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Abstract

We present a very general Hua-type matrix equality. Among several applications
of the proposed equality, we give a matrix version of the Aczél inequality.
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1 Hua-type matrix equality

Let Mm×n be the set of all complex matrices of size m × n with Mn = Mn×n. For

A ∈ Mm×n, we denote the conjugate transpose of A by A∗ and call A strictly contractive
if I − A∗A is positive definite, where I is the identity matrix of appropriate size. If

A ∈ Mn is Hermitian positive (semi)definite, then we write A(≥) > 0. Also, we identify
A > (≥)B with A−B > (≥)0, called the Löwner partial order.

The starting point of this paper is the following Hua matrix equality, which arises in
studying the theory of functions of several variables.

Theorem 1.1. [2] Let A,B ∈ Mm×n be strictly contractive. Then

(I −B∗B)− (I −B∗A)(I −A∗A)−1(I −A∗B) = −(A−B)∗(I −AA∗)−1(A−B). (1.1)

Paige et al. [9] gave a new proof of (1.1) using the technique of Schur complements

and extended it to the following form. (For simplicity, we do not consider generalized

inverses in this paper. We refer the reader to [4, 9] for details with generalized inverses.)

Theorem 1.2. [9] Let X, Y,W and Z ∈ Mm×n. Then

(I+W ∗Z)− (I+W ∗Y )(I+X∗Y )−1(I+X∗Z) = (W −X)∗(I+Y X∗)−1(Z−Y ), (1.2)

where we assume all the relevant inverses exist.
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In this paper, we present a matrix equality that is more general than (1.2).

Theorem 1.3. Let X, Y,W,Z ∈ Mm×n and R, T, U, V ∈ Mn. Then

(R∗T +W ∗Z)− (R∗V +W ∗Y )(U∗V +X∗Y )−1(U∗T +X∗Z)

= (W −XU−1R)∗
(

I + (Y V −1)(XU−1)∗
)

−1

(Z − Y V −1T ),
(1.3)

where we assume all the relevant inverses exist.

Proof. Compute

(R∗T +W ∗Z)− (R∗V +W ∗Y )(U∗V +X∗Y )−1(U∗T +X∗Z)

= (R∗T +W ∗Z)

−
[

R∗V + (U−1R)∗X∗Y − (U−1R)∗X∗Y +W ∗Y
]

(U∗V +X∗Y )−1(U∗T +X∗Z)

= (R∗T +W ∗Z)− (U−1R)∗(U∗T +X∗Z)

−(−(U−1R)∗X∗ +W ∗)Y (U∗V +X∗Y )−1(U∗T +X∗Z)

= (W −XU−1R)∗Z − (W −XU−1R)∗Y V −1

(

I + (XU−1)∗(Y V −1)
)

−1

(T + (XU−1)∗Z)

= (W −XU−1R)∗
[

Z −
(

I + (Y V −1)(XU−1)∗
)

−1

(Y V −1T + Y V −1(XU−1)∗Z)
]

= (W −XU−1R)∗
(

I + (Y V −1)(XU−1)∗
)

−1

(Z − Y V −1T ),

where we have used an easily verified formula B(I + A∗B)−1 = (I + BA∗)−1B in the
fourth equality.

We may also give a proof of (1.3) using the techniques of Schur complements. The
argument goes as follows:

Let

P :=

[

U R

X W

]

∗
[

V T

Y Z

]

=

[

U∗V +X∗Y U∗T +X∗Z

R∗V +W ∗Y R∗T +W ∗Z

]

.

The Schur complement of U∗V +X∗Y in P is

(R∗T +W ∗Z)− (R∗V +W ∗Y )(U∗V +X∗Y )−1(U∗T +X∗Z).

On the other hand, the following equivalent transformation on P preserves the Schur
complement of U∗V +X∗Y ; see [9, Lemma 1]:
[

I 0
−(U−1R)∗ I

]

P

[

I −V −1T

0 I

]

=

[

U∗V +X∗Y X∗(Z − Y V −1T )
(W −XU−1R)∗Y (W −XU−1R)∗(Z − Y V −1T )

]

:= Q.

It remains to note that the Schur complement of U∗V +X∗Y in Q is

(W −XU−1R)∗(Z − Y V −1T )− (W −XU−1R)∗Y (U∗V +X∗Y )−1X∗(Z − Y V −1T )

= (W −XU−1R)∗
[

I − Y (U∗V +X∗Y )−1X∗

]

(Z − Y V −1T )

= (W −XU−1R)∗
[

I − (Y V −1)
(

I + (XU−1)∗(Y V −1)
)

−1

(XU−1)∗
]

(Z − Y V −1T )

= (W −XU−1R)∗
(

I + (Y V −1)(XU−1)∗
)

−1

(Z − Y V −1T ).
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A quick observation is that letting R = T = U = V = I in (1.3), implies that (1.2)

follows. The next two corollaries are also readily seen.

Corollary 1.4. [12, Theorem 1.16] Let A,B,X ∈ Mn. Then

(AA∗ +BB∗) = (B + AX)(I +X∗X)−1(B + AX)∗

+(A−BX∗)(I +XX∗)−1(A− BX∗)∗. (1.4)

Proof. Putting U = V = I, R = T = B∗, W = Z = A∗ and Y = X in (1.3), we obtain

(1.4).

Corollary 1.5. [10, Theorem 3.2] Let A,B,X ∈ Mn. Then

(XX∗ − BB∗) = (X − BA∗)(I −AA∗)−1(X − BA∗)∗

−(B −XA)(I −A∗A)−1(B −XA)∗. (1.5)

Proof. Putting U = V = I, R = T = X∗, W = −Z = B∗ and X = −Y = A∗ in (1.3),
we obtain (1.5).

The next result, which we believe to be of interest in its own right, slightly generalizes

[11, Theorem 1].

Theorem 1.6. Let A,B,C,D,E, F ∈ Mn such that
[

A B

B∗ C

]

≥ 0,

[

D E

E∗ F

]

≥ 0.

If moreover, A > D, C > F , and rank

([

A B

B∗ C

])

≤ n, then the following holds

[

(A−D)−1 (B∗ − E∗)−1

(B − E)−1 (C − F )−1

]

≥ 0, (1.6)

where the inverses are well-defined.

Proof. We may write
[

A B

B∗ C

]

=

[

R∗R R∗U

U∗R U∗U

]

,

[

D E

E∗ F

]

=

[

W ∗W W ∗X

X∗W X∗X

]

,

for some R,U ∈ Mn, and W,X ∈ Mm×n. As A,C > 0, thus R,U are invertible. Putting

Z = −W , Y = −X , V = U and T = R in (1.3), we have

(R∗R −W ∗W )− (R∗U −W ∗X)(U∗U −X∗X)−1(U∗R−X∗W )

= −(W −XU−1R)∗
(

I − (XU−1)(XU−1)∗
)

−1

(W −XU−1R). (1.7)

Note that U∗U > X∗X implies I > (XU−1)∗(XU−1) and so I > (XU−1)(XU−1)∗, i.e.,
the right hand side of (1.7) is nonpositive definite. Therefore,

(R∗R−W ∗W ) ≤ (R∗U −W ∗X)(U∗U −X∗X)−1(U∗R−X∗W ),
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i.e.,

(A−D) ≤ (B −E)(C − F )−1(B∗ − E∗). (1.8)

As A−D > 0, the above inequality guarantees the existence of (B −E)−1. Taking the

inverse on both sides of (1.8), we get

(A−D)−1 ≥ (B∗ − E∗)−1(C − F )(B −E)−1,

and so (1.6) follows.

Remark 1.7. The condition that rank

([

A B

B∗ C

])

≤ n in Theorem 1.6 is necessary.

Otherwise, B −E may not be invertible. As a quick example, consider
[

A B

B∗ C

]

=

[

2I 0
0 I

]

,

[

D E

E∗ F

]

=

[

I 0
0 0

]

.

2 Matrix Aczél inequality

If A,B > 0, then the geometric mean of A and B, denoted by A♯B, is the positive
definite solution of the Ricatti equation XB−1X = A and has the explicit expression

A♯B = B1/2(B−1/2AB−1/2)1/2B1/2. (2.1)

From here, we find that A♯B = B♯A, (A♯B)−1 = A−1♯B−1, and the monotonicity

property: A♯B ≥ A♯C whenever B ≥ C > 0 and A > 0. One of the motivations
for such a geometric mean is of course the following matrix arithmetic-geometric mean

inequality:
A+B

2
≥ A♯B.

A remarkable property of the geometric mean is a maximal characterization by Pusz-

Woronovicz [8]:

Theorem 2.1. Let A,B > 0. Then

A♯B = max

{

X
∣

∣

∣

[

A X

X∗ B

]

≥ 0, X = X∗

}

. (2.2)

The maximum here is in the sense of the Löwner partial order. With Theorem 2.1,

the geometric mean (2.1) is also valid for A,B ≥ 0. An equivalent possibility is

A♯B = lim
ǫ→0

A♯(B + ǫI).

Applying this maximal characterization to the summation of positive semidefinite

matrices

[

Ai Ai♯Bi

Ai♯Bi Bi

]

, i = 1, . . . , n, we get

(

n
∑

i=1

Ai

)

♯

(

n
∑

i=1

Bi

)

≥

n
∑

i=1

Ai♯Bi. (2.3)
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The inequality (2.3) is a matrix Cauchy-Schwarz inequality [3], as it resembles the

scalar Cauchy-Schwarz inequality: if ai, bi ≥ 0, i = 1, . . . , n, then

(

n
∑

i=1

ai

)1/2( n
∑

i=1

bi

)1/2

≥

n
∑

i=1

√

aibi. (2.4)

A complement to (2.4) is the Aczél inequality [1]: if ai, bi ≥ 0, i = 0, 1, . . . , n, such
that a0 ≥

∑n
i=1

ai and b0 ≥
∑n

i=1
bi, then

(

a0 −

n
∑

i=1

ai

)1/2(

b0 −

n
∑

i=1

bi

)1/2

≤
√

a0b0 −

n
∑

i=1

√

aibi. (2.5)

There are also operator or matrix versions of the Aczél inequality; see [7] and the
references therein. In this section, we present a new matrix Aczél inequality that is

analogous to (2.3).

Theorem 2.2. Let Ai, Bi ≥ 0, i = 0, 1, . . . , n, such that A0 ≥
∑n

i=1
Ai and B0 ≥

∑n
i=1

Bi. Then

(

A0 −

n
∑

i=1

Ai

)

♯

(

B0 −

n
∑

i=1

Bi

)

≤ A0♯B0 −

n
∑

i=1

Ai♯Bi. (2.6)

We need a few lemmas to prove (2.6).

Lemma 2.3. [5, Lemma 2.2] Let A > 0 and B be any Hermitian matrix in Mn. Then

A♯(BA−1B) ≥ B. (2.7)

Proof. We provide a short proof here for completeness. It is easy to see that

[

A B

B BA−1B

]

≥ 0.

Now by (2.2), the desired inequality follows.

Lemma 2.4. Let A,C ≥ 0, B > 0 be such that A ≤ CB−1C. Then

A♯B ≤ C. (2.8)

Proof. We may assume A,C > 0. The general case follows from a continuity argument.
Since A ≤ CB−1C implies A−1 ≥ C−1BC−1, the monotonicity of the geometric mean

then gives

A−1♯B−1 ≥ (C−1BC−1)♯B−1 ≥ C−1, (2.9)

where the second inequality is by Lemma 2.3. Now (2.8) follows by taking the inverse

on both sides of (2.9).
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Proof of Theorem 2.2. We assume A0 >
∑n

i=1
Ai and B0 >

∑n
i=1

Bi in Theorem 2.2.

The general case follows from a continuity argument. First, note that

[

A0 A0♯B0

A0♯B0 B0

]

≥ 0,

[
∑n

i=1
Ai

∑n
i=1

Ai♯Bi
∑n

i=1
Ai♯Bi

∑n
i=1

Bi

]

≥ 0.

Also, as (A0♯B0)A
−1

0
(A0♯B0) = B0, we get rank

[

A0 A0♯B0

A0♯B0 B0

]

= n. Thus, the condi-

tion of Theorem 1.6 is satisfied. By (1.8), we have

(

A0 −

n
∑

i=1

Ai

)

≤

(

A0♯B0 −

n
∑

i=1

Ai♯Bi

)(

B0 −

n
∑

i=1

Bi

)

−1(

A0♯B0 −

n
∑

i=1

Ai♯Bi

)

.

The monotonicity property of the geometric mean and (2.3) imply

A0♯B0 ≥

(

n
∑

i=1

Ai

)

♯

(

n
∑

i=1

Bi

)

≥

n
∑

i=1

Ai♯Bi,

i.e., A0♯B0 −
∑n

i=1
Ai♯Bi ≥ 0.

By Lemma 2.4, it follows that

(

A0 −

n
∑

i=1

Ai

)

♯

(

B0 −

n
∑

i=1

Bi

)

≤ A0♯B0 −

n
∑

i=1

Ai♯Bi.

We end the paper with several remarks.

Remark 2.5. Although Theorem 2.2 is stated and proved in the language of matrices,

the proofs go through without any change in the context of linear operators on a Hilbert
space.

Remark 2.6. The matrix Cauchy-Schwarz inequality (2.3) has been stated for accretive-

dissipative matrices, with a generalized Löwner partial order involved; see [6, Corollary
2.2]. It is thus natural to ask whether Theorem 2.2 also has such an extension.

Remark 2.7. A matrix reverse Cauchy-Schwarz inequality has been considered in [3].

It is also of interest to consider a reverse direction to that of (2.4). We leave it for

interested readers.
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