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Abstract This paper illustrates how optimization can be used to derive known and
new theoretical results about perturbations of matrices and sensitivity of eigenval-
ues. More specifically, the Karush-Kuhn-Tucker conditions, the shadow prices, and
the parametric solution of a fractional program are used to derive explicit formulae
for bounds for functions of matrix eigenvalues.

1 Introduction

Many classical and new inequalities can be derived using optimization techniques.
One first formulates the desired inequality as the maximum (minimum) of a function
subject to appropriate constraints. The inequality, along with conditions for equality
to hold, can then be derived and proved, provided that the optimization problem can
be explicitly solved.

For example, consider the Rayleigh principle

λmax = max{⟨x,Ax⟩ : x ∈ Rn,∥x∥= 1}, (1)

where A is an n× n Hermitian matrix, λmax is the largest eigenvalue of A, ⟨·, ·⟩ is
the Euclidean inner product, and ∥ · ∥ is the associated norm. Typically, this princi-
ple is proved by maximizing the quadratic function ⟨x,Ax⟩ subject to the equality
constraint, ∥x∥2 = 1. An explicit solution can be found using the classical and well
known, Euler-Lagrange multiplier rule of calculus. (See Example 1 below). It is an

Henry Wolkowicz
Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario N2L
3G1, Canada (Research Report CORR 2009-02)

1



2 Henry Wolkowicz

interesting coincidence that λ is the standard symbol used in the literature for both
eigenvalues and Lagrange multipliers; and the eigenvalue and Lagrange multiplier
coincide in the above derivation. Not so well known are the multiplier rules for
inequality constrained programs. The Holder inequality

⟨x,y⟩=
n

∑
i=1

xiyi ≤

(
n

∑
i=1

xp
i

)1/p( n

∑
i=1

yq
i

)1/q

,

where x,y ∈ Rn
+, p > 1,q = p/(p− 1), can be proved by solving the optimiza-

tion problem h(x) := maxy{∑i xiyi : ∑i yq
i − 1 ≤ 0,yi ≥ 0,∀i}. The John multi-

plier rule yields the explicit solution. (See [8] and Example 3 below). The classi-
cal arithmetic-geometric mean inequality (α1 . . .αn)

1/n ≤ 1
n (α1 + . . .+αn), where

αi > 0, i = 1, . . . ,n, can be derived by solving the geometric programming problem

max{Πiα1 :
n

∑
i=1

αi = 1,αi ≥ 0,∀i}.

Convexity properties of the functions, which arise when reformulating the in-
equalities as programming problems, can prove very helpful. For example, convex-
ity can guarantee that sufficiency, rather than only necessity, holds in optimality
conditions. The quasi-convexity of the function

φ( f ) =
∫

f dν

∫
(1/ f )dµ, (2)

where µ and ν are two nontrivial positive measures on a measurable space X , can be
used to derive the Kantorovich inequality, [1]. (We prove the Kantorovich inequality
using optimization in Example 2.) We rely heavily on the convexity and pseudo-
convexity of the functions.

Optimality conditions, such as the Lagrange and Karush-Kuhn-Tucker multiplier
rules, are needed to numerically solve mathematical programming problems. The
purpose of this paper is to show how to use optimization techniques to generate
known, as well as new, explicit eigenvalue inequalities. Rather than include all pos-
sible results, we concentrate on just a few, which allow us to illustrate several useful
techniques. For example, suppose that A is an n×n complex matrix with real eigen-
values λ1 ≥ . . .≥ λn. A lower bound for λk can be found if we can explicitly solve
the problem

min λk
subject to ∑

n
i=1 λi = traceA

∑
n
i=1 λ 2

i ≤ traceA2

λk−λi ≤ 0, i = 1, . . . ,k−1
λi−λk ≤ 0, i = k+1, . . . ,n.

(3)

We can use the Karush-Kuhn-Tucker necessary conditions for optimality to find the
explicit solution. (See Theorem 6.) Sufficiency guarantees that we actually have the
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solution. This yields the best lower bound for λk based on the known data. (Further
results along these lines can be found in [4].)

In addition, the Lagrange multipliers, obtained when solving the program (3),
provide shadow prices. These shadow prices are sensitivity coefficients with respect
to perturbations in the right-hand sides of the constraints. We use these shadow
prices to improve the lower bound in the case that we have additional information
about the eigenvalues. (See e.g. Corollaries 2 and 3.)

1.1 Outline

In Section 2 we introduce the optimality conditions and use them to prove the well
known: (i) Rayleigh Principle; (ii) Holder inequality; and (iii) Kantorovich inequal-
ity. In Section 3 we show how to use the convex multiplier rule (or the Karush-Kuhn-
Tucker conditions) to generate bounds for functions of the eigenvalues of an n× n
matrix A with real eigenvalues. Some of these results have appeared in [7, 12, 4]. In-
cluded are bounds for λk,λk+λℓ and λk−λℓ. We also show how to use the Lagrange
multipliers (shadow prices) to strengthen the bounds. Section 4 uses fractional pro-
gramming techniques to generate bounds for the ratios (λk−λℓ)/(λk+λℓ). Some of
the inequalities obtained here are given in [7, 12] but with proofs using elementary
calculus techniques rather than optimization.

2 Optimality Conditions

2.1 Equality Constraints

First, consider the program

min{ f (x) : hk(x) = 0,k = 1, . . . ,q, x ∈U}, (4)

where U is an open subset of Rn and the functions f , hk, k = 1, . . . ,q, are continu-
ously differentiable. The function f is called the objective function of the program.
The feasible set, denoted by F , is the set of points in Rn which satisfy the con-
straints. Then, the classical Euler-Lagrange multiplier rule states, e.g. [8],

Theorem 1. Suppose that a∈Rn solves (4) and that the gradients▽h1(a), . . . ,▽hq(a)
are linearly independent. Then,

▽ f (a)+
q

∑
k=1

λk▽hk(a) = 0, (5)

for some (Lagrange multipliers) λk ∈ R,k = 1, . . . ,q.



4 Henry Wolkowicz

Example 1. Suppose that A is an n×n Hermitian matrix with eigenvalues λ1 ≥ . . .≥
λn. To prove the Rayleigh Principle (1), consider the equivalent program

minimize

{
−⟨x,Ax⟩ : 1−

n

∑
i=1

x2
i = 0,x ∈ Rn

}
. (6)

Since the objective function is continuous while the feasible set is compact, the
minimum is attained at some a ∈F ⊂Rn. If we apply Theorem 1, we see that there
exists a Lagrange multiplier λ ∈ R such that

2Aa−2λa = 0,

i.e. a is an eigenvector corresponding to the eigenvalue equal to the Lagrange mul-
tiplier λ . Since the objective function

⟨a,Aa⟩= λ ⟨a,a⟩= λ ,

we conclude that λ must be the largest eigenvalue and we get the desired result.
If we now add the constraint that x be restricted to the n− 1 dimensional subspace
orthogonal to a, then we recover the second largest eigenvalue. Continuing in this
manner, we get all the eigenvalues. More precisely, if a1,a2, . . . ,ak are k mutually
orthonormal eigenvectors corresponding to the k largest eigenvalues of A,λ1 ≥ . . .≥
λk, then we solve (6) with the added constraints

⟨x,ai⟩= 0, i = 1, . . . ,k.

The gradients of the constraints are necessarily linearly independent since the vec-
tors x, and ai, i = 1, . . . ,k, are (mutually) orthonormal. Now if a is a solution, then
(5) yields

2Aa−2λa+
k

∑
i=1

αiai = 0,

for some Lagrange multipliers λ ,αi, i = 1, . . . ,k. However, taking the inner product
with fixed ai, and using the fact that

⟨Aa,ai⟩= ⟨a,Aai⟩= λi⟨a,ai⟩= 0,

we see that αi = 0, i= 1, . . . ,k, and so Aa= λa, i.e. a is the eigenvector correspond-
ing to the (k+1)−st largest eigenvalue. This argument also shows that A necessarily
has n (real) mutually orthonormal eigenvectors.

Example 2. Consider the Kantorovich inequality, e.g. [1, 3],
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1≤ ⟨x,Ax⟩⟨x,A−1x⟩ ≤ 1
4

√λ1

λn
+

√
λn

λ1

2

, (7)

where A is an n×n positive definite Hermitian matrix with eigenvalues λ1 ≥ . . . ≥
λn > 0,x∈Rn, and ∥x∥= 1. This inequality is useful in obtaining bounds for the rate
of convergence of the method of steepest descent, e.g. [5]. To prove the inequality
we consider the following (two) optimization problems

min(max) f1(a) :=
(
∑

n
i=1 a2

i λi
)(

∑
n
i=1 a2

i λ
−1
i

)
subject to g(a) := 1−∑

n
i=1 a2

i = 0,
(8)

where a = (ai) ∈ Rn,ai = ⟨x,ui⟩ and ui, i = 1, . . . ,n, is an orthonormal set of eigen-
vectors of A corresponding to the eigenvalues λi, i = 1, . . . ,n, respectively. Thus,
f1(a) is the middle expression in (7). Suppose that the vector a = (ai) solves (8).
Then, the necessary conditions of optimality state that (µ is the Lagrange multiplier)

aiλi

(
∑

j
a2

jλ
−1
j

)
+aiλ

−1
i

(
∑

j
a2

jλ j

)
−µai = 0, i = 1, . . . ,n; ∑

i
a2

i = 1. (9)

Thus,

f2(a) := λi

(
∑

j
a2

jλ
−1
j

)
+λ

−1
i

(
∑

j
a2

jλ j

)
= µ, if ai ̸= 0. (10)

On the other hand, if we multiply (9) by ai and sum over i, we get

µ = 2

(
∑

j
a2

jλ j

)(
∑

j
a2

jλ
−1
j

)
= 2 f1(a). (11)

By (10) and (11), we can replace f1(a) in (8) by the middle expression in (10), i.e.
by f2(a). The new necessary conditions for optimality (with µ playing the role of
the Lagrange multiplier again and ai ̸= 0) are

a j
λi

λ j
+a j

λ j

λi
−a jµ = 0, j = 1, . . . ,n.

Now, if both a j ̸= 0,ai ̸= 0, we get

f3(a) :=
λi

λ j
+

λ j

λi
= µ. (12)

And, multiplying (12) by a j and summing over j yields

µ = ∑
j

a2
j

(
λi

λ j
+

λ j

λi

)
= f2(a).
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Thus, we can now replace f2(a) (and so f1(a)) in (8) by f3(a). Note that a does
not appear explicitly in f3(a). However, the i and j must correspond to ai ̸= 0 and
a j ̸= 0. Consider the function

h(x,y) =
x
y
+

y
x
, (13)

where 0 < α ≤ x≤ y≤ β . Since

d
dx

h(x,y) =
y(x2− y2)

(xy)2 ≤ 0 (< 0 if x ̸= y),

and, similarly d
dy h(x,y) ≥ 0 (> 0 if x ̸= y)), we see that h attains its maximum at

x = α and y = β , and it attains its minimum at x = y. This shows that 2≤ f3(a) and
that f3 attains its maximum at λ1

λn
+ λn

λ1
, i.e. at a1 ̸= 0 and an ̸= 0. The left-hand side

of (7) now follows from 2 f1(a) = f2(a) = f3(a). Now, to have f3(a) = f2(a), we
must choose a1 = an = 1

2 , and ai = 0,∀1 < i < n. Substituting this choice of a in
f1(a) yields the right-hand side of (7).

2.2 Equality and Inequality Constraints

Now suppose that program (4) has, in addition, the inequality constraints (continu-
ously differentiable)

gi(x)≤ 0, i = 1, . . . ,m. (14)

Then, we obtain the John necessary conditions of optimality. (See e.g. [8].)

Theorem 2. Suppose that a ∈ Rn solves (4) with the additional constraints (14).
Then, there exist Lagrange multiplier vectors λ ∈Rm+1

+ ,α ∈Rq, not both zero, such
that

λ0▽ f (a)+∑
m
i=1 λi▽gi(a)+∑

q
j=1 α j▽h j(a) = 0,

λigi(a) = 0, i = 1, . . . ,m.
(15)

The first condition in (15) is dual feasibility. The second Condition in (15) is
called complementary slackness. It shows that either the multiplier λi = 0 or the
constraint is binding, i.e. gi(a) = 0. The Karush-Kuhn-Tucker conditions (e.g. [8])
assume a constraint qualification and have λ0 = 1.

Example 3. Holder’s inequality states that if x,y ∈ Rn
++, are (positive) vectors, p >

1, and q = p/(p−1), then
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⟨x,y⟩=
n

∑
i=1

xiyi ≤

(
∑

i
xp

i

)1/p(
∑

i
yq

i

)1/q

= ∥x∥p∥y∥q.

We now include a proof of this inequality using the John Multiplier Rule. (This
proof corrects the one given in [8].)

Fix y = (yi) ∈ Rn
++ and consider the program

min f (x) := −∑
n
i=1 xiyi

subject to g(x) := ∑
n
i=1 xp

i −1 ≤ 0
hi(x) := −xi ≤ 0, i = 1, . . . ,n.

Holder’s inequality follows if the optimal value is −∥y∥q. Since the feasible set is
compact, the minimum is attained at say a = (ai) ∈ Rn

+. Then, there exist constants
(Lagrange multipliers) λ0 ≥ 0,λ1 ≥ 0,γi ≥ 0, not all zero, such that

−λ0yi +λ1 pap−1
i − γi = 0, γi ≥ 0,∀i

λ1g(a) = 0, γiai = 0,∀i.

This implies that, for each i we have

−λ0yi +λ1 pap−1
i = γi = 0, if ai > 0,

−λ0yi = γi ≥ 0, if ai = 0.

Since yi ≥ 0 and λ0 ≥ 0, we conclude that λ0yi = γi = 0, if ai = 0. Therefore, we get

−λ0yi +λ1 pap−1
i = γi = 0,∀i. (16)

The remainder of the proof now follows as in [8]. More precisely, since not all the
multipliers are 0, if λ0 = 0, then λ1 > 0. This implies that

g(a) = 0, (17)

and, by (16) that a = 0, contradiction. On the other hand, if λ1 = 0, then λ0 > 0
which implies y = 0, contradiction. Thus, both λ0 and λ1 are positive and we can
assume, without loss of generality, that λ0 = 1. Moreover, we conclude that (17)
holds. From (16) and (17) we get

− f (a) = ∑
n
i=1 aiyi

= λ1 p∑
n
i=1 ap

i
= λ1 p.

Since q = p/(p−1), (16) and (17) now imply that

n

∑
i=1

yq
i =

n

∑
i=1

(λ1 p)qaq
i = (λ1 p)q =− f (a)q.
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2.3 Sensitivity Analysis

Consider now the convex (perturbed) program

(Pε)

µ(ε) = min f (x)
subject to gi(x)≤ εi, i = 1, . . . ,m,

h j(x) = ε j, j = m+1, . . . ,q,
x ∈U,

(18)

where U is an open subset of Rn, and the functions f and gi, i= 1, . . . ,m, are convex
and h j, j = m+1, . . . ,q, are affine. The generalized Slater Constraint Qualification
(CQ) for (Pε) states that

there exists x̂ ∈ intU such that
gi(x̂)< εi, i = 1, . . . ,m, and h j(x̂) = ε j, j = m+1, . . . ,q. (19)

We can now state the convex multiplier rule and the corresponding shadow price
interpretation of the multipliers. (See e.g. [8, 9].)

Theorem 3. Suppose that the CQ in (19) holds for (P0) in (18). Then,

µ(0) = min{ f (x)+
m

∑
i=1

λigi(x)+
q

∑
j=m+1

λ jh j(x) : x ∈U}, (20)

for some λ j ∈ R, j = m+ 1, . . .q, and λi ≥ 0, i = 1, . . . ,m. If a ∈F solves (P0),
then in addition

λigi(a) = 0, i = 1, . . . ,m. (21)

Theorem 4. Suppose that a ∈F . Then, (20) and (21) imply that a solves (P0).

Theorem 5. Suppose that a1 and a2 are solutions to (Pε1) and (Pε2), respectively,
with corresponding multiplier vectors λ 1 and λ 2. Then,

(ε2− ε
1,λ 2)≤ f (a1)− f (a2)≤ (ε2− ε

1,λ 1). (22)

Note that since the functions are convex and the problem (20) is an unconstrained
minimization problem, we see that if a ∈ F solves (P0), then (20) and (21) are
equivalent to the system

▽ f (a)+∑
m
i=1 λi▽gi(a)+∑

q
j=m+1 λ j▽h j(a) = 0

λi ≥ 0, λigi(a) = 0, i = 1, . . . ,m.
(23)
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Moreover, since f (ai)= µ(ε i), when ai solves (Pε i), (22) implies that−λ i ∈ ∂ µ(ε i),
i.e. the negative of the multiplier λ i is in the subdifferential of the perturbation
function µ(ε) at ε i. In fact (see [9])

∂ µ(0) = {−λ : λ is a multiplier vector for (P0)}.

If λ is unique, this implies that µ is differentiable at 0 and▽µ(0) =−λ . Note that

∂ µ(a) = {φ ∈ Rn : (φ ,η−a)≤ µ(η)−µ(a)}.

We will apply the convex multiplier rule in the sequel. Note that the necessity of
(23) requires a constraint qualification, such as Slater’s condition, while sufficiency
does not. Thus, in our applications we do not have to worry about any constraint
qualification. For, as soon as we can solve (23), the sufficiency guarantees optimal-
ity. Note that necessity is used in numerical algorithms.

3 Generating Eigenvalue Bounds

We consider the n×n matrix A which has real eigenvalues λ1 ≥ . . .≥ λn. We have
seen how to apply optimization techniques in order to prove several known inequal-
ities. Now suppose that we are given several facts about the matrix A, e.g. n, traceA
and/or detA etc... In order to find upper (lower) bounds for f (λ ), a function of the
eigenvalues, we could then maximize (minimize) f (λ ) subject to the constraints
corresponding to the given facts about A. An explicit solution to the optimization
problem would then provide the, previously unknown, best upper (lower) bounds
to f (λ ) given these facts. To be able to obtain an explicit solution we must choose
simple enough constraints and/or have a lot of patience.

Suppose we wish to obtain a lower bound for λk, the k-th largest eigenvalue,
given the facts that

K := traceA, m :=
K
n
, L := traceA2, s2 :=

L
n
−m2.

Then we can try and solve the program

min λk
subject to (a) ∑

n
i=1 λi = K,

(b) ∑
n
i=1 λ 2

i ≤ L,
(c) λk−λi ≤ 0, i = 1, . . . ,k−1,
(d) λi−λk ≤ 0, i = k+1, . . . ,n.

(24)

This is a program in the variables λi with n,k,K and L fixed. We have replaced
the constraint ∑λ 2

i = L with ∑λ 2
i ≤ L. This increases the feasible set of vectors

λ = (λi) and so the solution of (24) still provides a lower bound for λk. However, the
program now becomes a convex program. Note that (traceA)2 = (∑λi)

2 ≤ n∑λ 2
i =
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ntraceA2, by the Cauchy-Schwartz inequality, with equality if and only if λ1 = λ2 =
. . . = λn. Thus, if (traceA)2 = ntraceA2, then we can immediately conclude that
λi = traceA/n, i= 1, . . . ,n. Moreover, if nL ̸=K2, then nL>K2, and we can always
find a feasible solution to the constraints which strictly satisfies ∑λ 2

i < L, and hence
we can always satisfy the generalized Slater CQ.

Theorem 6. If K2 < nL and 1 < k ≤ n, then the (unique) explicit solution to (24) is

λ1 = . . .= λk−1 = m+ s
( n−k+1

k−1

) 1
2 ,

λk = . . .= λn = m− s
( k−1

n−k+1

) 1
2 ,

(25)

with Lagrange multipliers for the constraints (a) to (d) in (24) being

α = −m
ns

( k−1
n−k+1

) 1
2 − 1

n ,

β =
( k−1

n−k+1

) 1
2 1

2ns ,
γi = 0, i = 1, . . . ,k−1,
γi =

1
n−k+1 , i = k+1, . . . ,n,

(26)

respectively.

Proof. Since (24) is a convex program, the Karush-Kuhn-Tucker conditions are suf-
ficient for optimality. Thus, we need only verify that the above solution satisfies both
the constraints and (23). However, let us suppose that the solution is unknown be-
forehand, and show that we can use the necessity of (23) to find it. We get

α +2βλi− γi = 0, i = 1, . . . ,k−1 (27a)

1+α +2βλk +
k−1

∑
i=1

γi−
n

∑
i=k+1

γi = 0 (27b)

α +2βλi + γi = 0, i = k+1, . . . ,n, (27c)

α ∈ R,β ≥ 0,β

(
n

∑
i=1

λ
2
i −L

)
= 0,γi ≥ 0,γi(λi−λk) = 0, i = 1, . . . ,n. (27d)

Now, if β = 0, then

α = γi =−γ j, i = 1, . . . ,k−1, j = k+1, . . . ,n.

This implies that they are all 0, (or all > 0 if k = n) which contradicts (27b). Thus,
β > 0 and, by (27d),

∑
i

λ
2
i = L. (28)

From (27a) to (27d), we now have

λi =
−α

2β
+

γi

2β
, i = 1, . . . ,k−1,
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λ j =
−α

2β
−

γ j

2β
, j = k+1, . . . ,n,

λk =
−α

2β
− 1

2β
−

k−1

∑
i=1

γi

2β
+

n

∑
j=k+1

γ j

2β
.

Suppose γi0 > 0, where 1≤ i0 ≤ k−1. Then (27a) and (27d) imply that λk = λi0 =
−α

2β
+

γi0
2β

. On the other hand, since we need

λi =
−α

2β
+

γi

2β
≥ λk =

−α

2β
+

γi0
2β

>
−α

2β
, i = 1, . . . ,k−1,

we must have γi > 0, i = 1, . . . ,k−1 and, by complementary slackness,

λi = λk =
−α + γi

2β
, i = 1, . . . ,k−1. (29)

But then

λk =
−α

2β
− 1

2β
−

k−1

∑
j=1

γ j

2β
+

n

∑
j=k+1

γ j

2β
=
−α

2β
+

γi

2β
, i = 1, . . . ,k−1,

which implies ∑
n
j=k+1 γ j > 0. But γ j > 0 implies λ j = λk. This yields λ1 = . . . =

λk = . . .= λn, a contradiction since we assumed nL > K2. Thus, we conclude that

γi = 0, i = 1, . . . ,k−1.

Now if γ j0 > 0, for some k+ 1 ≤ j0 ≤ n, then λ j0 =
−α

2β
− 1

2β
+∑

n
j=k+1

γ j
2β

. Since

λ j =
−α

2β
− λ j

2β
≤ λk, we must have γ j > 0, for all j = k+1, . . . ,n. Note that γ j = 0

for all j = k+1, . . . ,n, leads to a contradiction since then λ j =
−α

2β
> λk =

−α

2β
− 1

2β
.

Thus we have shown that the λi’s split into two parts,

λ1 = . . .= λk−1 > λk = . . .= λn. (30)

The Lagrange multipliers also split into two parts,

γ1 = . . .= γk−1 = 0,γk+1 = . . .= γn = γ.

We now explicitly solve for λ1,λk,α,β , and γ . From the first two constraints and
(28) we get

(k−1)λ1 +(n− k+1)λk = K,
(k−1)λ 2

1 +(n− k+1)λ 2
k = L.

(31)

Eliminating one of the variables in (31) and solving the resulting quadratic yields
(25). Uniqueness of (25) follows from the necessity of the optimality conditions.
It also follows from the strict convexity of the quadratic constraint in the program
(24). Using the partition in (30), we can substitute (27c) in (27b) to get
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1+α +2β (
−α− γ

2β
)− (n− k)γ = 0,

i.e.

γ =
1

n− k+1
. (32)

In addition, λ1−λk =
−α

2β
−
(
−α

2β
− γ

2β

)
implies

β =
γ

2(λ1−λk)
=

(
k−1

n− k+1

) 1
2 1

2ns
, (33)

while

α =−2λ1β =
−m
ns

(
k−1

n− k+1

) 1
2
− 1

n
. (34)

In the above, we have made use of the necessity of the Karush-Kuhn-Tucker
(KKT ) conditions to eliminate non-optimal feasible solutions. Sufficiency of the
KKT conditions in the convex case, then guarantees that we have actually found the
optimal solution and so we need not worry about any constraint qualification. We
can verify our solution by substituting into (27).

The explicit optimal solution yields the lower bound as well as conditions for it
to be attained.

Corollary 1. Let 1 < k ≤ n. Then

λk ≥ m−
(

k−1
n− k+1

) 1
2

s, (35)

with equality if and only if λ1 = . . .= λk−1,λk = . . .= λn.

The above Corollary is given in [12] but with a different proof. From the proof
of Theorem 6, we see that β = 0 if k = 1 and so the quadratic constraint ∑λ 2

i ≤ L
may not be binding at the optimum. Thus the solution may violate the fact that
∑λ 2

i = traceA2. This suggests that we can do better if we replace the inequality
constraint by the equality constraint ∑λ 2

i = L. We, however, lose the nice convexity
properties of the problem. However, applying the John conditions, Theorem 2, and
using a similar argument to the proof of Theorem 6, yields the explicit solution

λ1 = . . .= λn−1 = m+ s/(n−1)
1
2

λn = m− (n−1)
1
2 s,
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i.e. we get the lower bound

λ1 ≥ m+ s/(n−1)
1
2 ,

with equality if and only if λ1 = . . . = λn−1. (This result is also given in [12] but
with a different proof.)

The Lagrange multipliers obtained in Theorem 6 also provide the sensitivity co-
efficients for program (24). (In fact, the multipliers are unique and so the perturba-
tion function is differentiable.) This helps in obtaining further bounds for the eigen-
values when we have some additional information, e.g. from Gerŝgorin discs. We
can now improve our lower bound and also obtain lower bounds for other eigenval-
ues.

Corollary 2. Let 1 < k < n. Suppose that we know

λk+i−λk ≤−εi, (36)

where εi ≥ 0, i = 1, . . . ,n− k. Then

λk ≥ m−
(

k−1
n− k+1

) 1
2

s+
1

n− k+1

n−k

∑
i=1

εi. (37)

Proof. The result follows immediately from the left-hand side of (22), if we perturb
the constraints in program (24) as given in (36) and use the multipliers γi =

1
n=k+1 .

Note that λk remains the k-th largest eigenvalue.

Corollary 3. Let 1 < k < n. Suppose that we know

λk+i−1−λk+t ≤ εi,

for some εi ≥ 0, i = 1, . . . , t. Then

λk+t ≥ m−
(

k−1
n− k+1

) 1
2

s− 1
n− k+1

t

∑
i=1

εi.

Proof. Suppose that we perturb the constraints in program (24) to obtain

λk+i−λk ≤ εi, i = 1, . . . , t. (38)

Since εi ≥ 0, this allows a change in the ordering of the λi, for then we can have
λk+i = λk + εi > λk. Thus the perturbation in the hypothesis is equivalent to (38).
From (22), the result follows, since the k-th ordered λi has become the (k + t)-th
order λi.
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The results obtained using perturbations in the above two Corollaries can be ap-
proached in a different way. Since the perturbation function µ is convex (see e.g.
[9]) we are obtaining a lower estimate of the perturbed value µ(ε) by using the mul-
tiplier whose negative is an element of the sub-differential ∂ µ(ε). We can however
obtain better estimates by solving program (24) with the new perturbed constraints.

Theorem 7. Under the hypotheses of Corollary 2, we get

λk ≥ m−
(

k−1
n− k+1

) 1
2

sε +
1

n− k+1

t

∑
j=1

ε j, (39)

where

s2
ε = s2−

(n− k+1)∑
t
j=1 ε2

j −
(

∑
t
j=1 ε j

)2

n(n− k+1)
.

Equality holds if and only if

λ1 = . . .= λk−1;λk+i−λk =−εi, i = 1, . . . , t.

Proof. We replace the last set of constraints in program (24) by the perturbed con-
straints (36), for i = k+1, . . . ,k+ t. The arguments in the proof of Theorem 6 show
that the solution must satisfy (28) and

λ1 = . . .= λk−1;λk+ j−λk =−ε j, j = 1, . . . , t.

We can assume that k+ t = n, since we must have λk+t+ j ≤ λk+t and so we can add
the constraints

λk+t+ j−λk ≤−εt , j > 1,

if required. This leads to the system

(k−1)λ1 +∑
t
j=1(λk− ε j) = K,

(k−1)λ 2
1 +∑

t
j=1(λk− ε j)

2 = L.
(40)

Let ε := ∑
t
j=1 ε j and ε̄ := ∑

t
j=1 ε2

j . Then (40) reduces to

(k−1)λ1 +(n− k+1)λk = Kε := K + ε,
(k−1)λ 2

1 +(n− k+1)λ 2
k −2ελk = Lε := L− ε̄.

Then
λk = (Kε − (k−1)λ1)/(n− k+1).

Substituting for λk yields the quadratic

n(k−1)λ 2
1 −2(k−1)(Kε − ε)λ1 +K2

ε −2εKε − (n− k+1)Lε = 0,

which implies
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λ1 =
K
n
+

(
n− k+1

k−1

) 1
2
{
(n− k+1)Lε + ε2

n(n− k+1)
−
(

K
n

)2
} 1

2

(41)

and

λk =
K
n
+

ε

n− k+1
−
(

k−1
n− k+1

) 1
2
{

L
n
− (n− k+1)ε̄ + ε2

n(n− k+1)
−
(

K
n

)2
} 1

2

.(42)

Note that the partial derivative with respect to −ε j, at ε j = 0, of the lower bound
for λk in (39) is −1/(n− k+ 1). This agrees with the fact that the corresponding
multiplier is γ j = 1/(n− k+1).

Corollary 3 can be improved in the same way that Theorem 7 improves Corollary
2. We need to consider the program (24) with the new constraints

λk−i−λk ≤ εi, i = 1, . . . , t,

where εi ≥ 0 and k has replaced k+t. Further improvements can be obtained if more
information is known. For example, we might know that

λt+i−λt ≤−εi, i = 1, . . . ,s,

where l + s < t + s < k or k+ s < t + s < n. In these cases we would obtain a result
as in Theorem 7.

In the remainder of this section we consider bounds for λk +λℓ and λk−λℓ. To
obtain a lower bound for λk +λℓ we consider the program

minimize λk +λℓ

subject to (a) ∑λi = K,
(b) ∑λ 2

i ≤ L,
(c) λi−λk ≤ 0, i = k+1, . . . , ℓ
(d) λ j−λℓ ≤ 0, j = ℓ+1, . . . ,n.

(43)

Note that we have ignored the constraints λi− λk ≥ 0, i = 1, . . . ,k− 1. From our
previous work in the proof of Theorem 6, we see that the Lagrange multipliers for
these constraints should all be 0, i.e. we can safely ignore these constraints without
weakening the bound.

Theorem 8. Suppose that K2 < nL and 1≤ k < ℓ≤ n. Then the explicit solution to
(43) is

1. If n− ℓ > ℓ− k−1, then

λ1 = . . .= λk−1 = m+ s
( n−k+1

k−1

) 1
2 ,

λk = . . .= λn = m− s
( k−1

n−k+1

) 1
2 ,

(44)
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with Lagrange multipliers for the constraints

α =−2βλk− 2
(n−k+1) ,

β = 1
ns

( k−1
n−k+1

) 1
2 ,

γi = δ j = 2/(n− k+1), i = k+1, . . . , ℓ−1, j = ℓ+1, . . . ,n,
γℓ =

2(n−ℓ+1)
n−k+1 −1.

(45)

2. If n− ℓ≤ ℓ− k−1, then λ1 is the solution of the quadratic (51) and

λ1 = . . .= λk−1,

λk = . . .= λℓ−1 = λ1 +
K−nλ1
2(ℓ−k)

λℓ = . . .= λn = λ1 +
K−nλ1

2(n−ℓ+1)

(46)

with Lagrange multipliers for the constraints being

α =−2βλ1,
β = 1

nλ1−K ,

γi = 1/(ℓ− k), i = k+1, . . . , ℓ−1,γℓ = 0,
δ j = 1/(n− ℓ+1), j = ℓ+1, . . . ,n.

Proof. To simplify notation, we let β ← 2β . The Karush-Kuhn-Tucker conditions
for (43) yield

(a) α + βλi = 0, i = 1, . . . ,k−1,
(b) 1 + α + βλk − ∑

ℓ
i=k+1 γi = 0,

(c) α + βλi + γi = 0, i = k+1, . . . , ℓ−1,
(d) 1 + α + βλℓ + γℓ − ∑

n
j=ℓ+1 δ j = 0,

(e) α + βλ j + δ j = 0, j = ℓ+1, . . . ,n,
( f ) β ,γi,δ j ≥ 0, β

(
∑

n
1 λ 2

t −L
)
= 0, ∀i, j,

(g) γi(λi−λk) = 0, δ j(λ j−λℓ) = 0, ∀i, j.

(47)

First suppose that β = 0. If k > 1, we get that α = 0 and so γi = δ j = 0, for all
i, j. This contradicts (47)(b). If k = 1, we get α =−δ j =−γi, for all i, j. So if α ̸= 0,
we must have λ1 = . . .= λn = m. So we can let k > 1 and assume that β > 0. Then
we get

λi = − α

β
i = 1, . . . ,k−1

λk = −1
β
− α

β
+ ∑

ℓ
i=k+1

γi
β

λi = − α

β
− γi

β
i = k+1 . . . , ℓ−1

λℓ =
−1
β
− α

β
− γℓ

β
+

∑
n
j=ℓ+1 δ j

β

λ j =
−α

β
− δ j

β
j = ℓ+1, . . . ,n

To simplify notation, the index i will now refer to i = k+1, . . . , ℓ−1 while the index
j will refer to j = ℓ+1, . . . ,n. Since λi0 ≤ λk, i0 = k+1, . . . , ℓ−1, we get
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∑γi ≥ 1− γi0 . (48)

Therefore, there exists at least one γi0 > 0. This implies that λi0 = λk, and

γi0 = 1−
ℓ

∑
i=k+1

γi.

Now if γi1 = 0, then

λi1 =
−α

β
>
−α

β
−

γi0
β

= λi0 = λk,

which is a contradiction. We conclude

λi0 = λk,γi0 = 1−∑
ℓ
i=k+1 γi, i0 = k+1, . . . , ℓ−1.

Note that if γℓ = 0, we get

γi = 1/(ℓ− k), i = k+1, . . . , ℓ−1.

Similarly, since λ j0 ≤ λℓ, j0 = ℓ+1, . . . ,n, we get

∑δ j− γℓ ≥ 1−δ j,

i.e. at least one δ j0 > 0 and so λ j0 = λℓ. But if δ j1 = 0, then

λ j1 =
−α

β
>
−α

β
−

δ j0
β

= λ j0 = λℓ,

a contradiction. We conclude

λ j0 = λℓ,δ j0 = 1−∑
n
l+1 δ j + γℓ, j0 = ℓ+1, . . . ,n.

So that if γℓ = 0, we also have

δ j = 1/(n− ℓ+1), j = ℓ+1, . . . ,n.

There now remains two cases to consider:

γℓ = 0 and γℓ > 0.

Since λk ≥ λℓ, we must have

ℓ−1

∑
i=k+1

γi +2γℓ ≥
n

∑
j=ℓ+1

δ j.

Moreover
λ j ≤ λℓ ≤ λk = λi, for all i, j,
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which implies that
δ j ≥ γi, for all i, j.

So that if γℓ = 0, we must have

ℓ− k−1 > n− ℓ.

From the expressions for γi,δ j, we get

λk = −1
β
− α

β
+ ℓ−k−1

(ℓ−k)β ,

= λi =
−α

β
− 1

(ℓ−k)β , i = k+1, . . . , ℓ−1,
λℓ =

−1
β
− α

β
+ n−ℓ

(n−ℓ+1)β ,

= λ j =
−α

β
− 1

(n−ℓ+1)β , j = ℓ+1, . . . ,n.

Thus
λk = λ1− 1

β (ℓ−k) ,

λℓ = λ1− 1
β (n−ℓ+1) .

(49)

After substitution, this yields

−1
β

=
K−nλ1

2
. (50)

Since β > 0, we can apply complementary slackness and substitute for λk and λℓ.
We get the quadratic

(k−1)λ 2
1 +(ℓ− k)

(
λ1 +

K−nλ1

2(ℓ− k)

)2

+(n− ℓ+1)
(

λ1 +
K−nλ1

2(n− ℓ+1)

)2

= L,

(51)
or equivalently{

4(ℓ− k)(n− ℓ+1)(k−1)+(n− l +1)(2(ℓ− k)−n)2 +(l− k)(2(n− ℓ+1)−n)2
}

λ 2
1

+2K {(n− l +1)(2(ℓ− k)−n)+(l− k)(2(n− ℓ+1)−n)}λ1
+
{
(n− l +1)K2 +(l− k)K2−4(ℓ− k)(n− ℓ+1)L

}
= 0.

Note that the above implies

λk +λℓ = 2λ1 +
K−nλ1

2

(
1

ℓ− k
+

1
n− ℓ+1

)
. (52)

In the case that ℓ− k−1 < n− ℓ, we get γℓ > 0. Thus, λℓ = λk and

λi = λk, i = k+1, . . . ,n. (53)

Substitution yields the desired optimal values for λ . Moreover,
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γi = δ j = 1−
ℓ

∑
t=k+1

γt = 1−
n

∑
s=ℓ+1

δs + γℓ.

Let γ = γi and δ = δ j, then we get

γ = δ = 1− (ℓ− k−1)γ− γℓ = 1− (n− ℓ)δ + γℓ.

This implies
γ = δ = 2/(n− k+1)
γℓ =

2(n−ℓ+1)
n−k+1 −1.

(54)

Now if k > 1, we see that

β =
γi

λ1−λi
= 2

(
k−1

n− k+1

) 1
2
/(ns).

Then
α =−βλk− γi.

To obtain an upper bound for λk−λℓ, we consider the program

minimize −λk +λℓ

subject to ∑λi = K,

∑λ 2
i ≤ L,

λk−λi ≤ 0, i = 1, . . . ,k−1,
λ j−λℓ ≤ 0, j = ℓ+1, . . . ,n

(55)

Theorem 9. Suppose that K2 < nL and 1 < k < ℓ < n. Let m̄ = m, L̄ = L− (l− k−
1)m̄, and s̄2 = L̄

k+n−l+1 − m̄2. Then the explicit solution to program (55) is

λ1 = . . .= λk = m+ n−ℓ+1
k s̄ = m+ 1

2kβ
,

λk+1 = . . .= λℓ−1 = m̄ = m,

λℓ = . . .= λn = m+ k
n−ℓ+1 s̄, = m− 1

2(n−ℓ+1)β ,
(56)

with Lagrange multipliers for the four sets of constraints being

α = −2mβ ,

β =

√
1
k +

1
n−l+1

2
√

ns
γi = 1/k, i = 1, . . . ,k−1,
δ j = 1/(n− ℓ+1), j = ℓ+1, . . . ,n,

(57)

respectively.
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Proof. The proof is similar to that in Theorem 8. Alternatively, sufficiency of the
KKT can be used.

The Theorem yields the upper bound

λk−λℓ ≤ n
1
2 s
(

1
k
+

1
n− ℓ+1

) 1
2
.

4 Fractional Programming

We now apply techniques from the theory of fractional programming to derive
bounds for the Kantorovich ratio

λk−λℓ

λk +λℓ
. (58)

This ratio is useful in deriving rates of convergence for the accelerated steepest
descent method, e.g. [6].

Consider the fractional program (e.g. [10, 11])

max
{

f (x)
g(x)

: x ∈F

}
. (59)

If f is concave and g is convex and positive, then h = f
g is a pseudo-concave func-

tion, i.e. h : Rn → R satisfies (y− x)t▽ h(x) ≤ 0 implies h(y) ≤ h(x). The convex
multiplier rules still hold if the objective function is pseudo-convex. We could there-
fore generate bounds for the ratio (58) as was done for λk in Section 3. However, it
is simpler to use the following parametric technique. Let

h(q) := max{ f (x)−qg(x) : x ∈F} . (60)

Lemma 1 ([2]). Suppose that g(x) > 0, for all x ∈F , and that q is a zero of h(q)
with corresponding solution x̄ ∈F . Then x̄ solves (59).

Proof. Suppose not. Then there exists x ∈F such that

q =
f (x̄)
g(x̄)

<
f (x)
g(x)

,

which yields 0 < f (x)−qg(x). This contradicts the definition of q.

We also need the following
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Lemma 2 ([12]). Let w,λ ∈ Rn be real, nonzero vectors, and let

m = λ
T e/n and s2 = λ

TCλ/n,

where e is the n×1 vector of ones, and the centering matrix C = I− eeT/n. Then

−s(nwTCw)
1
2 ≤ wT

λ −mwT e = wTCλ ≤ s(nwTCw)
1
2 .

Equality holds on the left (resp. right) if and only if

λ = aw+be

for some scalars a and b, where a≤ 0 (resp. a≥ 0).

We now use the above techniques to derive an upper bound for the Kantorovich
ratio in (58). Consider the program

max γkℓ =
λk−λℓ
λk+λℓ

subject to ∑λi = K
∑λ 2

i ≤ L
λk−λi ≤ 0, i = 1, . . . ,k−1
λi−λℓ ≤ 0, i = ℓ+1, . . . ,n.

(61)

Theorem 10. Suppose that 1 < k < ℓ< n,K2 < nL, and Theorem 8 guarantees λk +
λℓ > 0. Then the explicit solution to (61) is

λ1 = . . .= λk = p̄ (n−ℓ+1+k)−(n−ℓ+1)(1−p̂
1
2 )

k(n−ℓ+1+k)

λk+1 = . . .= λℓ−1 = traceA2

traceA

λℓ = . . .= λn = p̄ 1−p̂
1
2

n−ℓ+1+k ,

(62)

γkℓ =
(p+ k)(n− ℓ+1− p)

1
2 (n− ℓ+1+ k)

2(p+ k)(k(n− ℓ+1))
1
2 +{(p+ k)(n− ℓ+1− p)} 1

2 (n− ℓ+1+ k)
,

where
p := K2

L − (ℓ−1)
p̄ := K− (ℓ− k−1) L

K

p̂ := 1− k
n−ℓ+1 (n− ℓ+1+ k)

(
1
k +

ℓ−k−1
p̄2

( L
K

)2− L
p̄2

)
.

Proof. Let F denote the feasible set of (61), i.e. the set of λ = (λi) ∈Rn satisfying
the constraints. We consider the following parametric program

(Pq) h(q) := max{(λk−λℓ)−q(λk +λℓ) : λ ∈F} .

Then h(q) is a strictly decreasing function of q and, if λ ∗ solves (Pq) with h(q) = 0,
then, by the above Lemma 1, λ ∗ solves the initial program (61) also.
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The objective function of (Pq) can be rewritten as min−(1− q)λk +(1+ q)λℓ.
The Karush-Kuhn-Tucker conditions for (Pq) now yield (with β ← 2β again):

k− th

l− th



. . .

. . .

. . .
−(1−q)

. . .

. . .
1+q
. . .
. . .


+α



1
. . .
. . .
. . .
. . .
. . .
. . .
. . .
1


+β



λ1
. . .
. . .
. . .
. . .
. . .
. . .
. . .
λn


+ . . .+



. . .
−δi
. . .
. . .
. . .
. . .
. . .
. . .
. . .


+



. . .

. . .

. . .

∑
k−1
i=1 δi
. . .
. . .
. . .
. . .
. . .



+



. . .

. . .

. . .

. . .

. . .

. . .

∑
n
i=ℓ+1 γi
. . .
. . .


+ . . .+ . . .



. . .

. . .

. . .

. . .

. . .

. . .

. . .
γ j
. . .


= 0

β ≥ 0;δi ≥ 0,∀i = 1, . . . ,k−1;γ j ≥ 0,∀ j = ℓ+1, . . . ,n;λ ∈F ;

β
(
∑λ

2
i −K2)= 0;δi (λk−λi) = 0,∀i;γ j (λ j−λℓ) = 0,∀ j.

Since λk ≥ λℓ and we seek q such that h(q) = 0, we need only consider q > 0.
Further, if β = 0, then we get the following cases:

k < i < ℓ : 0 = α +βλi implies α = 0
i < k : 0 = α +βλi−δi implies α = δi = 0
ℓ < i : 0 = α = βλi + γi implies α =−γi = 0
i = k : 0 =−(1−q)+α +βλk +∑δi implies α =−∑δi +1−q
ℓ= i : 0 =+(1+q)+α +βλℓ−∑δi implies α = ∑γi− (1+q).

(63)

These equations are inconsistent. Therefore, we can assume β > 0, which implies
that ∑λ 2

i = L.
Now, for i < k, either λk = λi or δi = 0 which implies that λi =−α/β . Similarly,

for ℓ < i, λℓ = λi or λi =−α/β . And, for k < i < ℓ, λi =−α/β . We can therefore
see that our solution must satisfy

λi = λk, i = 1, . . . ,k
λi = λ , i = k+1, . . . , ℓ−1
λi = λℓ, i = ℓ, . . . ,n.

Now rather than continuing in this way, we can apply Lemma 2. Let w = (wi), with
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wi =
1−q

k , i = 1, . . . ,k
wi = 0, i = k+1, . . . , ℓ−1
wi =

−(1+q)
n−ℓ+1 , i = ℓ, . . . ,n.

Then
(1−q)λk− (1+q)λℓ =

(1−q)
k ∑

k
i=1 λi− (1+q)

n−ℓ+1 ∑
n
i=ℓ λi = wT λ ;

mwT e = m(1−q−1−q) =−2mq;
wTCw = wT Iw− 1

n wT eeT w

= (1−q)2

k + (1+q)2

n−ℓ+1 −
1
n (4q2)

nwTCw = n(1−q)2

k + n(1+q)2

n−ℓ+1 −4q2.

Therefore, Lemma 2 yields

(1−q)λ1− (1+q)λn ≤−2mq+ s
{

n(1−q)2

k
+

n(1+q)2

n− ℓ+1
−4q2

} 1
2

, (64)

with equality if and only if
λ = aw+be,

for some scalars a and b with a ≥ 0. And, the right hand side of (64) equals h(q),
the maximum value of (Pq).

We now need to find q such that h(q) = 0, i.e.

4m2q2 = s2
{

n(1−q)2

k
+

n(1+q)2

n− ℓ+1
−4q2

}
;

k(n− ℓ+1)4m2q2 = (n− ℓ+1)s2n(1−q)2 + ks2n(1+q)2− k(n− ℓ+1)s24q2;(
−k(n− ℓ+1)4m2 + s2n(n− ℓ+1+ k)− k(n− ℓ+1)s24

)
q2

+2s2n(−(n− ℓ+1)+ k)q
+s2n((n− ℓ+1)+ k) = 0

[(ns2−4km2−4s2k)(n− ℓ+1)+ns2k]q2 +2ns2(k− (n− ℓ+1))q+ns2(n− ℓ+1+ k) = 0

q=
−ns2(k− (n− ℓ+1))−n2s4(k− (n− ℓ+1))2− [as above]ns2(n− ℓ+1+ k)

1
2

[as above]
.

We have chosen the negative radical for the root, since the quantity in [ ] is negative
and we need q > 0. The conditions for equality in (64) yield:

λi = a (1−q)
k +b, i = 1, . . . ,k

λi = b, i = k+1, . . . , ℓ−1
λi =

−a(1+q)
n−ℓ+1 +b, i = ℓ, . . . ,n

or
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λk−λℓ
λk+λℓ

=
a
(

1−q
k

)
+b+ a(1+q)

n−ℓ+1−b
a(1−q)

k − a(1+q)
n−ℓ+1 +2b

= a(1−q)(n−ℓ+1)+ak(1+q)
a(n−ℓ+1)(1−q)−a(1+q)k+2bk(n−ℓ+1) .

We now solve for a and b by substituting for λi in ∑λi = K and ∑λ 2
i = L:

k
(

a(1−q)
k

)
+b+(ℓ− k−1)b+(n− ℓ+1)

(
−a(1+q)
n− ℓ+1

)
+b = K

or
(k+ ℓ− k−1+n− ℓ+1)b = K−a(1−q)+a(1+q)

b =
2aq+K

n
.

And

k
(

a(1−q)
k

)
+b2 +(ℓ− k−1)b2 +(n− ℓ−1)

(
−a(1−q)
n− ℓ+1

+b2
)
= K2

or

[k+ℓ−k−1+n−ℓ+1]b2+[2a(1−q)−2a(1+q)]b+
a2(1−q)2

k
+

a2(1+q)2

n− ℓ+1
−K = 0

k
(

a
1−q

k
+

2aq+K
n

)2

+(ℓ−k−1)
(

2aq+K
n

)2

+(n−ℓ+1)
(
−a(1+q)
n− ℓ+1

+
2aq+K

n

)
−K = 0

k
(

a
(

1−q
k

+
2q
n

)
+

K
n

)2

+(ℓ− k−1)
(

2aq
n

+
K
n

)2

+(n− ℓ+1)
(
+a
(
−(1+q)
n− ℓ+1

+
2q
n

)
+

K
n

)2

−L = 0;

[k
(

1−q
k

+
2q
n

)2

+(ℓ− k−1)
4q2

n2 +(n− ℓ+1)
(
−(1−q)
n− ℓ+1

+
2q
n

)2

]a2

+a2[k
(

1−q
k

+
2q
n

)
K
n
+(ℓ− k−1)

2q
n

K
n
+(n− ℓ+1)

(
2q
n
− (1+q)

n− ℓ+1

)
K
n
]

+k
(

K
n

)2

+(ℓ− k−1)
(

K
n

)2

+(n− ℓ+1)
(

K
n

)2

−L = 0[
−4q2

n
+

(1−q)2

k
+

(1+q)2

n− ℓ+1

]
a2 +nm2−L = 0

a =
−nm2 +L

−4q2

n + (1−q)2

k + (1+q)2

(n−ℓ+1)

1
2

Substitution for the λi yields the desired results.
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Let γ = λk/λℓ. Then

γkℓ =
γ−1
γ +1

and
dγkℓ

dγ

=
2

(γ +1)2 > 0.

Thus γ is isotonic to γkℓ. This yields an upper bound to γkℓ, see [13]: If (to guarantee
λℓ > 0) we have (ℓ−1)L < L, then

λk

λℓ
≤

c+ k+
{ n−ℓ+1

k (c+ k)(n− ℓ+1− c)
} 1

2

c+ k−
{ k

n−ℓ+1 (c+ k)(n− ℓ+1− c)
} 1

2
,

where

c =
(K)2

L
− (ℓ−1).

(These inequalities are also given in [7].) Note that

γ +1
γ−1

=
λk +λℓ

λk−λℓ
,

is reverse isotonic to γ . Thus we can derive a lower bound for this ratio.

5 Conclusion

We have used optimization techniques to derive bounds for functions of the eigen-
values of an n×n matrix A with real eigenvalues. By varying both the function to be
minimized (maximized) and the constraints of a properly formulated program we
have been able to derive bounds for the k-th largest eigenvalue, as well as for sums,
differences and ratios of eigenvalues. Additional information about the eigenval-
ues was introduced to improve the bounds using the shadow prices of the program.
Many more different variations remain to be tried.

The results obtained are actually about ordered sets of numbers λ1 ≥ . . . ≥ λn
and do not depend on the fact that these numbers are the eigenvalues of a matrix.
We can use this to extend the bounds to complex eigenvalues. The constraints on
the traces can be replaced by

∑vi = traceT,∑(vi)
2 ≤ traceT ∗T,

where vi can take on the real, imaginary, and modulus of the eigenvalues λi, and the
matrix T can become (A+A∗)/2, (A−A∗)/2i. Further improvements can be made
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by using improvements of the Schur inequality ∑(vi)
2 ≤ traceT ∗T . This approach

is presented in [12] and [13].
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