
The Generalized Trust Region Subproblem

Ting Kei Pong ∗ Henry Wolkowicz †

November 17, 2012

Abstract

The interval bounded generalized trust region subproblem (GTRS) consists in minimizing a general

quadratic objective, q0(x) → min, subject to an upper and lower bounded general quadratic constraint,

ℓ ≤ q1(x) ≤ u. This means that there are no definiteness assumptions on either quadratic function. We

first study characterizations of optimality for this implicitly convex problem under a constraint qualifi-

cation and show that it can be assumed without loss of generality. We next classify the GTRS into easy

case and hard case instances, and demonstrate that the upper and lower bounded general problem can be

reduced to an equivalent equality constrained problem after identifying suitable generalized eigenvalues

and possibly solving a sparse system. We then discuss how the Rendl-Wolkowicz algorithm proposed in

[11, 29] can be extended to solve the resulting equality constrained problem, highlighting the connec-

tion between the GTRS and the problem of finding minimum generalized eigenvalues of a parameterized

matrix pencil. Finally, we present numerical results to illustrate this algorithm at the end of the paper.

Contents

1 Introduction 2

1.1 Outline . 4

1.2 Notation . 4

2 Duality and optimality conditions 4

2.1 Assumptions and properties . 5

2.2 Weak duality . 7

2.3 Strong duality and characterization of optimality . 7

3 Easy and hard cases and regular pencils 11

3.1 Regular case . 11

3.1.1 Three intervals for λ . 16

4 A method for solving GTRS: the extended Rendl-Wolkowicz algorithm 17

4.1 Properties of k0(t) . 19

4.2 Recovering solution of GTRS from maximizing k(t) . 25

4.3 Implementation details . 28

∗Department of Combinatorics and Optimization, University of Waterloo, Ontario N2L 3G1, Canada. Research supported

by AFOSR. Email: ptingkei@uwaterloo.ca
†Research supported by The Natural Sciences and Engineering Research Council of Canada and by AFOSR. Email: hwolkow-

icz@uwaterloo.ca

1

http://orion.uwaterloo.ca/~tkpong/
http://orion.math.uwaterloo.ca/~hwolkowi/

5 Numerical experiments with new RW algorithm 33

5.1 B is positive definite . 34

5.2 B is indefinite . 35

6 Conclusion 37

A Proof of Theorem 2.1(ii) 37

Index 42

List of Tables

1 The three different cases for GTRS. 15

2 Computational results for indefinite A and positive definite B. 35

3 Computational results for positive definite A and positive definite B. 36

4 Computational results for positive definite A and indefinite B. 37

List of Figures

1 ψ(λ) when B is indefinite. The dotted lines are λ = λ
¯
and λ = λ̄. 13

2 ψ(λ) when B is positive definite. The dotted line is λ = λ̄. 14

3 d(λ) when B is indefinite. The dotted lines are λ = λ
¯
and λ = λ̄. 22

4 d(λ) when B is positive definite with s0 < −1. The dotted line is λ = λ̄. 24

5 d(λ) when B is positive definite with s0 > −1. The dotted line is λ = λ̄. 24

1 Introduction

We consider the following quadratic minimization problem, which we call the interval bounded generalized

trust region subproblem (GTRS):

(GTRS)

p∗ := inf q0(x) := xTAx− 2aTx

s.t. ℓ ≤ xTBx− 2bTx︸ ︷︷ ︸
q1(x)

≤ u. (1.1)

Here A, B ∈ Sn, the space of real n × n symmetric matrices, a, b ∈ R
n, and −∞ < l ≤ u < ∞. To avoid

trivialities, we assume that B 6= 0 and the GTRS is feasible.1 We emphasize that the quadratic constraint is

two-sided, and both the objective and constraint functions are possibly nonconvex. Thus we are essentially

considering a general nonlinear program with a quadratic objective and two quadratic constraints.

Problem (1.1) is most studied in the one-sided ball-constrained case, i.e., the special case when B = I,

b = 0, and ℓ = 0 < u, known as the trust region subproblem (TRS):

(TRS)
inf xTAx− 2aTx

s.t. xTx ≤ u. (1.2)

These problems arise in regularization or trust region methods for unconstrained and constrained nonlinear

programming; see, e.g., [7] for a comprehensive discussion. The TRS provides a quadratic model in a trust

1Checking feasibility for GTRS is simple, see Theorem 2.1(i), below.

2

region around the current point. The use of scaled trust regions with a general B ≻ 0 in the constraint

(see, e.g. [15]) motivates our consideration of GTRS. In our general consideration of (1.1), our scaled trust

region is defined with a possibly indefinite B; hence, xTBx could be a quadratic form induced from the

indefinite inner product 〈x, y〉 := xTBy; see, e.g. [13]. This together with the two-sided constraints model

annular/hyperbolic type regions that allow minimum as well as maximum “steplengths”. In addition, the

possibly nonzero b accounts for a shift of the “center” of the trust region, which allows trust regions to be

built around previous iterates.

Problem (1.2) is explicitly nonconvex, since A is not necessarily positive semidefinite. Nevertheless, it is

implicitly convex in that necessary and sufficient optimality conditions have been derived, see Gay [12] and

Moré and Sorensen [25]. The conditions are rephrased in a modern primal-dual paradigm in, for example,

[7, 10, 11, 15, 29, 34]. The optimality conditions of the TRS can also be derived using the S-lemma; see,

e.g. [28]. The S-lemma, developed by Yakubovich [36] in 1971, states whether a quadratic (in)equality is

a consequence of other quadratic (in)equalities. The earliest results of this kind date back to Finsler [9]

and Hestenes and McShane [19] and we refer the readers to [28] for a detailed account of its history and its

applications. Turning to the more general problem (1.1), necessary and sufficient optimality conditions have

been studied in [24, 34], under certain constraint qualifications in the special cases when b = 0 or u = ℓ.

The general case (1.1) was considered in [37, Section 2.1] under a dual strict feasibility assumption; see also

[3, 8, 20]. Further references are available in the online bibliography [17].

The necessary and sufficient optimality conditions for (1.2) have been the basis for developing efficient

algorithms for solving TRS. The classical algorithm [25] by Moré and Sorensen (MS algorithm) applies

Newton’s method with backtracking to the so-called secular function, and takes a primal step to the boundary

for near hard case instances. This algorithm can be expensive since each iteration requires a full Cholesky

factorization. The MS algorithm was later incorporated into the generalized Lanzcos trust-region (GLTR)

method [15, 16]. The GLTR algorithm first uses the Lanzcos procedure to obtain a sequence of TRS on

low dimensional subspaces with tridiagonal matrices as objectives. The resulting sequence of TRS can be

solved efficiently by the MS algorithm. Another line of algorithms involves reformulating the TRS into a

parameterized eigenvalue problem. This includes, e.g., the Rendl-Wolkowicz (RW) algorithm [11, 29], the

large-scale trust-region subproblem (LSTRS) by Rojas et al. [31, 32] and its variant [21]. These algorithms

are factorization free, and can take advantage of well developed eigensolvers for large, sparse matrices. Other

algorithms for TRS can be found in, e.g. [18, 33, 35]. Despite the many algorithms developed for TRS, there

are currently no algorithms specifically designed for the general problem (1.1); though the special case when

B ≻ 0, b = 0 and ℓ = 0 can be solved by the GLTR method.

In this paper we present characterizations of optimality and propose an algorithm for solving large-scale

instances of GTRS (1.1). Specifically, we obtain optimality conditions under a constraint qualification and

show that it can be assumed without loss of generality. Our results show that even though the GTRS is a

problem consisting of general, possibly nonconvex, quadratic functions, it has both necessary and sufficient

optimality conditions as in convex programming, and it has strong duality results as in linear programming,

in the sense that when the constraint qualification fails, the problem can be explicitly solved. Thus, the

GTRS sits on the boundary between linear and nonlinear programming, and on the boundary between

convex, and general nonconvex programming. We also discuss in detail the so-called easy and hard cases

corresponding to (non)singularity of the Hessian of the Lagrangian, which was previously only studied for

some special cases of (1.1) in [34]. Moreover, as in [11], we include a shift and deflate operation that finds

an explicit solution in the hard case (case 2). We then demonstrate that the GTRS can be reduced to an

equality constrained problem (i.e., an instance of GTRS with u = ℓ) after finding some suitable generalized

eigenvalues and possibly solving a sparse system. To solve this equality constrained problem, we generalize

the ideas in [11, 29] and transform the problem into a parameterized generalized eigenvalue problem. The

latter problem can then take advantage of specialized solvers for finding generalized eigenvalues/eigenvectors,

3

e.g., the eigifp developed in [14]. We compare this approach with the GLTR algorithm (when B ≻ 0) and

a simple implementation of Newton’s method with the Armijo line search rule as applied to solve the dual

problem of (1.1). Our computational results on large-scale instances show that our approach is competitive

with the Newton’s method and usually outperforms the GLTR algorithm for random sparse positive definite

B in both runtime and solution accuracy. In the case when B is indefinite, our approach requires additional

inputs for initialization; see Section 4.3 for details. Granting such inputs, our computational results show

that our approach is competitive with the Newton’s method.

1.1 Outline

We complete this section with some preliminary notations in Section 1.2. We then present the character-

izations of optimality in Section 2. This includes a constraint qualification that can be assumed without

loss of generality in the sense that if it fails, then an explicit solution of the GTRS (1.1) can be obtained.

In Section 3, we discuss the so-called easy and hard cases, the shift and deflation procedure to obtain an

explicit solution in the hard case, and the reduction to an equality constrained problem. The algorithm

for this equality constrained problem and its implementation details are discussed in Section 4. We present

numerical tests in Section 5 and finally some concluding remarks in Section 6.

1.2 Notation

In this paper, the symbol Rn denotes the n-dimensional vector space. For v ∈ R
n, ‖v‖ denotes the Euclidean

norm of v. The space of n × n symmetric matrices equipped with the trace inner-product is denoted by

Sn. For C ∈ Sn, λmax(C) and λmin(C) denote the largest and smallest eigenvalue of C, respectively. For

C,D ∈ Sn, C � D,C ≻ D denote C −D is positive semidefinite, and positive definite, respectively. For a

(not necessarily symmetric) square matrixM , tr(M) denotes the trace ofM , M † denotes the Moore-Penrose

generalized inverse of M , and Null(M) and Range(M) denote its null and range spaces, respectively. The

identity matrix is denoted by I, whose dimension should be clear from the context.

For an interval J on the real line, the symbol cl(J) denotes its closure, and ri(J) denotes its relative

interior. Finally, for a subspace V of Rn, the orthogonal complement of V is denoted by V ⊥, and if a vector

v ∈ R
n is orthogonal to V , we write v⊥V .

2 Duality and optimality conditions

In this section, we present the characterizations of optimality and duality properties for GTRS (1.1). In

particular, we include assumptions that can be made without loss of generality. These assumptions include

a constraint qualification, whose failure means that an explicit solution for GTRS can be obtained.

We start by writing down the Lagrangian dual of (1.1). The Lagrangian for (1.1) can be written with

one free Lagrange multiplier λ, or with two nonnegative Lagrange multipliers2

λ+ := max{λ, 0}, λ− := −min{λ, 0}, λ = (λ+ − λ−) : (2.1)

L(x, λ+, λ−) = xTAx− 2aTx+ λ+(ℓ − (xTBx− 2bTx)) + λ−(xTBx− 2bTx− u).
= xT (A− (λ+ − λ−)B)x− 2(a− (λ+ − λ−)b)Tx+ λ+ℓ− λ−u.
= xT (A− λB)x − 2(a− λb)Tx+ λ+ℓ− λ−u.

2Note that complementary slackness can be written with a single Lagrange multiplier λ ∈ R as follows: (q1(x)− ℓ)λ ≤ 0 ≤

(u− q1(x))λ.

4

The Lagrangian dual problem of (1.1) can then be reduced to the following problem:

(D-GTRS)
d∗ := sup h(λ) + ℓλ+ − uλ−

s.t. A− λB � 0,
(2.2)

where the dual functional

h(λ) = inf
x

xT (A− λB)x− 2(a− λb)Tx

=

{
−(a− λb)T (A− λB)†(a− λb) if a− λb ∈ Range(A− λB), A− λB � 0,

−∞ otherwise.

Note that the objective function in D-GTRS is concave. In this paper, we will also look at the following

closely related problem formed by enforcing positive definiteness in (2.2) and thus reducing the size of the

feasible set:

(D≻-GTRS)
d∗≻ := sup h≻(λ) + ℓλ+ − uλ−

s.t. A− λB ≻ 0,
(2.3)

where

h≻(λ) := −(a− λb)T (A− λB)−1(a− λb).

It is useful to study this problem since positive definiteness as in (2.3) is maintained in the algorithm

presented below. Finally, we write down the semidefinite programming (SDP) relaxation of GTRS

(SDP-GTRS)

p∗SDP := inf tr(AX)− 2aTx

s.t. ℓ ≤ tr(BX)− 2bTx ≤ u,
X � xxT .

(2.4)

By a Schur complement argument, the final inequality is equivalent to the linear constraint

[
1 xT

x X

]
� 0.

Proposition 2.1. The dual of SDP-GTRS is

(DSDP-GTRS)

d∗DSDP := sup ℓλ+ − uλ− − γ

s.t.

[
γ −(a− λb)T

−(a− λb) A− λB

]
� 0,

(2.5)

where the multipliers are defined in (2.1). Moreover, (2.5) is equivalent to (2.2) with d∗DSDP = d∗.

Proof. It is routine to show that the dual of (2.4) is given by (2.5). Furthermore, by considering the Schur

complement, for any γ, λ ∈ R, we have

[
γ −(a− λb)T

−(a− λb) A− λB

]
� 0 ⇔





γ ≥ (a− λb)T (A− λB)†(a− λb)
a− λb ∈ Range(A− λB)

A− λB � 0.

Thus, (2.5) is equivalent to (2.2).

2.1 Assumptions and properties

We consider the following assumptions on the GTRS (1.1).

Assumption 2.1.

5

1. B 6= 0

2. GTRS (1.1) is feasible.

3. the following relative interior constraint qualification holds

(RICQ) tr(BX̂)− 2bT x̂ ∈ ri([ℓ, u]), for some X̂ ≻ x̂x̂T . (2.6)

4. GTRS is bounded below.

5. D-GTRS (2.2) is feasible.

Note that Assumption 2.1 together with weak duality yields

−∞ < d∗ ≤ p∗ < +∞. (2.7)

We show in the next theorem that Assumption 2.1 is reasonable in the sense that they can be made without

loss of generality, i.e., if an assumption fails then an explicit solution or a simplification can be easily obtained.

Theorem 2.1. The following holds for the Items in Assumption 2.1.

(i) The Items 1, 2, 3 in Assumption 2.1 can be made in the order given, without loss of generality, i.e., if

an assumption fails then an explicit solution can easily be obtained.

(ii) If Items 1, 2, 3 in Assumption 2.1 hold and b = 0, then Item 4 implies Item 5.

(iii) If Item 4 in Assumption 2.1 fails, then Item 5 fails.

Proof. Let x∗ := B†b, q∗1 := q1(x
∗). We now provide the details about how the assumptions hold in the

order given.

(i) • Suppose that B = 0, i.e., the constraint is linear. If A � 0, a ∈ Range(A) and the unconstrained

minimum x̄ = A†a satisfies ℓ ≤ −2bT (A†a) ≤ u, then x̄ solves GTRS. Otherwise, the optimum, if it

exists, is on one of the two boundaries. Therefore, we can change the linear inequality constraint

to an equality, and we can again check for an unconstrained minimum after the appropriate

substitution using the linear constraint. Therefore, the assumption that B 6= 0 can be made

without loss of generality.

• First, GTRS is infeasible if, and only if, the following three conditions hold:

B is semidefinite;

b ∈ Range(B) (equivalently b = Bx∗);

q∗1 < ℓ if B � 0; or q∗1 > u if B � 0.

More precisely, the characterization for infeasibility follows from the fact that q1 is bounded below

with minimum at x∗ (resp. bounded above with maximum at x∗) if, and only if, b ∈ Range(B)

and B � 0 (resp. B � 0). We can verify the semidefiniteness of B by finding the largest and

smallest eigenvalues. The range condition follows from finding the best least squares solution of

Bx = b. If the range condition holds, then the final inequalities can be checked by evaluating

q1 at x∗. Thus, we conclude that feasibility can be verified by finding λmax(B) and λmin(B) and

solving a system of equations, and hence, Assumption 2.1, Item 2, can be made without loss of

generality.

6

• Suppose that Assumption 2.1, Items 1-2 hold, but the RICQ Assumption 2.1, Item 3 fails. Then we

can find an explicit solution for GTRS. More precisely, since the RICQ fails, we have b ∈ Range(B),

and either B � 0 with ℓ = supxTBx−2bTx or B � 0 with u = inf xTBx−2bTx. In either case, the

conditions imply that the feasible set is x∗ +Null(B). We can then use a nullspace representation

and substitute into the objective function to obtain an explicit solution or realize that the problem

is unbounded below. In conclusion, if RICQ fails, we can obtain an explicit solution or realize

that the problem is unbounded.

(ii) This conclusion is proved as Proposition A.1 in the appendix.

(iii) If Assumption 2.1, Item 5 holds, then d∗ > −∞. We thus see from (2.7) that p∗ > −∞, i.e., Item 4

holds.

Remark 2.1. From the proof of Theorem 2.1(i) above, it is not hard to see that if we assume Items 1

and 2 of Assumption 2.1, then the RICQ (2.6) may fail only when the constraint is convex and no Slater

point (strict feasibility) exists. Comparing this with [24, Lemma 3.1], we see that the RICQ is equivalent to

condition (3.2) in that paper, proposed for GTRS (1.1) with u = ℓ.

For the rest of the paper, we assume that Assumption 2.1 holds.

2.2 Weak duality

We have the following weak duality result describing the relationship between the optimal values of the above

optimization problems.

Proposition 2.2. The optimal values satisfy

−∞ ≤ d∗≻ ≤ d∗ = d∗DSDP ≤ p∗SDP ≤ p∗ < +∞. (2.8)

Moreover, if d∗≻ > −∞, then d∗≻ = d∗.

Proof. The proof of (2.8) follows from the feasibility Assumption 2.1, weak duality, Proposition 2.1 and the

definitions.

Now suppose that d∗≻ is finite and suppose to the contrary that d∗≻ < d∗. Then there exists λ1 and λ2

feasible for (2.2) and (2.3), respectively, such that f(λ1) > d∗− d∗−d∗

≻

2 and f(λ2) > d∗≻ −
d∗−d∗

≻

2 , where f(λ)

is the common objective function for both problems. Since f(λ) is clearly a concave function and λ1+λ2

2 is

feasible for (2.3), we obtain that

d∗≻ ≥ f
(
λ1 + λ2

2

)
≥ f(λ1) + f(λ2)

2
>
d∗ + d∗≻

2
− d∗ − d∗≻

2
= d∗≻,

a contradiction. This completes the proof.

2.3 Strong duality and characterization of optimality

We show below that equality holds for four of the five finite optimal values in (2.8); and, moreover, two

of them are attained. We start with the following technical lemma where the quadratic forms in (1.1) are

linearized. Recall that a Schur complement argument implies that the quadratic constraint X � xxT in

(2.9) is equivalent to the linear constraint

[
1 xT

x X

]
� 0.

7

Lemma 2.1. Let C ≻ A and let

p∗C,SDP := inf tr(CX)− 2aTx

s.t. ℓ ≤ tr(BX)− 2bTx ≤ u,
X � xxT .

(2.9)

Then, the optimal value p∗C,SDP is finite and attained.

Proof. The programs (D-GTRS) and (SDP-GTRS) are dual to each other. Assumption 2.1 implies that

(2.9) is feasible and that there exists λ̂ satisfying the Slater condition C − λ̂B ≻ A − λ̂B � 0, i.e., a Slater

point exists for (D-GTRS) when A is replaced by C. This means that the dual program (2.9) is feasible and

attained.

We next prove strong duality between (1.1) and (2.2). This technical result is used repeatedly throughout

this paper. Similarly as in [6], we make use of bounds on the rank of the extreme points of SDP representable

sets [1, 2, 27] to prove the exactness of the SDP relaxations.

Theorem 2.2. Recall that Assumption 2.1 holds. Then the following holds for GTRS:

(i) The optimal values of GTRS and its SDP relaxation are equal,

p∗SDP = p∗.

(ii) Strong duality holds for GTRS, i.e., p∗ = d∗ and the dual optimal value d∗ is attained. Moreover,

equality holds for four of the five optimal values in (2.8),

d∗≻ ≤ d∗ = d∗DSDP = p∗SDP = p∗. (2.10)

Moreover, if d∗≻ > −∞, then all quantities in (2.10) are equal.

Proof. (i) For each ǫ ≥ 0, let Aǫ := A+ ǫI. Consider the following perturbation of (1.1)

p∗ǫ = inf{xTAǫx− 2aTx : ℓ ≤ xTBx− 2bTx ≤ u},

and its SDP relaxation

v∗ǫ = inf{tr(AǫX)− 2aTx : ℓ ≤ tr(BX)− 2bTx ≤ u,X � xxT }

= inf

{
tr(AǫX)− 2aTx : ℓ ≤ tr(BX)− 2bTx ≤ u, U =

[
1 xT

x X

]
� 0

}
.

Then p∗ǫ ≥ v∗ǫ , for all ǫ ≥ 0.

We proceed by first showing that p∗ǫ = v∗ǫ for each fixed ǫ > 0. We start with the case when ℓ = u. In

this case, the SDP relaxation can be written as

inf tr

([
0 −aT
−a Aǫ

]
U

)

s.t. tr

([
0 −bT
−b B

]
U

)
= u,

U1,1 = 1, U � 0.

The optimal set of the above SDP is nonempty by Lemma 2.1. Since the cone of positive semidefinite

matrices does not contain lines, the optimal value must be attained at an extreme point U∗ of the

8

feasible set. Since there are two equality constraints, by [27, Theorem 2.2], the rank rU of the extreme

point satisfies

rU (rU + 1) ≤ 4.

Since U∗ 6= 0, we must have rU = 1 and hence U∗ =

[
1

x∗

] [
1 x∗T

]
, for some x∗. Then x∗ is feasible

for (1.1) and we conclude that p∗ǫ = v∗ǫ .

Next, we consider the case when ℓ < u. In this case, the SDP relaxation can be written as

inf tr

([
0 −aT
−a Aǫ

]
U

)

s.t. tr

([
0 −bT
−b B

]
U

)
− α = l,

tr

([
0 −bT
−b B

]
U

)
+ β = u,

U1,1 = 1, U � 0, α ≥ 0, β ≥ 0.

The optimal set of the above SDP is nonempty, again by Lemma 2.1. Hence, the optimal value must be

attained at an extreme point (U∗, α∗, β∗) of the feasible set. Since there are three equality constraints,

by [27, Theorem 2.2], the ranks rU ,rα and rβ of this extreme point have to satisfy

rU (rU + 1) + rα(rα + 1) + rβ(rβ + 1) ≤ 6. (2.11)

Notice that at optimality, α∗ and β∗ cannot both be zero. This fact together with (2.11) and the fact

U∗ 6= 0 shows that rU = 1 and hence U∗ =

[
1

x∗

] [
1 x∗T

]
, for some x∗. Then x∗ is feasible for (1.1)

and we again conclude that p∗ǫ = v∗ǫ .

Hence, we have shown that p∗ǫ = v∗ǫ , for all ǫ > 0. Now, let (x,X) be feasible for the SDP relaxation

(2.4). Then we have

v∗0 ≤ p∗0 ≤ lim
ǫ↓0

p∗ǫ = lim
ǫ↓0

v∗ǫ ≤ lim
ǫ↓0

tr(AǫX)− 2aTx = tr(AX)− 2aTx.

Taking the infimum over the feasible set of the SDP relaxation gives the desired equality v∗0 = p∗0. This

completes the proof.

(ii) Recall that the Lagrangian dual of the SDP relaxation (2.4) is given by (2.5). Moreover, from RICQ

(2.6), the generalized Slater condition for (2.4) holds with the Slater point

[
1 x̂T

x̂ X̂

]
. Hence p∗0 = v∗0 =

d∗DSDP = d∗ and the dual optimal values are attained. This proves (2.10). The rest of the claim follows

from Proposition 2.2.

We remark that, when ℓ < u in the above proof, the equality p∗ǫ = v∗ǫ , for all ǫ > 0, can also be obtained

as a consequence of [37, Theorem 2.3]. We are now ready to characterize optimality for GTRS. We note that

our constraint qualification (2.6) is different from that of [34, Theorem 2.1]. In particular, we do not require

ℓ < u when B is indefinite with the optimal solution in its kernel and b = 0. Moreover, as seen in Theorem

2.1, Assumption 2.1 can be made without loss of generality.

9

Theorem 2.3. Recall that Assumption 2.1 holds. A point x∗ is a solution to GTRS (1.1) if, and only if,

for some (Lagrange multiplier) λ∗ ∈ R, we have

(A− λ∗B)x∗ = a− λ∗b,
A− λ∗B � 0,

}
dual feasibility

ℓ ≤ x∗TBx∗ − 2bTx∗ ≤ u, primal feasibility

(λ∗)+(ℓ− x∗TBx∗ + 2bTx∗) = 0,

(λ∗)−(x
∗TBx∗ − 2bTx∗ − u) = 0.

}
complementary slackness

(2.12)

Proof. Suppose first that x∗ is a solution to (1.1). Then the third relation in (2.12) holds. Furthermore, by

Theorem 2.2, strong duality holds. Hence, there exists λ∗ such that

p∗ = x∗TAx∗ − 2aTx∗ = inf
ℓ≤xTBx−2bT x≤u

xTAx− 2aTx (2.13)

= sup
λ

inf
x

xTAx − 2aTx+ λ+(ℓ− xTBx+ 2bTx) + λ−(x
TBx− 2bTx− u)

= inf
x

xTAx− 2aTx+ λ∗+(ℓ− xTBx+ 2bTx) + λ∗−(x
TBx− 2bTx− u). (2.14)

The first two relations in (2.12) follow immediately from the optimality condition of the unconstrained

optimization problem (2.14). Moreover, from (2.14) and primal feasibility of x∗, we have

p∗ = inf
x

xTAx − 2aTx+ λ∗+(ℓ− xTBx+ 2bTx) + λ∗−(x
TBx− 2bTx− u)

≤ x∗TAx∗ − 2aTx∗ + λ∗+(ℓ− x∗TBx∗ + 2bTx∗) + λ∗−(x
∗TBx∗ − 2bTx∗ − u) ≤ x∗TAx∗ − 2aTx∗.

Comparing this last relation with (2.13), we obtain the complementary slackness expressions in the last two

relations of (2.12).

Next, assume that x∗ is primal feasible and that there exists λ∗ so that (2.12) holds. Then we have the

following chain of inequalities.

p∗ ≥ d∗ = sup
λ

inf
x

xTAx− 2aTx+ λ+(ℓ− xTBx+ 2bTx) + λ−(x
TBx− 2bTx− u)

≥ inf
x

xTAx− 2aTx+ λ∗+(ℓ− xTBx+ 2bTx) + λ∗−(x
TBx− 2bTx− u)

= x∗TAx∗ − 2aTx∗ + λ∗+(ℓ − x∗TBx∗ + 2bTx∗) + λ∗−(x
∗TBx∗ − 2bTx∗ − u)

= x∗TAx∗ − 2aTx∗ ≥ p∗,

where the first equality follows from the definition of the Lagrangian dual problem, the second equality follows

from the first two relations of (2.12), the third equality follows from the last two relations of (2.12), while the

last inequality follows from the primal feasibility of x∗. Thus, in particular, we have x∗TAx∗ − 2aTx∗ = p∗,

and so x∗ solves (1.1).

Remark 2.2. We note that in proving the optimality conditions (i.e., version of Theorem 2.3) in [24, 34] for

the special cases of GTRS (1.1), the authors did not assume Items 4 and 5 of Assumption 2.1. Indeed, suppose

we only assume Items 1 through 3 of Assumption 2.1. When b = 0, if x∗ is known to be a solution of the GTRS

(1.1), then the problem is bounded below and thus by Theorem 2.1(ii), we conclude that Assumption 2.1 holds.

On the other hand, if there exists λ∗ and x∗ such that (2.12) holds, then we conclude from Theorem 2.1(iii)

that Assumption 2.1 holds. Thus, our result is a strict improvement of [34, Theorem 2.1], which assumes in

addition b = 0, since our RICQ (2.6) is weaker than condition (2.5) in [34, Theorem 2.1]. However, since

it is not known to us whether Item 4 implies Item 5 when b 6= 0, we cannot assert that our Theorem 2.3

reduces to [24, Theorem 3.2], even though our RICQ is equivalent to their constraint qualifications.

10

Example 2.1. We illustrate that (2.10) can fail if Assumption 2.1 is violated. Moreover, attainment for

GTRS can fail. Consider
inf x1x2
s.t. x21 = 0.

Then clearly, the optimal value of the above optimization problem is zero. Moreover, the optimal value of its

SDP relaxation, which is given below, is also zero:

inf X12

s.t. X11 = 0, X � 0.

However, it is not hard to observe that the dual problem is infeasible and thus the dual optimal value d∗ =

−∞. Hence, we have p∗ = p∗SDP > d∗. Indeed, Assumption 2.1 Item 3 and Item 5 are violated and thus

Theorem 2.2 does not apply.

In the unconstrained case, boundedness below of q0(x) yields attainment. This is not the case for GTRS.

Consider
inf x22
s.t. x1x2 = 1.

The optimal value 0 is unattained. Note that λ = 0 is the unique dual feasible point. Further results on

attainment can be found in, e.g., [23].

3 Easy and hard cases and regular pencils

From the first two relations in (2.12), it is obvious that we have to work with A− λI and the eigenvalues of

A for TRS. Similarly, for GTRS, we have to deal with generalized eigenvalues and the matrix pencil A−λB
corresponding to the matrix pair (A,B). In the latter case, due to the arbitrariness of B, several “singular”

cases may arise, see e.g., [26]. Below are some prototypical examples.

1. Consider the case when A = B =

[
1 0

0 0

]
, where e2 =

[
0

1

]
is a common nullspace vector. Then

the corresponding generalized eigenvalues include all of R, i.e. the determinant det(A − tB) = 0 is

identically 0 in t. This case is problematic since a small perturbation in the matrices can cause a big

change in the solution set.

2. Let A =

[
0 1

1 0

]
, B =

[
1 0

0 −1

]
. The eigenpairs include complex eigenvalues. This case is problematic

as the dual problem is infeasible.

3.1 Regular case

To avoid the aforementioned singular matrix cases, we assume from now on that the matrix pencil is definite.

This corresponds to the so-called (positively) regular case in [34].

Regular Pencil Ĉ := A− λ̂B ≻ 0, for some λ̂ ∈ R. (3.1)

Condition (3.1) covers most of the interesting cases. Indeed, it is shown in [34, Lemma 2.3] that if (3.1) fails

and det(A − tB) is not an identically zero polynomial in t, then the feasible set of (2.2) is a singleton set.

Condition (3.1) also guarantees the existence of a solution to (1.1); the proof of this fact follows similarly to

that of Lemma 2.1. For convenience in the discussions below, we state this result as a proposition.

Proposition 3.1. If condition (3.1) holds, then the GTRS problem (1.1) has an optimal solution.

11

Proof. See the proofs of Lemma 2.1 and Theorem 2.2(i).

Under the additional regularity assumption (3.1), we would like to classify the GTRS into the so-called

easy case and hard cases analogously to the classical trust region subproblem. To this end, we follow a

similar line of arguments as in [34, Section 3], which analyzed the case when ℓ = u = 1 and b = 0. We have

to make use of the fact that under (3.1), the matrix pencil A − λB is diagonalizable by a congruence, see

e.g., [22, Theorem 10.1]. We include a proof in Theorem 3.1 below for the convenience of the readers.

Theorem 3.1. Recall that the pencil is (positively) regular. Then, there exists an invertible matrix S and

diagonal matrices D1 and D2 such that

A = SD1S
T and B = SD2S

T .

Furthermore, A− λB � 0 if, and only if,

λ := max
{i:βi<0}

αi

βi
≤ λ ≤ min

{i:βi>0}

αi

βi
=: λ, (3.2)

where αi and βi are the ith diagonal entry of D1 and D2, respectively. Moreover, (λ, λ) is a nonempty open

interval; at least one of the end points of the interval has to be finite; and,

|αi|+ |βi| > 0, ∀i.

Proof. Let Ĉ be as in (3.1). Without loss of generality, we can assume λ̂ 6= 0. Let Ĉ = PDPT de-

note the spectral decomposition (orthogonal diagonalization) of Ĉ. Therefore the diagonal D satisfies

0 ≺ D = PT (A − λ̂B)P and, I = D−1/2PT (A − λ̂B)PD−1/2. Let Q give the orthogonal diagonaliza-

tion of D−1/2PTAPD−1/2, i.e. QTD−1/2PTAPD−1/2Q = D1. Define S = PD1/2Q. Then it follows that

A = SD1S
T and B = − 1

λ̂
S(I −D1)S

T .

Since positive semidefiniteness is preserved under congruence, we see immediately that A − λB � 0 if,

and only if,

D1 − λD2 � 0.

Since D1 and D2 are diagonal, we obtain further that A− λB � 0 is equivalent to

λ := max
{i:βi<0}

αi

βi
≤ λ ≤ min

{i:βi>0}

αi

βi
=: λ,

where αi and βi are the ith diagonal entry of D1 and D2, respectively. Next, note that λ ∈ (λ, λ) if, and

only if, A−λB ≻ 0. Thus, by (3.1), (λ, λ) is a nonempty open interval. Furthermore, since B 6= 0, it follows

that at least one of the end points of the interval has to be finite. Finally, we note that αi and βi cannot

both be zero, because of (3.1).

We remark that the equivalence in (3.2) was established earlier in [24, Theorem 5.3]; see also [34,

Lemma 3.1]. Next, for each real λ ∈ cl(λ, λ), the closure of the interval, we define the first order stationary

point

x(λ) := (A− λB)†(a− λb), (3.3)

and the constraint evaluated at x(λ)

ψ(λ) := q1(x(λ))

= (a− λb)T (A− λB)†B(A− λB)†(a− λb)− 2bT (A− λB)†(a− λb). (3.4)

Recall that in the TRS case where B = I and b = 0, we can orthogonally diagonalize A and get λ = −∞ <

λ∗ ≤ λ = λmin(A). In addition, if we also have a = 0 (homogeneous case), then both x(λ) and ψ(λ) are

constant functions, identically 0. This property extends to the general case as follows, whose proof can be

found in [24, Page 202].

12

Lemma 3.1. Let λ ∈ (λ, λ). Then the functions x(λ) and ψ(λ) in (3.3) and (3.4), respectively, are differ-

entiable with derivatives given by

x′(λ) = (A− λB)−1(Bx(λ) − b),
ψ′(λ) = 2x′(λ)T (A− λB)x′(λ).

Moreover, on (λ, λ), ψ(λ) is either constant or strictly increasing with

ψ constant in (λ, λ) ⇔ x′(λ) = 0, for some λ ∈ (λ, λ)

⇔ x′(λ) = 0, ∀λ ∈ (λ, λ)

⇔
(
a

b

)
∈ Range

([
A

B

])
.

(3.5)

Remark 3.1. Notice that if (3.5) holds, then (a − λb) = (A − λB)v, for some v. Therefore, the objective

in (2.2) becomes −vT (A− λB)v + ℓλ+ − uλ−. Thus (2.2) reduces to a linear programming problem.

We now define the easy case and the hard cases. Unlike the case for TRS, we have to consider separately

the cases when λ or λ is infinite.

Definition 3.1. The easy case occurs if one of the following three cases holds:

1. both λ and λ are finite, and − limλ↓λ ψ(λ) = limλ↑λ ψ(λ) = +∞;

2. only λ is finite, and limλ↑λ ψ(λ) = +∞;

3. only λ is finite, and limλ↓λ ψ(λ) = −∞.

Otherwise, we have the hard case.

Figure 1: ψ(λ) when B is indefinite. The dotted lines are λ = λ
¯
and λ = λ̄.

−0.06 −0.04 −0.02 0 0.02 0.04 0.06

−4000

−2000

0

2000

4000

6000

8000

ψ(λ): A > 0, B indefinite, easy case

ψ
(λ

)

λ
−1.2 −1 −0.8 −0.6 −0.4 −0.2 0

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

ψ(λ): A > 0, B indefinite, hard case

λ

ψ
(λ

)

From the above definition and Lemma 3.1, we see immediately that in the easy case, the function ψ has

to be strictly increasing on (λ, λ). Sample shapes of the function ψ in the easy and hard cases are shown in

Figures 1 and 2. The next lemma and the discussion following it justify the terminology “easy case”.

13

Figure 2: ψ(λ) when B is positive definite. The dotted line is λ = λ̄.

−16 −14 −12 −10 −8 −6
−10

0

10

20

30

40

50

60

ψ(λ): B > 0, easy case

λ

ψ
(λ

)

−12 −10 −8 −6 −4

−5

0

5

10

15

20

ψ(λ): B > 0, hard case

λ

ψ
(λ

)

Lemma 3.2. If λ = +∞, then limλ↑λ ψ(λ) = supxTBx − 2bTx > ℓ. Similarly, if λ = −∞, then

limλ↓λ ψ(λ) = inf xTBx− 2bTx < u.

Proof. Suppose first that λ = +∞. Then, from the definition of λ, we see that B � 0, is negative semidefinite.

We consider two cases: b ∈ Range(B) and b /∈ Range(B).

Suppose that b ∈ Range(B). Notice first from the definition of λ and λ that A − λB ≻ 0, and so also

B − 1
λA ≺ 0, for all sufficiently large λ. From this and the definition of x(λ), for all sufficiently large λ and

for any x ∈ R
n, we see that

ψ(λ) ≥ xT
(
B − 1

λ
A

)
x− 2

(
b− 1

λ
a

)T

x+
1

λ
q0(x(λ)). (3.6)

Furthermore,

1

λ
q0(x(λ)) =

n∑

i=1

(
αi(ξi − λγi)2
λ(αi − λβi)2

− 2ξ2i − 2λξiγi
λ(αi − λβi)

)
,

where αi and βi are defined as above, while ξ = S−1a and γ = S−1b. Since b ∈ Range(B) means that γi = 0

whenever βi = 0, we see immediately that

lim
λ↑λ

1

λ
q0(x(λ)) = 0.

Taking limits in λ on both sides of (3.6) and then taking the supremum over all x ∈ R
n, we obtain that

limλ↑λ ψ(λ) ≥ supxTBx− 2bTx > ℓ, where the last strict inequality is a consequence of RICQ (2.6). Hence,

the first conclusion follows when b ∈ Range(B).

Next, suppose b /∈ Range(B). Then by the definition of ψ(λ) = q1(x(λ)), we have

q1(x(λ)) =

n∑

i=1

(
βi(ξi − λγi)2
(αi − λβi)2

− 2γiξi − 2λγ2i
(αi − λβi)

)
.

14

The assumption on b implies that there exists i0 such that βi0 = 0 but γi0 6= 0 (notice that by (3.1),

necessarily the corresponding αi0 > 0). Thus, limλ↑λ ψ(λ) = +∞ and the first conclusion holds trivially in

this case.

The case when λ = −∞ can be proved similarly.

From Lemmas 3.1 and 3.2, we see that, in the easy case, ψ(λ) = s has a unique solution in the open

interval (λ, λ) for any s ∈ (inf ψ, supψ). We next show that we can alternatively characterize the easy case

and hard cases via the null space of A − λB or A − λB; see also [34, Section 3.1] for a similar analysis on

the special case of GTRS (1.1) with u = ℓ = 1 and b = 0.

Lemma 3.3. If λ is finite, then limλ↓λ ψ(λ) = −∞ if, and only if, a− λb /∈ Range(A − λB). Similarly, if

λ is finite, then limλ↑λ ψ(λ) = +∞ if, and only if, a− λb /∈ Range(A− λB).

Proof. Suppose first that λ is finite. Then the set of indices I such that αi−λβi = 0 is nonempty. Moreover,

from the definition of λ and the fact that λ < λ, we obtain that βi < 0 for all i ∈ I. Next, notice that for

any λ ∈ (λ, λ), we have from (3.4) that

q1(x(λ)) =
∑

i∈I

(
βi(ξi − λγi)2
(αi − λβi)2

− 2γiξi − 2λγ2i
(αi − λβi)

)
+
∑

i/∈I

(
βi(ξi − λγi)2
(αi − λβi)2

− 2γiξi − 2λγ2i
(αi − λβi)

)
,

with αi, βi defined as above and ξ = S−1a, γ = S−1b. Since a− λb /∈ Range(A − λB) if, and only if, there

exists i0 ∈ I with ξi0 − λγi0 6= 0, the first conclusion now follows immediately. The second statement can be

proved similarly.

Using Lemma 3.3, we see that the hard and easy cases can be alternatively characterized as in Table 1.

1. Easy case 2 (a). Hard case 1 2 (b). Hard case 2

a− λb /∈ Range(A− λB) a− λb ∈ Range(A− λB) a− λb ∈ Range(A− λB)

and or λ∗ = λ

−∞ < λ < λ <∞ a− λb /∈ Range(A− λB) a− λb ∈ Range(A− λB) or

a− λb ∈ Range(A− λB)

(implies λ < λ∗ < λ) λ < λ∗ < λ λ∗ = λ

a− λb /∈ Range(A− λB) a− λb ∈ Range(A− λB) a− λb ∈ Range(A− λB)

−∞ = λ < λ <∞
(implies −∞ < λ∗ < λ) −∞ < λ∗ < λ λ∗ = λ

a− λb /∈ Range(A− λB) a− λb ∈ Range(A− λB) a− λb ∈ Range(A− λB)

−∞ < λ < λ =∞
(implies λ < λ∗ <∞) λ < λ∗ <∞ λ∗ = λ

Table 1: The three different cases for GTRS.

Before describing how the easy case and hard cases can be tackled, we need the following technical lemma

concerning the smallest and largest generalized eigenvalues λ and λ. This result was briefly discussed in [24,

Section 5]. We include a proof here for the convenience of the readers.

Lemma 3.4. If λ is finite, then vTBv > 0 for all v ∈ Null(A − λB)\{0}. Similarly, if λ is finite, then

vTBv < 0 for all v ∈ Null(A− λB)\{0}.

15

Proof. Suppose first that λ is finite and let v ∈ Null(A− λB)\{0}. Take any λ̃ ∈ (λ, λ). Then A − λ̃B ≻ 0

and hence we have

0 < vT (A− λ̃B)v = vT (A− λB)v + (λ− λ̃)vTBv = (λ− λ̃)vTBv.

Since λ > λ̃, we conclude that vTBv > 0. This proves the first part. The second conclusion can be proved

similarly.

3.1.1 Three intervals for λ

We are now ready to describe how GTRS can be tackled. Our discussion is different from that in the

concluding remarks of [24] in several aspects. First, our approach does not require solving two GTRS with

equality constraints. Second, we include detailed discussion about the easy case and the hard cases, with

hard case, case 2, solved explicitly. In what follows, we consider three cases dependent on where 0 is located

relative to the interval (λ, λ).

Case 1: λ < 0 < λ

• Easy case: If ℓ ≤ ψ(0) ≤ u, then it is easy to check that the optimality conditions of GTRS are

satisfied with λ∗ = 0 and x∗ = A−1a. We have an interior solution in this case.

Otherwise, suppose we have ψ(0) < ℓ instead. Since ψ is strictly increasing in (λ, λ), we observe that

the optimal Lagrange multiplier λ∗ > 0, i.e., it has to be positive. From the complementary slackness

condition in (2.12), we observe further that such a multiplier is the unique solution of ψ(λ) = ℓ. The

optimal solution is then given by x(λ∗).

The case when ψ(0) > u can be considered similarly, where the optimal Lagrange multiplier λ∗ < 0

solves ψ(λ) = u, and the optimal solution is x(λ∗).

• Hard case: If ℓ ≤ ψ(0) ≤ u, then x(0) = x∗ = A−1a and we again obtain an interior solution.

Otherwise, we take a primal step to the boundary. First, suppose we have ψ(0) < ℓ. Since ψ is

increasing, we necessarily have λ∗ > 0. If limλ↑λ ψ(λ) > ℓ, then the equation ψ(λ) = ℓ is solvable

and gives the optimal Lagrange multiplier λ∗ < λ. The optimal solution is given by x(λ∗). On the

other hand, consider limλ↑λ ψ(λ) ≤ ℓ. Then λ is finite by Lemma 3.2 and thus q1(x(λ)) = limλ↑λ ψ(λ).

Hence Lemma 3.4 implies that there exists v ∈ Null(A − λB) satisfying vTBv > 0. Scale such v so

that q1(x(λ)+ v) = ℓ. Then an optimal solution is given explicitly by x(λ)+ v, with optimal Lagrange

multiplier equal to λ.

Finally, suppose we have ψ(0) > u instead. Then we necessarily have λ∗ < 0. If limλ↓λ ψ(λ) < u,

then the equation ψ(λ) = u is solvable and gives the optimal Lagrange multiplier λ∗ > λ. The optimal

solution is given by x(λ∗). On the other hand, if limλ↓λ ψ(λ) ≥ u, then λ is finite by Lemma 3.2 and

thus q1(x(λ)) = limλ↓λ ψ(λ). From Lemma 3.4, there exists v ∈ Null(A − λB) satisfying vTBv < 0.

Scale such v so that q1(x(λ) + v) = u. Then an optimal solution is given explicitly by x(λ) + v, with

the corresponding Lagrange multiplier being λ.

Case 2: λ ≤ 0. Notice that the optimal Lagrange multiplier has to be nonpositive and λ has to be finite.

• Easy case: We see that the optimal Lagrange multiplier λ∗ has to be negative, and thus, a solution

of ψ(λ) = u. The optimal solution is then given by x(λ∗).

16

• Hard case: If limλ↓λ ψ(λ) < u < limλ↑λ ψ(λ), then ψ(λ) = u is solvable with the optimal Lagrange

multiplier λ∗ as the unique solution. The optimal solution is again given by x(λ∗).

On the other hand, if limλ↓λ ψ(λ) ≥ u, then by Lemma 3.2, λ is finite and thus q1(x(λ)) = limλ↓λ ψ(λ).

Hence, by Lemma 3.4 there exists v ∈ Null(A − λB) satisfying vTBv < 0. Scale such v so that

q1(x(λ) + v) = u. Then an optimal solution is given explicitly by x(λ) + v, and λ∗ = λ < 0. Finally,

if limλ↑λ ψ(λ) ≤ u, then q1(x(λ)) = limλ↑λ ψ(λ). Thus, by Lemma 3.4 there exists v ∈ Null(A − λB)

satisfying vTBv > 0. Scale such v so that q1(x(λ)+v) = u. Then an optimal solution is given explicitly

by x(λ) + v, and λ∗ = λ ≤ 0.

Case 3: λ ≥ 0. Notice that the optimal Lagrange multiplier has to be nonnegative and λ has to be finite.

• Easy case: Arguing similarly as in Case 2, we conclude that in the easy case, the optimal Lagrange

multiplier λ∗ is a solution of ψ(λ) = ℓ and the optimal solution is given by x(λ∗).

• Hard case: If limλ↓λ ψ(λ) < ℓ < limλ↑λ ψ(λ), then the optimal Lagrange multiplier λ∗ > 0 solves

ψ(λ) = ℓ and the optimal solution is given by x(λ∗). Furthermore, if limλ↓λ ψ(λ) ≥ ℓ, then an optimal

solution is x(λ) + v, where v ∈ Null(A − λB) satisfies vTBv < 0 and q1(x(λ) + v) = ℓ, and λ∗ = λ.

Finally, if limλ↑λ ψ(λ) ≤ ℓ, then an optimal solution is x(λ) + v, where v ∈ Null(A − λB) satisfies

vTBv > 0 and q1(x(λ) + v) = ℓ, and λ∗ = λ.

From the above discussion, we see immediately that, unless A ≻ 0 and A−1a is an interior solution,

the GTRS always has a solution on the boundary of the feasible set. Following the above procedures, we

either end up solving an equality constrained problem, or obtain a closed form solution by moving a point

to the suitable boundary along a suitable generalized eigenvector. In the next section, we will adapt the

Rendl-Wolkowicz (RW) algorithm for TRS in [29] to tackle the equality constrained problem.

Before closing this section, we discuss how to compute limλ↑λ ψ(λ) and limλ↓λ ψ(λ) efficiently, which are

important for the above case analysis. We only outline the procedure for computing limλ↑λ ψ(λ). The one

for computing limλ↓λ ψ(λ) is similar.

Recall that A−λB is singular and positive semidefinite. Thus, a nullspace vector of A−λB can be found

by finding an eigenvector corresponding to the smallest eigenvalue, i.e., 0.

Procedure for computing limλ↑λ ψ(λ).

Step 1. Take v ∈ Null(A− λB)\{0}, ‖v‖ = 1.

If vT (a − λb) 6= 0, this means (a − λb) /∈ Range(A − λB) and thus limλ↑λ ψ(λ) = +∞; quit. Else,

update/deflate A← A+ αvvT for some α > 0. Repeat Step 1 if Null(A− λB) 6= {0}.

Step 2. Solve for x̄ = (A− λB)−1(a− λb). Then limλ↑λ ψ(λ) = ψ(x̄).

4 A method for solving GTRS: the extended Rendl-Wolkowicz

algorithm

In this section, we discuss how the Rendl-Wolkowicz (RW) algorithm proposed in [29] can be adapted to

solve the following equality constrained problem:

(GTRS=)
q∗ = inf q0(x)

s.t. xTBx− 2bTx = s,
(4.1)

17

where s ∈ R. Recall that we assume Assumption 2.1 holds and that the regularity in (3.1) holds. Thus, by

Proposition 3.1, (4.1) has an optimal solution. Following [29], we consider the following chain of inequalities.

q∗ = inf
xT Bx−2bT xy0=s

y2
0
=1

xTAx− 2aTxy0

= sup
t

inf
xT Bx−2bT xy0=s

y2
0
=1

xTAx− 2aTxy0 + t(y20 − 1)

≥ sup
t

inf
xTBx−2bT xy0+y2

0
=s+1

xTAx− 2aTxy0 + t(y20 − 1)

≥ sup
r,t

inf
x,y0

xTAx− 2aTxy0 + t(y20 − 1) + r(xTBx− 2bTxy0 + y20 − s− 1)

= sup
r,τ

inf
x,y0

xTAx− 2aTxy0 + τ(y20 − 1) + r(xTBx− 2bTxy0 − s)

= sup
r

(
sup
τ

inf
x,y0

xTAx− 2aTxy0 + τ(y20 − 1) + r(xTBx− 2bTxy0 − s)
)

(4.2)

Let Ω denote the set of all real numbers r such that A + rB � 0 and a+ rb ∈ Range(A + rB). This set is

nonempty by Assumption 2.1, Item 5. Furthermore, if r /∈ Ω, then it is easy to see that

inf
x,y0

xTAx− 2aTxy0 + τ(y20 − 1) + r(xTBx − 2bTxy0 − s)

= inf
y0

inf
x

xTAx− 2aTxy0 + τ(y20 − 1) + r(xTBx− 2bTxy0 − s) = −∞,
(4.3)

regardless of τ . Thus, continuing from (4.2) we have

sup
r

(
sup
τ

inf
x,y0

xTAx− 2aTxy0 + τ(y20 − 1) + r(xTBx− 2bTxy0 − s)
)

=sup
r∈Ω

(
sup
τ

inf
x,y0

xTAx− 2aTxy0 + τ(y20 − 1) + r(xTBx− 2bTxy0 − s)
)

=sup
r∈Ω

inf
x,y2

0
=1

xTAx− 2aTxy0 + r(xTBx− 2bTxy0 − s)

= sup
r∈Ω

inf
x

xTAx− 2aTx+ r(xTBx− 2bTx− s)

= sup
r

inf
x

xTAx− 2aTx+ r(xTBx− 2bTx− s)

= inf
xTBx−2bT x=s

xTAx− 2aTx = q∗,

where: the first equality follows from the observation in (4.3); while the second equality follows from Theo-

rem 2.2, since for any r ∈ Ω, a Schur complement argument implies that there exists sufficiently large τ such

that [
τ −(a+ rb)T

−(a+ rb) A+ rB

]
� 0;

the third equality follows from the homogenization; the fourth equality follows from an observation similar

to (4.3) for the inner optimization problem; while the last equality follows from Theorem 2.2. Thus, equality

holds throughout in (4.2). In particular, from the third line in (4.2), we have

q∗ = sup
t
k0(t)− t︸ ︷︷ ︸

k(t)

,

where
k0(t) = inf

xTBx−2bT xy0+y2
0
=s+1

xTAx − 2aTxy0 + ty20

= inf

{
yT

[
t −aT
−a A

]
y : yT

[
1 −bT
−b B

]
y = s+ 1

}
.

18

The RW algorithm adapted to our context amounts to solving (4.1) via maximizing k(t).

4.1 Properties of k0(t)

In this subsection, we discuss differentiability of the function k0(t) and show that a maximizer of k(t) :=

k0(t) − t necessarily exists. In addition to Assumption 2.1 and the regularity in (3.1), we also assume that

s + 1 6= 0, which can always be satisfied by scaling B and b. Furthermore, to avoid triviality, we assume

that (3.5) fails so that ψ is strictly increasing. Indeed, in view of Remark 3.1, if (3.5) holds, (2.2) is a simple

linear programming problem and can be readily solved.

Our analysis is based on the following function:

d(λ) := λ+ (a− λb)T (A− λB)†(a− λb).

This function reduces to the d(λ) considered in [29] for problem (1.2). Since d′(λ) = 1 + ψ(λ) on (λ, λ) and

(3.5) fails, we see that this function is strictly convex with strictly increasing derivative on (λ, λ). With a

Schur complement argument, we get the following result.

Lemma 4.1. The following four properties hold.

(i) Suppose λ ∈ (λ, λ). Then

[
t −aT
−a A

]
− λ

[
1 −bT
−b B

]
≻ 0 ⇔ t > d(λ),

[
t −aT
−a A

]
− λ

[
1 −bT
−b B

]
� 0 ⇔ t ≥ d(λ).

(ii) Suppose limλ↓λ d(λ) is finite and λ is finite. Then

[
t −aT
−a A

]
− λ

[
1 −bT
−b B

]
� 0 ⇔ t ≥ d(λ).

(iii) Suppose limλ↑λ d(λ) is finite and λ is finite. Then

[
t −aT
−a A

]
− λ

[
1 −bT
−b B

]
� 0 ⇔ t ≥ d(λ).

(iv) For any s ∈ R, we have

sup

{
(s+ 1)λ :

[
t −aT
−a A

]
− λ

[
1 −bT
−b B

]
� 0

}
= sup

{
(s+ 1)λ : λ ∈ (λ, λ), t ≥ d(λ)

}
.

Proof. For part (i), notice that λ ∈ (λ, λ) if, and only if, A − λB ≻ 0. Hence the conclusion follows

immediately from an application of the Schur complement. For part (ii), notice first that limλ↓λ d(λ) being

finite implies d(λ) = limλ↓λ d(λ) and hence d is continuous and convex on [λ, λ). Next, by taking λ ∈ (λ, λ)

and r > d(λ), we have from part (i) that

[
r −aT
−a A

]
− λ

[
1 −bT
−b B

]
� 0.

19

Hence, the convexity of d(·) and the continuity of d(·) at λ yields

[
t −aT
−a A

]
− λ

[
1 −bT
−b B

]
� 0 ⇔

[
(1− ǫ)t+ ǫr −aT

−a A

]
− [(1− ǫ)λ+ ǫλ]

[
1 −bT
−b B

]
� 0, ∀0 < ǫ < 1,

t ≥ d(λ) ⇔ (1− ǫ)t+ ǫr ≥ d((1 − ǫ)λ+ ǫλ), ∀0 < ǫ < 1.

Since (1 − ǫ)λ + ǫλ ∈ (λ, λ) for all 0 < ǫ < 1, the conclusion of part (ii) now follows immediately from the

above two relations and part (i). Part (iii) can be proved similarly. Finally, part (iv) follows immediately

from parts (i), (ii), (iii) and the fact that

A− λB � 0 ⇔ λ ∈ cl(λ, λ).

We next consider three cases: B is indefinite, positive semidefinite and negative semidefinite. We only

discuss the first two cases in detail since the third case is analogous to the second case. For this purpose, we

will need to consider the following quantities:

t0 := inf
λ<λ<λ

d(λ), t :=




lim
λ↑λ

d(λ) if λ <∞,

∞ else,

s0 := inf xTBx− 2bTx. t :=




lim
λ↓λ

d(λ) if λ > −∞,

∞ else.

(4.4)

We remark that these four quantities are not necessarily finite. Furthermore, it follows from weak duality

that

t0 ≥ − inf
xTBx−2bT x=−1

xTAx− 2aTx.

Hence, t0 is finite when s0 ≤ −1.

Case 1: B is indefinite Notice that in this case, the quantities t0, λ and λ are finite. In the next theorem,

we show that k0(t) is well-defined on a closed interval, and is differentiable in the interior of that interval,

except possibly at one point.

Theorem 4.1. The function k0(t) is well-defined and continuous on t ≥ t0. Moreover:

(i) when s+ 1 > 0, k0(t) is differentiable on (t0, t) ∪ (t,∞), and k0(t) = (s+ 1)λ on t > t;

(ii) when s+ 1 < 0, k0(t) is differentiable on (t0, t) ∪ (t,∞), and k0(t) = (s+ 1)λ on t > t.

Proof. Suppose first that t > t0. Then from the definition of t0, there exists λ so that

λ ∈ (λ, λ), t− d(λ) > 0.

It follows from this, Lemma 4.1(i), (iv) and Theorem 2.2 that

k0(t) = inf

{
yT

[
t −aT
−a A

]
y : yT

[
1 −bT
−b B

]
y = s+ 1

}

= sup

{
(s+ 1)λ :

[
t −aT
−a A

]
− λ

[
1 −bT
−b B

]
� 0

}
> −∞.

(4.5)

20

Thus, k0(t) is finite. Next, suppose t = t0. Notice that the infimum value t0 in (4.4) has to be attained at

some λ0 ∈ [λ, λ]. Thus, we have from Lemma 4.1 that

[
t0 −aT
−a A

]
− λ0

[
1 −bT
−b B

]
� 0.

Hence, from Theorem 2.2, we conclude that (4.5) holds with t = t0. Finally, since k0 is a one variable concave

function, it is continuous in the interior of its domain [30, Theorem 10.1] and is lower semicontinuous up to

the boundary [30, Theorem 10.2]. Furthermore, since k0 is the infimum of a family of continuous functions

t 7→ yT
[
t −aT
−a A

]
y,

it also follows that k0 has to be upper semicontinuous. Thus, k0 is continuous on t ≥ t0.
We now turn to part (i). Since d(λ) is a strictly convex function, we deduce that

d(λ) = t (4.6)

has at most 2 solutions in (λ, λ) for any t > t0, at which d has opposite slopes.

We first consider the case when t is infinite. In this case, there must be a unique solution µ ∈ (λ, λ) to

(4.6) with d′(µ) > 0. Since s+1 > 0, we see from Lemma 4.1(iv) and (4.5) that k0(t) = (s+1)µ. Moreover,

since d′(µ) > 0, by the inverse function theorem, µ is differentiable at t and µ′(t) = 1
d′(µ) . This shows that

k0 is differentiable at t.

We next assume that t is finite. When t0 < t < t, it still holds true that (4.6) has a unique solution

µ ∈ (λ, λ) satisfying d′(µ) > 0 and k0(t) = (s + 1)µ as above. Similarly, it can be shown that k0(t) is

differentiable on t0 < t < t.

On the other hand, when t ≥ t = d(λ), we see from Lemma 4.1(iii) that

[
t −aT
−a A

]
− λ

[
1 −bT
−b B

]
� 0.

Hence, from Lemma 4.1(iv) and (4.5), we conclude that k0(t) = (s + 1)λ. This completes the proof of part

(i).

The cases when s+1 < 0 in part (ii) can be proved similarly, by noting that k0(t) = (s+1)ν for t0 < t < t,

where ν = ν(t) is the unique root of (4.6) in (λ, λ) with d′(ν) < 0.

Before proceeding, we collect several facts that are readily obtained from the proof of Theorem 4.1.

Corollary 4.1. (i) If s+ 1 > 0 and t0 < t < t, then k0(t) = (s + 1)µ, where µ = µ(t) is the unique root

of (4.6) on (λ, λ) with d′(µ) > 0; moreover, µ′(t) = 1
d′(µ) > 0.

(ii) If s+ 1 < 0 and t0 < t < t, then k0(t) = (s+ 1)ν, where ν = ν(t) is the unique root of (4.6) on (λ, λ)

with d′(ν) < 0; moreover, ν′(t) = 1
d′(ν) < 0.

In the next proposition, we confirm that the domain of k0(t) is actually t ≥ t0, i.e., k0(t) = −∞ whenever

t < t0. This is a consequence of the more general result from Proposition A.1.

Corollary 4.2. When t < t0, k0(t) = −∞.

Notice that k′(t) = k′0(t)− 1 whenever t > t0 and k0 is differentiable at t. Moreover, limt↑∞ k′0(t) = 0, in

view of Corollary 4.1 and Theorem 4.1. Thus, it holds true that a maximizer t∗ of k(t) must exist.

21

Figure 3: d(λ) when B is indefinite. The dotted lines are λ = λ
¯
and λ = λ̄.

−0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0 0.05
0

50

100

150

200

250

300

d(λ): A > 0, B indefinite, easy case

λ

d
(λ

)

−0.8 −0.6 −0.4 −0.2 0
25

25.5

26

26.5

27

27.5

28

28.5

29

29.5

30

d(λ): A > 0, B indefinite, hard case

Case 2: B is positive semidefinite In this case, we have λ being finite and λ = −∞. Moreover, we

have the following result concerning the behavior of d(λ) as λ goes to −∞.

Proposition 4.1. It holds that lim
λ→−∞

d′(λ) = 1 + s0. Hence

(i) If s0 < −1, then lim
λ→−∞

d(λ) =∞;

(ii) If s0 = −1, then lim
λ→−∞

d(λ) = t0 > −∞;

(iii) If s0 > −1, then lim
λ→−∞

d(λ) = −∞.

Proof. The fact that lim
λ→−∞

d′(λ) = 1 + s0 follows from d′(λ) = 1 + ψ(λ) and Lemma 3.2. The rest of the

conclusion then follows immediately.

In view of the definition of s0 and Assumption 2.1, Item 3, we only need to consider s > s0 in subsequent

analysis. We discuss the differentiability property of k0(t) in the next theorem.

Theorem 4.2. (i) Suppose that s0 < −1. Then k0(t) is continuous and well-defined on t ≥ t0. Further-

more, when s + 1 > 0, k0(t) is differentiable on (t0, t) ∪ (t,∞) and k0(t) = (s + 1)λ on t > t; when

s+ 1 < 0, k0(t) is differentiable on (t0,∞).

(ii) Suppose that s0 = −1. Then k0(t) is continuous and well-defined on t > t0. Furthermore, when

s+ 1 > 0, k0(t) is differentiable on (t0, t) ∪ (t,∞) and k0(t) = (s+ 1)λ on t > t.

(iii) Suppose that s0 > −1. Then k0(t) is continuous and well-defined everywhere. Furthermore, when

s+ 1 > 0, k0(t) is differentiable on (t0, t) ∪ (t,∞) and k0(t) = (s+ 1)λ on t > t.

Proof. The theorem can be proved similarly as Theorem 4.1 once we show that (4.5) holds for each case. To

prove this, it suffices to show that Assumption 2.1, Item 3 is satisfied for the corresponding GTRS in (4.5)

22

in each case. Suppose first that s0 + 1 < 0. Then it is easy to see that

[
1 −bT
−b B

]
has to be indefinite and

so Assumption 2.1 Item 3 is satisfied. On the other hand, if s0 + 1 ≥ 0, then

inf
y
yT

[
1 −bT
−b B

]
y = min

{
inf
y1 6=0

yT
[
1 −bT
−b B

]
y, inf

y
yTBy

}

≥ min

{
inf
y1 6=0

y21(s0 + 1), inf
y
yTBy

}
≥ 0,

showing that

[
1 −bT
−b B

]
is positive semidefinite. Since s+ 1 > s0 + 1, we see that Assumption 2.1 Item 3

is also satisfied in this case.

As in Corollary 4.1, we have the following relationship between k0(t) and the roots of (4.6), which can

be obtained from a detailed proof of Theorem 4.2.

Corollary 4.3. (i) If s+ 1 > 0 and t0 < t < t, then k0(t) = (s + 1)µ, where µ = µ(t) is the unique root

of (4.6) on (λ, λ) with d′(µ) > 0; moreover, µ′(t) = 1
d′(µ) > 0;

(ii) If s+ 1 < 0 and t0 < t, then k0(t) = (s+ 1)ν, where ν = ν(t) is the unique root of (4.6) on (λ, λ) with

d′(ν) < 0; moreover, ν′(t) = 1
d′(ν) < 0.

The existence of a maximizer t∗ of k(t) in this case is less trivial and is obtained as a consequence of the

next theorem.

Theorem 4.3. (i) Suppose that s0 < −1. When s+ 1 > 0, we have lim
t→∞

k′(t) = −1. When s+ 1 < 0, we

have lim
t→∞

k′(t) = s+1
s0+1 − 1 < 0. Furthermore, in either case, k(t) = −∞ for t < t0.

(ii) Suppose that s0 = −1. When s + 1 > 0, we have lim
t→∞

k′(t) = −1 and lim
t↓t0

k′(t) = ∞. Furthermore,

k(t) = −∞ for t ≤ t0.

(iii) Suppose that s0 > −1. When s+ 1 > 0, we have lim
t→∞

k′(t) = −1 and lim
t→−∞

k′(t) = s+1
s0+1 − 1 > 0.

Proof. First of all, in all three cases, when s+1 > 0, the limit of k′(t) as t goes to ∞ can be found similarly

as in the case when B is indefinite.

We now consider part (i). When s+ 1 < 0, by Corollary 4.3, we have k′(t) = s+1
d′(ν) − 1. Moreover, from

Proposition 4.1, we see that lim
λ→−∞

d(λ) =∞. Thus, ν is defined for all sufficiently large t and ν → −∞ as

t→∞. We conclude from these results and Proposition 4.1 that lim
t→∞

k′(t) = s+1
s0+1 − 1 < 0. The conclusion

that k(t) = −∞ for t < t0 follows from Proposition A.1.

We next turn to part (ii). Since d is strictly increasing, it follows from Proposition 4.1 that

t̄ = lim
λ↑λ

d(λ) > lim
λ→−∞

d(λ) = t0.

By Corollary 4.3, we have k′(t) = s+1
d′(µ) − 1 for t̄ > t > t0. Furthermore, from Proposition 4.1, we see that

lim
λ→−∞

d(λ) = t0 > −∞ and hence µ → −∞ as t→ t0. We conclude from this, Proposition 4.1 and the fact

that s0 + 1 = 0 that lim
t↓t0

k′(t) = ∞. Furthermore, since k(t) = (s + 1)µ(t) − t for t̄ > t > t0, we have by

Corollary 4.3 that

lim
t↓t0

k(t) = (s+ 1) lim
t↓t0

µ(t)− t0 = −∞.

23

It then follows from concavity of k that k(t) = −∞ when t ≤ t0.
Finally, for part (iii), note that from Proposition 4.1, we have lim

λ→−∞
d(λ) = −∞ and hence µ→ −∞ as

t→ −∞. Thus, we conclude further from Proposition 4.1 that lim
t→−∞

k′(t) = s+1
s0+1 − 1 > 0.

Figure 4: d(λ) when B is positive definite with s0 < −1. The dotted line is λ = λ̄.

−50 −40 −30 −20 −10 0
200

250

300

350

400

450

500

550

600
d(λ): B >0, easy case

λ

d
(λ

)

−400 −350 −300 −250 −200 −150

6500

7000

7500

8000

8500

9000
d(λ): B > 0, hard case

λ

d
(λ

)

Figure 5: d(λ) when B is positive definite with s0 > −1. The dotted line is λ = λ̄.

−315.16 −315.15 −315.14 −315.13 −315.12 −315.11 −315.1
0

2000

4000

6000

8000

10000

12000
d(λ): B > 0, easy case

λ

d
(λ

)

−16 −14 −12 −10 −8 −6

20

30

40

50

60

70

80
d(λ): B > 0, hard case

λ

d
(λ

)

24

4.2 Recovering solution of GTRS from maximizing k(t)

In this subsection, we discuss how one can obtain a solution to (4.1) after obtaining a maximizer t∗ of k(t).

In addition, we will argue that such a maximizer has to be unique.

We focus on the case when s + 1 > 0. We will briefly comment on the case when s + 1 < 0 at the end

of this subsection. In this case, for any t ∈ (t0, t), we see from the definition of t0 that the maximization

problem in (4.5) is strictly feasible, and hence the infimum in (4.5) is attained. By Theorem 2.3, the infimum

is attained at some generalized eigenvector of the matrix pair

([
t −aT
−a A

]
,

[
1 −bT
−b B

])
, (4.7)

with corresponding eigenvalue µ. Recall from Lemma 4.1 and (4.5) that µ is the unique root of (4.6) with

d′(µ) > 0. Let y(t) =

[
y0(t)

z(t)

]
be a generalized eigenvector attaining the infimum in (4.5). Since µ ∈ (λ, λ)

by Corollary 4.1, it follows that the first coordinate y0(t) of y(t) must be nonzero. Thus, we may further

scale the vector so that y0(t) > 0. Moreover, since s + 1 > 0, we can scale the vector again so that

yT
[
1 −bT
−b B

]
y = 1.

We claim that such a vector is unique. To see this, notice first that for any λ ∈ (λ, λ), we have

det

([
t −aT
−a A

]
− λ

[
1 −bT
−b B

])
= (t− d(λ)) det(A− λB).

It thus follows from this, det(A−µB) > 0 and d′(µ) > 0 that µ is a root of multiplicity one of the polynomial

λ 7→ det

([
t− λ −(a− λb)T

−(a− λb) A− λB

])
.

Hence, the dimension of the nullspace of

[
t− µ −(a− µb)T

−(a− µb) A− µB

]
is one; i.e., any generalized eigenvector

corresponding to µ differs only by a scaling. Since the scaling is uniquely determined by the constraints

yT
[
1 −bT
−b B

]
y = 1 and y0 > 0, the generalized eigenvector constructed under these two restrictions is

unique. Using standard arguments and the implicit function theorem, one can show in addition that y(t) is

differentiable for t0 < t < t.

By [5, Theorem 4.13] and using the above notations, the derivative of k(t) at any t ∈ (t0, t) is given by

k′(t) = (s+ 1)y20(t)− 1 = (s+ 1)µ′(t)− 1. (4.8)

We next analyze the following cases. Recall that we currently assume s+ 1 > 0 and that t∗ is a maximizer

of k(t).

Case 1: t∗ ∈ (t0, t). In this case, k is differentiable at t∗. Hence, necessarily

y20(t
∗) =

1

s+ 1
.

It follows, after a simple calculation, that x∗ := z(t∗)
y0(t∗)

satisfies x∗TBx∗ − 2bTx∗ = s, from which it follows

easily by checking optimality conditions that x∗ is an optimal solution to (4.1), with the Lagrange multiplier

given by µ(t∗) ∈ (λ, λ).

25

Case 2: t∗ = t0 < t. In this case, k′(t) ≤ 0 for all t > t0 sufficiently close to t0. Hence

lim sup
t↓t0

y20(t) ≤
1

s+ 1
. (4.9)

Furthermore, since t∗ ∈ dom(k) by definition of maximizer, the assumption implies that t0 ∈ dom(k) and thus

k0 is continuous at t0. Then, by continuity of k0(t) and hence of µ(t), we see that limt↓t0 µ(t) exists (and is

finite). We claim that limt↓t0 µ(t) = λ. To see this, note that if limt↓t0 µ(t) ∈ (λ, λ), then d′(limt↓t0 µ(t)) = 0,

which implies that µ′(t) = 1
d′(µ(t)) > 0 is arbitrarily large as t ↓ t0. In view of (4.8), this contradicts the fact

that k′(t) ≤ 0 for t close to t0. On the other hand, if limt↓t0 µ(t) = λ, then λ is finite. But by definition of

µ(t), it is the unique root of d(λ) = t on (λ, λ) with positive slope and thus µ(t) > limt↓t0 µ(t) = λ for all

t > t > t0. But µ(t) < λ by definition, and we arrive at a contradiction. Thus, we must have limt↓t0 µ(t) = λ.

In particular, λ is finite.

We next claim that there exists a generalized eigenvector y∗ =

[
y∗0
z∗

]
of the matrix pair

([
t0 −aT
−a A

]
,

[
1 −bT
−b B

])

corresponding to λ such that y∗0 6= 0 and y∗T
[
1 −bT
−b B

]
y∗ = 1.

To prove this, fix t1 ∈ (t0, t) and consider {y(t) : t0 < t < t1}. Since t1 > t0, by the definition of t0,

there exists λ̂ > λ such that [
t1 −aT
−a A

]
− λ̂

[
1 −bT
−b B

]
� ǫI, (4.10)

for some ǫ > 0. Then, for any t0 < t < t1, we have that

0 = y(t)T
([

t −aT
−a A

]
− µ(t)

[
1 −bT
−b B

])
y(t) = y(t)T

[
t −aT
−a A

]
y(t)− µ(t)

= y20(t)(t− t1) + y(t)T
[
t1 −aT
−a A

]
y(t)− µ(t)

= y20(t)(t− t1) + y(t)T
([

t1 −aT
−a A

]
− λ̂

[
1 −bT
−b B

])
y(t)− (µ(t)− λ̂)

≥ y20(t)(t− t1)− (µ(t)− λ̂) + ǫ‖y(t)‖2,

where the last inequality follows from (4.10). Thus,

y20(t)(t1 − t) + (µ(t)− λ̂) ≥ ǫ‖y(t)‖2. (4.11)

This together with (4.9) shows that {y(t) : t0 < t < t1} is bounded. Consider any cluster point y∗ of {y(t)}

as t ↓ t0. Then y∗T
[
1 −bT
−b B

]
y∗ = 1, and hence in particular y∗ 6= 0. Moreover, since µ(t)− λ̂→ λ− λ̂ < 0,

we see further from (4.11) that y∗0 > 0. Finally, it is easy to check that y∗ is a generalized eigenvector of the

matrix pair ([
t0 −aT
−a A

]
,

[
1 −bT
−b B

])

corresponding to the eigenvalue λ.

Next, define x∗ := 1
y∗

0

z∗. Then it follows from (4.9) that x∗TBx∗ − 2bTx∗ ≥ s and from the definition of

y(t) that (A − λB)x∗ = a − λb. By Lemma 3.4, there exists v ∈ Null(A − λB) with vTBv < 0, and thus

x∗ + αv would solve (4.1), for some suitable α > 0.

26

Case 3: t∗ = t > t0. In this case, we must have k′(t) ≥ 0 for all t0 < t < t. Hence

lim inf
t↑t

y20(t) ≥
1

s+ 1
. (4.12)

Furthermore, since t is finite by assumption, we must have λ finite from the definition of t and thus d(λ) =

limλ↑λ d(λ) = t. This, together with the continuity of µ(t) and the fact that d(λ) is strictly increasing when

λ > limt↓t0 µ(t), implies that limt↑t µ(t) = λ. We claim that there exists a generalized eigenvector y∗ =

[
y∗0
z∗

]

of the matrix pair ([
t −aT
−a A

]
,

[
1 −bT
−b B

])

corresponding to λ such that y∗0 6= 0 and y∗T
[
1 −bT
−b B

]
y∗ = 1.

We first show that the parametrized set of eigenvectors {y(t) : t1 ≤ t < t} is bounded for any fixed

t1 ∈ (t0, t). Since t1 ∈ (t0, t), by definition of t0 and Lemma 4.1(i), there exists λ̂ < λ such that

[
t1 −aT
−a A

]
− λ̂

[
1 −bT
−b B

]
� ǫI, (4.13)

for some ǫ > 0. Using this and the definition of generalized eigenvector and eigenvalue, we have, for any

t1 ≤ t < t, that

0 = y(t)T
([

t −aT
−a A

]
− µ(t)

[
1 −bT
−b B

])
y(t) = y(t)T

[
t −aT
−a A

]
y(t)− µ(t)

= y20(t)(t− t1) + y(t)T
[
t1 −aT
−a A

]
y(t)− µ(t)

= y20(t)(t− t1) + y(t)T
([

t1 −aT
−a A

]
− λ̂

[
1 −bT
−b B

])
y(t)− (µ(t)− λ̂)

≥ −(µ(t)− λ̂) + ǫ‖y(t)‖2,

where the last inequality follows from (4.13). This shows that {y(t) : t1 ≤ t < t} is bounded. Consider any
cluster point y∗ of {y(t)} as t ↑ t. Due to (4.12), the first coordinate y∗0 of y∗ is nonzero. It is easy to check

that y∗T
[
1 −bT
−b B

]
y∗ = 1 and that y∗ is a generalized eigenvector of the matrix pair

([
t −aT
−a A

]
,

[
1 −bT
−b B

])

corresponding to the eigenvalue λ.

Next, define x∗ := 1
y∗

0

z∗. Then it follows from (4.12) that x∗TBx∗ − 2bTx∗ ≤ s and from the definition

of y(t) that (A − λB)x∗ = a− λb. By Lemma 3.4, there exists v ∈ Null(A − λB) with vTBv > 0, and thus

x∗ + αv would solve (4.1), for some suitable α > 0.

Case 4. t∗ = t0 = t. In this case, from the definitions of t0 and t, we have λ is finite and the infimum of

d is attained at the right end point of the interval (λ, λ), i.e., at λ. From the definition of d, this implies in

particular that a− λb ∈ Range(A− λB). Furthermore,

0 ≥ d′(λ) = 1 + ψ(λ).

27

Hence, using the fact that s+ 1 > 0, we see that

x∗TBx∗ − 2bTx∗ ≤ −1 < s,

where x∗ := x(λ). Finally, recall from Lemma 3.4 that there exists v ∈ Null(A − λB) with vTBv > 0.

Combining these few facts, we conclude that x∗ + αv solves (4.1), for some suitable α > 0.

Remark 4.1. Uniqueness of maximizer of k. In passing, we remark that k(t) must have a unique

maximizer. First of all, it is easy to see that the four cases analyzed above are mutually exclusive for a

maximizer t∗ of k(t). If case 4 happens, then clearly the maximizer is unique and equals t0 = t. Otherwise,

in all other three cases, we see that for each maximizer t∗, there corresponds at least one dual solution λ∗

of the GTRS (4.1). Such λ∗ constructed in those cases are different for different t∗, thanks to the strict

monotonicity of µ(t) on (t0, t). Since the GTRS (4.1) must have a unique dual optimal solution in view of

the analysis in Section 3.1.1 and our assumption that ψ is strictly increasing on cl(λ, λ), we conclude that

k(t) must have a unique maximizer.

The above arguments for s+ 1 < 0 are completely analogous. Note that we need to scale by
√
−(s+ 1)

instead of
√
s+ 1 in the constraint of the minimization problem in (4.5). Hence y(t)T

[
1 −bT
−b B

]
y(t) = −1

and moreover k′(t) = −(s+ 1)y20(t)− 1.

In this section, we just gave a complete analysis on how a solution of (4.1) can be recovered after

maximizing k(t). Comparing this with the procedures outlined in Section 3, we see that if the problem (4.1)

is obtained from those procedures, then λ∗ ∈ (λ, λ). Thus, we must be in Case 1 and hence k(t) has to be

differentiable at t∗. On the other hand, it is easy to see that closed form solutions are obtained for the other

cases using the procedures in Section 3.

4.3 Implementation details

In this subsection, we discuss implementation details of our algorithm. For simplicity, we only consider the

case when B is nonsingular. In this case, by translating the optimization variable by B−1b if necessary, we

may further assume without loss of generality that b = 0. Moreover, we only need to consider the cases when

B is positive definite or indefinite. Furthermore, we still assume Assumption 2.1, the regularity (3.1) and

s+ 1 6= 0. To explicitly guarantee that (3.5) never holds, we also assume a 6= 0.

When B is positive definite, λ is negative infinity and λ is the minimum generalized eigenvalue of the

matrix pair (A,B), which can be computed efficiently. On the other hand, when B is indefinite, the interval

(λ, λ) cannot be easily determined in general. Thus, in this case, we consider the further subcase that A is

positive definite. Then we know that 0 ∈ (λ, λ). Observe that for any λ ∈ [λ, 0), we have

A− λB = −λ
(
B − 1

λ
A

)
. (4.14)

Since λ ∈ [λ, 0) if, and only if, 1
λ ∈ (−∞, 1

λ], we conclude from (4.14) that λ = 1
ρ1
, where ρ1 is the minimum

generalized eigenvalue of the matrix pair (B,A). Similarly, one can show that λ = − 1
ρ2
, with ρ2 being the

minimum generalized eigenvalue of the matrix pair (−B,A). The quantities ρ1 and ρ2 can both be computed

efficiently.

Case check. We first carry out the case check as described in Section 3.1.1. We obtain an explicit solution

when the GTRS (1.1) has an interior solution A−1a or when the GTRS instance is a hard case, case 2

instance.

28

Shift and deflation for the hard case, case 1, when B is positive definite. After the case check,

the bound side has been determined and so we focus on the equality constrained case xTBx = s. In the

next proposition, we describe a shift and deflation technique that transforms a GTRS instance from hard

case, case 1, to the easy case, when B is positive definite.

Proposition 4.2. Suppose that we consider the GTRS with the equality constraint xTBx = s with B ≻ 0.

Let λ be the smallest generalized eigenvalue of the matrix pair (A,B) and suppose that a corresponding

nonzero eigenvector v satisfies aT v = 0. Furthermore, let α > 0. Then

(x∗, λ∗) solves GTRS

if, and only if,

(x∗, λ∗) solves GTRS with A replaced by A− λB + α(Bv)(Bv)T .

Proof. First, since xTBx = s, it is clear that (x∗, λ∗) solves GTRS if, and only if, (x∗, λ∗) solves GTRS with

A replaced by A − λB. Next, consider the GTRS with A replaced by A − λB. Let y = B
1
2x and use the

substitution x = B− 1
2 y. This results in the following TRS:

inf yT Āy − 2āT y

s.t. yT y = s,

where Ā = B− 1
2 (A− λB)B− 1

2 and ā = B− 1
2 a.

We now apply the shift and deflate lemma in [11] stated for the above TRS and obtain that

(y∗, λ∗) solves TRS

if, and only if,

(y∗, λ∗) solves TRS when Ā is replaced by Ā+ αwwT ,

where w = B
1
2 v is the corresponding eigenvector and hence satisfies wT ā = 0 by assumption and the

definition of ā. After substituting again using y = B
1
2x, we see that

yT
(
B− 1

2 (A− λB)B− 1
2 + αwwT

)
y = xT

(
A− λB + α(Bv)(Bv)T

)
x.

The linear term and constraint follow similarly.

Initialization. After the case check and the possible shift and deflation, we proceed to solve the equality

constrained case by the RW algorithm. We discuss initialization in this subsection.

We first consider the case when B is positive definite. In this case, k(t) is well-defined for all t by

Theorem 4.2. Let t∗ be the optimal solution of max k(t). As in [29], we derive an interval that contains t∗

in the next proposition for initializing the RW algorithm.

Proposition 4.3. Suppose that λ∗ < λ. Then

λ−
√
aTB−1a

s
≤ t∗ ≤ λ+

√
s aTB−1a. (4.15)

Proof. The assumption λ∗ < λ implies that we can recover a solution of GTRS from the maximizer of k(t).

Let x∗ be the solution of GTRS thus recovered. Then

[
1

x∗

]
is a generalized eigenvector of the matrix pair

([
t∗ −aT
−a A

]
,

[
1 0

0 B

])

29

with generalized eigenvalue λ∗. Hence, in particular,

t∗ − aTx∗ = λ∗ ⇒ t∗ = λ∗ + aTx∗ ≤ λ+
√
x∗TBx∗

√
aTB−1a = λ+

√
s aTB−1a.

This proves the upper bound in (4.15). We next derive the lower bound. In this case, we define δ = λ−λ∗ > 0.

Then we have

A− λ∗B � δB ≻ 0 (4.16)

and hence

t∗ − λ∗ = aTx∗ = x∗T (A− λ∗B)x∗ ≥ δx∗TBx∗ = δs. (4.17)

In addition, from the definition of d(λ), λ∗ and (4.16), we have

t∗ − λ∗ = aT (A− λ∗B)−1a ≤ 1

δ
aTB−1a. (4.18)

Combining (4.17) and (4.18), we see that

δ ≤
√
aTB−1a

s
.

Finally, we observe from (4.18) that t∗ ≥ λ∗ and hence δ ≥ λ−t∗. The lower bound in (4.15) now immediately

follows.

On the other hand, when B is indefinite, according to Theorem 4.1 and Corollary 4.2, we conclude that

t0 is finite and the function k(t) would have t0 as a left end point of its domain. We currently do not know of

any efficient way for computing/estimating t0. However, if t0 and the corresponding λ0 such that d(λ0) = t0
are known, then the function value and the derivative of k at any t > t0 can be efficiently computed; see

the paragraph below Proposition 4.4, with µ = λ0 in (4.23). Furthermore, for initialization, one can find an

interval containing t∗ as follows:

Procedure for finding an interval containing t∗ when B is indefinite.

Step 1. Take ǫ > 0 and compute k′(t0 + ǫ).

Step 2. If k′(t0 + ǫ) > 0, set t+ = t0 + ǫ. Otherwise, set t− = t0 + ǫ and i = 1.

Step 3. While k′(t−) < 0, update t+ ← t− and t− ← t0 + ζiǫ for some fixed ζ ∈ (0, 1). Update i ← i + 1.

Repeat this step.

Step 4. While k′(t+) > 0, update t− ← t+ and t+ ← κ(t+−λ0)+λ0 for some fixed κ > 1. Repeat this step.

Step 5. By construction, k′(t−) > 0 and k′(t+) < 0. Thus, t∗ ∈ (t−, t+).

Computing k0(t) and k′0(t). We next discuss how k0(t) and k′0(t) for t > t0, when they exist, can be

computed efficiently. Recall from the definition of k0(t) and (4.8) that

k0(t) = inf

{
uT

[
t −aT
−a A

]
u : uT

[
1 0

0 B

]
u = s+ 1

}
, k′0(t) = u20(t),

where u0(t) ≥ 0 is the first coordinate of a vector u(t) (unique when u0(t) > 0) attaining the infimum

defining k0(t). In the case when B is positive definite, k0(t) can be computed from the minimum generalized

eigenvalue of the matrix pair ([
t −aT
−a A

]
,

[
1 0

0 B

])
,

30

and u0(t) is obtained from the corresponding eigenvector. However, when B is not positive definite, k0(t)

and its derivative cannot be obtained directly from an extremal generalized eigenpair. We now discuss how

to compute k0 and its derivative in this case.

To this end, we first consider a closely related problem. Let C and D be symmetric matrices. Consider

the following program.
val := inf xTCx

s.t. xTDx = 1.
(4.19)

Then we have the following result.

Proposition 4.4. Suppose that (4.19) is feasible and that there exists λ so that C − λD � 0. Suppose

further that val 6= 0.

(i) If val > 0 and if x∗ is a solution to (4.19), then 1√
val
x∗ is a solution to the following optimization

problem, whose optimal value is − 1
val :

inf −xTDx
s.t. xTCx = 1.

(4.20)

(ii) If val < 0 and if x∗ is a solution to (4.19), then 1√
−val

x∗ is a solution to the following optimization

problem, whose optimal value is − 1
val :

inf xTDx

s.t. −xTCx = 1.
(4.21)

Proof. By Theorem 2.3, we see that x∗ is an optimal solution to (4.19) if, and only if, there exists λ∗ such

that

(C − λ∗D)x∗ = 0,

C − λ∗D � 0,

x∗TDx∗ = 1.

(4.22)

Using the first and third relations of (4.22), we see that

val = x∗TCx∗ = λ∗x∗TDx∗ = λ∗.

Since val 6= 0, we obtain that λ∗ = val 6= 0. For part (i), we have λ∗ > 0. From (4.22) and the relation

val = x∗TCx∗, we see that
(

1

λ∗
C −D

)
x∗√
λ∗

= 0,

1

λ∗
C −D � 0,

(
x∗√
λ∗

)T

C

(
x∗√
λ∗

)
=

val

λ∗
= 1.

Hence, x∗

√
λ∗

= x∗

√
val

solves (4.20). On the other hand, for part (ii), λ∗ < 0. Hence, we have

(
− 1

λ∗
C +D

)
x∗√
−λ∗

= 0,

− 1

λ∗
C +D � 0,

(
x∗√
−λ∗

)T

C

(
x∗√
−λ∗

)
=

val

−λ∗ = −1.

31

Thus, x∗

√
−λ∗

= x∗

√
−val

solves (4.21).

We now complete our discussion on efficient computation of k0(t) and its derivative when B is indefinite.

Suppose that we know a µ such that

[
t −aT
−a A

]
− µ

[
1 0

0 B

]
≻ 0. (4.23)

Since

[
1 0

0 B

]
is indefinite, we see immediately that

inf

{
−sign(s+ 1)yT

[
1 0

0 B

]
y : yT

([
t −aT
−a A

]
− µ

[
1 0

0 B

])
y = 1

}
< 0. (4.24)

Thus, in view of Proposition 4.4, we see that k0(t) and k
′
0(t), upon scaling, can be computed by considering

the optimization problem (4.24). Since the quadratic objective in the constraint of (4.24) is positive definite,

the optimal value and solution of (4.24) can be obtained from an extremal generalized eigenpair.

Techniques for maximizing k(t). These techniques are adapted from the original Rendl-Wolkowicz al-

gorithm [11] for solving TRS (1.2).

Vertical Cut

Suppose there exist tg with k′(tg) < 0 and tb with k′(tb) > 0. Suppose further that k(tg) < k(tb). Then

we can use the so-called vertical cut to reduce the interval that contains t∗. More precisely, we obtain our new

approximation t+ by intersecting the tangent line of k at tg with the horizontal line k = k(tb). Theoretically,

we always get t+ ∈ [tb, tg] and that k′(t+) < 0. However, approximate evaluation of slopes and function

values of k can cause t+ /∈ [tb, tg]. When this happens, the vertical cut fails. The case when k(tg) > k(tb)

can be treated similarly.

Triangle Interpolation

Suppose there exist tg with k′(tg) < 0 and tb with k′(tb) > 0. We then intersect the tangent lines of k(t)

at tg and tb to obtain a new estimate t+. Theoretically, we always get t+ ∈ [tb, tg]. However, since we only

compute the slope and the function value of k approximately, it can happen that t+ /∈ [tb, tg]. When this

happens, the triangle interpolation fails.

Inverse Linear Interpolation

Notice that k′(t) = |s+ 1|y20(t)− 1, with y0(t) defined as in Section 4.2. Thus, k′(t) = 0 is equivalent to

φ(t) :=
√
|s+ 1| − 1

y0(t)
= 0.

We consider approximating the inverse function of φ(t) by a linear function, i.e.,

t(φ) = aφ+ b,

for some real numbers a, b, and then set our next approximation as t+ = t(0) if t(0) ∈ [tb, tg]. This technique

is different from the previous techniques in the sense that it can also operate on two points whose slopes

have the same sign.

32

Primal step to feasibility. As in the RW algorithm for solving TRS, we keep track of the point

x(t) := 1
y0(t)

z(t), where y(t) =

[
y0(t)

z(t)

]
is defined as in Section 4.2. In the easy case/hard case, case 1,

y0(t) is nonzero as the algorithm proceeds and one can show that x(t) converges to the optimal solution of

GTRS (1.1) as t converges to t∗. Notice that if there exist tg with k′(tg) < 0 and tb with k′(tb) > 0, then(
x(tg)

TBx(tg)− s
) (
x(tb)

TBx(tb)− s
)
< 0. Thus, by choosing a suitable α, the point αx(tg) + (1− α)x(tb)

will be primal feasible. Furthermore, the resulting sequence is still convergent to x(t∗).

Before closing this section, we summarize our algorithm in the following flowchart.

Flowchart for the extended RW algorithm

• Check for the hard cases/interior solution; shift and deflate; find initial interval containing t∗.

• Main loop: iterate until a termination criterion is met:

1. update t.

(a) Set t to be the midpoint of the interval of uncertainty for t.

(b) If points at which k has positive and negative slope, respectively, are known:

i. Do vertical cut; reduce the interval of uncertainty for t if possible. Update t if vertical

cut is successful.

ii. Do triangle interpolation. Update t if triangle interpolation is successful.

(c) Do inverse linear interpolation. Update t if inverse linear interpolation is successful.

2. At the new t, compute k(t) and k′(t) using techniques discussed above and eigifp [14]. 3 Take a

primal step to satisfy feasibility if iterates at which k has positive and negative slopes are available.

• End loop.

5 Numerical experiments with new RW algorithm

In this section, we study the numerical performance of our new RW algorithm for GTRS. We compute

limλ↑λ ψ(λ) and limλ↓λ ψ(λ) as described in Section 3.1.1 with α = ‖A‖2√
n
, where ‖A‖2 is the (approximate)

spectral norm found using the MATLAB command normest(A,1). In particular, we check for |aT v|
‖a‖ < 1e−8

for every vector v from an orthonormal basis of the nullspaces Null(A−λB) or Null(A−λB). If the instance

is not a hard case, case 2, instance, we perform shift and deflation as described in Proposition 4.2 using these

vectors v and the same α as above, when B ≻ 0. We then initialize the RW algorithm (for the equivalent

equality constrained problem) as discussed in the previous section, and terminate the algorithm when

max

{ |k′(t)|2
|s+ 1|2 ,

|q0(x) − k(t)|
|q0best|+ 1

,
|q1(x) − s|
|s|+ 1

,
‖Ax− λBx − a‖2
(‖A‖2 + ‖a‖+ 1)2

}
< 10−13,

or
|high− low|
|high|+ |low| < 10−15,

(5.1)

or when the number of iterations hits 30; here x is recovered from a generalized eigenvector and then shifted

to become approximately feasible, ‖A‖2 is the (approximate) spectral norm found using the MATLAB

3 EIGIFP is implemented in MATLAB and finds the minimum generalized eigenvalue and eigenvector of the matrix pair

(A,B) for positive definite B. It does not involve factorization of the matrices A or B.

33

command normest(A,1), qbest0 is the smallest primal objective value up to the current iteration. Our code is

written in MATLAB. All numerical experiments are performed on an SGI XE340 system, with two 2.4 GHz

quad-core Intel E5620 Xeon 64-bit CPUs and 48 GB RAM, equipped with SUSE Linux Enterprise server 11

SP1 and MATLAB 7.14 (R2012a). All routines are timed using the tic-toc function in MATLAB.

5.1 B is positive definite

In this subsection, we consider GTRS (1.1) with a positive definite B. For simplicity, we also assume without

loss of generality that b = 0. We consider two cases: A is not positive semidefinite or A is positive definite.

A is not positive semidefinite. In this case, the GTRS is equivalent to (4.1) with s = u, which is also

equivalent to (1.1) with l = 0. We compare three algorithms:

• The RW algorithm for solving (1.1);

• The GLTR algorithm [15], an algorithm in the Galahad package (Version 2.50000 pre-release), to solve

(1.1) with l = 0. The GLTR algorithm is written in Fortran and implemented as a MATLAB mex file;

• The Newton’s method with (Armijo) line search for maximizing the dual objective function to solve

(4.1) with s = u. We code this in MATLAB.

For the GLTR algorithm, we use its default settings in our experiments. For the Newton’s method, we

initialize at λ0 = λ− 1 and terminate when

max

{ |q0(x)− d(λ)|
|q0(x)| + 1

,
|q1(x)− s|
|s|+ 1

,
‖Ax− λBx− a‖2
(‖A‖2 + ‖a‖+ 1)2

}
< 10−12,

or when the stepsize falls below 1e− 10 or the number of iterations hits 10; here x is generated from λ via

x = (A − λB)−1a. The Newton direction in the Newton’s method is computed via the MATLAB built-in

function pcg, with termination tolerance 1e− 14 and iteration bound 1000.

In our tests, we generate both easy and hard case instances, for dimensions n = 10000, 15000 and 20000.

To generate an easy case instance, we first generate randomly a sparse symmetric matrix A and a

sparse positive definite matrix B via A = sprandsym(n,1e-2) and B = sprandsym(n,1e-2,0.1,2). We

then compute λ, the minimum generalized eigenvalue of the matrix pair (A,B). We next generate x0 with

Gaussian entries of mean 0 and standard deviation 0.1 and set a = (A− λ̃B)x0, s = xT0 Bx0, where λ̃ = λ− r
for some r chosen uniformly from [5, 10]. Finally, we set u = 1.2s and l = 0.8s. From the optimality

conditions and the fact that r > 0, we see that the above construction likely gives an easy case instance.

To generate a hard case instance, we follow the same procedure as above to obtain A, B, x0, λ and s but

we set a = (A − λB)x0 instead. If we take u = 0.6s and l = 0.6u, then we likely end up with a hard case,

case 1 instance. On the other hand, by setting u = 1.2s, l = 1.1s, we likely end up with a hard case, case 2

instance.

For each n, we generate 10 easy, 10 hard case, case 1 and 10 hard case, case 2 instances as described

above. The computational results are reported in Table 2, where we report the number of iterations (iter),

CPU time in seconds (cpu), primal objective value (fval) at termination and also the primal infeasibility

for the equivalent equality constrained problem measured by |xTBx − u| (feaseq),4 averaged over the 10

random instances. We observe the RW algorithm is faster than Newton+Armijo on easy case instances, but

is slower on hard case, case 1 instances because of the extra time taken for preprocessing. The preprocessing

is justified by the observation that, the simple Newton+Armijo strategy fails to obtain even two digits of

4Comparing with |xTBx − max{min{xTBx, u}, l}|, feaseq is less sensitive to the quantity |u − l|, the “thickness” of the

feasible region.

34

accuracy for hard case, case 2 instances. We also note that the GLTR algorithm is the slowest algorithm

mainly because of the cost for factorizing the matrix B, whose Cholesky factorization has a high percentage

fill-in. 5

RW GLTR Newton+Armijo

n iter/cpu/fval/feaseq iter/cpu/fval/feaseq iter/cpu/fval/feaseq

Easy Case

10000 6/4.83/-3.889344396e+04/5.5e-13 7/188.75/-3.889344396e+04/1.3e-09 9/6.82/-3.889344397e+04/5.6e-07

15000 6/10.91/-8.101943616e+04/6.4e-13 7/668.40/-8.101943616e+04/4.0e-09 9/15.09/-8.101943616e+04/4.1e-11

20000 6/20.33/-1.573159441e+05/1.1e-12 7/1654.31/-1.573159441e+05/3.2e-09 9/27.57/-1.573159441e+05/1.8e-09

Hard Case 1

10000 7/18.68/-3.336135050e+03/2.0e-13 23/196.09/-3.336135050e+03/1.8e-09 7/8.25/-3.336135050e+03/9.4e-08

15000 7/45.54/-6.039038487e+03/5.9e-13 24/678.88/-6.039038487e+03/1.1e-09 7/20.93/-6.039038488e+03/6.2e-07

20000 7/100.60/-9.140937609e+03/1.8e-13 24/1753.84/-9.140937609e+03/1.3e-09 6/36.05/-9.140937609e+03/4.5e-13

Hard Case 2

10000 0/10.26/-4.724115040e+03/4.5e-13 211/229.18/-4.723248192e+03/2.2e-04 10/38.48/-4.293815820e+03/4.6e+02

15000 0/25.06/-8.484568849e+03/1.2e-12 249/812.57/-8.482991578e+03/1.5e-05 10/98.79/-7.712953798e+03/1.0e+03

20000 0/55.02/-1.290858124e+04/9.1e-13 282/2108.92/-1.290723940e+04/1.0e-02 10/214.12/-1.173381072e+04/1.7e+03

Table 2: Computational results for indefinite A and positive definite B.

A is positive definite. In this case, it is not certain whether the GTRS (1.1) is equivalent to (4.1) with

s = u or s = l, or the GTRS may have an interior solution. Hence, for comparison, we first solve the GTRS

using the RW algorithm, from which we can determine whether the GTRS has a boundary solution. If

the GTRS is equivalent to an instance of (4.1), we solve this instance of (4.1) using the Newton’s method

that maximizes its dual. Furthermore, if the GTRS is equivalent to (4.1) with s = u, then the GLTR

algorithm can be applied directly to solve the instance. On the other hand, even if the GTRS turns out to

be equivalent to (4.1) with s = l instead, it is not hard to see that the instance can be solved by applying the

GLTR algorithm with A← A− (λ+1)B, u← l and l ← 0. We initialize and terminate all three algorithms

as in the previous test.

In our tests, similarly as above, we generate both easy and hard case instances, for dimensions n = 10000,

15000 and 20000. We follow the same procedure as in the previous case, except that instead of a random

sparse symmetric A, we generate another matrix C similarly as we generated B, and then set A = C + 10B

so that the resulting GTRS (1.1) likely has a solution on the lower boundary of the feasible region.

Test results are reported in Table 3, averaged over 10 random instances.6 We note that the CPU time for

GLTR+shift includes both the GLTR algorithm run time and the time taken to find λ for the transformation

A← A− (λ + 1)B, with the latter time also reported separately in parenthesis. We again observe that the

RW algorithm is faster than Newton+Armijo on easy case instances, and is slower on hard case, case 1

instances due to the extra preprocessing time. The failure of the simple Newton+Armijo strategy on hard

case, case 2 instances again justifies the use of preprocessing. We also note that the GLTR algorithm is the

slowest due to the cost for factorizing B.

5.2 B is indefinite

In this subsection, we consider GTRS (1.1) with an indefinite (and nonsingular) B. For simplicity, we also

assume without loss of generality that b = 0. Furthermore, in order that the interval (λ, λ) can be located

efficiently, we restrict our attention to the case when A is positive definite; see Section 4.3. There are

5Indeed, when B is structured, say, block diagonal with small blocks (size 100 by 100), the GLTR algorithm tends to

terminate within 1 second for the easy case and hard case 1 instances, with high accuracy; and within a couple seconds (2 to

10) for hard case 2 instances, with moderate accuracy. In contrast, the other two codes are at most 50% faster than the time

reported in Table 2 for such B.
6For consistency, we regenerate the problem instance to make sure that the instances considered in this subsection have

minimizer on the lower boundary.

35

RW GLTR+shift Newton+Armijo

n iter/cpu/fval/feaseq iter/cpu/fval/feaseq iter/cpu/fval/feaseq

Easy Case

10000 6/3.26/-1.049837986e+04/1.4e-13 6/188.62 (1.32)/-1.049837986e+04/8.8e-10 9/5.76/-1.049837986e+04/2.1e-09

15000 6/6.98/-1.466449774e+04/5.5e-13 6/672.60 (3.08)/-1.466449774e+04/2.8e-09 10/12.71/-1.466449774e+04/4.3e-07

20000 6/13.21/-4.406550240e+04/6.4e-13 6/1742.12 (5.97)/-4.406550240e+04/3.7e-09 10/24.45/-4.406550240e+04/1.4e-10

Hard Case 1

10000 7/12.00/7.464921449e+03/1.8e-13 20/189.43 (1.42)/7.464921449e+03/8.6e-10 8/6.59/7.464921449e+03/7.1e-09

15000 7/26.06/1.661401688e+04/2.3e-13 19/677.80 (2.95)/1.661401688e+04/1.3e-09 7/15.32/1.661401688e+04/1.8e-09

20000 7/55.61/2.919616156e+04/3.2e-13 18/1752.79 (6.25)/2.919616156e+04/1.9e-09 8/34.74/2.919616156e+04/1.5e-08

Hard Case 2

10000 0/6.24/2.496011798e+04/1.8e-13 120/209.60 (1.46)/2.496177644e+04/6.0e-08 10/22.33/2.256793156e+04/2.3e+02

15000 0/11.72/5.437098121e+04/7.3e-13 95/768.72 (2.80)/5.437462396e+04/6.0e-08 10/46.41/4.918446583e+04/5.0e+02

20000 0/21.34/9.623939924e+04/5.5e-13 93/1807.07 (5.73)/9.624434210e+04/6.9e-08 10/92.46/8.710211303e+04/8.7e+02

Table 3: Computational results for positive definite A and positive definite B.

currently no algorithms in the literature specialized at solving such GTRS instances. Thus, we only compare

our algorithm with the Newton’s method. Specifically, we first use our algorithm to determine whether the

GTRS is equivalent to an instance of (4.1) with s = u or s = l. We then solve this instance of (4.1) using

the Newton’s method that maximizes its dual.

For simplicity, we only generate easy case and hard case, case 2, instances in our numerical experiments.

For dimensions n = 10000, 15000 and 20000, we first generate sparse symmetric matrices B1 and A1 via the

commands A_1 = sprandsym(n,1e-2,0.1,2) and B_1 = sprandsym(n,1e-2). We then locate the interval

(λ, λ) for the matrix pair (A1, B1).

To generate an easy case instance, we first set λ̃ = λ+λ
2 . We next generate x0 with Gaussian entries of

mean 0 and standard deviation 0.1, and set a = (A1 − λ̃B1)x0 and s1 = xT0 B1x0. We now further modify

A1 and B1 so that we obtain an instance with explicit knowledge of t0 and the corresponding λ0 ∈ (λ, λ)

with d(λ0) = t0. To this end, define B := B1/(−|s1|) and A := A1. Then by construction, we have

inf
xTBx=−1

xTAx− 2aTx = xT0 Ax0 − 2aTx0 = −d(λ0),

where λ0 = −|s1|λ̃. Finally, with the above A, a and B, setting s = α ·√n and l = u−1 = s, where α follows

standard Gaussian distribution, we likely obtain an easy case instance with explicitly known t0 = d(λ0). The

t0 can be used for initialization of the RW algorithm, and λ0 is used as in (4.23) in place of µ. In particular,

we find t− and t+ as described in Section 4.3 with ǫ = 1, ζ = 0.2 and κ = 1.2. We note that computation of

k′(t−) outlined in Section 4.3 can become inefficient when t− gets too close to t0.
7

Generating a hard case, case 2 instance with known t0 is a bit more complicated. We first describe how

to generate such an instance so that the optimal solution x∗ satisfies xT∗ Bx∗ = l. To this end, we set λ̃ = λ.

We then generate x0 with Gaussian entries of mean 0 and standard deviation 0.1, and set a = (A1− λ̃B1)x0
and s1 = xT0 B1x0. We now further modify A1 and B1 as in the previous paragraph to obtain A, B, t0 and

λ0. Finally, with these A, a and B, setting s = α · √n and l = u − 1 = s, where α is uniformly chosen

from [1, 2], we likely obtain a hard case, case 2 instance with optimal solution x∗ satisfies xT∗ Bx∗ = l. Next,

to obtain a hard case, case 2 instance with optimal solution x∗ satisfies xT∗ Bx∗ = u, we follow the same

procedure as above except that we set λ̃ = λ and choose α uniformly from [−2,−1].
Test results are reported in Table 4, averaged over 10 random instances.8 We observe that the RW

algorithm is slightly faster than Newton+Armijo on easy case instances, and it produces a solution with

better quality in terms of feasibility (of the equivalent equality constrained GTRS). Furthermore, we again

observe that the simple Newton+Armijo strategy fails on hard case, case 2 instances.

7In all our test instances below, they all turned out to have a valid left end point t− lying in [t0 + (0.2)3, t0 + 1].
8We regenerate another instance if A−1b is an interior solution.

36

RW Newton+Armijo

n iter/cpu/fval/feaseq iter/cpu/fval/feaseq

Easy Case

10000 6/9.75/-2.034919097e+03/1.1e-14 6/9.79/-2.034919097e+03/1.7e-08

15000 7/24.17/-3.385643481e+03/1.4e-14 6/24.40/-3.385643481e+03/8.9e-12

20000 7/47.29/-7.195068138e+03/1.1e-14 6/50.18/-7.195068132e+03/1.7e-07

Hard Case 2

10000 0/13.34/-6.405913926e+02/1.7e-14 10/41.62/-2.270662258e+03/1.4e+02

15000 0/30.71/-4.882640374e+02/2.3e-14 10/97.86/-4.974215533e+03/1.8e+02

20000 0/63.55/-9.857960694e+02/2.6e-14 10/213.46/-8.637983865e+03/1.8e+02

Table 4: Computational results for positive definite A and indefinite B.

6 Conclusion

We have presented optimality conditions for GTRS (1.1) that hold under a constraint qualification, the

RICQ (2.6). Furthermore, if the RICQ fails, we showed how the GTRS can be explicitly solved. In this

sense, GTRS has strong duality results as in linear programming. We also demonstrated that the GTRS can

be classified into easy and hard cases as the classical TRS, and the problem can be preprocessed to identify

explicit solution in hard case/interior solution and reduce the instance into an equality constrained GTRS

(4.1). We then discussed in detail how the Rendl-Wolkowicz algorithm in [29] can be extended to solve such

instances, which involved transforming the instance into a parameterized generalized eigenvalue problem. We

also illustrated our algorithm numerically in various cases, including cases when B is indefinite. When B

is a random sparse positive definite matrix, our algorithm is competitive with a simple Newton’s method

implementation, and is faster than the GLTR algorithm. On the other hand, when B is indefinite, our

algorithm requires additional inputs for initialization. Given such inputs, our algorithm is also competitive

with the Newton’s method.

A Proof of Theorem 2.1(ii)

Proposition A.1. Suppose that b = 0 and Items 1, 2 and 3 of Assumption 2.1 are satisfied. If GTRS (1.1)

is bounded below, then D-GTRS (2.2) is feasible.

Proof. We first consider the case when B is positive semidefinite. Then there exists an invertible matrix P

such that

B = P

[
0 0

0 I

]
PT .

Thus, after a change of variables y = PTx, GTRS (1.1) can be equivalently written as

inf q0(y) :=

[
y1
y2

]T [
Ā1 ĀT

2

Ā2 Ā3

] [
y1
y2

]
− 2

[
ā1
ā2

]T [
y1
y2

]

s.t. ℓ ≤ ‖y2‖2 ≤ u,
(A.1)

where

y =

[
y1
y2

]
, Ā =

[
Ā1 ĀT

2

Ā2 Ā3

]
= P−1AP−T , ā =

[
ā1
ā2

]
= P−1a. (A.2)

By our assumptions, the program (A.1) is bounded below. Since

q0(y) = yT1 Ā1y1 + 2yT2 Ā2y1 + yT2 Ā3y2 − 2āT1 y1 − 2āT2 y2,

and the constraint does not involve y1, we must have

Ā1 � 0, ĀT
2 y2 − ā1 ∈ Range(Ā1), ∀ ℓ ≤ ‖y2‖2 ≤ u. (A.3)

37

Notice that u > 0 since the RICQ (2.6) holds. Hence, the second relation in (A.3) implies

Range(ĀT
2) ⊆ Range(Ā1) and ā1 ∈ Range(Ā1). (A.4)

By (A.3), (A.4) and a consideration of the Schur complement, we conclude that for all sufficiently large

λ > 0, Ā3 + λI ≻ 0 and

Ā+ λ

[
0 0

0 I

]
=

[
Ā1 ĀT

2

Ā2 Ā3 + λI

]
� 0. (A.5)

Moreover, from (A.4), we see that, for all sufficiently large λ > 0,

Range(Ā1 − ĀT
2 [Ā3 + λI]−1Ā2) = Range(Ā1),

and hence ā1 ∈ Range(Ā1 − ĀT
2 [Ā3 + λI]−1Ā2). Thus, for sufficiently large λ > 0, the system of equations

[
Ā1 − ĀT

2 [Ā3 + λI]−1Ā2 0

0 Ā3 + λI

] [
w1

w2

]
=

[
ā1 − ĀT

2 [Ā3 + λI]−1ā2
ā2

]
(A.6)

is consistent. Since
[
Ā1 ĀT

2

Ā2 Ā3 + λI

]
=

[
I ĀT

2 [Ā3 + λI]−1

0 I

] [
Ā1 − ĀT

2 [Ā3 + λI]−1Ā2 0

0 Ā3 + λI

] [
I 0

[Ā3 + λI]−1Ā2 I

]
,

and [
I ĀT

2 [Ā3 + λI]−1

0 I

]−1 [
ā1
ā2

]
=

[
I −ĀT

2 [Ā3 + λI]−1

0 I

] [
ā1
ā2

]
=

[
ā1 − ĀT

2 [Ā3 + λI]−1ā2
ā2

]
,

we see from the consistency of (A.6) that ā ∈ Range

(
Ā+ λ

[
0 0

0 I

])
for sufficiently large λ > 0. From the

definition of ā and Ā in (A.2), we obtain immediately that a ∈ Range(A+ λB) for sufficiently large λ > 0.

This together with (A.5) proves that D-GTRS is feasible.

The case when B is negative semidefinite can be tackled similarly.

Next, we consider the case when B is indefinite. Suppose to the contrary that D-GTRS is infeasible.

Then either A − λB is not positive semidefinite for any λ ∈ R, or there exists λ with A − λB � 0 but all

such λ satisfy a /∈ Range(A− λB).

Case 1: A− λB is not positive semidefinite for all λ ∈ R. By [24, Theorem 2.3], there exists u∗ satisfying

u∗TAu∗ < 0 and u∗TBu∗ = 0.

Fix any s ∈ [ℓ, u]. For the above u∗ and each t > 0, we would like to find a solution xt of (x+ tu
∗)TB(x+

tu∗) = s that is uniformly bounded in t. For s = 0, we just take xt = 0. In the case when s > 0, the x we

seek has to satisfy

xTBx + 2txTBu∗ = s.

Let B = PDPT for some orthogonal matrix P and diagonal matrix D, and let βi denote the ith diagonal

entry of D. Also, let ũ∗ denote PTu∗. Since B is indefinite, there exists an index i0 such that βi0 > 0.

Consider the quadratic equation

βi0r
2 + 2tβi0 ũ

∗
i0r − s = 0.

It is clear that the solutions of the above quadratic equation are

r1t =
−2tβi0 ũ∗i0 +

√
(2tβi0 ũ

∗
i0
)2 + 4sβi0

2βi0
=

2s

2tβi0 ũ
∗
i0
+
√
(2tβi0 ũ

∗
i0
)2 + 4sβi0

,

r2t =
−2tβi0 ũ∗i0 −

√
(2tβi0 ũ

∗
i0
)2 + 4sβi0

2βi0
=

2s

2tβi0 ũ
∗
i0
−
√
(2tβi0 ũ

∗
i)

2 + 4sβi0
.

38

Moreover, it is easy to see that r1t is uniformly bounded for t > 0 when ũ∗i0 ≥ 0, while r2t is uniformly

bounded for t > 0 when ũ∗i0 ≤ 0. Define

xt =

{
r1tPei0 if ũ∗i0 ≥ 0,

r2tPei0 otherwise,

where ei0 is the vector which is one at the i0th entry and is zero otherwise. Then {xt} is uniformly bounded

in t > 0 and satisfies xTt Bxt + 2txTt Bu
∗ = s. The case when s < 0 can be considered similarly, by picking

the index such that βi < 0.

Next, since {xt} is bounded for t > 0 and u∗TAu∗ < 0, we see that

(xt + tu∗)TA(xt + tu∗)− 2aT (xt + tu∗) = xTt Axt + 2txTt Au
∗ + t2u∗TAu∗ − 2aT (xt + tu∗)→ −∞

as t→∞. This together with the feasibility of xt + tu∗ for all t > 0 contradicts the boundedness of GTRS.

Case 2: There exists λ with A− λB � 0 but all such λ satisfy a /∈ Range(A− λB). In this case, we apply

[4, Theorem A.2] to derive a contradiction. To this end, let s ∈ [ℓ, u] be such that the set {x : xTBx = s} is
nonempty. Then, by assumption, we see that the equality constrained GTRS (4.1), with this s, is bounded

below. Thus, f2(x) := xTAx − 2aTx − L is nonnegative on the set {x : f1(x) = 0}, where L is a lower

bound of the optimal value of the equality constrained GTRS, and f1(x) := xTBx − s. Furthermore, since

B is indefinite, there exist x1, x2 such that

f1(x1) > 0 and f1(x2) < 0. (A.7)

Using these and invoking [4, Theorem A.2], we conclude that there exists µ such that

(
−L+ µs −aT
−a A− µB

)
� 0.

From Schur complement, this implies that A− µB � 0 and a ∈ Range(A− µB). Thus, D-GTRS is feasible,

a contradiction to our assumption.

Combining Cases 1 and 2, we conclude that D-GTRS is also feasible when B is indefinite.

Acknowledgement. The first author would like to thank Nicholas I. M. Gould for help concerning the

GLTR algorithm and for providing the pre-release version of the software.

References

[1] A. Barvinok. Problems of distance geometry and convex properties of quadratic maps. Discrete Comput.

Geom., 13(2):189–202, 1995. 8

[2] A. Barvinok. A remark on the rank of positive semidefinite matrices subject to affine constraints.

Discrete Comput. Geom., 25(1):23–31, 2001. 8

[3] A. Beck. Quadratic matrix programming. SIAM J. Optim., 17(4):1224–1238, 2006. 3

[4] A. Beck and Y.C. Eldar. Strong duality in nonconvex quadratic optimization with two quadratic

constraints. SIAM J. Optim., 17(3):844–860, 2006. 39

[5] J. F. Bonnans and A. Shapiro. Perturbation analysis of optimization problems. Springer Series in

Operations Research. Springer-Verlag, New York, 2000. 25

39

[6] S. Burer and K.M. Anstreicher. Second-order-cone constraints for extended trust-region subproblems.

Technical report, Department of Management Sciences, University of Iowa, 2011. www.optimization-

online.org/DB HTML/2011/03/2957.html. 8

[7] A.R. Conn, N.I.M. Gould, and Ph.L. Toint. Trust-Region Methods. Society for Industrial and Applied

Mathematics (SIAM), Philadelphia, PA, 2000. 2, 3

[8] Y. Ding, D. Ge, and H. Wolkowicz. On equivalence of semidefinite relaxations for quadratic matrix

programming. Math. Oper. Res., 36(1):88–104, 2011. 3

[9] P. Finsler. Über das Vorkommen definiter und semidefiniter Formen in Scharen quadratischer Formen.

Comment. Math. Helv., 9:188–192, 1937. 3

[10] O.E. Flippo and B. Jansen. Duality and sensitivity in nonconvex quadratic optimization over an ellipsoid.

European J. Oper. Res., 94(1):167–178, 1996. 3

[11] C. Fortin and H. Wolkowicz. The trust region subproblem and semidefinite programming. Optim.

Methods Softw., 19(1):41–67, 2004. 1, 3, 29, 32

[12] D.M. Gay. Computing optimal locally constrained steps. SIAM J. Sci. Statist. Comput., 2:186–197,

1981. 3

[13] I. Gohberg, P. Lancaster, and L. Rodman. Matrices and Indefinite Scalar Products. Birkhauser, Verlag

Basel, 1983. 3

[14] G.H. Golub and Qiang Ye. An inverse free preconditioned Krylov subspace method for symmetric

generalized eigenvalue problems. SIAM J. Sci. Comput., 24(1):312–334 (electronic), 2002. 4, 33

[15] N.I.M. Gould, S. Lucidi, M. Roma, and Ph.L. Toint. Solving the trust-region subproblem using the

Lanczos method. SIAM J. Optim., 9(2):504–525, 1999. 3, 34

[16] N.I.M. Gould, Daniel P. Robinson, and H. Sue Thorne. On solving trust-region and other regularised

subproblems in optimization. Math. Program. Comput., 2(1):21–57, 2010. 3

[17] N.I.M. Gould and Ph.L. Toint. A quadratic programming bibliography. Technical report, Rutherford

Appleton Laboratory, England, 2001. www.optimization-online.org/DB HTML/2001/02/285.html. 3

[18] W.W. Hager. Minimizing a quadratic over a sphere. SIAM J. Optim., 12(1):188–208, 2001. 3

[19] M.R. Hestenes and E.J. McShane. A theorem on quadratic forms and its application in the calculus of

variations. Trans. Amer. Math. Soc., 47:501–512, 1940. 3

[20] Q. Jin, S.C. Fang, and W. Xing. On the global optimality of generalized trust region subproblems.

Optimization, 59(8):1139–1151, 2010. 3

[21] J. Lampe, M. Rojas, D.C. Sorensen, and H. Voss. Accelerating the LSTRS Algorithm. SIAM J. Sci.

Comput., 33(1):175–194, 2011. 3

[22] P. Lancaster and L. Rodman. Canonical forms for Hermitian matrix pairs under strict equivalence and

congruence. SIAM Rev., 47(3):407–443, 2005. 12

[23] Z-Q. Luo and S. Zhang. On extensions of the Frank-Wolfe theorems. Comput. Optim. Appl., 13(1-

3):87–110, 1999. Computational optimization—a tribute to Olvi Mangasarian, Part II. 11

40

[24] J.J. Moré. Generalizations of the trust region problem. Optim. Methods Software, 2:189–209, 1993. 3,

7, 10, 12, 15, 16, 38

[25] J.J. Moré and D.C. Sorensen. Computing a trust region step. SIAM J. Sci. Statist. Comput., 4:553–572,

1983. 3

[26] B.N. Parlett. The symmetric eigenvalue problem. Society for Industrial and Applied Mathematics

(SIAM), Philadelphia, PA, 1998. Corrected reprint of the 1980 original. 11

[27] G. Pataki. On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal

eigenvalues. Math. Oper. Res., 23(2):339–358, 1998. 8, 9

[28] I. Pólik and T. Terlaky. A survey of the S-lemma. SIAM Rev., 49(3):371–418 (electronic), 2007. 3

[29] F. Rendl and H. Wolkowicz. A semidefinite framework for trust region subproblems with applications

to large scale minimization. Math. Programming, 77(2, Ser. B):273–299, 1997. 1, 3, 17, 18, 19, 29, 37

[30] R.T. Rockafellar. Convex analysis. Princeton Landmarks in Mathematics. Princeton University Press,

Princeton, NJ, 1997. Reprint of the 1970 original, Princeton Paperbacks. 21

[31] M. Rojas, S.A. Santos, and D.C. Sorensen. A new matrix-free algorithm for the large-scale trust-region

subproblem. SIAM J. Optim., 11(3):611–646 (electronic), 2000/01. 3

[32] M. Rojas, S.A. Santos, and D.C. Sorensen. Algorithm 873: LSTRS: MATLAB software for large-scale

trust-region subproblems and regularization. ACM Trans. Math. Software, 34(2):Art. 11, 28, 2008. 3

[33] D.C. Sorensen. Minimization of a large-scale quadratic function subject to a spherical constraint. SIAM

Journal on Optimization, 7(1):141–161, 1997. 3

[34] R. Stern and H. Wolkowicz. Indefinite trust region subproblems and nonsymmetric eigenvalue pertur-

bations. SIAM J. Optim., 5(2):286–313, 1995. 3, 9, 10, 11, 12, 15

[35] P.D. Tao and L.T.H. An. Difference of convex functions optimization algorithms (DCA) for globally

minimizing nonconvex quadratic forms on Euclidean balls and spheres. Oper. Res. Lett., 19(5):207–216,

1996. 3

[36] V.A. Yakubovich. The S-procedure in nonlinear control theory. Vestnik Leningrad. Univ., 4:73–93,

1977. English Translation, original Russian publication in Vestnik Leningradskogo Universiteta, Seriya

Mathematika 62-77, 1971. 3

[37] Y. Ye and S. Zhang. New results on quadratic minimization. SIAM J. Optim., 14(1):245–267 (electronic),

2003. 3, 9

41

Index

M †, Moore-Penrose generalized inverse, 4

λ+, positive part, 4

λ−, negative part, 4

φ(t), 32

ψ(λ), constraint at x(λ), 12

ri, relative interior, 6

t, t, 20

λ, λ, 12

d(λ), 19

k(t), 18

k0(t), 18

q0(x), objective function, 2

q1(x), constraint function, 2

s0, 20

t0, 20

x(λ), first order stationary point, 12

cl, closure, 12

closure, cl, 12

constraint at x(λ), ψ(λ), 12

constraint function, q1(x), 2

constraint qualification, CQ, 6

CQ, constraint qualification, 6

easy/hard case instance, 13

first order stationary point, x(λ), 12

generalized eigenvalues, λ, λ, 15

generalized trust region subproblem, GTRS, 2

GTRS, generalized trust region subproblem, 2

hard/easy case instance, 13

inverse linear interpolation, 32

Lagrangian, 4

matrix pencil, 11

Moore-Penrose generalized inverse, M †, 4

objective function, q0(x), 2

optimality condition for GTRS, 9

regular/singular pencil, 11

relative interior constraint qualification, RICQ, 6

relative interior, ri, 6

RICQ, relative interior constraint qualification, 6

RW algorithm, 17

SDP relaxation, SDP-GTRS, 5

SDP, semidefinite programming, 5

SDP-GTRS, SDP relaxation, 5

semidefinite programming, SDP, 5

shift and deflation, 29

singular/regular pencil, 11

triangle interpolation, 32

TRS, trust region subproblem, 2

trust region subproblem, TRS, 2

vertical cut, 32

42

	Introduction
	Outline
	Notation

	Duality and optimality conditions
	Assumptions and properties
	Weak duality
	Strong duality and characterization of optimality

	Easy and hard cases and regular pencils
	Regular case
	Three intervals for

	A method for solving GTRS: the extended Rendl-Wolkowicz algorithm
	Properties of k0(t)
	Recovering solution of GTRS from maximizing k(t)
	Implementation details

	Numerical experiments with new RW algorithm
	B is positive definite
	B is indefinite

	Conclusion
	Proof of Theorem 2.1(ii)
	Index

