �

3.2.2. Monteiro–Zanjácomo (MZ) sufficient condition
In this section we present the theorem from [18] that provides a sufficient con-

dition for the above system (1.1) to have a unique solution. The result follows from
the strengthened version Theorem 3.11. We include a note on a typographical error
in [18].

Theorem 3.14 (Monteiro–Zanjácomo [18]). If (X, S, y) ∈ Sn+ × Sn+ × Rm is such
that

‖S 1
2XS

1
2 − νI‖ � 1

2ν for some scalar ν > 0, (3.32)

then system (1.1) has a unique solution.

Proof. The proof follows from the strengthened version in Theorem 3.11. Note that
the last expressions in the proof in [18] should read

...

· · · � ‖�̂S‖2
F + 1

4ν
2‖�̂X‖2

F − 2 1
2ν‖�̂S‖F‖�̂X‖F

= (‖�̂S‖F − 1
2ν‖�̂X‖F

)2
� 0. �

(3.33)

3.2.3. Monteiro–Todd (MT) sufficient condition
The previously stated MZ result was improved by Monteiro and Todd [17] using

different techniques.

Theorem 3.15 (Monteiro–Todd [17]). If (X, S, y) ∈ Sn+ × Sn+ × Rm is such that

‖S 1
2XS

1
2 − νI‖ < 1√

2
ν for some scalar ν > 0,

then system (1.1) has a unique solution.

Here, we extend the techniques of MT by utilizing the primal–dual symmetry
property of the AHO direction. As a result, we slightly improve the corresponding
MT bound. We need the following elementary lemmas:

Lemma 3.16. Let A ∈ Sn and B ∈ Mn. Then
1.

‖AB‖F � ‖A‖‖B‖F. (3.34)
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2.

‖BTAB‖F � λmin(B
TB)‖A‖F. (3.35)

Lemma 3.17 [17]. Let M ∈ Mn such that (PMP−1) is skew-symmetric for some
nonsingularP ∈ Mn. SupposeM = A+ B,whereA ∈ Sn. Then ‖A‖F �

√
2‖B‖F.

The next theorem improves the constants 1√
2

and (3 + 2
√

2) (resp.) of [17] to

(
√

3 − 1) and (3 + 2
√

3) (resp.). The proof of the next theorem follows the ideas of
Monteiro and Todd [17] for primal and dual scalings and then combines them in a
symmetric way.

Theorem 3.18. Suppose that S,X � 0. Then the following equivalent conditions
imply that (X, S) ∈ AHO(L), for every L ⊆ Sn:
1.

‖S1/2XS1/2 − νI‖ < (
√

3 − 1)ν for some scalar ν > 0. (3.36)

2. The condition number

γ (S1/2XS1/2) < 3 + 2
√

3. (3.37)

Proof. Suppose (U,�y,W) ∈ Sn × Rm × Sn solves the system (2.1). Let M :=
US +XW . Then M is skew-symmetric. We will apply Lemma 3.17 toX−1/2MX1/2.
Let

A := νX−1/2UX−1/2 +X1/2WX1/2 (A ∈ Sn),

B := X−1/2UX−1/2(X1/2SX1/2 − νI).

Note that

〈X−1/2UX−1/2, X1/2WX1/2〉 = 〈U,W 〉 = 0

implies

‖A‖2
F = ν2‖X−1/2UX−1/2‖2

F + ‖X1/2WX1/2‖2
F.

Lemmas 3.17 and 3.16 Part 1 imply

‖A‖2
F � 2‖B‖2

F � 2‖X−1/2UX−1/2‖2
F‖X1/2SX1/2 − νI‖2.

Therefore,

(ν2 − 2‖X1/2SX1/2 − νI‖2)‖X−1/2UX−1/2‖2
F � −‖X1/2WX1/2‖2

F. (3.38)

Similarly, using the above MT idea withS1/2MS−1/2 = S1/2US1/2 + S1/2XWS−1/2,
we apply Lemma 3.17 to S1/2MS−1/2. Let

A := νS−1/2WS−1/2 + S1/2US1/2 (A ∈ Sn),

B := (S1/2XS1/2 − νI)S−1/2WS−1/2.
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Using 〈U,W 〉 = 0, Lemma 3.17 and Lemma 3.16 Part 1, we obtain

(ν2 − 2‖S1/2XS1/2 − νI‖2)‖S−1/2WS−1/2‖2
F � −‖S1/2US1/2‖2

F. (3.39)

Since (S1/2XS1/2) and (X1/2SX1/2) have the same eigenvalues, combining the rela-
tions (3.38) and (3.39) we conclude

(ν2 − 2‖S1/2XS1/2 − νI‖2)(‖X−1/2UX−1/2‖2
F + ‖S−1/2WS−1/2‖2

F)

� −(‖X1/2WX1/2‖2
F + ‖S1/2US1/2‖2

F). (3.40)

Using Lemma 3.16 Part 2,

‖X1/2WX1/2‖2
F = ‖X1/2S1/2(S−1/2WS−1/2)S1/2X1/2‖2

F

� [λmin(X
1/2SX1/2)]2‖S−1/2WS−1/2‖2

F.

Similarly,

‖S1/2US1/2‖2
F � [λmin(S

1/2XS1/2)]2‖X−1/2UX−1/2‖2
F.

Thus, (3.40) yields that every solution (U,�y,W) of the system (2.1) satisfies(
ν2 − 2‖S1/2XS1/2 − νI‖2 + [λmin(S

1/2XS1/2)]2)
×(‖X−1/2UX−1/2‖2

F + ‖S−1/2WS−1/2‖2
F

)
� 0.

Let a := 1
ν
‖S1/2XS1/2 − νI‖ with ν = λmin(S

1/2XS1/2)+λmax(S
1/2XS1/2)

2 . Then
λmin(S

1/2XS1/2) = (1 − a)ν. Therefore, the above inequality implies that (0, 0, 0) ∈
Sn × Rm × Sn is the unique solution of (2.1) if

ν2 − 2a2ν2 + (1 − a)2ν2 > 0.

Since ν2 > 0, we analyze the quadratic inequality in a and find that if a < (
√

3 − 1)
then (X, S) ∈ AHO(L). The value (

√
3 − 1) of a corresponds to the bound (3 +

2
√

3) on the condition number of (S1/2XS1/2) by Proposition 1.1. �

3.3. Sufficient conditions dependent on A

The following is similar to Theorem 3.1 from [27].

Corollary 3.19. Suppose that X, S,L,A are defined as in Proposition 3.2. If LX

is invertible then

Z∗(L−1
X LS + (L−1

X LS)
∗)Z � 0 ⇒ (X, S) ∈ AHO(A). (3.41)

If LS is invertible, then

A∗(L−1
S LX + (L−1

S LX)
∗)A � 0 ⇒ (X, S) ∈ AHO(A). (3.42)
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Proof. Note that (3.2) holds only if there exists 0 /= �X ∈ L such that〈
�X,L−1

X LS(�X)
〉 = 0.

We use �X = Z(�v). (The second result follows similarly.) �

We use the notation Z(�v) = ∑t (n)
i=m+1(�v)iAi . Since R(A∗) ⊥ N(A), we

have

〈Aj ,Ai〉 = 0 ∀i = 1, . . . , m, ∀j = m+ 1, . . . , t (n).

If S � 0 thenLS � 0 andLSZ is one–one. (Similarly forX,LX andLXA
∗.) There-

fore, nonsingularity of K̄ depends on the relationship of the range spaces of the two
linear transformations

RX := R(LXA
∗), RS := R(LSZ),

i.e. the rotations of the range spaces of Z,A∗ or equivalently of the orthogonal
spaces L,L⊥. Equivalently, we need to study the scaled matrices

XAi + AiX, i = 1, . . . , m, SAi + AiS, i = m+ 1, . . . , t (n).

4. Topological properties

We have seen the following interesting conundrum. The three best known search
directions are the AHO, HrvwKshM and NT directions. Under standard nondegen-
eracy assumptions, all three directions are well-defined in a neighbourhood of the
central path for X, S � 0. The linear systems for both HrvwKshM and NT become
increasingly ill-conditioned as the barrier parameter µ ↓ 0, i.e. when X, S approach
the optimum. This is not the case for AHO near the central path. However, both
HrvwKshM and NT are well defined for all X, S � 0, while this is not the case for
AHO, i.e. the linearized system for the AHO direction can become ill-conditioned
unless the iterates stay close to the central path. Nevertheless, we now show that
AHO is generically well-defined.

Theorem 4.1. For every subspace L ∈ Sn, the dimension of AHO(L) is full; i.e.,

dim(AHO(L)) = n(n+ 1).

Moreover,

AHO(L) is a set of measure zero in Sn × Sn.

In the above sense, the AHO direction is generically well-defined.

Proof. The fact that dim(AHO(L)) = n(n+ 1) follows from Theorem 3.11. Note
that AHO(L) and therefore AHO(L) are both semi-algebraic sets. Since semi-alge-
braic sets without interior are of measure zero (see Theorem 8.10 in [7]), it suffices
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to prove that the interior of AHO(L) in Sn × Sn is empty. Note that K̄(X, S) :=
[LSZ

...− LXA
∗] is linear in X and S. Therefore, det(K̄(X, S)) : Sn × Sn !→ R

is an analytic function. If this function is zero on an open subset of Sn × Sn, then,
since the function is analytic, it has to be identically zero on all of Sn × Sn (see, for
instance, [8, p. 240]). But we know that there are full-dimensional connected subsets
of Sn × Sn over which det(K̄(X, S)) /= 0. Therefore, the interior of AHO(L) is
empty for every L ⊆ Sn and AHO(L) is of measure zero. �

Remark 4.2. It also easily follows from the above proof that AHO(L) is an open
subset of Sn × Sn. We can also give an alternative (but related) approach to proving
the last theorem (via proving that the interior of AHO(L) is empty). Let (X, S) ∈
AHO(L). Let W ∈ Sn++ (negative definite also works). Then by Lemma 2.2,
LW(S

n) = Sn. Therefore, there exists ε > 0 such that for every ε ∈ [−ε, ε] \ {0},
LX+εW (L

⊥) ∩ LS+εW (L) = {0}.
(Another way of seeing this is to consider K̄. What we are doing here is equivalent
to replacing K̄ by (K̄ + εI); in our case, we are using a nonsingular matrix instead
of I. Clearly, for all sufficiently small ε /= 0, the matrix (K̄ + εI) is nonsingular.)
Therefore, there exists ε > 0 such that for every ε ∈ [−ε, ε] \ {0},

(X + εW, S + εW) ∈ AHO(L).

5. Extension to the Monteiro–Zhang family

We now present an argument extending our γ � 9 result to all search directions
in the Monteiro–Zhang family. A simple argument is given by Monteiro [16] to
show that MZ result extends to the whole Monteiro–Zhang family (also see [17]
for the extension of the MT result). Monteiro’s arguments are also applicable to our
improvements. However, below we give more mechanical computations showing
that the proof techniques also extend.

Recall that HP : Mn → Sn is the linear transformation

HP (M) := PMP−1 + P−TMTP T,

where P is any n× n nonsingular matrix. Then in the last equation group (in finding
the search direction) apply HP (·) to both sides and then solve for �X and �S.

When we write the corresponding homogeneous system, we have

P(�X)SP−1 + PX(�S)P−1 + P−TS(�X)P T + P−TX(�S)P T = 0.

Note that this equation is equivalent to

[P(�X)SP−1 + PX(�S)P−1] is skew-symmetric.
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Therefore, as in our current arguments for the special case P = I , to prove that the
direction is well-defined, it suffices to prove that

trace
{[P(�X)SP−1 + PX(�S)P−1]2} � 0.

Now, we evaluate the above expression and find that it is equal to:

trace[P(�X)S(�X)SP−1] + trace[P(�X)SX(�S)P−1]
+trace[PX(�S)(�X)SP−1] + trace[PX(�S)X(�S)P−1].

All P’s under the trace cancel and we are back to the special case with P := I . There-
fore, the rest of the current proof of Theorem 3.11 applies and all search directions
in the MZ-family are well-defined if γ (S1/2XS1/2) = γ (V 2) � 9.

For the SSK condition, note that X !→ PXP T and S !→ P−TSP−1. So,

XS + SX !→ PXSP−1 + P−TSXP T.

For instance,

K !→


[I ⊗ (PXSP−1 + P−TSXP T)] + [(PXSP−1 + P−TSXP T)⊗ I ]
+ 2[(P ⊗ P−T)(X ⊗ S)(P T ⊗ P−1)]
+ 2[(P−T ⊗ P)(S ⊗X)(P−1 ⊗ P T)].

Again the positive definiteness of the last two terms is clearly implied by X, S � 0.
Therefore, we still have a strengthening of the extension of the SSK result.
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