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Abstract

We present a new family of search directions and of corresponding algorithms to solve conic
linear programs. The implementation is specialized to semidefinite programs but the algorithms
described handle both nonnegative orthant and Lorentz cone problems and Cartesian products
of these sets. The primary objective is not to develop yet another interior-point algorithm with
polynomial time complexity. The aim is practical and addresses an often neglected aspect of the
current research in the area, accuracy. Secondary goals, tempered by the first, are numerical
efficiency and proper handling of sparsity.

The main search direction, called Gauss-Newton, is obtained as a least-squares solution to
the optimality condition of the log-barrier problem. This motivation ensures that the direction
is well-defined everywhere and that the underlying Jacobian is well-conditioned under standard
assumptions. Moreover, it is invariant under affine transformation of the space and under orthog-
onal transformation of the constraining cone. The Gauss-Newton direction, both in the special
cases of linear programming and on the central path of semidefinite programs, coincides with the
search directions used in practical implementations. Finally, the Monteiro-Zhang family of search

directions can be derived as scaled projections of the Gauss-Newton direction.
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Chapter 1

Semidefinite Programming

The expression used as the title of this chapter appeared in the early nineties [4, 41] and is
attributed to Alizadeh [2], although some of the roots are older. Barely ten years after the devel-
opment of linear programming, some researchers were thinking of generalizations to symmetric
matrices [9]. Even older is the history of Linear Matrix Inequalities, a close parent of importance
to control theorists, Yakubovich during the sixties [87, 88], and even Lyapunov at the beginning
of the last century. (See the historical section of the Handbook of Semidefinite Programming [85]
and the bibliography therein for details.)

Semidefinite Programming, as a topic of optimization, is barely ten years old [83] and sits at
the boundary between linear and nonlinear programming. The functions involved in a standard
formulation are linear. This similarity with linear programming explains why several semidefinite
algorithms arose as extensions of standard linear programming algorithms [3]. But the cone
constraint, maintaining nonnegative eigenvalues of the variable matrices, is on the other hand,
nonlinear. Moreover, the major applications of semidefinite programming are relaxations of non-
linear programs and nonlinear control problems and the solution techniques by interior-points
methods are modernizations of classical results of nonlinear programming [24].

The first chapter introduces the problem and the major concepts (primal-dual pair, optimality

conditions, feasible set, interior, central path, barrier) in a classical manner. Every result derived
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in this chapter is well-known and included here to contextualize the work, express the basic
definitions, and establish the notation.

We use semidefinite programming as the prototypical example of cone linear programs because
it offers the right level of generality. The two other self-dual cones of any practical value at this
time, the nonnegative orthant and the Lorentz cone, have specialized algorithms. Moreover, they
are easily embedded in semidefinite cones as we will see in Chapter 4 where we discuss implemen-
tation and where we explain how our algorithms handle problems over Cartesian products of the
three cones.

The main objective of this work is to introduce a new search direction based on the solution
of a least-squares problem and to implement an interior-point algorithm that takes advantage of
the strengths of this direction. Historically, interior-point algorithms for semidefinite programs
were first developed by extending algorithms for linear programs. They were then given strong
and more general foundations by the work of Nesterov and Nemirovskii [63]. More recently, an
abstract approach to interior-point algorithms based on Euclidean Jordan algebras [7] has pro-
duced unified convergence results by showing how one can extend “word-by-word” certain linear
programming algorithms to semidefinite problems, at the cost, we should note, of symmetrizing
the complementarity condition. Another generalization of linear programming to conic programs,
via the v-space approach, is developped in [82]. By contrast, we motivate the search direction from
a classical nonlinear perspective. We investigate the main characteristics of the search direction,
compare and contrast with the best practical directions. The final experiments exhibit a robust

and accurate algorithm.

1.1 Standard Dual Pair

The problem, in the formulation we call the primal, is

(Primal)  min {(c,X) | AX) =b,X € si}, (1.1)
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where b € R™, the standard Euclidean space; S™ is the space of real symmetric matrices of order

n equipped with the inner product

<X,Y) = trace (XY) = Z Z Xi5Yi;.
i=1j=1

For X,Y € R™X™ the inner product is (X, Y) := trace (X'Y) and ||X]|| denotes the Frobenius norm,
the norm induced by the inner product, (||X|| = (X, X)%). The constraints are expressed by a
linear operator A,

(A1, X)

A: ST = R™,  AX):= : ,

(Am, X)
constructed from symmetric matrices Ai, for 1 <1 < m. Finally, ST C S™ represents the cone of
positive semidefinite matrices, the closure of ST, C ST, the cone of positive definite matrices. A
set C is a cone if

A>0,ceC=AcelC.

The following properties are useful.
e ST has non-empty interior;
e ST is convex: X1,X2 € ST,A € [0,1] = AXq + (1 —A)X; € ST;
e ST contains no lines;

e ST equals its polar cone, {Y | (Y,X) > 0,VX € ST}. (Note: this is either called self-duality or

self-polarity.);

e ST is homogeneous: for any pair X1,X, € ST, there is an element of the automorphism

group of ST that will map X; to X,.

The last two properties are equivalent to what Nesterov and Todd [62], called self-scaled. This is
crucial to the development of an abstract approach to interior-points algorithms using self-scaled

barriers. This equivalence of self-polarity and homogeneity to self-scalability was noticed by Guler
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[39] who also pointed out that homogeneous self-polar cones had been classified by certain Jordan
algebras.
Few cones possess all the s above propertie. Only three have found significant practical appli-

cations at this time:

1. The Lorentz cone, an extension of relativistic space-time: L%} := {x € Rt | xo >

X3+ +x2)
2. The positive semidefinite cone: ST :={X € S™|V¥x € R",x'Xx > 0};
3. The nonnegative orthant: R} :={x € R™ | x > 0}.

The other cones are the positive semidefinite matrices with complex or with quaternion entries
and an exceptional one, as well as direct sums of all of these cones.

We denote the primal feasible region of (1.1) by
FP = {X]AX) =b,X €8T},
and the strictly feasible primal region by
Foo={X1A400 =b,X 8}, }.

This is also known as the interior, though it should properly be called the relative interior.
Problem (1.1) arises naturally in Control Theory [15, 83] but came to prominence as a relax-
ation of hard Combinatorial Problems [31], after the introduction of the Lovasz theta function
[63], the Stable-Set relaxation of Lovész and Schrijver [52], and the breakthrough approximation
of the Maxcut problem by Goemans and Williamson [32]. Another application of semidefinite
programming is the convex approximation of continuous non-convex problems. We briefly return

to this topic in chapter 5.
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Since the primal problem (1.1) is convex, the techniques of convex duality described by Rock-

afellar [71, 70] apply and we can derive a dual program via the Lagrangean function,
Z(X,y) = (C,X) + (y,b— A(X)),
where the second inner product is the standard inner product on R™, namely

m
(xy) i=x'y =) xiyi.

i=1

Following Rockafellar ([70] section 4), a dual problem is given by

I

max {gis%{m,m +(y,b— A(x»}}

Y

max{){réisnl{,%(x,y)}}

Y

Y Xes

I

g { i {(C— 47,0 + (0,00} ],

y | Xest

where A* is the adjoint operator of A, defined by
m
A :R™ -5 S™ A*(y) = ZyiAi.
i=1
This definition of A* results from the following
n n
(U, AX)) = Y yu(ALX) = <ZU1A1,X> = (A*(y), X).
i=1 i=1

Since the inner minimization minx6§1{(C — A*(y), X)+(y, b)} is bounded only if C—A*(y) € ST,
the inner product (C— .A4*(y),X) attains its minimum at zero and we can simplify the dual

program to

(Dual) max{(b,y) | A*(y)+Z:C,ZeST+‘}. (1.2)



CHAPTER 1. SEMIDEFINITE PROGRAMMING 6

In program (1.2), which we call the dual, we introduced a slack variable Z to obtain an equality,

the customary transformation. We denote the dual feasible region by
FD .= {(y,z) |A*(Y)+Z=CyeR™ Z¢ 81},
and the strictly feasible dual region by
FPo={w2 14w +2=CyeRrR™,zes}, .

Under the Slater convex constraint qualification for both problems, (F7, # 0 and FP, # 0),
it is well-known that the optimal values of the primal and dual problems are equal and attained,
a result we derive from our treatment of the central path. Moreover the set of optimal solutions
of both primal and dual problem is bounded. We therefore obtain a complementarity condition:

Let X € FP and (y,Z) € FP and consider

(C)X) - <b)y) = (C)X) - <A(X))y)

(C,X) = (A" (y), X)

(C—A*(y),X) =(Z,X) > 0.

The last inequality is obtained from X, Z € ST} and self-polarity of ST. For triple (X*,y*,Z*), an
optimal solution to a primal and dual pair with no duality gap, we therefore have that (Z*, X*) =0

and write a set of equations describing optimal solutions (X,y,Z) € ST x R™ x ST,

A(X) =0, (primal feasibility); (1.3a)
A*(y)+Z=C, (dual feasibility); (1.3b)
(Z,X) =0, (complementarity). (1.3c)

Note that the complementarity equation could as well be written as ZX = 0.
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1.2 Derivatives

Before we go further in the development of semidefinite programming theory, we need to fix the
concepts and the notation for the derivative of matrix functions. For abstract spaces, the reader
is referred to Wouk [86], and more specifically for matrix functions, Graham [36] or Magnus and
Neudecker [55].

Consider a function F:V — W where, in our case, the spaces V and W usually are symmetric
matrix spaces, standard Euclidean vector spaces (R™) or Cartesian products of those inner product
spaces. Whenever we speak of the derivative of such a function we mean the Fréchet derivative

of F evaluated at v, the unique linear operator we denote [DF(v)], satisfying, for all d € V,
F(v+d) =F(v) + [DF(v)ld + o(]|d]]).

We use the notation [DF(v)] to highlight the operator nature of the derivative ([DF(v)] : V — W).
The second derivative is often defined as a map V — [V — W] but, following [86], we choose to

view the second derivative as an operator [D2F(v)]: V x V — W satisfying, for all d € V,
1
F(v+d) =F(v) + DFW)ld + z[QZF(\;)](d, d) +o(]|d||?).

Higher derivatives are defined and denoted similarly. The ith—derivative, is denoted [D'F(v)].
For a function F : U xV — W we use the following notation for the partial derivative of F with

respect to variable u € U (respectively, variable v € V)
Dy Flu, v, (DvFu,v)]),
to indicate the linear operators such that

Flu+du,v) = Flu,v)+ [DuF(u,v)ldy +o([|du|]),  and

Flu,v+d,) = Fu,v)+ D,Fu,v)ldy + of||dv|]).
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In the special case of particular interest where F is a functional (F: V — R), the first derivative
is an element of the dual space and we use the gradient notation, VF(v), to identify the unique

element of the primal space V satisfying, for every d € V,
(VF(v),d) = [DF(v)]d. (1.4)
Similarly for the second derivative,
(d, VZF(v)d) = [D*F(v)I(d,d).

In the practical matter of calculating derivatives, it is sometimes easier to compute VF(v) than to
find an expression for the operator [DF(v)]. As an example, consider the standard barrier function

for the cone of semidefinite matrices,
F:ST, =R, F(X) = —logdet X.

By a result of Lewis [51], for a spectral function F: S™ — R, the values of which can be expressed
as F(X) = f(A(X)) for some function f : R — R, and eigenvalue function A : S™ — R", the

gradient can be found via
VF(X) = U'Diag (Vf(A(X)))U, where U'Diag(A(X))U=X,U'U=1.
In this case,

F(X) = —logdet(X)
= —log] [AuX)
= —Zlog)\i(X)

i=1

= —f(A(X)), where f(x) :zzlogxi-
i=1
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The gradient is therefore given by

VF(X) = —U'Diag(VfAX))U
1/M(X
= —U'Diag
1/A0(X)
= —U'[Diag (A -u
= X"

For future reference, the derivative, obtained from (1.4), and the gradient of F(X) = — log det(X)
are

DFX)I() =—(X"" (), VFX)=-X" (1.5)

Some more involved calculations [72] produce the second derivative and Hessian. Their expressions
are

DZFXN(,-) = ()X TOXTT), VX)) =XT)X (1.6)

Note that, for every Y € ST, [D2F(X)I(Y,Y) = (Y, X TYX"1) = ||[YX"1||2 > 0. Moreover if Y # 0,
D2F(X)](Y,Y) = |[YX~1||> > 0. This means that F(X) = —logdet(X) is a strictly convex function
on its domain.

More properties of this barrier derive from its derivatives, but the above suffices for our

exposition.

1.3 Central Path

Since the work of Fiacco and McCormick [24] on barrier techniques, later specialized by Nes-
terov and Nemirovskii [63] to self-concordant barriers, the preferred algorithms for our problem
fall within the class of interior-point methods. These bear a striking resemblance to homotopy
methods of differential equations.

Using a barrier on the cone ST, for example —logdet(X), we construct a family of strictly
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convex primal-dual pairs parameterized by the scalar u > 0,

inf {(c,X) — plogdet(X) | A(X) = b,X € 81}, (1.7a)

sup {(b,y) + plogdet(Z) | A*(y)+Z2=C,Ze Si} (1.7b)

These two programs are dual in the sense of Fenchel, as we now proceed to exhibit. A concise

version of this derivation is found in [51]. Consider the following transformation of the primal,

v(P) = inf {{C,X)~ ulogdet(X) | AX) =b,X € 81},

inf {(X) + g(A(X)) | X € 8T},

where

f(X):=(C,X) —L(X), L(X):=mnlogdet(X), g(v):=ippv),

the last equation representing the indicator function of the set {b}. More generally, the indicator

function of a set C is

0 ifx € C,
ic(x) =
+o0o otherwise.
We calculate Fenchel conjugates,
L*(Z) := sup {(Z,X) — nlog det(X) | Xe Sl};
g*(z) = sup{(z,u) — i) |y € IR"‘}
= sup{(z,b) | Yy € ]R‘“}
= (z,b);
(Z) = sup {(z, X) — (C,X) —L(X) | X € s:}
- sup{(Z— C,X)—L(X) | X € Si}
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Using these conjugates, we express a dual program,
—inf {f(—A" (W) + 0"(W) | y € R™} = —inf {L*(—A*(y) = C) + (y,b) [y e R™}.
Consider the inner supremum,
L*(—A*(y) — C) = sup {(—A* (y) — C,X) + nlogdet(X) | X € si}. (1.8)
Its optimality conditions yield
0=—A*y)—C+uX', or X=pA* @y +C)".
Since we have a closed form for the solution of the inner supremum, we simplify (1.8),

L*(—A*(y) - C) = sup{(—.A*(y)—C,X)—I—ulogdet(X) |x681}
= (—A*(y) — C,u(A*(y) +C) ") + plogdet(n(A*(y) + C) ")
= —un+ plogdet(u(A*(y)+C)™")

= —un+ unlogu — nlogdet(A*(y) + C).
We discard the constant term to obtain a simplified dual program,

v(D) = —inf{—ulogdet(A*(y) +C)+(y,b) |y e Rm}
= sup{ulogdet(A*(y) +C)—(y,b) |y € R’“}
= sup{ulogdet(C—A*(y)) +{(y,b) |y € R"‘}

- sup{(y,b) +ulogdet(Z) | A*(y)+Z—C =0,y eR™,Z € 81},

where we introduced the dual slack Z to make explicit the implicit cone constraint and to highlight
the primal-dual symmetry. We now see that the two families of barrier problems (1.7) introduced

in this section are indeed dual to each other.
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The solutions to the pair of programs (1.9), parameterized by W, is of crucial importance to

the development of interior-point algorithms. We explore them further.

(P.) inf {(c, X) — nlogdet(X) | AX) = b}, (1.92)

(Dy) sup{(b,y)-i—ulogdet(Z) | A*(y)+Z=C}. (1.9b)

We observed before that the objective function of the primal is strictly convex, while that of the
dual is strictly concave. From this convexity, we can show [57] that the existence of interior points
X € FP, and (y,Z) € F?, implies that the primal-dual pair (1.9a,1.9b) has a unique solution for

each u > 0. To see this, consider that for each feasible X,

(Z,X) = (C—A*(Y),X)

(C,X) — (v, A(X))

(C,X) — (U, b).

Therefore <Z X> and (C, X) differ by a constant. Moreover, since X is feasible we can restrict the

primal feasible set without affecting the optimal solution to obtain
min {(Z, X) — plogdet(X) | A(X) =b,(Z,X) — nlogdet(X) < (Z,X) — plog det(?)}.

Since the feasible set of this program is compact, we conclude that (1.9a) attains its optimal
solution (and we justifiably write min instead of inf). Moreover, since the objective function is
strictly convex, this solution is unique.

A similar argument may be developed for (1.9b). Therefore under the Slater constraint qual-
ification, the pair of programs (1.9) has a unique solution for each barrier parameter n > 0. We

stress that it is possible to express this solution using the optimality conditions of either programs.
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For example, from the Lagrangeans,

Zr(X,y) = (C,X)—plogdet(X) + (y,b — A(X)),

we express the optimality conditions of the parameterized primal family as

C—pX'—A*(y)

b— A(X)
and of the dual family as
C—Z-A"(y)
0=VLHXyY,Z)=| b-AX) |- (1.11)
uZ-'—-Xx

Without transforming the solution set we add Z := uX~' to (1.10) to obtain from either of the

log-barrier problems,

A*y)+Z2 = C (1.12a)
AX) = b, (1.12b)
Z = pux'. (1.12c)

The reader must be careful here. In a sense, the optimal solutions of (1.9a) are equivalent to the
optimal solutions of (1.9b) since both are described by (1.12). But an implementation based on an
attempt to solve (1.9a) by some iterative scheme leads to what is known as a primal interior-point
method and is less desirable than an approach based on (1.12).

For all u > 0, the set of unique solutions to (1.12), which we denote (X, Yy, Z) is called the
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primal-dual central path. (See Figure 1.1.) Note that
(Zy, X)) = (uX, 1, X)) = pn.

This last relation provides one link between the solution to our problem (1.1,1.2) and the parame-
terized family of programs (1.9a,1.9b). As the parameter p tends to 0, the sequence of solutions to
(1.12) converges to a point where the complementarity equation (1.3c) is satisfied and the original

problem is solved. This is the basis of all primal-dual path-following interior-point algorithms.

(X*y*.2%)

Figure 1.1: Central Path

They solve, more or less accurately, the system (1.12), or an algebraically equivalent formulation

of this system, for decreasing values of .

1.4 Nonlinearity and Smoothing

The perturbed complementarity equation (1.12c) is written in terms of an inverse matrix. An
algebraically equivalent formulation may be preferable. In practice, two transformations are used.

The first one is to transform (1.12c¢) by a multiplication by X to obtain
ZX = pl. (1.13)

This transformation is not inconsequential. Informally, it reduces the nonlinearity of the system

with the aim of accelerating Newton-like methods. More precisely, it enlarges the radius of



CHAPTER 1. SEMIDEFINITE PROGRAMMING 15

quadratic convergence.

Consider a function F to which we apply a Newton-like method to find v* such that F(v*) = 0.
We know ([20] Theorems 5.2.1 and 10.2.1) that the radius of quadratic convergence is bounded by
a measure of the relative nonlinearity of F given by B—ky In this expression k is a small constant
that depends on the method used (Newton or Gauss-Newton, for example), the scalar § provides
a bound,

[IDFV) ' < B,

and vy is a Lipschitz continuity constant for [OF(v)] in a ball around v*. To obtain an equivalent
expression more significant to numerical analysts, we take or;i]n [OF(v*)] for B and, for 'y, we take

max Omax [OF(v)] in the neighborhood of v*. Thus, we obtain a bound closely related to the

condition number of the Jacobian,
Omin [QF(V* )]
Omax[DF(V)]

With this expression in mind consider, in turn, both formulations of the complementarity condition
(1.12c, 1.13) as we approach the optimal solution. In the first case, say F(X,Z) := Z — uX~', we
have

[DF(X,Z)l(dx,dz) = dz + X TdxX"".

As the optimal solution X* is almost always rank deficient, the norm of X~ can be arbitrarily
large and we cannot bound Oy, This implies that the proven radius of quadratic convergence
is exceedingly small.

On the other hand, for the expression that we claimed to be less nonlinear, namely F(X, Z) =

ZX — ul, we can compute the derivative as
[SF(Xv Z)](dX1 dZ) = ZdX + dZX)

and we bound omax by ||Z|| + ||X||- Therefore, for problems where the Jacobian is of full rank (a
condition, as we will later see, resulting from standard assumptions) and where we can therefore

bound onin, we obtain a nonzero radius of quadratic convergence.
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The second reason to formulate the complementarity as (1.13), even more directly related
to the condition number, is that, in the limit, an ill-conditioned system may prevent accurate
solutions. This has been the bane of barrier methods and a reason of their disappearance in the
sixties, before the current revival. While it is known that the log-barrier ill-conditioning does not
affect interior-point solutions of standard linear programs, it seems clear that current state-of-the-
art semidefinite programming codes are deeply affected by this ill-conditioning. Since accuracy
of the solutions is the major focus of our work, we will return in more detail to the conditioning
problem.

For future reference, after this transformation, the sequence of systems to solve for decreasing

values of u defining the central path becomes

Ay)+2 = C (1.14a)
AX) = b, (1.14b)
ZX = ul (1.14¢)

1.5 Smoothing and Symmetrization

The transformation of Z = pX~! into ZX = ul has one unfortunate consequence: The residual
(ZX — ul) is not symmetric unless X and Z commute and therefore a Newton step is not possible
on the system (1.14) since it is overdetermined.

From the start, possibly influenced by the success of linear programming codes where this
problem does not arise, practitioners have eliminated the problem by symmetrization. The AHO
direction, for example, projects both sides of the complementarity equation onto the subspace of

symmetric matrices with the aid of the operator

H(M) := s[M + M.

N —

From a point, (X, Yk, Zk), and a parameter w > 0 the optimality conditions for the param-

eterized family are symmetrized, linearized and a Newton system is solved for (dx,d,,dz). We
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call this set of equations the Unscaled Symmetric System,

A*(dy) + dy ——(A*(yy) + Ze— C) = —Fa, (1.15)
Aldx) = —(AXx) =b) = —fp, (1.15b)
H(Zxdx + dzXx) = —H(Zx Xk — ul) =—H(F.). (1.15(3)

The direction (dx, dy, dz) obtained from (1.15) is known as the AHO direction [4], experimentally
one of the directions leading to the most accurate solutions [79] of problem (1.1,1.2). All the
Monteiro-Zhang family of directions [60], which includes most directions extensively used and
analyzed, can be obtained from scaling the cone [79] then solving (1.15): Consider an element of

the automorphism group of S™ expressed by the non-singular matrix P and let
X:=PXP', A;:=P'A;P~' C:=PtCP. (1.16)
This can be viewed as working on the scaled primal problem
min{<6,i> | AX) =b,X e 81}, (1.17)
to which corresponds the scaled dual problem
max{(b,ﬁ) | /T*fy)+2=(~:,2681}. (1.18)
This dual can also be obtained from (1.2) by the transformation

Ji=y, Z:=Ptzp . (1.19)

The symmetric direction for the family of parameterized programs in this transformed space is
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therefore given by

where

A(dy) +dz =—(A* @)+ Zk —C) = —Fq,
Aldx) = —(AXx) —b) = —fp,
H(Zxdx + dzXy) = —H(Z Xy — ul) =—H(F.),

Fa =A*(Ux) + Zx — C =P 'F4P 1,
fp = AXi ) —b = fo,

Fe = ZiXx —ul =P 'F.P 1.

18

(1.20a)
(1.20b)

(1.20¢)

(1.21a)
(1.21b)

(1.21¢)

In this sense, the symmetric system (1.15) is the basic direction-finding paradigm for the Monteiro-

Zhang family. The popular path-following algorithms differ by the scaling matrix P. The first

directions, historically, are listed in Table (1.1) along with the implementations using them. These

directions were not discovered via the scaling approach but it provides a unifying view.

P Direction Solvers
I AHO [4] SDPPack,SDPA,SDPT3
Z7 HKM [41, 48, 56] | CSDP,SDPA,SDPT3
X2 (X?ZX7) 1X2]2 NT [62] SDPA,SDPT3,SeDuMi

Table 1.1: Instances of Monteiro-Zhang scaling matrix P of equation (1.16).

CSDP
SDPA
SDPPACK
SDPT3
SeDuMi

http://www.nmt.edu/~borchers/csdp.html [13, 14]
http://www-neos.mcs.anl.gov/neos/solvers/SDP:SDPA [26, 28, 27]
http://cs.nyu.edu/cs/faculty /overton/sdppack /sdppack.html [40]
http://www.math.cmu.edu/~reha/sdpt3.html [80]
http://www2.unimaas.nl/~sturm/research.html [77]

Table 1.2: Major Semidefinite Solvers
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1.6 Generic Symmetric Algorithm

From the development above we state Algorithm 1.6.1, a generic approach to solve primal-dual
semidefinite pairs using the symmetric form of the optimality conditions. This is not meant as
an implementation but rather as a birds-eye view, able to describe all currently popular search

direction-based algorithms.

Algorithm 1.6.1 Generic Interior-Point for Monteiro-Zhang family

Given € > 0; {Tolerance}
Given X,y, Z; {Must satisfy some condition}
w= @; {Initial barrier parameter}
while u > € do
Choose scaling P; {Possibly dependent on X, Z}
Choose centrality 0 < T < T; {According to some condition)}
W T@; {Update target}
Solve (1.20); {Scaled AHO direction}
Choose step length «; {To maintain positive definiteness}
X=X+dx;y=y+dy;Z=2Z+dg; {Update iterate}
end while

We have described path-following algorithms based on the Monteiro-Zhang family of directions
from this admittedly high-level view to highlight the close kinship of all popular search directions
in semidefinite programming. It may be worth noting that Monteiro and Zhang do not provide the
only unifying view. There have been other successful attempts, notably Monteiro and Tsuchiya
[58] and Kojima, Shindoh, Hara [48]. We chose to highlight Monteiro-Zhang because it includes all
the important directions currently in use whether they are important for theoretical or practical
reasons.

An obvious question arising from this approach concerns the properties that can be inferred
from their expression [79]. Another is whether a different basic paradigm can yield another family
of directions with their own properties, strengths and weaknesses. This is pertinent since it is
still unclear which direction, among the Monteiro-Zhang family or elsewhere, is “best”. Even the
measure of efficiency is debatable since the algorithms with the lower polynomial bound on the
number of iterations are often slower than the algorithms used in practice.

The work described in the following chapters is such a new paradigm. The main direction-
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finding system, which we introduce in the next chapter and call the Gauss-Newton direction, is
to be viewed as the AHO direction, that is, as the unscaled basic approach, to which any of the
scalings of the Monteiro-Zhang family can be applied. Work on such a scaling has already started
[47] and a polytime algorithm has been demonstrated. We are concerned here with the unscaled

approach, its own merits and comparison with AHO.



Chapter 2

Gauss-Newton Directions

We now proceed to describe the fundamental search directions we intend to use as the basis of our

interior-point algorithms. Recall the parameterized family of programs whose solution set define

the central path

(Pw)  min{(C,X) — nlogdet(X) | AX) =b,X ST},

(D) max{(b,y) +nlogdet(Z) | A*(y)+Z=C,Z€ si},

and their associated smoothed optimality conditions,

Fq A*(y)+Z-C
Fuo=1| f, | = AX)—b =0
F. ZX —ul

It is important to remark, once again, that F, maps S™ x R™ x S™ to S™ x R™ x M™.

21
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2.1 Over-Determined Systems

The goal of a path-following algorithm is to approximately follow the central path determined
by Fu(X,y,Z) = 0. This is a nonlinear and over-determined system of equations. In a classical
setting, it would generally be solved by a globally convergent minimization algorithm applied to
the norm of F,,. We proceed to describe this classical approach.

To simplify the notation, let

V = S™xR™ x 8™, (2.3a)

v = (Xy,Z) eV (2.3b)
Consider the norm
[FuW)[[? = (Fu(v), Fu(v)) = (Fa(v), Fa(v)) + (fp (v), fp (v)) + (Fc(v), Fe(v)),

where each inner product is the appropriate one, the trace inner product for the matrices F4 and

F¢, and the Euclidean inner product for the vector f,. Observe that
Fuv) =0 & [[Fu)* = o(v) =0.

A solution to F,,(v) = 0 is therefore a solution to min ¢@(v), a nonlinear least-squares problem. To

derive an algorithm for the latter, it is usual to start from a linearization of F,, at a given point v,
L.(d) :=F.(v) + ®F.(v)ld,,

and then proceed to find the best solution of this linearization in the least-squares sense, that is,

to find a solution d, := (dx, dy, dz) of the problem

min {||[©Fu(v)]dv +F.W) | dv € V}. (2.4)
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We call the vector d, implicitly defined by (2.4) the Gauss-Newton direction.
From the definition of the Gauss-Newton direction (2.4) the over-determined linear system we

intend to solve in a least-squares sense is

dx Fa
[®OF.(v)ldy = —=Fu.(v), where d,:= d, |, and Fu=1|f, |. (2.5)
dz Fe

We interchangeably use two operator formulations for this system,

A*(dy)+dz = —(A"(Y)+Z-C) (2.6a)
Aldx) = —(A(X)—b) (2.6b)
Z(dx)+X(dz) = —(ZX—ul), (2.6¢)
and
0 A I| |dx Fa
A 0 0| |dy|=—|f]|> (2.7)
Z 0 X||dz Fe

where the operators Z and X are defined by
Z:S"=>M', ZM):=ZM and X:S"-S M, X(M):=MX.

Using the now common notation for pseudo-inverses, we succinctly express the Gauss-Newton

direction d, as

(Gauss-Newton direction) d, = —[@Fu(V)]TFp(V)- (2.8)
Where A' is the Moore-Penrose inverse of A, the unique operator satisfying the four conditions
1. AATA = A,

2. ATAAL = AT
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3. (AAHt = AAT,
4. (ATA)t = ATA,

This is also called the {1,2, 3,4}-inverse by Ben-Israel and Greville [10], still the authority on the
subject.

The pseudo-inverse notation has the advantage of expressing not just a least-squares solution
0 (2.5), but, when the Jacobian is rank-deficient, expressing the solution of minimum norm, the

solution to

min {|dy|| | dv € argmin{ |[DF, w)ldy + Fuv)|| | dv € V}}. (2.9)

To prepare the way for an implementation, we also use an equivalent matrix formulation for

the over-determined system,

0 At I dy fa
Jgnldv = A 0 0 dy | =—1| f | (2.10)
(Zzol) 0 (IoX) d, fe
where
dy := svec(dx)
d, := svec(dz)
fqa := svec(Fq)
fo = avec(F.).

The operator svec (-) : S™ — Rt™ multiplies the off-diagonal elements by v/2 and then stacks,
column by column, the upper triangle of a symmetric matrix into a vector of size equal to the

triangular number of n,

t(n) == @ (2.11)
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Its inverse operator is smat (-) : Rt™) — S™. For example, if X € S™,n = 3,

t

svec (X) = [X71 X12v2 X2z X13v2 X23v2 X33

The v/2 scaling ensures that we maintain the metric, (X, Z) = (svec (X),svec (Z)). More formally,

define the index function I and its inverse

(1)) = tG—1)+1, (2.12a)

.2 .
T 1+ VTT8k
I |

,j), where j::[ (2.12b)

so that if X € S™ and svec (X) = x, then for any 1 <1 <j <n, we have the component identities

Xij = XIS(i,j] and XkZXISI(k],fOI‘"LZj;
1

Xij = Wkl

and xi = V2X_1 (), for i #].
The corresponding operator, avec(-) : M™ — R“Z, stacks the column of any matrix into a

vector. We define the index function I, and its inverse

I.(1i,j,n) = n(—1)+1, (2.13a)
(k—n[k—_lJ, [EJ + 1), (2.13b)

I (k)
n n

a

so that if X € M™ and avec (X) = x, then for any 1 <1 <j < n, we have the component identities

Xij =X1,(1,jm) Xk = X1 1 (k,n)-

The binary operator @ : S™ x S™ — M *t) the asymmetric Kronecker product, is defined
by the identity
avec (AXB) = (A @ B)svec (X).

The matrix A @ B is of size n? x t(n) and we find each entry by using bases for the domain and
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co-domain. Let a basis for S™ be

_— %(eie)F-l-eje;f), i#£7;
ij 1=

eiel

i i=j

where ey is a vector in R" with a 1 in position k and zeros elsewhere. To find entry (k,1) of

A © B, where 1 = I5(1,j), and k = 14(1,7, 1), we first consider the case i # j. By definition of @,

er(A @ B)svec (Ei;) = efavec(AEyB)
et

K
= ﬁavec (A(eie] + ejei)B)
t
7k_avec (AeieB + AejelB)
t
e
—~<avec (A;1Bj; + A;5By.)
V2

1
= ﬁ [A.'LB) —I_ A:jBi:]IE] (kyn) ’

where the notation A.; is meant to indicate column j of matrix A, and A;. is row i. With similar

calculations for the case i = j, we obtain the kl component as

AEH %(AﬁBﬁ + AgByg), 1#7
k=

AziBj3, i=j.
We later need the following bounds.

Lemma 2.1.1 For any matriz X € S™, [[To X|| = [[X @ I|| = /2 [IX]| < /tM)[IX]|2-

Proof: The first equality is clear since the entries of || X @ I|| are permutations of the entries of

[|II@ X]|. For the second equality, let

t(n)
X = Z OC{E{
i=1
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be a decomposition of X into an orthonormal basis of S™. Then

t(n)
Z (XiEi (%) 1
i=1

X1

n+1
= /X

where we used the the orthogonality of the matrices {E; @ I} and that (E; @ ,E; @ I) = “H . The

last inequality is derived from a standard result, ||X|| < v/n|X||2 ([43], page 313). O

Lemma 2.1.2 For any matriz X € S™, ||[T@ X||2 = X @ I||2 < [|X]]

Proof: Again the first equality is clear. For the inequality,

Xotl = max{|xonv|| v =1}
_ max{”avec (Xsmat (v |||||v||—1}
= max {[[Xsmat (v) || | [Iv] = 1}
< maxc { Xl llsmat (v) || | [Iv]| = 1}

= IIXII.
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The last equality is derived from ||smat (v) || = ||v||- O
The matrix-vector formulation (2.10) of the Gauss-Newton system highlights the fact that the
left-hand side Jacobian matrix Jgn operates on a vector space isomorphic to S™ x R™ x S™
If a feasible initial vector vo = (Xo,Yo,Zo) is provided, then feasible iterates based on a
constrained least-squares problem may be considered. In contrast to (2.9), the defining problem

for this direction is a constrained least-squares problem,
min {||[©Fc(v)](dv) +Fe)]| | A*(dy) +dz = 0, A(dx) = 0,d, € v}. (2.14)

We will call the solution to (2.14) the Feasible Gauss-Newton direction. Primal and dual feasibility
are maintained and we find the constrained least-squares solution to the linearization of the
smoothed complementarity equation.

If the system (2.7) is non-singular, an assumption we will justify shortly, we can find the Gauss-
Newton direction by solving the normal equations. This is not what should be done numerically for
accurate solutions since the condition number usually worsens, but it provides a mathematically

useful expression. The normal equations are
OF, (V)" ®F,(v)]ldy = —[DF,(V)]*Fu(v). (2.15)

In equivalent operator notation,

(A*A+ Z*2)dx + (2*X)dz = —(A™fp + Z*Fe), (2.16a)
(AA*)d, + Adz = —(AFq), (2.16b)
(X*Z)dx + A*dy + (I+ X*X)dz = —(Fq+ X*Fe), (2.16¢)

where the adjoint operators are

X* MM St X*(L)

% {LX+ XL}, (2.17)

ZF:M" - S™, Z*(L)

% {zL+ 17"} . (2.18)
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These definitions follow from

1

(X (M), L) = trace (MX)'L = trace M*LX = 3

trace M* {LX + XL'} = (M, X*(L)),

and similarly for Z.
For later reference, we symbolically solve the normal equations to express some of the variables

in terms of the others. First, in term of dz,

dx = —(A*A+2*Z2)7 A, +Z*(Xdz +Fe)l, (2.19a)
d, = —-A*t(dz+Fq). (2.19b)
Then in terms of dx,
dz = (I+&X*X - A* AT T X*(XFq — Zdx — Fe) — Fq, (2.20a)
dy = AMI+X*X - A A TX*(Z2dx + Fe — AFa). (2.20b)

For the sake of completeness, we also express the complete symbolic solution to the normal

equations
dz = IT—(I4+X*X A AN ZAA+22) 1 2°x] ] (2.21)
[X*XFg — X*Fe + X*Z(A* A+ 2*2)7 (A + 2°F)] — Fa},
dx = —(A*A+2z*2)"! (2.22)

{A*p + Z*F 2" X[1— (1 + XX — A AN Z(A A+ 2 2) 1 27 x] ]
{(I‘FX*X*A*.A*T)i]

[X*XFq — X*Fo + X*Z(A* A+ 2*2) (A*fp + Z2*Fc)] —Fa}},
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dy = —AMT{I-(1+x*x - A AN ZUAA+Z2*2)7 12X (2.23)
{I+x*x — A AT

[X*XFq — X*Fe + X*Z(A* A+ Z*Z) T (A*f, + Z°F) —Fa}} .

Using these expressions, it is possible to implement a Gauss-Newton based algorithm that is both
fast and spares memory. It competes with the best current solvers in terms of efficiency. But
our aim is to obtain as much accuracy as possible, a goal the normal equation approach cannot

achieve.

2.2 Properties of the Directions

Before we use the Gauss-Newton directions in an algorithm, we consider the properties that

motivate its use.

2.2.1 Well-Defined

To develop algorithms based on the Gauss-Newton directions, we need to provide conditions under

which these directions are properly defined.

Lemma 2.2.1 Let Amxn, Bpxn be matrices with m > n and p < n. Also let the columns of Pg

be a basis for the nullspace of B. If the matriz APy is of full rank then the optimal solution of
min {||Ax —b|| | Bx = o}

is x = Pg {APg)t(APg)}”' (APg)b = P5(APg)'b.

Proof: Let v* be the optimal value of the above program and let x = Pgy. Then
v* = min{||Ax —b|| | Bx =0}

= min{[[APgy — b}

= min {yt(APB)t(APB )y — th(APB)y + btb} .
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Since APg is of full rank then (APg)*(APg) is positive definite, the objective function is therefore

strictly convex and the optimization problem has a unique solution
-1
y = {(APg)'(APs)}  (APg)b.

The result follows by the transformation x = Pgy. m|

From Lemma 2.2.1 we obtain that the Gauss-Newton direction is well-defined for strictly
feasible points under a weak assumption on the primal constraint, that A is surjective. This
assumption, for theoretical purposes, is made without loss of generality since surjectivity of A
is equivalent to the matrices A1,..., A being linearly independent, a condition we enforce by

pre-processing of the problem at the onset.

Lemma 2.2.2 If A is surjective, the Gauss-Newton direction obtained from (2.9) exists and is

unique for all X € ST, Z € ST,. (The Jacobian is full-rank.)

Proof: We show that [®F, (v)] is full-rank by considering its kernel. We express [OF,(v)ld, =0

as

A*(dy) +dz =0, (2.24a)
Aldx) =0, (2.24b)

Zdx + dzX = 0. (2.24¢)
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From (2.24a) we obtain dz = —A*(dy) and by (2.24c), ZdxX~! = A*(dy). Now

0 = (0,dy)
= (A(dx),dy)
= (A"(dy),dx)
= (ZdxX', dx)
= (zaxx %, zaxx 1)

= ||ZTdxX "z

The last equation implies dx = 0 since both X and Z are full rank. Substituting back into (2.24c)
we get dz = 0. Finally, the surjectivity of A yields dy, = 0. The result follows by Lemma 2.2.1
with the identification B = 0 and A = [DF(v)]. O

Note that dx and dz are always uniquely determined and d, is uniquely determined if A
is surjective. Failing this condition we may define the search direction as the best least-squares
solution of (2.9) to regain uniqueness.

Note also that the result requires only positive definite X and Z. This is in contrast to the AHO
direction, which may fail to exist, though sufficient conditions for existence are known. Monteiro
and Zanjacomo [59], for example, show that the AHO direction is well-defined if ||Z%XZ% —ulj] <
&; while Shida, Shindoh, and Kojima [73] show that ZX + XZ € ST is sufficient.

Corollary 2.2.3 If A is surjective, the feasible Gauss-Newton direction obtained from (2.14)

exists and is unique for all X € ST, Z € ST ,. (The projected Jacobian is full-rank.)
Proof: Consider Lemma 2.2.1 and identify

A* T

A with [Z 0 X],andBWith
A 0 0

Let Pg be the projection onto the nullspace of B. We only need to show that APg is full rank.

By way of contradiction, assume that APgy = 0 with y # 0. Then Pgy # 0 since Py is full-rank
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and therefore

PBU = O)

contradicting Lemma 2.2.2. O

In addition to the existence of the direction when X and Z are positive definite, it seems
important for accurate solutions that the non-singularity result holds in the limit. This is true of
the AHO direction but not of NT or HKM whose Jacobians become increasingly ill-conditioned
as we approach the optimal solution.

To guarantee this desired behavior, we need additional assumptions, on the optimal solution,
of uniqueness and strict complementarity. This is not done without loss of generality; these
assumptions will fail on some practical problems. Yet, with probability one, randomly generated
programs exhibit the required condition as was shown by Alizadeh, Haeberly and Overton [5] (See

also [65] for more generic properties of conic programs).

Lemma 2.2.4 If A is surjective and the optimal primal-dual solution (X*,y*,Z*) is unique and

strictly complementary (rank (X*) 4 rank (Z*) =n), then [DF,(v)] at u = 0 is non-singular.

Proof: Since Z* and X* commute (Z*X* = 0 = (Z*X*)* = X*Z*), they share an orthonormal
matrix of eigenvectors Q such that QZ*Q' = Dz and QX*Q' = Dx where Dz, Dx are diagonal.

We construct a permutation matrix P such that

Dz 0 O 00 0
PDzP*=| 0 Dz 0| and PDxP'=[0 0 0
o 0 0 0 0 Dx3

Where Dz and Dx3 are of same size. We assumed here that the rank of Z* was at least as large

as the rank of X*. The case where the rank of X* is larger is similar. Let

A¢ = QPAP'Q",
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where A is the corresponding operator to obtain a system equivalent to (2.24), namely

A*dy)+d, = 0 (2.25a)
Aldx) = 0 (2.25b)
Dzdx +dzDx = O. (2.25¢)

The respective solutions (dx, dy,dz) to (2.24) and (&;, dy, (E) to (2.25) are related by

dx == QPdxP'Q",

dz = QPdP'Q".

Consider an expansion of (2.25¢),

0 = D,dx+dzDx
Dz 0 Of [dxyr dx12 dxis dz11 dziz dziz| [0 0 0
= 0 Dz O a\;(m a\;(zz a\;(zs + szm azzz (/1;23 00 0

0 0 0 d’.\>1<31 a:(sz &33 (/1;31 (/1232 (’1;33 0 0 Dx3
Dzidx1; Dzidxiz Dzidxys +dz13Dxs

= |Dz2dxz; Dz2dxzz Dzadxazs + dz23Dxs

0 0 dz33Dxx

Therefore Dz1dx17 = 0, which implies dx;; = O and similarly dz33 = 0, dx12 = 0, dx22 = O.

From the upper right block,

N L~
dx1z = —Dz;dz13Dxs,

dxas = —DZgazstX&
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From (2.25a) and (2.25b) we obtain orthogonality of the primal and dual steps, <cflz, E;(> =0.

Therefore
0 = (dz,dx)
a;n (,1\5212 a;w 0 0 ajms
= < a;m (,1;22 @23 ) 0 0 aj(zs >
6’1\231 5232 0 E;<31 a?(sz E;(sz

= trace(dz13dx13 + dz23dx32 + dz31dx13 + dz32dx23)

= 2trace (dz13dx13 + dz23dx23)

= —2trace(dz13D;]dz13Dx3 + dz23D ;3 dz23Dx3)

= 2 {trace (D%(E”DZ%DZ%EZBD)%G + trace (DisavzstZz%DZz% 322313%(3)}

1~ 1 11— 1
= —2{IID,{ d213D%s|* + IDjsdz2sD 5 P} -

From the last equation we get ;1213 =0, (’1;23 = 0 and, similarly (’1\;(31 =0, &32 = 0. Finally,

the structure of any solution to (2.25) is

00 0 dz;;7 0 0
dx=10 0 0|, dz=| 0 dzyp O,
0 0 dxa 0 0o 0

and therefore E;E; =0.

Assume that we have such a solution, (E;, dy,cE). Then
(Dz +dz)(Dx + dx) = DzDx + (Dzdx + dzDx) + dzdx = 0.

Then (Z* +PtthEQP, y+dy, X* —|—Ptth’1\>/<QP) is also a solution to the primal-dual pair, assumed
to be unique. The only solution to (2.25) and to the equivalent system (2.24) is therefore 0 and

the projected Jacobian is full-rank. m|



CHAPTER 2. GAUSS-NEWTON DIRECTIONS 36

Note that the optimal solution must be unique and strictly complementary, and that A must
be surjective for the above result to hold. If this fails, the Jacobian is rank-deficient. Consequently,
if we intend to solve difficult problems accurately we need to consider the possibility of multiple
optimal solutions and therefore of singular Jacobians. In practice, surjectivity of 4 is guaranteed
by pre-processing, for example by doing a rank-revealing QR decomposition of 4. Moreover, if
the implementation is meant to handle problems with multiple solutions, the obvious approach is
to look for the best least-squares solution to the sub-problem, via a rank-revealing decomposition
of the operator [DF,(v)]. We will return to this issue when we discuss implementation.

The results of this section imply that the Gauss-Newton direction, similarly to AHO and in
contrast to almost all other directions obtained from a symmetric scaled system [79], is well-
defined as we approach and also at the optimal solution. This continuity property allows the
implementation, if properly done, to obtain accurate solutions, especially in view of the distance
to singularity of the Gauss-Newton system. Section 2.2.4 further explores this aspect of the linear

system defining the Gauss-Newton direction.

2.2.2 Merit Function

The merit function we use, not only to derive the Gauss-Newton direction but also to gauge the

progress of any algorithm is the squared norm of the infeasibility and of the complementarity,

o) = {Fulv)Fulv) (2.26a)
= S{FaFa) + 5l fo) + 5(Fe o) (2.26)

= @av) + @p(vV) + @c(v). (2.26¢)
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Following our definition of derivatives, we can calculate the first and second derivatives of @ by

expanding @(v + d,) around v,

1
ov+dy) = S[Fv+dy)|?

2
+ IDFWI(A) + 3 02 (d, ) + oflldu?)

: HF(v)
= 2t Fw)
+2(F(v), [DF(v)](dy))

+(F(v), DFW)I(d)) + (D*FW)(dv, dy), (D’ F(v)I(dy, dy))

+ollav|®)}.
From this expansion we obtain the following derivatives,

PeM)(d) = (F(v),[DFV)I(dy)),
D2eM(dy,dv) = (F),D*FW)(dy, dv)) + (DFW)](dy), [DFM)I(dy)).

We now specialize these expressions to each part of our merit function. First to the infeasibility

measures, starting with primal infeasibility,

(P'p(X) = (fp(x)’f’p(x))

N =N =

A(X) 7b1A(dX))v

—~

Do, (X)(dx) =

D29, (X)l(dx,dx) = [Aldx)|>.
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Then to dual infeasibility,

(pd(y)Z) = <Fd(y»z)\Fd(UyZ))

(A*(y) +Z - C,A*(y)+Z—C),

N =N =

A*(Y)+Z—-C A% (dy) + dz),

—~

De@aly,2)l(dy,dz) =

D20a(y, 2)1((dy,dz), (dy,dz)) = [A*(dy)+dz]*

And to complementarity,

0eX,2) = 2{FelX,2),Fe(X,2)

= %(ZX—uI,ZX—uI),

D@e(X,Z)](dx,dz) = (ZX—ul,Zdx + dzX),
[©2@c(X, Z)]((dx, dz), (dx,dz)) = 2(Fe,dzdx)+[|Zdx + dzX]||.

2.2.3 Descent

We present here a classical result that is found, informally stated, in Dennis and Schnabel [20]
but which we include here because our setting is more general and because it provides the original

motivation for the use of the Gauss-Newton direction to solve semidefinite programs.

Lemma 2.2.5 The Gauss-Newton direction d., defined by (2.9) is a strict descent direction for

the merit function @(v) = %(Fu(v)‘Fu(\))) if and only if Fu.(v) is not perpendicular to the range

of [OF,(v)].

Proof: We compute the derivative of f in the direction of d, as

De)ldy = (Fulv),[DF.(v)]dy)
= (Fu(v), —OF (IDF, WMITFu(v)).
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Now we observe that [DF,(v)][DF,(v)]! is the orthogonal projection onto the range of [DF (v)].

It is therefore idempotent and we can write

DeW)ldy, = —(Fu(v), ([OFWIDF.WIN* (DF . (WIDF.W]F.(v))
= _<[©Fu(vﬂ [QFLL(VHTFLL(V)) [QFp(V)] [QFLL(V)]TFLL(V)>
== _||[©F},L(V)][DFp(V)]TFu(V)HZ

< 0.

Therefore [D@(v)]d < 0 if and only if [DF,,(v)] [@Fp(v)]TFH(v) # 0 and the result follows. m|
In particular, Lemma 2.2.5 states that if [OF(v)] is full rank then [®¢@(v)]ld, <0 and d, is a

direction of strict descent. The feasible direction also enjoys a similar property.

Lemma 2.2.6 The feasible Gauss-Newton direction d defined by (2.14) is a descent direction

for the merit function @.(v) = %(FC,FC).

Proof: Using the notation and the result of Lemma 2.2.1, say Pg is the projection onto the
nullspace of the operator corresponding to the feasibility A*(dy) + dz =0, A(dx) = 0. Then the

feasible Gauss-Newton direction is expressed by
dy = P ([OF (V)] Ps) Fe(v). (2.28)
Similarly to Lemma 2.2.5, we have

D@c(v)]dy

(FC (v), [OF, (V)]dv>
= (Fe(v),—[DFc ()] Ps ([DFc(V)]Pg)Fe(v))

—||[DF (v)]Pg ([DF (v)]Pg ) Fe (v)||?

0.

IA

Moreover, [®f.(v)]d, < 0 if and only if Pg([DF.(v)]Pg)|Fc(v) #0. a
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We expect the following to be a building tool for the global convergence analysis of any

algorithm based on the Gauss-Newton direction.

Corollary 2.2.7 If A is surjective, then both the Gauss-Newton direction defined by (2.9) and the
feasible Gauss-Newton direction defined by (2.14) are directions of strict descent for all X € ST,

Z € ST, for, respectively, %(Fu(\)),Fp(v)) and %(Fc(v),FC(v)).

Proof: From lemmata 2.2.5 and 2.2.6 we have descent if the Jacobian is full-rank. From Lemmata
2.2.3, 2.2.3 and the hypotheses we have the required full-rank property. O
In summary, if A is surjective, and we may assume it is, the Gauss-Newton direction is a strict

descent direction until stationarity of the merit function is attained.

2.2.4 Conditioning of the Jacobian

In this section we investigate the behavior of the singular values of the Gauss-Newton Jacobian,
first, we compare them to the corresponding singular values of the AHO Jacobian to estimate the
relative distance of both systems to singularity. Then we find expressions for their rate of change
with respect to the barrier parameter L.

Consider the following equivalent form of the over-determined system (2.6),

A*(dy)+dz = —(A"y)+Z-0C), (2.29a)
Aldx) = —(A(X)—b), (2.29b)
H(Zdx + dzX) = —H(ZX — ul), (2.29¢)
K(Zdx +dzX) = —K(ZX—npl), (2.29d)
where
H(M) ::%[M + M"Y, (symmetric part); (2.30a)
K(M) ::l[M — M4, (skew-symmetric part). (2.30b)
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Note that the first three equations (2.29a-2.29¢) correspond to the symmetric (or AHO) system.

Corresponding to the matrix formulation (2.10) we write

] F
]gndZP aho d—_ s

J Fi

, (2.31)

for some permutation P of the rows, and where J 4., is the Jacobian of the Gauss-Newton system,
Jaho is the Jacobian of the symmetric (AHO) system and Jy is the part of J4» corresponding to
the skew-symmetric component of the complementarity equation. To simplify the notation later,

let

o= tn)+m+tn), (2.32)
m = t(n)+m+n? (2.33)
r = m—a=tn)—tn-1). (2.34)

Note that Jgn is (M X @), Jqho is (A x M), and Jx is (r x 1i). We also use the following notation

for the ordering of the singular values of a matrix Jyxn, with m > n

Gmax(]) = 01 (I) > GZ(]) > .2 Gn(]) = O—min(])'

From (2.31) and the above notation for singular values, we can write the following relation.

Lemma 2.2.8 The singular values of Jgn and Jano satisfy the following inequality for 1 <k <1,

Gk(]gn) > 0x(Jaho) > 0-k+t(n71](]gn)-

Proof: Follows directly from Corollary 3.1.3 of Horn and Johnson [44]. O
The principal implication of the result is that the Gauss-Newton Jacobian is no closer to
singularity than the AHO Jacobian is since Omin(Jgn) > Omin(Jaho). We now consider the largest

singular value and obtain an upper bound.
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Lemma 2.2.9 The largest singular value of the Gauss-Newton Jacobian is bounded. Specifically,

omax(]g'ﬂ.) < \/zexlax(laho) + O'Zmax(]k).

Proof: With the above relations (2.31) between Jgn, P, Jaho, and Ji,

0-rznax( gn) = }\max(lgn]gn)

P]aho

PJx

= )\max [(P]aho)t(P]k)t]

= Amax(JanoJano +JiJx)

= |inolano + JiJkll2

< anoJanollz + [1TEJkll2

= Amax(JanoJano) + Amax(JiJk)

= Grznax(]aho) + 0'rznapc(]k)'

Therefore omax(Jgn) < V02,0 (Jano) + 02,44 (Jk)- O
We can now investigate the condition number of the Gauss-Newton system. Say we have a
sequence v(K) := (X(K) y(K 7(K)) e §n x R™ x S™,. Let J(*) be J4n as defined in (2.10) with

X, Z replaced with X(¥)| Z(¥) and let J* be the Jacobian at the optimal solution.
Assumptions 2.2.1 We have an index set denoted by k and

o (XM yW), ZIK) — (X*,y*,Z%),

o (X*,y*,Z*) is the unique, strictly complementary optimal solution.

k)

We use the notation v(¥) instead of v, to indicate a sequence not restricted to the central path.

First, a simple technical result.
Lemma 2.2.10 Under Assumptions 2.2.1,
10 Sy,

2. {15} is bounded.
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Proof: Result 2 follows directly from 1 and the fact that ||J*|| is bounded. We proceed to show

1. Since X(¥) — X* and Z(¥) — Z*, for any € > 0, there is a k such that for any k > k,

€

XM x| < £

(k) _ 7% <
md |29 -2 < 55

With this choice of k > k,

% =7 = H [I@(z(k)—z*) 0 (Xt —X*)@I] H
< x/HH [z('d -7+ X —x*] ‘
v ([FAEAl ER DO
< e
And we obtain the required bound. O

Lemma 2.2.11 Under Assumptions 2.2.1, The condition number of the Gauss-Newton Jacobian

(x) _
k(J) = % satisfies k(J1¥)) = k(J*) < o0.

By Lemma, 2.2.2, the operator J(*) is of full rank which implies that the smallest singular value
is bounded away from zero. By Lemma 2.2.10, the largest singular value is bounded away from
infinity. m|

By Lemmata 2.2.2 and 2.2.4, we know that the Gauss-Newton system is non-singular and has
a bounded condition number as we approach the optimal solution. This behavior is shared with
the AHO direction but not with NT or HKM, as any random example shows. The condition
number of the NT and HKM systems, even on small, random problems, grows dramatically.

To see why the condition number might affect accuracy, we restate here the results of Gu [38].
Consider symmetric systems, under finite precision arithmetic and assume a backward-stable
algorithm for the solution of the direction-finding system (1.20). The numerical solution d, to

(1.20) is the exact solution to a nearby problem,

(Js — 8J6)dy = —(f + &1),
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where Js is the scaled Jacobian and where the perturbations vary with the choice of directions
and the solution technique. In all cases, the computed solution &: and the exact solution d,, may

differ by

ldy — do| < (Is) <|I5Is|| ||5f||)' (2.35)

+
lldvll 1—k(Js)] sl [Ill

Therefore if ||8]s|| = Q(Omin(Js)), the computed direction may be completely different from the
exact direction and the algorithm will stop making progress. A better condition number allows
more accurate solutions. This is the accepted explanation for the fact that the AHO direction
obtains much more accurate solutions than HKM and NT. For the Gauss-Newton direction,
the perturbation analysis is slightly different and we return to it in chapter 4 when we discuss
implementation but again, there is a dependence on k(Jgn ) and the better the condition number,
the more accurate the solution.

Moreover the condition number of the Gauss-Newton system on most problems is smaller than
the condition number of the AHO system. Informally, this is not surprising. Recall that, since
both Jacobians have bounded norms, conditioning problems may occur only when the smallest
singular value gets too small. Consider a problem where the smallest singular value is, in the limit,
very small and recall that the difference between the two systems is that the skew-symmetric part

of the complementarity equation is deleted in AHO. For any matrix A,

> of(A) ZZG (A+AY) + ZZO' (A —AY.

Unless by some coincidence, the skew-symmetric part affects only the larger singular values, then
the smallest singular value of the Gauss-Newton system is strictly larger than the AHO smallest
singular value and the condition number is correspondingly smaller.

Now, we consider some instances where the Gauss-Newton direction coincides with other

directions.
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2.2.5 Coincidences

Recall that semidefinite programming can be viewed as a superset of linear programming. If the
data involve only diagonal matrices (Ai, C), the primal-dual pair is an expression of a standard
linear program. Therefore, given a point (X,y, Z) where the matrices are diagonal and restricted
to be diagonal, one would hope that the Gauss-Newton direction coincides with the usual linear
programming primal-dual direction. This was shown to be true for all of the Monteiro-Zhang

family by Todd [79]. This is also the case for the Gauss-Newton direction.

Lemma 2.2.12 Given constraint matrices A; linearly independent and diagonal, objective func-
tion matriz C diagonal, and a current iterate (X,y,Z) with diagonal X € ST and Z € ST, the
Gauss-Newton direction d,, = (dx, dy,dz) has dx and dz diagonal. Moreover (diag (dx), d,diag(dz))

solves the standard primal-dual Linear Programming system, namely

Atdy+d, = —(A'y+z-—c), (2.36a)
Ady = —(Ax—b), (2.36b)
Zdy +Xd, = —(Zx— ue). (2.36¢)

Proof: From the solution to (2.36) we construct dx = Diag(dyx), dz = Diag(d.), clearly a
solution to the corresponding Gauss-Newton system (2.5) since the residuals are zero. Moreover,
since the solution to the Gauss-Newton system is unique by Lemma 2.2.2, this choice of dx, dy, dz
is the Gauss-Newton solution. Therefore the Gauss-Newton direction coincides with the standard
primal-dual linear programming direction. O

On the central path of semidefinite programs, the Gauss-Newton direction coincides with other

well-known directions.

Lemma 2.2.13 Suppose that A is surjective, that X,y,Z is on the central path with Fqg = O,
fp =0 and ZX —ul =0, pu > 0. Suppose that the new target for the barrier parameter is Ty,

where 0 < T < 1. Then the Gauss-Newton direction from (2.5) coincides with the HKM direction.
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Proof: Following [41, 48, 56] we express the HKM direction in its simplest form as the solution

of (2.37) followed by symmetrization dx = 3 (dx + d¥).

A*(dy)+dz = 0 (2.37a)
Aldx) = 0 (2.37b)
Zdx +dzX = —(1—1)ul (2.37¢)
The first equation (2.37a) yields
dz =—A%(dy). (2.38)

This expression for dz implies that it is symmetric since the A; are symmetric. We solve for dx

from the last equation (2.37c) to get

dx = —(1—7)uz'—7'dzX

1
—(1T—1)X = =XdzX
n

(t— X + %LX.A*(dy)X.

This, in turn, implies symmetry of dx and the next step of an HKM approach, namely the
symmetrization dx = (dx + d%)/2, is not required. Therefore, the solution to (2.37) is a solution

to the AHO system where equation (2.37c) is replaced by

1

Z(de +dzX+dxZ+ Xdz) = —(1 —1)ul.

(This implies the known result that AHO and HKM coincide on the central path.) For the HKM

direction to be equal to the Gauss-Newton direction, we have to check the additional condition
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that the skew-symmetric part is zero.

1
Zdx —dxZ+dzX—-Xdz = qul[(T—l)X—l—}—LXA*(dy)X]

—(t—1X+ %LX.A*(dy)X]HX_1
—A*(dy)X + XA*(dy)

= 0.

And therefore the solution to (2.37) is a valid solution to the Gauss-Newton system, which is
known to be unique. O

Since it was shown by Todd [79] that most directions (including AHO, NT and HKM) coincide
on the central path, from Lemma 2.2.13 we can now add the Gauss-Newton direction to this
list. This is the only case where the Gauss-Newton direction coincides with other directions of
the Monteiro-Zhang family. In general, the Gauss-Newton direction is different from all other

directions.

2.2.6 Invariance

Todd [79] also introduced two concepts of scale-invariance with respect to the cone of positive
definite matrices. This is different from the classical concept of scale-invariance with respect to
the affine space defined by the constraint equations. A method for defining a search direction is P-
scale-invariant if the direction at any iterate is the same as would result from scaling the problem
and the iterate by an arbitrary non-singular P, using the method to determine the direction, and
then scaling back.

In more detail, say that from an iterate (X,y, Z), and data A;, C,b, a method finds a direction
(dx,dy,dz). Also, given a scaling matrix P, the same method, applied to a problem from iterate
(PXPt,y,P—tZP~1) and data P~*A;P~1,P—tCP~! finds direction (dx, E;, dz), then the direction
is P-scale-invariant if the directions agree, that is, if (PdxP*,dy,P~tdzP~') = (&}, ;i;, CE). It is
Q-scale-invariant if the same relation holds when P is restricted to orthogonal matrices, PP* = I.

As this concept applies to the Gauss-Newton direction, we have the following result.
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Lemma 2.2.14 (Q-scale invariance) Let (dx,dy,dz) be the Gauss-Newton direction obtained at
point (X,y,Z) € ST, x R™ x ST ,. Consider the scaled primal-dual pair, (1.17-1.18) obtained
from (1.16), (1.19) for some orthogonal P. Then the scaled vector (PdxPt,y,P~tdzP~") is the

Gauss-Newton direction at the iterate (>~<,g, Z) for the scaled problem.

Proof: The Gauss-Newton direction may be computed from the Normal Equations since the
Jacobian is of full rank by Lemma 2.2.2. The defining equations for the scaled problem therefore

are

(A*A+Z*2)dx + (2" X)dz = —(A*F, + 2*F.), (2.39a)
(AA*)d, +Ad; = —(AFq), (2.39b)
(X*Z)dx + A*dy + I+ X*X)d; = —(Fa+X*Fe). (2.39¢)

In the following, [(Aj, B)]; indicates the vector in R™ made from the inner products.
Substitute the scaled vector (&,E;,El;) = (PdxPt,y,P~t*ZP~") into the left-hand side of

(2.39a) to get

(A* A+ Z*Z)dx + (2*X)dz
m
=) P AP (P AP P tdxP )]

+ % {PtzP P tZP TPdxP' + P tZP P ZP 'PdxP'}
1
+3 {P~tZP 'PtdzP "PdxP" + PXP'PtdP P tZP '}

= 1
—pt {Z A1<Ai, dx)} + 5 {ZZdx +ZZdx + Zdx + XdzZ}Pil

i=1
= 1
=P YA, + Z*F P ' =P " {Z Aifpi+ 3 {ZF. + Fzz}} P!
i=1
= 1
=Y P AP i+ 3 {PtZP P 'F,P ! + PIFLP P TZP )
i=1

— A f, + Z*Fe.
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Therefore (&}, (’1;, (’12) satisfies (2.39a). Substitute (&;, a;, (E) into the left-hand side of (2.39b)
to get, for 1 <j <m,

m
Ad*dy + Ad; = PtA,-P],ZPtAiP](dy)i>],~+[<PtA,~P1,PtdzP]>}]~

i=1

{
= [<Ai)ZAi(dy)i>]i + (A5, dz)]5 = —[(A5, Fa)ls
i=1
[

—[(P AP PP 1))y = —AF,.

Therefore (:1;, E;, (12) satisfies (2.39Db).

Finally, substitute (;l:(, E; , (12) into the left-hand side of (2.39¢) to get,

(X*Z)dx + A*dy + (1+ X*X)dy
= % {P~*ZP~'PdxP'PXP' + PXP'P'ZP'PdxP'}
+ Z PT*AP(dy)i + P tdzP!
i=1
+ % {P~td;P 'PXP'PXP' + PXP'PXP'Ptd,P '}

- 1
=pt { % {ZdxX + XZdx} + Z Ai(dy i +dz + 3 {dzXX + XXdZ}} P!

i=1

1
=P g+ AFP =Pt {Fd 5 {FeX + XFC}} p!
= {PthP‘ + % {P ' F.P'PXPt + PXPtPtF§P1}}

= —Fa + X*Fe.

Therefore ((fi;, El; , (12) satisfies (2.39c) and we conclude that the Gauss-Newton direction is Q-
scale invariant. |

While we are describing properties initially investigated by Todd, it is fair to remark that the
Gauss-Newton direction is not P-scale invariant as any random example shows. Yet, on a related
matter, one additional property of the Gauss-Newton direction is worth mentioning: it is invariant

under affine transformation of the variables. This is the classical invariance with respect to the
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space.

Theorem 2.2.15 The Gauss-Newton direction, at any point vc € V is invariant under affine

transformation of the variables w = H(v) + h where H:V — V is non-singular.

Proof: The Gauss-Newton step in v-space, from current point v, is given by (2.8),
vy =ve — [DyFu(ve)lTFu(ve).

Using the affine scaling w = H(v) + h, we define

and obtain

DG W) = [DywFu (H ' (w—h))] = [D,F,(v)]H'

The Gauss-Newton step, in w-space is

wy = Wc_[QWG(Wc)]TG(WC)

= W¢ — {[Qva(Vc)]H_1 }T G(we).
Since [®,F,(v¢)] is of full rank, {[’i)\,]:u(vc)]H*1 }T =H[®,F(v.)]t and

wy = WC_H[QVF(VC)]TG(WC)

= H(ve) +h—H®Fv)ITF(ve)

H(VJ,.) +h.

The Gauss-Newton step is therefore invariant under affine transformations of the space. O
This last property is not shared by the AHO direction since, for example, H may map v to
a point w where the AHO direction is not defined. Note also that this last invariance does not

imply that scaling the rows of the operator will leave the steps unchanged. Scaling the feasibility
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rows by a large factor, for example, would favour feasibility over complementarity and would
bring the Gauss-Newton iterates closer to the AHO iterates. This is not a useful goal; it hinders
convergence in most cases. To find a scaling of the rows producing more accuracy by reducing
the condition number or allowing faster convergence, on the other hand, can be useful and we are
currently investigating that issue.

In this chapter we have studied some properties of the Gauss-Newton directions. We have seen
that they differ from the symmetric directions of the Monteiro-Zhang family, especially in terms of
the distance to singularity of the Jacobian matrix. This feature suggests that the directions should

be used to obtain accurate solutions to semidefinite programs. We now develop such algorithms.



Chapter 3

Convergence

In this chapter we discuss convergence issues of algorithms based on the Gauss-Newton directions.
First, from a classical stand-point, we consider global convergence via sufficient decrease of a
merit function. The results of this approach do not lead to a proof of polynomial convergence.
We include them because the algorithm described here is very close to what we do in practice,
because the results require only weak conditions of the problem data and because we hope to
eventually obtain a proof of polynomial convergence using this line of reasoning. We then briefly
discuss asymptotic convergence. Finally, the major part of the chapter takes steps towards a
polytime convergence proof for an infeasible interior-point algorithm based on the Gauss-Newton
direction.

We recall the problem of interest, the semidefinite program pair
(Primal)  min {(C,X) | AX) =b,X € s’;}, (3.1)

and

(Pual) max{(b,y) | A*(y)+Z2=C,Z€ 81}. (3.2)

We also recall the merit function, the combined norm of the infeasibility and of the complemen-

52
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tarity,
(Fu(v), Fu(v)). (3.3)

N —

eV, )=

3.1 Classical Convergence

The algorithms we consider in this section fall into the framework of Algorithm 3.1.1: Starting
from a possibly infeasible point, (X°,y°, Z°) = (1,0, 1), compute the Gauss-Newton direction and
take a step in that direction, reduce the target parameter and iterate. We assume that the length
of the step is dictated by a line search routine that finds the minimum of the merit function in
the direction given without violating the semidefinite constraint. It may be possible to replace
this exact line search with an approximate line search satisfying the Armijo-Goldstein or Wolfe
conditions. The reduction in the barrier parameter ensures that the merit function is decreased

at every iteration.

Algorithm 3.1.1 Generic Gauss-Newton based interior-point code

Given € > 0 {Tolerance}
() x ()

k:=0; XK =2 = L;y(K) .= 0y ulk) .= (28 x) T’IX ) _ 1;

while =Converged(k,v(*) u®) ¢) do
d) = —[OF, (vITF, (vIK); {Gauss-Newton}
al¥) := LineSearch(v(*®), d(®) (k). {Decrease @}
p(k+1 .= TargetSelect(v(¥), d(¥) | (K (k). {See Algorithm 3.1.2}
vk = () 4 (k) g, {New iterate}
k:=k+T,

end while

The numerical convergence criteria should be based on the merit function, the iterates and on
the central path target. Following standard practice ([30], Section 8.2.3.2) we assume that the

user provides a value € indicating the desired accuracy. The convergence test ensures
o @1 ) — (v uM) <o (14 o™, uM)]),
o D v < ve T+ V),

o ul® < e
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The first two conditions imply convergence of the merit function values and convergence of the
iterates. The third condition implies that we have reduced the complementarity to the required
tolerance. Note that there is no need to scale the merit function before comparing to € since we

are solving a least-squares problem with zero residual.

Assumptions 3.1.1 Throughout this section, the following conditions are assumed to hold:
o The operator A is surjective.
e There is a point v* € V such that ©(v*,0) = 0.

The first condition, for theoretical purposes, is made without loss of generality since we can in
principle eliminate redundant constraints before attempting to solve the optimization problem.
The second condition implies that the primal-dual pair has an optimal solution with no duality
gap. Note that we do not insist that the optimal solution be strictly complementary or even
unique. Nor do we require a Slater point.

The first requirement for global convergence is that the search direction be a descent direction
for the merit function. This was settled by Lemma 2.2.5. We need now to quantify the decrease

in the merit function. To that end we need a few technical results.

Lemma 3.1.1 The gradient of the merit function @ is Lipschitz continuous.

Proof: Since @ is at least twice continuously differentiable we obtain a Lipschitz constant L
satisfying

IVe(vi,u1) = Veo(va, u2)|| < L|[(vi,m1) = (v2,u2)||

by taking the norm of the second derivative in the appropriate interval,

L:= sup{”Vz(p(E)H ‘ &€ llvi,m), (Vz,uz)]}, (3.4)

where the derivatives are defined in Section 2.2.2. O

Using the Lipschitz constant, we express the decrease as a function of the direction.
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Lemma 3.1.2 Assume that the maximum feasible step in the Gauss-Newton direction at iterate
(v,u) is d, then

min @(v+ad,u) < @(v,u) + 39,
x€[0,1]

where & < 0 is given by

s@e(v,uld, if De(v,u)ld+L[d]* <0

") _lpewmia? (35)
—% , otherwise;
where L is defined as in (3.4).
Proof: Since d is a descent direction by Lemma 2.2.5,
1
@+ ad, 1) < @(v, 1) + alD(v, wid + 5oLl ] (3.6)

Minimize the right hand-side of (3.6) with respect to « € [0, 1], a quadratic form. There are two

possible solutions:
e Case [D@(v,u)ld + L||d||?> > 0, and the minimum occurs at the boundary, &* = 1.

e Case [D@(v,u)ld + L||d||> < 0, and the minimum occurs at a stationary point, when
De(v,w)d + «L||d||*> =0, or
«_ Pelv,u)ld
L|d[]?
Substitute o* back and minimize the left hand-side of (3.6). O
At this point we have a decrease of the merit function from @ (v, u) to @ (v + dy, ). The next
step of Algorithm 3.1.1 reduces the target parameter by some fraction. To maintain part of the

decrease we just obtained, we need to bound the reduction in the barrier parameter.

Lemma 3.1.3 Given any € > 0 , if T is chosen according to

0, if (u trace (ZX — ul) + %uzn) <eg

trace (ZX—pl) | | _ /trace (ZX—ul)2—2en
un un ’

T>

otherwise;
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then

eV, tn) < @v,u) +e€

Proof: From the definition of @,

1
o) = 5 {IAX) = bl + 14" (v) + Z — CJ* + 12X — u1]|*}
1
= 3 {IFo @I + IFaI? + IFev) + (1 = ur*}
1
- 5{ VI + [Fa) I + [IFe )17}
+§ {2(Fc(v), (1 = D)ul) + (1 — 1) u?n}

— W)+ 3 {2Fev), (1 = 0D + (1 —1)22n}

We need € > f(t) := (1 — t)trace (ZX — pulI) + (1 — 1)?u?n. Note that f is a strictly convex
quadratic function and that f(1) = 0. Therefore, by the intermediate value theorem, there are
two solutions to f(T) = €, one on the interval T < 1 and the other on the other side. We distinguish

two cases since we are interested only in values of T € [0, 1].
e Case utrace (ZX — ul) + %pzn < €. Then any value T > 0 will suffice.

e Case utrace (ZX — ul) + %uzn > €. Then we solve f(1) = €,

—utrace (ZX — uI) £ y/(utrace (ZX — uI)2 — 2u2ne
uin
_ trace (ZX — ul) n V/(trace (ZX — pl))2 —2ne
un un

(1—1)

Since we are interested only in the larger of the two zeroes, we need

_ trace (ZX — plI) N (utrace (ZX — pul))? — 2ne

1—1<
un un

The combination of both cases yields the claimed result. O

From the analysis above we obtain a strict decrease at every step of the Algorithm.
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Corollary 3.1.4 Between step k and k+ 1 of Algorithm 8.1.1, the decrease of the merit function
satisfies

(p(v(k-H)’u(k-H)) < (p(v(k],u(k)) +v,

for some y < 0.

Proof: From Lemma 3.1.2 we obtain
eV ) < ok ulky 45

for some & < 0. We choose T to keep a fraction of this decrease, say one half of the decrease, to
obtain

(p(v(kJr”‘TH(k]) < (p(v(k]u(k]) +v,

where y = %5 by choosing T according to Lemma 3.1.3, identifying € with —%6. O
We are now in a position to describe the TargetSelect routine of the Algorithm 3.1.1. This is
done in Algorithm 3.1.2. Here we compute the real decrease in the merit function instead of the

estimated decrease.

Algorithm 3.1.2 Barrier parameter update

function p**1) = TargetSelect (v(*), d™), &(*) u!
=1 (o (VH 4 aMdi u)) — g (¥, 1))
Choose T according to Lemma, 3.1.3

plkt 1) = (1, {New target}

)

k]);

{Keep half of decrease}

The next step in obtaining a global convergence result from this line of reasoning would require
obtaining a lower bound for § defined in (3.5) either as a constant term or as a fraction of the
current value of the current merit function. This surely involves restricting the iterates to some
neighborhood of the central path but our work has yet to produce the required bound. This is

why we approach polytime convergence from a different point of view in the next section.



CHAPTER 3. CONVERGENCE 58

3.2 Polytime Convergence

In contrast to the approach above, the path taken here does not produce a practical algorithm.
We include it because the main result highlights a dependence of the convergence rate on the
conditioning of the Jacobian and also because of the questions it raises.

This is the first attempt at a proof of polytime convergence of which we are aware for the
Gauss-Newton direction. Although an algorithm based on a projected and scaled Gauss-Newton
direction was demonstrated in [47]. The approach is not usual. The iterates are not explicitly
maintained feasible, nor even positive definite; rather, we maintain the weaker condition that
the Jacobian of the optimality conditions is of full rank. Moreover, our measure of distance to
the central path combines feasibility and complementarity. The main result appears in Theorem
3.2.13.

A strictly feasible or so-called interior point vo = (Xo, Yo, Zo) is such that

Xo € ST, (3.7a)

Zo ST, (3.7b)

A(Xo) =D, (3.7¢)
A*(yo) +Zo = C. (3.7d)

Assumptions 3.2.1 Throughout this section, the following conditions are assumed to hold:
e There is a point VO satisfying condition 3.7.
e The operator A is surjective.

e The optimal solution to the primal-dual pair (3.1-3.2) is unique and satisfies strict comple-

mentarity (i.e. Z+X € ST, ).

Under Assumptions 3.2.1, for every u > 0, there is a unique solution in ST, x R™ x ST, to
Fu(X,y,Z) =0, which we denote by (X,,,yy,Zy). This set of solutions is called the central path.

The limit point of the central path corresponding to i — 0 is the solution of the semidefinite pair
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(3.1-3.2). At the start of the algorithm, we need a point on the central path or close to it. This
point may be obtained via a self-dual embedding of the program. We will not pursue this further.
The interested reader may consult [67, 68, 18].

To simplify the statements of the algorithm and of the following results we define

A*y)+2-C
Fu(X,y,Z) = AX)—b , (central path defining function) (3.8a)

ZX —ul

A*(y)+zZ2-C
Fru(X,y,Z) = AX)—b o< T< 1. (merit vector function) (3.8b)

ZX —tul

The algorithm described in this section approximately follows the central path by attempting
to solve F,(X,u,Z) = O for decreasing values of p. This is common to all path-following algo-
rithms. The novelty of the approach described here is to treat this approximation subproblem as
a nonlinear equation and to apply classical tools.

One difference from standard practice resulting from this point of view is the relation between
the iterates and the barrier parameter: The scalar u is not updated using the iterates as is usually
the case (L = T@), but rather it is reduced by a factor T < 1 at every step (n  Tu).
In consequence, the initial point (Xo,Yo,Zo) depends on ug, rather than the reverse. Another
important difference is that no attempt is made to dampen the step to maintain the iterates
within the cone of positive definite matrices. The algorithm maintains only the weaker full rank
condition on the Jacobian. The cone constraint is satisfied if we start close to an interior point

because every iterate remains within the radius of convergence of the target path point.

To simplify the expressions throughout, we define, for any subscript &,

ve = (Xg,Ye,Ze),  dyi=(dx,dy,dz).
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We also define canonical central path points vy, and v, such that

Fu("u) =0, FTu(VTu) =0.

Algorithm 3.2.1 Gauss-Newton infeasible short-step

Given yo > 0; {Initial barrier parameter}
Given € > 0; {Merit function tolerance}
Find Xo;yo; Zo; {Must satisfy (3.30)}
X=X0y=vyo;Z=2Zy; {Initial iterate}
w= uo; {Initial barrier parameter}
Choose 0 < T < T {Chosen according to (3.27)}
while max {ty, ||Fru(V)||} > € do

dy = —[OF, (V)ITFrp(v;) {Gauss-Newton direction}

X=X+dx;y=y+dy;Z=2+dg; {Update iterate}

W= Ty, {Update target}

end while

3.2.1 Merit Function and Central Path

This section describes some relations between the value of our chosen merit function ||Fr,| and
the distance of the iterate to the central path. Note that we do not assume that the iterates are
primal or dual feasible. Our measure of distance to the central path combines estimates of both
infeasibility and complementarity. The section also describes the progress of the Gauss-Newton
direction in minimizing ||Fr,||. The results are of a technical nature and used as building blocks
of the next section.

We begin this section with a well known result about approximations of inverses, often referred

to as the Banach Lemma. For a proof see [45].

Lemma 3.2.1 Suppose M € M"™ and ||M|| < 1. Then I —M is non-singular and

1

- My < —
< =
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Since the Gauss-Newton direction is obtained from an over-determined system of equations,
pseudo-inverses allow succinct expressions of the solution. Namely, the least squares solution
to [DFr,(V)ldy = —Fru(v) is dy = —[DFru(V)ITFru(v), where (-)T indicates the Moore-Penrose
inverse.

To generalize to Gauss-Newton some results well-known about Newton’s method [46] we require

a bound on the norm of the pseudo-inverse.

Lemma 3.2.2 Suppose that A € R™*™ agnd B € R™*™ | where m > n; and assume that BA is
non-singular. Then

IAT] < [I(BA)TB|.

Proof: Define the singular value decompositions A = UaZAV} and B = UgXgV§. Then

I(BA)'B| = [uBszéquAvg]”uBsz];H
- ~-1
_ Ta —
= |||ug [Zs0] VEUA| M| VY] U [Ts0] VE
0
] L
b3 _
= || |us [E80] Q QiEA|y ]y, [Z50] V§
I Qs Q4| 0]

N [ — —
= |vazi'Qy T, uguBzBH
-1 . 1=1=
= ||ZA Q7' ZBH

= =i

Since Q*Q = I, we have Q}Q1 + Q}Q3 = I and therefore I = QYQ;. This implies that all the

singular values of Q1 are at most 1; and all the singular values of Qfl are at least 1. Therefore
=11 ——1 +
IZA Qv Il = Iz II = IAT],

which is the required bound on the norm of the Moore-Penrose inverse. O
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From Lemma 3.2.1 and Lemma 3.2.2, we obtain the following result about approximation of

pseudo-inverses.

Lemma 3.2.3 Suppose that A is an approzimation to the pseudo-inverse of A in the sense that
[I—AA| < 1. Then

At < — 1AL
1— ||I*AA||

Proof: Consider that ||I—AA|| < 1 is the required condition of Lemma 3.2.1. Therefore we write

a7 T =T IE All
At < [[(AA) A < [(AA)T A<”7_,
AT < [I(AA) A < [[(AA) ] ”_17||17AA||

where the first inequality is obtained from Lemma 3.2.2. m|

Essentially from this bound on the norm of approximate pseudo-inverses we establish a relation
between the distance to the central path of an iterate (X,y, Z) and the current value of our merit
function |[Fru(X,y,Z)||. To simplify the result we first establish Lipschitz continuity of the first

derivative.

Lemma 3.2.4 The operator [®F;,(v)] is Lipschitz continuous with constant 1 with respect to v..

Proof: From the definition of [®F<, (v)], we obtain,

2
0O 0 O
|DFeu(v+ dy)] — DF (W]|I* = 0 0 0
dz 0 d4dX

Direct calculations, with d, = (dx, dy, dz), yield

ey (v + du)] — DFeu WI* = masx {[ldzve +vodx|® | l(ve,v2)I* = 1}

< maX{H(dz,dx)Hz (| (v, v2)II7 | |y v2 )17 = 1}
< |l(dz, dx)|1?
< ldvl?.
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Hence a constant of 1 will suffice. O

Lemma 3.2.5 Under Assumptions 3.2.1, there is a 5 > 0 so that for allv such that |[v—v.y|| < 8§,

||[©FT],L(V)]|| <2 ”[@FTLL(VTLL)]“ ) (3-93')
| @F e (W] < 2||®Fep (v 1], (3.9b)
et < Pl (3:99

||FTp(V)|| <2 ”[gFTp(VTu)]“ ||V 7VTH|| . (3-9d)
Moreover, we can choose any & satisfying

§ < Jmin (3.10)

where Omin denotes the smallest singular value of [DFry(vry)l.
Proof: Since [®F,(v)] is Lipschitz continuous with constant 1, using the reverse triangle in-
equality we get
||[®Fﬂru(v)]” — ||[©F1'p(vﬂru)]|| < ||[©F'ru(v)] — [QFTLL(VT}L)]” < ||V *V*rp”
Therefore
IEDFep (V| < IEDFep (VeI + [V — vepull -

Take & small enough so that
d< ||[©F7p(vru)]|| (3.11)

to obtain (3.9a). For the second result (3.9b), take & small enough so that

1

< ——————,
2||[©FTLL(VTLL)]T||

(3.12)
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which implies ||[v — vyl < Now we write

-1
le[DFTH(V’L’u]]T” )

[T— OFcp v TDFeu W] = [|®Fep(vap )]t ((DFcp(vep)] — DF ()] ||

|| [QFTH(VTLL)]T” ||[®FTH(VTLL)] - [QFTLL(V)]”

IN

IN

|| [QFTLL(VT}L)]T || ||vTM - V”
|| [QFTLL(VTLL)]T H
2 ”[@F'ru(v'ru)}f” '

IN

From the last inequality we get

(3.13)

|U—@HAWMF@HAWWS%-

Then, from Lemma 3.2.3 with the identification A = [DFx,(v)] and A = [DFry(vy)lt, and from

(3.13) we obtain

[DFTLL(VT;L)N

¥
H[@FTH(V)] || < 1_— ||I — [@qu(v’ru)ﬁFTu(v”l

<2 H [QFTp(VTpL)]T |

)

our second required inequality. For the third inequality (3.9¢c), we use the Fundamental theorem

of calculus to express

1
[QFTp.(VTp)]TFTp(V) = [QFTp.(VTp)]T J [DFTp(VTu +t(v— VTM))](V - V'ru)dt-
0
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Take norms on both sides to get

H [SFT},L(VTLL)]fFTLL(v) “
]

[QFTLL(\)TI.L)]T J [QFTu(VTp +t(v— VTLL))](\) - VTu)dt
0

1
(v —vep) — L 1 — [DF e (veg ] D e (Ve + v — v ))](v — vep )it

1

> ”V _V1p|| _J ||I - [QFTLL(VTLL)]T[QFTLL(VTLL + t(v _VTI.L))]” ”V_VT],L” dt
0
1

2 [[v=veull =5 [V = vrull

= > lv—vaull,

Where the last inequality follows from (3.13). Therefore

[V = veull

pl < H[QF’TLL(VTH.)]TFTLL(V)” < ||[©F1p(VTu)]T|| ||FT},L(V)” .

The fourth inequality (3.9d) is obtained similarly. We use the assumption Fry (vry) =0 and the
bound (3.9a) to get

]
||F"I.'|.L(v)” = FTu(VTp) + J;) [QFTH(\)TLL +tv— V'ru))] (v— V'ru)dt

r1

IN

IDF e (Ve +t(v = v | IV — Ve[ dt
r1

2|[BF -y (e IV — vyl dt
Jo

IN

= 2||®Feu el [V = vepll -

Now we need to restrict § using (3.11) and (3.12). Take

. 1 _ Omin
6 = min {2 ||[®FT|,L(VTLL)]T|| ) ||[©Fﬂru("'ru)]||} )

to complete the result. m|
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Corollary 3.2.6 Under Assumptions 3.2.1, let & > 0 be small enough to satisfy the conclusions

of Lemma 3.2.5. Then for all v,v¢ such that ||[v —vrul| <8, [[ve — vrul| <6,

|(v —vey)l| < [Feu (V)] < 4 ||(v = va )l
4K||(\)C_VTP-)|| - ||F’1’}J-(VC)|| - ||(VC_VT},L)|| ’

where Kk = ||[@Fm(vm)]HH[DFW(VW)]J‘H is the condition number of the Jacobian matriz at the

central path point.

Proof: By Lemma 3.2.5, inequalities (3.9d) and (3.9¢),

Ve —Vaull

F <2 F — F >2_———
|| TLL(V)” = ||[9 TLL(VTLL)]””V V'rp”v and || 'ru(vc)“ =z ”[@Ffru(v'ru)}f”

Therefore
[Feu)l _ 2DFeu I = veu)ll _ 10— ey
[Few(ve)ll — M (Ve = vzl
The other inequality is similar. m|

Corollary 3.2.7 Under Assumptions 8.2.1, let 6 > 0 be small enough to satisfy the conclusions
of Lemma 3.2.5. Then for all v such that ||[v—vru|| < §, the Jacobian [DF.(v)] is of full column

rank.

Proof: From (3.9b), we see that the smallest nonzero singular value of [DF,(v)] is bounded
below on the entire neighborhood about v.,. Therefore, no nonzero singular value approaches 0.

O
From these relations between the central path and our merit function, we obtain a radius of

quadratic convergence to a point on the central path as well as a decrease of the merit function.

Theorem 3.2.8 Let Omin be the smallest singular value of [DFr,(vey)]. Under Assumptions

3.2.1 there is a & > 0 such that for all vc such that ||ve —vz,|| < 8, the Gauss-Newton step

Vi =Ve — [@Fru(vc)]TFTu(Vc)
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is well-defined and

2
Ve = veull”.

Ve = veull < —

min

Moreover, we can choose any & < 5. Hence the Gauss-Newton iteration converges quadratically

to the central path.

Proof: Let 5 be small enough so that the hypothesis of Lemma 3.2.5 holds, i.e. & < %z,
First we express the error on the iterate both before and after the step, then by the fundamen-
tal Theorem of calculus and the fact that [OF.(vc)] is of full column rank (and hence that

[DFTLL(VC)]T[DFT}L(\)C)] =1),

(v _VTpL) = (v _V’tpL) - [DFT}L(VC)]fFT}L(VC)
1

[QFTLL(VC )]T J.O ([QFTLL(\)C)] - [QFT],L(\)T],L +t(ve — VT},L))])(VC - le.L)dt'

Take norms on both sides and use the Lipschitz continuity of [®F., (v)] to get
v+ _VTLL” < 7 ||[©Ffrp(vcﬂ || [[ve _V’I'H»H :

Now use Lemma 3.2.5, inequality (3.9b) to get
IV = veull < “[@FTH(VTLL)]T“ [Ive _VTLLHZ )

the required reduction of the error. m|

The next result relates the reduction in the error to the reduction in the merit function.

Corollary 3.2.9 Let Omin and Omax be, respectively, the smallest and largest singular value of
[OF . (vru)l. Under Assumptions 3.2.1 there is a & > 0 where for all ve such that ||[ve —vrul| < 8,

the next iterate, v, =v¢ — [Z)Fm(vc)]f]:m(vc), satisfies

1
||FTp(V+)|| < 7 ||F7u(vc)|| .
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Moreover, we can choose any & such that

0.2

—min_ 3.14
o< 80max (3-14)

Proof: Consider the inequality (3.9d) at the point v to obtain

IFeu Vo)l < 20max [V = veull -

Now assume that & satisfies the condition of Theorem 3.2.8 and apply the result as well as

inequality (3.9¢) at the point v, to get

O 2
||FTpL(V+)|| < 2 mz.ix ”Vc*"’tu” ,
min
o 2
< 2728y —veu|| — [|Fru(v
< 22 g vy | [Frlvel
0,
= 4 s ”FT].L(VC)”“VC_VTLL”'

Omin
Therefore we need ||(ve —vry)|| < 8, with § as defined in (3.14), to obtain the required decrease.

O

3.2.2 Smallest Singular Value

The behavior of the smallest singular value, because of its appearance in every bound, is of concern
to us. We depart from the main goal of the section to explore this behavior. On the central path

vy = (Xu, Uy, Zy), the singular value of interest is defined by
0%in 1= min { [DF(w sl | [Is)2 =1}, (3.15)

where s = (Sx,sy,S2) € S™ x R™ x S™ We are interested in the rate of change of this singular

value as p changes. We therefore define the perturbed problem

o2(e) = min{f(s,e) | 1Is]12 :1}, (3.16)



CHAPTER 3. CONVERGENCE 69

where

(s, €) := A" (sy) + Sall* + (S I* + 1ZuSx + S Xl (3.17)
The perturbation is implicit: X,,,y,, Zy change if © — pu+e. By aresult of Fiacco [23] (Corollary
3.4.2), the change in the optimal value of (3.16) is given by
Dc0Z(e)] = [DA(s, €)l. (3.18)
This implies, in our case,

[Dc02(e)] = 2D eZ(0)]Sx + Sz eX(0)], ZyuSx + S2X). (3.19)

We need an expression for the derivatives [0 Z(0)], [DX(0)] which we obtain from the Implicit
Function Theorem cited here with the required generality from [86] (Theorem 12.4.1 and following

Corollary 1)

Theorem 3.2.10 Consider a vector function F : XxXY — Z defined on a ball Q. := {x | [|x —x°|| <, |ly —y°|| < 1}

and satisfying
o F(x%,y%) = 0;
o [DyF(x,y)] exists on O, and is continuous in both x and y;
e F(x,y) is continuous on Q,;
o D F(x0,y%)~" ezists in Z > Y;
o [O,F(x,y)] exists on Q. and is continuous at (x°,y°).

Then there exists positive numbers 19,71 and a continuous map G: X =Y on |[x —x°|| <19 <7

satisfying

o [GX)—y°l < <y



CHAPTER 3. CONVERGENCE
e F(x,G(x)) =0;and
o DG(x%)] = —[D,F(x%,y°) I T[DLF(x°,y°)l.

We will identify x with € and y with v = (X,y, Z) in the function

A*(y)+2—-C
F(X,y,Z,€) = AX)—=b
ZX — (nu+€)l

to obtain that thereisa G: R — S™ x R™ x S™ with

o G(0) = (Xu)ywzp)Q

e [DG(0)] = *[QVF(XWIJWZW O)]71 [DeF(xuvwap) 0)].

We have the derivatives

DF XY, Z,0)l =4 0 0, S*"xR™xS"—S"xR™ xS,

Z, 0 X,
and
0
[DeF(Xu,Uu,ZWO)] = 0 , R—S"x R™ xS™
-7

We therefore obtain the required implicitly defined derivative as

[DX(0)] 0 A 7T 0
DG0)]:= |@Dy0]| =14 0
[®.Z(0)] Z, 0 A, T
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Note that because of the structure of the last operator [®¢F(X,, Yy, Zy,0)], we only need the top

and bottom right blocks of the inverse. Alternatively we only need to solve

A ([Dey(0)]) + DZ(0)] = 0
A([®DX(0)]) = 0
Zu(DX(0)]) + Xu(DeZ(0)]) = T.
The solution is
DeX(0)] = Z,'(1—-A[AZ'A* T AZ "), (3.20a)
Dey(0)] = —[AZ;'ATAZ'XTT, (3.20b)
D.Z(0)] = —A*AZ A A (3.20c)
From (3.19) and the derivatives (3.20) above, we obtain
[Dc0"(0)] = (3.21)

2A—ATAZT AT AL Sy + S, 7N (T — A*TAZ ATV AZ L), Z Sy + S2 X)),

It would be interesting to investigate further this derivative, to find out where it is positive,
negative and zero. We only have tentative numerical results that seem to indicate that the
smallest singular value is a pseudo-convex function but a complete theoretical description is yet

to come.

3.2.3 Convergence of the Algorithm

At this point we have established all the necessary relations between our merit function and the
distance between an iterate and the central path. We now describe the convergence of Algorithm

3.2.1. For reference, we repeat the definitions of the two canonical points v, and v, on the
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central path. These points satisfy

Fu(vu) =0, FTp.(V'rp) =0. (3.22)

The general idea of the algorithm is that, from a iterate vy , “close enough” to v, within the
radius of quadratic convergence, we choose a target on the central path v, in such a way that
the next iterate vi41, obtained from the Gauss-Newton direction, is now “close enough” to v,
for the process to be repeated. The key point is not that the convergence is quadratic, since we
never let the process run to convergence, but rather that the iterates remain close to the central

path and that we can estimate the distance from an iterate to its target.

The proof is in three parts. First we estimate the distance between two points on the central

paths in terms of the required radius of convergence.

Lemma 3.2.11 Let Opin and Omax be, respectively, the smallest and largest singular values of

[QFT],L (V'ru ).

1. If we choose 0 < T < 1 such that
2

o<,
1—x< Fmin 3.23
then
1 Omin
v —veull < 5 (52), (3:24)

which implies v, is within half of the radius of quadratic convergence of vr,..
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2. If we choose 0 < T <1 such that

1 O
AT orr— (3.25)
then
] 0-rznin
v = el < 5 (e ). (3.20

In this case v, is within half of the radius of guaranteed constant decrease of the merit

function in (8.14) in Corollary 3.2.9.

Proof: First note that a straightforward calculation based on the definition of v, (3.22) yields

”F'ru(vp)” = \/T_'l(] — 7).

By Lemma 3.2.5, inequality (3.9d)

IA

2 || [QFTI.L(VTLLNT || ||FTI»L(VH)||

= 2 ||[@F'ru(v'rp)ﬂ” (1 —1)vnp.

Vi — veull

Let 7 satisfy (3.25) to get

Omin

[V —veull <

which, by Theorem 3.2.8, yields one half of the quadratic radius of convergence. The proof of
part 2 of the lemma, is similar. O

We now estimate the distance to the new target after a Gauss-Newton step.

Lemma 3.2.12 Let Opin and Omax be, respectively, the smallest and largest singular values of
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[OF,(veyu)]. Suppose that the point v is well-centered in the sense that

e —vell < min{

and we choose T to satisfy

0 1, 1 O O 3.27
— T < mi min min .
<t<]1, T_mm{S\/ﬁu’:ﬂx/ﬁquax}’ (3.27)

as in Lemma 3.2.11. Then, after one Gauss-Newton step, the new point v, will be within half the

radius of convergence of vy, i.e.

Omin
e — vy < Imin, (3.28)

Moreover, the merit function is reduced

1
[Fen(v-e)ll < 5 IFep(ve)l- (3.29)

Proof:

By hypothesis and by Lemma 3.2.11,

Omi Omi
Ive vl € T2, [l —vegll < 22
Therefore
Ve =veull < [Ive =V + v —vayll
< e = vl + [V — vyl
< 2,

which is within the radius of quadratic convergence of vr,. After one Gauss-Newton step, by
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Theorem 3.2.8, we get

e —veull < —— [[ve — vyl
min
1 Omin |2
< ( )
o Omin 2
_ Omin
4

Therefore the new point is within half the radius of convergence of v, and the procedure is
repeated.

The constant reduction of the merit function follows from Corollary 3.2.9. |

We now present the main result of this chapter, the polynomial convergence proof (dependent
on the smallest singular value) of Algorithm 3.2.1. The dependence on the smallest singular value
is both interesting since we should expect convergence to depend on such a parameter, yet it is
also somewhat unsatisfying since we cannot estimate this value while the algorithm is executing.
We could have formulated the proof in terms of the smallest singular value of the current central

path target but here, the dependence is on the smallest singular values over all central path points.

Theorem 3.2.13 Suppose that we are given an initial barrier parameter estimate 1o > 0, positive
tolerance € > 0 and Zo,Xo € ST such that vo = (Xo, Yo, Zo) is a well-centered starting point: vo

is within half the quadratic convergence radius of v, in Theorem 3.2.8

1 Omin
Vo = Vvoll < 5 (—2 ) , (3.30)

N

and vy is within half the radius for guaranteed constant decrease of the merit function given in

Corollary 3.2.9

1/ o2,
Vi —vol| < = [ min_ )
v —voll < 5 (o)

where 0 < Opin (respectively omax ) is smaller than the smallest (respectively larger than the largest)

singular value of F,wuo (Vowu, ), for all ﬁ < w < 1. We also choose T > % and satisfying (3.27)

(for w =€) in Lemma 8.2.12. Then the Algorithm 3.2.1 converges to v, which is €-optimal in the
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following sense

™up < e, HFTkPLO (ﬁ)” <e, HV—kaMH < 20min€,

e -
o (max{mg B Jog (IIFW(Vo)II + (57 Nm/ﬁ) }) (3.31)
logT €

m

iterations.

Proof: By Lemma 3.2.5,

||Vk — Vau, || <2 || [Z)F'tpo (V'ruo NT || ||FT|,L0 (Vk)H .

which results in the desired bound on ||vk — Vrk g ||, if ||FTkHo (vk)|| < €. From the constant

decrease guarantee we get (we add and subtract the multiple of the identity in the third term in

the norm)
1
[Fexwe Vi) < 5 [|F et o (V1) |

1 1

< z HFTk Tho (Vk,1)“ + ETki](] *T)HO\/T_‘-
1

< o P 2y el + 2L gk 21— 2201 - )
1 1 T T2 k-1

< 2_k||F|>Lo(V0)||‘|'(]T)IJ«O\/T_l<2—k+2k—1+2k—2-|—...+ 3 )
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We can assume T > % since that represents the worst case behavior. Then

1

[Fes ) < 55 P tvoll
Tk qglok g2k 1
1 = Do/t (2—k toeT ez Tt T)
1
- 3 ||FTu(VO)||
k ] k ] k—1 ] k—2 ]
L (1= ()
- 2% ||FTu(VO)|| + (1 —T)},Lo\/r_vr B
<

o Fautvolll+ (1 =i (5 ) |

where the last inequality follows for T > % Therefore, we obtain ||FTk 1o (vk)H < € by choosing

s Fog(e) —log (I[Fuo (vo)ll + ;T;T]uox/f_l)-‘
- log(T) '

This guarantees that we are close to the central path. We also need the barrier parameter to be
close to zero, i.e. poT* < €. This is equivalent to

log %

log T

)

which yields the required bound on the number of iterations. O

Note that, while the iterates are likely to remain within the positive definite cone during most
of the progress of the algorithm, since we do not enforce this condition, there is the possibility
that, at termination, the cone constraint is violated by €. This departs from standard practice
where the cone constraint is always satisfied, but is within the spirit of an e-optimal solution: The
cone constraint and the affine constraints are treated in a similar manner and will be satisfied to
the same tolerance.

One question of interest at this point is whether we can pre-condition the problem to raise the

smallest singular value to an arbitrary value before solving. This would complete the convergence
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proof but, more importantly, would turn Algorithm 3.2.1 into something of practical value.

3.3 Asymptotic Convergence

We are also able to specialize a standard result pertaining to the asymptotic convergence rate
of the Gauss-Newton method. This describe the convergence to the solution when the barrier

parameter p is 0.

Theorem 3.3.1 Assume a primal-dual pair with a unique, strictly complementary, optimal so-
lution, denoted by v*. Then for each c € (1,00), there is an € > 0 such that, from v(©) satisfying

Hv(o] —v*“ < €, the sequence generated by the Gauss-Newton method converges to v* and obeys

2

Hv“‘*” —v* (3.32)

ca
(k) *
s 202 HV v

min

where ||[J(v)|| < « in the e-neighborhood of v* and where Omin represents the smallest singular

value of J(v*).

Proof: The proof relies on [20], Theorem 10.2.1. We give here only the details pertaining to
our case. First by Lemma 3.2.4, we have a Lipschitz constant of 1. By continuity of [DF(v)], the
Jacobian is bounded in a region around v* and we obtain the required «. Also, by the assumptions
and Lemma 2.2.4 the smallest singular value is bounded away from zero. From these we obtain
(3.32) and convergence. O

This last result suggests that, whatever upper-level algorithm we use, if we use the Gauss-
Newton as the search direction, then as soon as we estimate Omin, we can compute the radius of
superlinear convergence and, once within it, we can set the barrier parameter to zero, ignore the

cone constraint and let the algorithm converge to the optimal solution.
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3.4 Towards a Long-Step Algorithm

The Gauss-Newton direction for solving semidefinite programs was introduced in [49] without a
proof of convergence but with experimental results that warranted more research. Then, in [47],
a scaled version of the direction was used in an algorithm shown to be polynomially convergent.
The algorithm and the convergence proof presented in this chapter are new in that the direction
is used without any scaling and the algorithm never explicitly forces the iterates to remain within
the positive definite cone.

The dependence on the smallest singular value of the Jacobian for choosing T, though unsur-
prising in the context, should be relaxed to some other, more easily estimated function of the data.
But the ultimate goal of this avenue of research is to establish convergence of a practical infeasible
algorithm using long steps, that is, not restricted to a narrow neighborhood of the central path.
This is still the object of investigation.

The merit function quantifies an absolute distance of the iterates to feasibility and to com-
plementarity. Moreover, it is a simple matter to favour, for example, primal feasibility or even
a subset of the constraints, by weighting the corresponding norm of the merit function. This
leads to a weighted least-squares problem and such preprocessing can be done if the application
suggests such an approach.

On the other hand, it may be that a relative measure of infeasibility and complementarity is
more appropriate. In this case we could preprocess the problem data to ensure that the norms
of matrices A; and of C are of the same order of magnitude. This could be done if one suspects
that they have been scaled inappropriately and is done in some implementations.

None of these transformations of the merit function profoundly affect what we have done in this
chapter. They could be accommodated in the same framework. The appropriate scaling probably

depends on whether one is interested in theoretical convergence or good practical behavior.
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Implementation and Experiments

We now consider the heart of all algorithms based on the Gauss-Newton direction, the numerical

solution of the system (2.10), which we repeat here for convenience

(12X)

The operator ] is the matrix representation of the Jacobian. It has dimension m x 7, where the

row dimension is m = t(n) + m + n?, the column dimension is 7 := t(n) + m + t(n) and where

t(n) :=n(n+1)/2. These last parameters are m, the number of constraints in the primal problem

and n, the dimension of the matrices in the primal space.

4.1 Accuracy and Stability

Where the Gauss-Newton approach best demonstrates its strength is when the problems to solve

are small, dense and require accurate solutions. In those cases, short of a rank-revealing factoriza-

tion, one of the best practical method for least-squares is a QR factorization with column pivoting

80
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[35],
QUJP =R.

The orthogonal matrix Q is the product of Householder reflections and the permutation matrix
P is chosen so that for each reflection, we permute to pivot on the column of largest norm. After
the factorization we also obtain bounds on the smallest and largest singular values of J [22], cited
in [11],

|R11| S Gmax(]) S \/1’_1|R11‘) |Rﬁﬁ| S 0-min(]-) S 21_ﬁ|Rﬁﬁ .

In practice, the lower bound on 0y, is much better than the theoretical bound and it is usual to
use Rsf as an approximation.

If, at a certain stage (say T) of the factorization, we detect that the pivot element gets too small
(smaller than some tolerance), we conclude that ] is rank deficient and we have the numerical

rank, r. We then find the Gauss-Newton step using this factorization:

Of course, we do not actually form Q. The Householder reflections are kept in factored form in
the space allocated to ] and applied to the right hand-side as they are computed.

If the resulting step d., does not lead to an accurate solution of the semi-normal equation, we
assume that we terminated the factorization too late and the numerical rank is smaller than r. We
drop one more column of R and re-compute the step. This, admittedly heuristic approach, does
not cost much since the larger cost is in the factorization which we do only once. The full procedure
is described in Algorithm 4.1.1. It requires 2ii(m — f/3) flops for the QR factorization, the most
costly subroutine, and O(f?) for all other operations (triangular solve and various matrix-vector
multiplications).

To quantify the accuracy of the algorithm, we first assume that the construction of ] and of f

does not introduce errors of order worse than machine-epsilon since it involves only matrix-vector
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Algorithm 4.1.1 Dense solver for Gauss-Newton direction

Given € > 0; {Tolerance}
Given J; f; {Current Jacobian and right-hand side}
TI=1, {Assume full-rank}
[P,Q,R,r]:=qr(],); {Factor and return rank}
h = —Jtf;
h:=—-Q'f; {Apply Householder to right-hand side}
repeat
Solve RM,]:TE{; =hy. {Solve non-singular block}
z:=zeros(l1: A —1); {Fill for zero singular values}
dy:=P [dz"] ; {Permute back}
ri=r—1 {Decrease numerical rank}

until (||R*Rd, —h|| < €)

products. Throughout this section we will denote machine-epsilon by
en2x107'e

where the approximate value is valid for all tests we report here.
Factorization via Householder transformations is backward-stable because multiplication by

orthogonal matrices is backward-stable and we know the resulting decomposition to satisfy
QR=A+3], where [|5]||=0O(e)||]].

Using QR decomposition by Householder reflections and column pivoting, we can be more precise.
We know from [50] that the computed solution d, to (4.1) is the exact solution to a nearby least-

squares problem, namely
min { |7+ 87)dy + (f + 5)] | dv € V},

where

I8 < cen2[Jll, (18]l <cellfll, ¢ = (6m —3n+4D)A. (4.2)

To quantify the error on a step, following [42], we can express the relative error in the solution
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as e
[[dv — dyl] ek(])
<
ldull = 1—ex(])

ISR

(2+ D+ D

Perhaps more telling is the bound obtained by Demmel [19],

lld = dy] <o {2

2 2
e s 0 +K (])tanﬂ} + O(e”),

where the bracketed term can be viewed as the condition number for the least-squares problem

and where

. lIJv + ]l {II5III ||5f||}
sin@ = , € =max{ ——,-——— » < O(e).
il W1 111l

The angle 0 is between the residual and the right-hand side, while € is a relative measure of the
perturbation in the involved quantities.

Note that the dependence on k?(J) is not a concern in our case, for the residual tends to zero
as we approach the optimal solution and therefore tan 6 also tends to zero. The direction could be
inaccurate far from optimality, but that is where inaccurate solutions are not problematic. The
direction becomes more accurate as we need it to be.

To compare this result with what is obtained for symmetric directions, we state an impor-
tant theorem of Gu [38], the first, to our knowledge, to consider the floating-point accuracy of

semidefinite solvers using symmetric directions. He obtains, for the AHO direction,

ld, — .| K (Jaho) 18Tanoll 157
< + , (4.4)
ol = 1=k (Jano) Ifensl ( anoll —IIfl )
where the error satisfies
18 anoll = O (ellTanoll) + O (e (1€l + IFIDIIE ) - (4.5)

The &£, F terms are defined using the symmetric Kronecker product,

1
(G @5 K)svec (H) := Zsvec (KHG® 4+ GHKY) ,
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as

E=E+0(Z|), E=Z0s], F=Xosl

The structure of the bounds (4.4,4.3) is similar except that the error term 8Jqn, is potentially
much larger than 8]; contrast (4.2) and (4.5). Moreover, since k(J) for Gauss-Newton is usually
smaller than k(Jqho), we conclude that the bound on the error is no larger for Gauss-Newton
than for AHO.

Table 4.1 shows the ratio of both condition numbers for well-conditioned random problems.
Each entry in the table is the worst case of random problems with the number of constraints

varying from |t(n)/2] to t(n) —1.

n 2[4 8 | 16 32
kKJano)/<0) | 2 | 79 | 562 | 2314 | 131686

Table 4.1: Comparaison of condition numbers of the AHO and GN systems.

The Gauss-Newton direction should not run into any problems until ex(J) = Q(1) which will
happen, if at all, closer to the optimal solution than for AHO. This is confirmed by numerical
experimentation. Of course, this argument describes the accuracy possible in the computation
of the step and not the accuracy of the solution of the optimization problem. An analysis of
the accuracy of the whole iterative process described in algorithm 4.1.1 remains to be done. But
an accurate step computation is one element explaining the accuracy of the solutions exhibited

throughout this chapter.

4.1.1 Well-Conditioned Problems

For the first set of experiments, exemplified by Table 4.2, we have used a simple random problem
generator. The problems are all well-conditioned and have strictly complementary unique optimal
solutions. In all cases, Algorithm 4.1.1 was able to solve so that infeasibility measure and the
complementarity gap are smaller than 10713, The number of iterations is only weakly dependent
on the size of the problems. We first display the progress of one solution, in some detail, to relate

the decrease in the infeasibility and in the complementarity gap. Not surprisingly, infeasibility
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decreases faster than complementarity since the corresponding equations are linear.

Iter [[Fall lIfoll {(Z,X)/n
1 +8.900e+01 | +4.175e+01 | +8.749e-01
2 | 4+5.433e+01 | +3.545e+01 | +8.580e-01
3 | +1.503e4+01 | +1.759e4+-01 | +6.269e-01
4 | 4+3.066e+00 | +3.465e-03 | +3.841e-01
) +2.131e-02 | +4.408e-04 | +1.278e-01
6 +5.573e-03 | +8.302e-05 | +2.873e-02
7 +1.042e-04 | +3.153e-06 | +1.367e-02
8 +1.611e-05 | +2.913e-07 | +7.862e-04
9 +7.275e-08 | +1.620e-09 | 4-8.680e-05
10 | +4.473e-13 | +2.041e-14 | +1.812e-06
11 | +1.017e-14 | 42.800e-15 | +3.784e-08
12 | +1.030e-14 | +3.426e-15 | +7.902e-10
13 | +1.318e-14 | +5.184e-15 | +1.650e-11
14 | +1.138e-14 | +4.835e-15 | +4.964e-14

85

Table 4.2: One instance of well-conditioned problem. n = 15, m = 30.

The more interesting aspect of the accuracy of the Gauss-Newton direction is exemplified
in Table 4.4 where we contrast the infeasibility max{||Fql|,||Fc||} and the complementarity gap
(Z,X)/n obtained from various directions. Larger numbers are better. Table 4.4 results were
obtained by averaging the outcomes of 100 random instances of each type of problems generated
by the SDPT3! version 2.1 [78] random problem generator (normally distributed data from the
MATLAB command randn). The implementation was SDPT3, to which we added the Gauss-
Newton direction, and which we instrumented to let the algorithm run until no more progress
was possible. The test problems are of four different classes described in Table 4.3 where B is the
weighted adjacency matrix of a graph and where the indices 1, j, in the case of Lovész 0 function,
loop on the vertices corresponding to each edge of a graph.

We note that the Gauss-Newton direction was, in every case, capable of a more accurate
solution than all other directions, even the direction GT, developed specifically for that purpose
[81]. We include symmetric directions other than AHO to highlight the empirical result first
noticed by Todd, Toh and Tiitiinci [78], and often exhibited afterwards, that among symmetric

directions, AHO is the more accurate. From this point onward, we will mostly restrict our

lhttp://www.math.cmu.edu/"reha/sdpt3.html
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Random : min {(C,X) | A(X) =b,X € ST}

Norm min. : min{”Bo—l—Z{l] xiBi|l | x € JR‘“}
Maxcut : min {(B — Diag Be, X) | Diag (X) =e/4,X € Si}
Lovész 0 :  min {(c,x> | (LX) = 1,e1e! + ejef —0,X € 81}

Table 4.3: SDPT3 test problems.

comparisons to AHO but the reader should keep in mind that other directions would, in general,

do worse.

—log; o max{||Fal|, [[fo||} | —logyo(Z,X)/n
AHO HKM NT GT GN AHO HKM NT GT GN
random 14.7 9.1 106 9.5 133 12.0 10.7 5.5 12.8 144
norm min. | 15.0 9.9 109 153 148 13.8 127 10.1 144 14.9
Maxcut 15.7 9.6 106 148 158 144 124 93 144 15.5
Lovéasz 6 14.7 9.2 9.2 139 148 142 13.7 12.8 14.1 153

Table 4.4: Solutions of SDPT3 test problems. Average of one hundred random instances.

4.1.2 TIll-Conditioned Problems

For the second series of test, we generate ill-conditioned problems in the following manner: First
we create an orthogonal matrix Q, then from a chosen rank 1 < r < n, we generate positive
diagonal matrices Dy, D, of dimension r X r and (n — 1) X (n — r) respectively from which we

obtain

X

0 0 0
X*=Q QY Z*=Q Qt.
0 0 0 D
We also generate a random y* and

U L

L Vi

Ax =Q"
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for random Uy, Vi, Ly where ||Ly|l2 & 107'°. Then we form b = Asvec (X*), and C = Z* +
smatrix(Aty*). From [6], we know that this procedure will, in general, create instances with ill-
conditioned Jacobians at the solution. We report on 50 random instances for each of the various
dimensions and ranks and average the results in Table 4.5. The dimensions are chosen so that
the reader can compare these numbers with those in [38]. The Infeasibility column corresponds
to the average of —log;,max{||Fal,||fp||} and the Gap column corresponds to the average of

—log0 {Z,X)/n. We notice that for the ill-conditioned problems of Table 4.5, the Gauss-Newton

AHO | GN

r| n | m|iter. Infeas. Gap iter. Infeas. Gap
3110 9 18 14.2 151 13 14.3 154
6|20 |24 | 22 12.1 146 17 13.8 16.3

Table 4.5: Solutions of ill-conditioned problems. Average of fifty random instances.

direction was in all cases more accurate than AHO. Moreover, the number of iterations to attain
this accuracy was less than AHO. This is explained by the marginal progress that AHO does in
the last iterations while the progress of the Gauss-Newton direction is not affected by this kind

of ill-conditioning.

4.1.3 When Slater’s Constraint Qualification Fails

Even if we assumed that the problems, up to now, had strictly feasible points, there are classes
of practical problems where this assumption fails. Recently Gruber and Rendl[37] developed a
robust algorithm specifically designed for these problems. Since the requirements for the Gauss-
Newton direction do not include strict interior points, we attempted the same problems. The first
example problem is

max{(C,X) | diag (X) = e, (J,X) = &, X € si}, (4.6)

where e is the all-ones vector and ] is the all-ones matrix. For positive values of the parameter
«, the problem has strictly feasible primal points but this interior region shrinks to the empty
set as « is reduces to zero. The first set of experiments reported by Gruber and Rendl[37] uses

ax=10"7.
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n | m | iter [IFall ol (Z,X)
10 | 11 || 24 | 9.296152e-13 | 5.594466e-11 | 5.842689e-07
20 | 21 || 25 | 2.260052e-12 | 4.882512e-15 | 7.906645e-07
30 | 31 || 22 | 4.211995e-12 | 9.367561e-15 | 2.190712e-06
40 | 41 || 23 | 1.816565e-12 | 7.334760e-15 | 2.301071e-06

Table 4.6: Problem (4.6) with & = 10~7 and accuracy set to 10°.

We have done the same experiment and report the result in Table 4.6. Each column, after the
first two indicating the dimension, represents the worst case of each of twenty random experiment
for the corresponding entry. We have set the required accuracy at 10~ as they did. The important
point to note is that their number of iterations is never less that 114 (see Table 2 of [37]). Our
result of less than 25 iterations compares very favourably and illustrates a strength of the Gauss-
Newton approach: since feasibility is not given precedence over complementarity, the near-absence
of feasible points inside the cone is of no consequence. We had to make no modifications to the
implementation for these or any other problems.

The second experiment is generated for the same problem but with @ = 0. In this case, there
is no strictly interior primal point. We report the results in Table 4.7. To contrast with Gruber
and Rendl’s result, the reader needs to be aware that their algorithm averaged 115 iterations(see

Table 3 in [37]).

n | m | iter [IFall ol (Z,X)

10 | 11 || 23 [ 2:377587e-12 | 4.076899e-08 | 9.096929¢-06
20 | 21 || 22 | 2.479800e-12 | 1.516398¢-08 | 1.050569¢-06
30 | 31 || 25 | 5.153522e-12 | 5.729514e-08 | 1.416319e-06

Table 4.7: Problem (4.6) with o = 0 and accuracy set to 107°.

Even more telling is that while Gruber and Rendl needed to relax the accuracy requirements
to solve the problems without interior points, and even then the algorithm failed two instances,
the Gauss-Newton algorithm can reach any required level of accuracy for these problems. We ran
the experiment a third time, with & = 0, requesting increased accuracy and report the results in

Table 4.8.
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(Z,X)
-1.233752e-14

n | m | iter
50 | 51 32

I[Fall
3.467449e-12

[Ifoll
6.469784e-15

Table 4.8: Problem (4.6) with « = 0 and increased accuracy.

Gruber and Rendl then moved on to problems where both primal and dual feasible sets fail

to have interior points:

max {(C,X) | (»v},X) =0, (v}, X) =1,2<i<m,X e ST}, (4.7)

where the vectors vi, with 1 <1 <1 are chosen randomly but orthogonal and C = Y .—

for some random positive vector .

n | m | iter [Fall [Ifol K2, Xl

10| 9 7 | 8.015765e-11 | 8.009760e-11 | 5.080324e-06
20 | 19 8 | 9.000070e-11 | 9.001461e-11 | 1.743560e-06
30 | 28 8 | 1.272965e-10 | 9.000636e-11 | 2.615344e-06
40 | 15 5 | 2.593612e-09 | 9.999999¢-11 | 1.651607e-07
40 | 30 5 | 2.642280e-09 | 1.000001e-10 | 3.821364e-07
40 | 39 5 | 2.231644e-09 | 9.999997e-11 | 5.396936e-07
50 | 49 5 | 2.928152e-09 | 9.999996e-11 | 6.840107e-07

Table 4.9: Problem (4.7) with accuracy set to 107°.

We report the result in Table 4.9. We never needed more than 8 iterations while Gruber and

Rendl ([37], Table 4) report an average of 52 iterations to attain the same accuracy.

4.1.4 DIMACS Challenge Problems

More recently, because of the DIMACS Challenge?, a new set of test problems surfaced that proved
very difficult to solve for all current implementations. Among them is a series of H* control
problems of low dimension and small feasible region, and whose Jacobians are rank deficient at
the optimal solution. Our algorithm was not designed for this type of problems, yet it performed

surprisingly well. Table 4.10 contrasts our results with the best result available at this time taken

?http://dimacs.rutgers.edu/Challenges/Seventh/
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from benchmarks run by Hans Mittelmann (http://plato.la.asu.edu/errors.html).

Problem Error SDPT3 | SeDuMi GN
hinf12 o — Al 22e-7 | 22e-12 | .63e-04
max{0, —A(X)} 0 0 14e-16
|A*(y)+Z—C| | .14e-7 0 .24e-9
max{0, —A(Z)} 0 0 0
hinf13 b — A(X)] .16e-3 21e-3 | .42e-08
max{O —A(X)} 0 0 0
[|A*(y)+Z—C| | -53e-11 0 .37e-05
max{0, —A(X)} 0 .96e-2 | .23e-10

Table 4.10: H* control problems.

Even though our implementation did not do as well as SeDuMi in this case, it is worth noting
that these outstanding results of SeDuMi are the product of a number of years of tuning the
implementation to handle ill-posed problems. We have only a research-level implementation with
no special handling of such difficult cases. That we can produce these approximate solutions

attests to the robustness of the Gauss-Newton direction.

4.2 Sources of Sparsity

There are three sources of zeroes in the solution of the semidefinite program pair. The first
and simplest to handle arises directly from the domain of the primal variables. For simplicity
of exposition, until now we assumed that the primal domain was ST}, the cone of semidefinite
matrices of order n. Yet, for a number of applications the domain actually is a Cartesian product
of semidefinite cones, S' x ... x ST*, where ny + ...+ nx = n. A typical example comes from

H*-control where the problem to solve has the form
k k
min{Z<c,-,x Y Ay X bi,1§i§m,Xj€ST,1§j§k}.
j=1 j=1

After transformation of the problem into our standard formulation, the resulting primal variable
(an embedding of S™ x ... x S™ into S, n=nq1 4+ ...+ ng via X =X; & ... ® Xi) has a block

diagonal structure.
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The domain might also be a product of semidefinite cones, Lorentz cones and nonnegative
orthants constraints, all of which can be embedded in a semidefinite cone. We have already
seen, for example, that a standard linear program requiring x € R} can be solved via X € ST
and X diagonal. If we use a projection Py that only extracts the diagonal elements, then the
resulting system solved at each iteration is exactly the size one expects for a linear program,
namely (m+m+n) x (n+m+mn).

In the case of a Lorentz cone of order n (denoted L),

L} = {XER“+1 [ xo > \/x%—l—...+x$1},

the embedding is

Xo X1 X2 ... Xpn
X1 X0 0 . 0

x€L} & Amrow(x):==|x; 0 xo ... 0] €S}
xn O 0 ... %o

The operator corresponding to Diag in the standard linear programming case is Arrow in the case
of the Lorentz cone. Again, most entries are zeros.

To handle this first source of zeros we will use two related projections

PRV 5 RE) ) E L RY o R (4.8)

y

where nz(x) is the number of nonzero elements of x = svec (X), the upper triangular part of X and
nz(zx) is the number of nonzeros of ZX considered as a non-symmetric matrix. (The projection
corresponding to Py in S™-space will be denoted P,.) These projections are constructed at the

start of the algorithm, from the structure of the domain of the primal variables. For example, say
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the domain is $ x L7 x R, and

_] 2 000 O_
23 0000
X 0045 70 ,
0 056 00
007 080
0000 09
svec (X) = [{,2,3,0,0,4,0,0,5,_6,0,0,7,0,8,0,0,0,0,0,9]t,
Py (svec (X)) = [1,2,3,4,5,6,7,8,91*,
Ex(avec (X)) = [1,2,3,4,5,7,5,6,0,7,0,8,9I*.

The projected primal feasibility equation and corresponding equation of (4.1) are now

APL(Pydx) =D, APLPydy = —fp.

We have obtained a system where the number of variables accurately represents the original
problem. The embedding into a larger semidefinite cone has not cost us anything in terms of
memory.

The second source of zeros arises from the sparsity pattern of the matrices A; and C and the
dual feasibility equation, Y ;" Ajyi + Z = C. If all A; and C are sparse or more precisely, if
the union of the sparsity patterns of these matrices is sparse then Z must also be sparse. This is
especially true in the case of relaxation of combinatorial problems. A typical example, that also
happens to be one of the best relaxations for the Maxcut problem [8] yields a pattern as in Figure
4.1 where the nonzeros cover only 25% of the matrix Z.

We will handle these zeros with the same type of projection, detected at the start of the

algorithm by considering the union of the sparsity patterns of all A; and of C. We want P, to be
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4

nz = 3721

Figure 4.1: Maxcut relaxation dual variable Z sparsity structure.

a zero-one matrix and have the maximum number of zeros subject to

P, : R 5 R Posvec(H) =svec (H),H=C,A;,1<i<m. (4.9)

With this constraint, nz(z) indicates the number nonzero elements of z = svec (Z), the upper tri-
angular part of Z. (The corresponding projection in S™-space will be denoted P,.) The projected

dual feasibility equation corresponding equation of (4.1) are

PZA* (U) + PZZ = PZC) PZAty + Pzdz = _szd-

With this projection, we eliminate some columns from the Gauss-Newton system (corresponding
to the zero components of Z) and we eliminate some rows (corresponding to constraints on these
7Z€eros).

We note that P, projects onto a subspace of the co-domain of Py and therefore z has at least

as many zeros as x. This implies that we can project the complementarity equation using Ey and
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obtain

Ex(Z @ I)Pxdx + Ex(I1©® X)P,d, = —Exfc.

This eliminates some more rows from the system. For example, if the original system is a standard
linear program, the resulting Jacobian is of size (n+ m+n) x (n+ m+ n), as one would expect
for a linear program.

We try to exploit the sparsity of z and of the A; as much as possible. This is the subject of
the next section. Before we end this section, we mention the last source of zeros in the problem,
the asymmetric Kronecker products Z @ I and 1 @ X. The resulting matrices have at most n3
nonzeros (if X and Z are dense) while being of dimension n? x t(n). This is illustrated in Figure

4.2

400

0 100 200 500 600

300 4
nz = 29050

Figure 4.2: Sparsity structure of [Z@ 1,12 X] (n = 25).

It would also be possible to handle this sparsity via projections if we were to solve the system
by a QR factorization of J. But since we intend to solve the system in two steps, for d, first,
then for d, dy, the nonzero pattern gets more complex. We therefore opted for a sparse matrix
structure, using compressed columns to which we will apply permutations to minimize fill during

the factorization phase.
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After the projections, the system (4.1) becomes

0 P, At I P,dy P.fq
Jpdv = APt 0 0 dy | =—1| f» |> (4.10)
Ex(ZOTPL 0 E(IoX)P| |P.d. Eyfe

where J;, is of size (nz(z)+m+mnz(zx)) x (nz(x)+m+nz(z)), and we are solving for Py dx, dy, P.d..
To visually contrast the original Jacobian and the reduced Jacobian under the effect of the pro-

jections, see Figure 4.3

0

200 200

400

400

600 600

¢
800 S oy 800

1000 Ny 1000+

A NN
1200 s NNy 1200+

1400 S NNy 1400

SN
1600 LLL S NN 1600 Lh
NN
SAARRNN{ N
L NN
1800F LLLL iy 1800
N SASRRNNNN
L ’» NN AN

2000

2000

Il Il Il n — AN L L
0 200 400 600 800 1000 1200 1400 0 500 1000
nz = 102659 nz = 74309

Figure 4.3: Sparsity structure of full and of reduced Jacobian (Maxcut instance).

4.3 Separability for Sparsity

Consider in (4.10) that the first two columns of J, especially if A is sparse, will be very sparse. If
there is a way to first solve for d,, taking advantage of this sparsity, then back solve for d, dy,

it might prove advantageous to do so. We first describe how to separate in more general terms.
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Consider K € Rk T € R**! h € R" where h > k + 1 and the optimization problem
min{||Lz—|—Kw+h|| |weRk‘ze]R‘}. (4.11)

Lemma 4.3.1 The least-squares solution to (4.11) can be expressed by
1. w* = —[(I—LLHK]h,
2. z¢ = =Lt (h + Kw*).

Proof: Say w* is the R* part of the optimal solution. Then
min{||Lz—|—Kw—|—h|| |weRFze Rl} - min{||Lz+ﬁ|| EX: R‘},
where h = Kw* + h. The solution of which is given by 2. Substituting back we get
min {||Lz+Kw+h|| | weRK ze ]Rl} = min{||(1 —LLY)(Kw +h)|| | w e ]Rk},

the solution of which is given by 1. m|
This approach is inspired by [33, 34] where partial separability was used to isolate variables
involved in linear blocks from those involved in nonlinear blocks. The motivation, in our case, is
different: some of the variables are subjected to dense operators, others to sparse operators. We
are trying to isolate them and treat them differently.
Since, for the class of problems we have in mind, Z and A are sparse, and correspondingly dz
is sparse, we make the following identification between the columns of J,, from (4.10) and Lemma

4.3.1, defining new symbols to simplify the notation:

0 P,At | I 0 At
[L[K]:= AP 0o | 0 = (A, 0o | 0f- (4.12)
E(ZoDPE 0 | E(IoX)Pt Z 0 | X
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We also define
dy = Pxdy, d;i=Pod,, fa:=P.fq, fci=Efe, (4.13)

and 21; =dy, f:, = fp.

4.3.1 Solution via Pseudo-Inverse

For the sake of completeness, we give an expression for the pseudo-inverses and the symbolic

solution of the system. We need L' and I — LL".

Lemma 4.3.2 For L defined as in (4.12),

0 (ALA +Z'Z)TAL (AtA, 4 ZtZ)"'Zt
(AL 0

Lh:=

Proof: Since the Jacobian is of full column rank, then L is also full column rank. To satisfy the
Moore-Penrose equations, we need only to show LL = I and LLt = (LL)t. Both equations are
readily verified by simple matrix multiplication. O

To solve (4.10) using the technique of Lemma 4.3.1 we need to solve in a least-squares sense

a system of size (nz(z) + m + nz(zx)) x nz(z), thin and built from sparse operators,

(I— AL(AL)) (I—AL(AL)fq
Ax(AtA, +Zt7) 178 | do=— |f, + Ac(ALA, + Z87) (Z¢e — ALfy)| - (4.14)
(1— Z(AL A, + Z1Z) ' 24X fo = ZIALAL + Z02) V(2 — ALfy)

We solve (4.14) by a QR factorization via column-oriented Householder reflections. Before the

factorization, we need to solve

(ALA, +Z'Z)U | V] =[Z'| AL, (4.15)
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a very sparse system, to obtain U and V needed to get

AuALA, + 2217 — AL, FRA 4+ 27K = 7UK,
AR, +707) 1750 — AU, AdAYAL 4 Z07) AL — AT,
FRA, + 272~ ZUf, FRA, + 27) AL, = ZVFo,

Once we have d,, we can obtain dy,d, via

dy = —(AYH(d: +fa),

—(AVA + ZZ) ALy + ZH(Xdz + o)) = =V, — UXd +fo).

o
%
I

This approach has not proved to be very accurate for hard problems, probably, in part, because
of the construction of AAt + ZZt, which is akin to the normal equations. Nevertheless, for well-
conditioned, sparse problem, it can be very fast. The factorization of (4.15), can conceivable be
done by an downdating/updating procedure, making the code faster but we have not investigated
this factorization.

For a production version of our code, we might use this fast approach for the initial iterations
and then, if memory permits, use the approach described in the next section to obtain the required

accuracy.

4.3.2 Solution via Householder Reflections

There is a numerically better approach for the solution of (4.10) using the technique of Lemma
4.3.1. Note that we require L' as well as I — LLt. Since L is of full column rank, we could use the
identity

Lt = (L'L) 'Y

But this would unnecessarily worsen the condition number in the case where the columns of L are

nearly dependent. A better approach is to compute L = QR to obtain

L' = (L) 'L* = (REQLQrRe) 'RiQL = (R{Re) 'REQL =Ry 'R “RIQL =R Q1
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and therefore

LT = QLRR{'Qf =QLQ}.

The numerous cancellations are the key to the accuracy of the result.
The second requirement is to efficiently compute (I — LL)K = (I — QLQ} K. Say that Qr =

P1P; --- Py where the P; are Householder matrices P; =1 — Bviv{‘. Then

I-QLQt = I—{PiP2---Pi1PPPiy---Py}

= T—{(I—Byvivy) - (I— Bvvi)(I— Bviv) - -+ (I— Bavivi)k

The reflections P; are stored and applied in factored form without ever being formed, in the
standard manner,

(I—-BwhHK =K — pv(Kt)*

and the application of P; is later denoted by ApplyHouse in algorithm descriptions. The overall
procedure of the sparse solver for the Gauss-Newton direction is given by Algorithm 4.3.1.

The computational cost of this algorithm, as indicated below its description, can be bounded
by the cost of the two QR factorizations. The bound is an overestimate of the flop count since
it does not take into account the sparsity of the Jacobian, but only the sparsity of the X and
Z matrices. On the other hand it does not account for the memory accesses incurred by this
approach.

Since L is very sparse but K, and more so (I — QrQ})K is denser, we treat these two parts
separately, with the first using a sparse matrix structure, and the second a dense matrix structure
which we call K in the algorithmic description 4.3.1.

There is one more advantage of this technique. Since the sparsity pattern of L is the same
at every iteration, we can spend some time at the beginning to find an adequate fill-minimizing
ordering.

Of course, this particular handling of sparsity via a two-step QR factorization would defeat

the purpose of finding accurate solutions if stability of the usual QR algorithm was lost. Following
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Algorithm 4.3.1 Sparse solver for Gauss-Newton direction

Given ;] = [LK];K := K; f := f; {Current right-hand side and Jacobian}
Construct L;
Factor QLRL =L; {QL="P;---Pi}

Save and discard Ry;
fori=1,...,1do
K := ApplyHouse(P;, K);
end for {K=Q!K}
fori=1,...,1do
K := ApplyHouse(P;, K);

end for _ {K=QQiK}
K:=K—-K; {K=(I-QLQ})K}
Discard Qr; .

Factor QgRk = K; {Qk =Pry1---Pryk}

fori=1+1,...,1+kdo
f := ApplyHouse(P;, f);
end for {f = QLf}
Solve Rxd, = T;
f:=1+4+Kdy;
fori=1,...,1do
f := ApplyHouse(P;, f);
end for {f=Qf(f +Kd.)}
Discard Rk, Qg; Retrieve Ry;

Solve Ry [iy] =1
X

QR cost = 2Mnz(x)+m-+ nz(z)]2 nz(z) + m + nz(zx) — (nz(x) + m 4+ nz(z)/3)]
= 2nz(x)+m+ nz(z)]z %(nz(z) +m)— %nz(x) + nz(zx)

Total cost = O([nz(x)+m+ nz(z))? nz(zx) + m])




CHAPTER 4. IMPLEMENTATION AND EXPERIMENTS 101

the pioneering work of Gu [38] we can show that this is not the case. The critical element is our
methods of computing (I—LL")K. This is not an orthogonal matrix, yet there is a way to compute
the product that maintains the accuracy of a product of orthogonal matrices instead of a general

matrix product.

Lemma 4.3.3 The calculations of (1 — LLY)K in Algorithm 4.3.1, under the usual floating-point

model of arithmetic, satisfies

A((1-LLHK) = (1-LLH (K + A),

where ||A]| = O(¢)|IK]|.

Proof: We are computing this matrix product via the identity

(I-1IHK = (I-QrQhHK

(I—{P1P2---Pi_1PiP1Pi=1---P1}K

I—{(I—=Bivivi)--- (I—Bwivi) - (I—Brvivi)iK.

where the P; are Householder reflections. If we apply the sequence of reflections by the usual
PiK = (I—Rivivi)K = K— B;vi (viK), then it is known (Lemma 3.1 and Theorem 3.5 of [19]) that
the sequence of products satisfies fi(Py...PiK) = Pr...Pi(K+ E), where ||E|| < l¢||K]|. Since we

are simply applying twice the number of reflections, we obtain the result. O

Lemma 4.3.4 (Backward stability.) The solution a: obtained by algorithm 4.3.1 satisfies
min{[(J + 8])dv + (f + &f)[}

where ||3]|| = O(e)||]I], and [[3f]| = O(e)]If]|-

Proof: This is a consequence of Lemma, (4.3.3) and the standard proof of backward stability of

least-squares solution via QR factorization (See, for example [42], Theorem 19.3). O
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4.4 Solution via Givens Rotations

Long after we had implemented the previous approaches, it occurred to us that a row-by-row
factorization might be as effective in solving equation (4.10), especially after a re-ordering of the

columns to produce the equivalent system

I P,At 0 P.d, P.fa
0 0 APt dy | =—| fp |- (4.16)

E(IOX)PE 0 Ex(ZoDPY| |Pydy Exfe

X

A factorization via Givens rotation is usually twice as expensive as via Householder reflections
but the particular structure of the matrix in equation (4.16) suggest that we do not need to
start the factorization until the first row corresponding to the operators Z and X, a substantial
saving. Moreover we need not construct the whole operator before beginning the factorization.
As described in [29], we can form the operator on-demand, row by row and never have to store
more than one row. An added advantage is that we need not store the rotations, only the result
of the factorization.

We implemented this procedure and the preliminary results were indistinguishable in term
of accuracy from our previous implementation. But the most appealing aspect of this approach
is the potential for parallelism. The same sparsity pattern repeats itself at every n rows of the
operator because of the Kronecker products. This implies that up to a number of rows could be
processed at the same time since their rotations are independent. As a simple example consider

the product of 2 x 2 matrices,

x11 x12 O 0
10 X111 X12 x21 %22 O 0
K= , X= , KX=
0 2 X21 X22 0 0 2X11 2X12
0 0 2X21 2X22

It is clear that we could rotate the second and fourth in parallel on different processors. A related
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but more sophisticated idea was developed and implemented by Chu and George [16, 17] for dense
matrices: On p processors, for a matrix with m rows, they allocate m/p consecutive rows to each
processors. Independently and in parallel, these horizontal blocks are reduced to triangular form
by Givens rotations. During a second phase, where all the interprocessor synchronization cost is
incurred, the blocks are further reduced to obtain a triangular matrix. The scheme is meant to
reduce both the synchronization cost between processors and the idle time. Such a scheme could
easily be specialized to matrices formed by Kronecker products. We have not yet completed such
a parallel implementation but it seems that the factorization of operators built from Kronecker

products would benefit greatly from their parallel structure.

4.5 Benefits

In summary, we have three different implementations of an algorithm aimed at accurate solutions
of semidefinite programs. The first, for small and dense problems, obtains very accurate solutions
to all problems in a wide range, from well-conditioned to problems without Slater points. The
second implementation, for larger sparse data, decomposes the problem, at each inner iteration,
into systems of order of the nonzeros in their corresponding variables. The third implementation,
still under development, tries to leverage the structure on Kronecker products on parallel archi-
tectures. In all cases, the inner routine is backward stable and all implementations start from
possibly infeasible points and are therefore practical. On the negative side, the algorithms are
more costly to run than usual symmetric direction algorithms, an unsurprising tradeoff, consid-

ering their robustness.



Chapter 5

Sequential Quadratic

Programming

Until now we have used classical tools of nonlinear programming to develop and analyse a modern
problem in linear optimization. In a reversal of roles, we now attempt to use semidefinite pro-
gramming as the subproblem solver in a nonlinear optimization toolbox. This should be viewed
as an application of semidefinite programming.

A proven approach for the unconstrained minimization of a function f : R™ — R is to build and
solve a quadratic model at a local estimate x(¥), Newton’s method. In this chapter we propose a
direct extension of this modeling approach to constrained minimization: A local quadratic model
of both the objective function and the constraints is built; since this model is too hard to solve, it is
relaxed using the Lagrangean dual, which is then solved by semidefinite programming techniques.
The key idea in this approach is to use the latest technique of cone linear programming to obtain
a better model than is usual in SQP methods and the key ingredient is the equivalence between
the Lagrangean and semidefinite relaxations.

As illustration of how semidefinite programs is used to good effect, recall the well-known

Rayleigh-Ritz quotient to obtain the smallest eigenvalue of a symmetric matrix A. An equivalent

104
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formulation yields (for example, see [43])
A1(A) = min {xtAx | xtx = 1}. (5.1)

One approach to prove this result involves Lagrange multipliers: the optimal x must be a station-
ary point of the Lagrangean L(x,A) = x*Ax — A(x*x — 1). This shows that the optimal x is an
eigenvector; and substitution into the objective function shows that the corresponding eigenvalue
is the smallest. But now, consider instead, x*Ax = trace (x*!Ax) = trace (Axx!) and let X := xxt.

We write the program (5.1) as
min{(A,X) | (LX) =1,X = 0,X :xxt},

where (A,B) = trace(A'B), the trace inner product; A > 0 (resp. A > 0) denotes positive
semidefiniteness (resp. positive definiteness); and A > B denotes A — B > 0. The symmetric
matrix space S™ is equipped with the Lowner partial order.

Note that the rank one constraint (X = xx*) is redundant because we have only one constraint

[64]. We therefore drop it and construct the dual to obtain
max {A| AL X A,A € R},

which obviously has A1(A) as optimal value. Since the dual has a strictly interior point, the primal
attains the same value and we get the Rayleigh-Ritz result. In this manner we use semidefinite
programming to construct and solve Lagrangean relaxations.

In this chapter, we wish to illustrate some of the strengths, both theoretical and practical,
of considering semidefinite relaxations of quadratic programs as the tool of choice for solving

Lagrangean relaxations that arise from quadratic models of general nonlinear programs.
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5.1 The Simplest Case

Moving up in complexity we consider the unconstrained problem
min {f(x) | X € R“}.

When possible, the method of choice for this problem is Newton’s method, which minimizes a
quadratic model of the objective function. To ensure a solution (or convexity) of the model,
Newton’s method is often implemented within a Trust-Region, or Restricted-Step approach. This
very efficient variation proceeds from an initial estimate of the solution; develops a second-order
model of the objective function deemed valid in a region around the estimate; and finally solves

the model (the trust-region subproblem)
min {qo(d) :=d'Qd + 2b'd | qi(d):=d'd < 8%,d e ]R“}. (5.2)

The model is constructed from Q = V2f(x(*)) (or an approximation of the Hessian), b = Vf(x(*))
and the parameter 6 represents the radius where the model is deemed valid. The trust-region may
be scaled or even arise from a non-convex quadratic. A solution d is then used as the step to the
next estimate x(*+1) = x() 1 4.

One of the interesting properties of (5.2), first shown in Stern and Wolkowicz [75] using semi-
definite programming, is that even though generally non-convex, the problem exhibits no duality

gaps. The Lagrangean dual of (5.2) is written as
max{—bt(Q +ADTD —A82 | Q + AL > O\ > o}, (5.3)

a nonlinear, concave semidefinite program, where (-)! is the Moore-Penrose generalized inverse. In
addition, the Lagrangean dual has been shown [69] equivalent to the following linear semidefinite

program,
t bt
max{(62+1)?\—t| tAI,te]R,)\ZO}. (5.4)
b Q
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We take the dual of the above linear semidefinite program (5.4) to get a semidefinite program
equivalent to (5.2),
min{(Po,Y) | (Eo,Y)=T1,(P,Y) < 52,\@0}. (5.5)

The programs are equivalent in the sense that the optimal values are equal and that the optimal
solution to (5.2) can be extracted from the optimal solution to (5.5). The variable in this latter
program, Y, belongs to the cone of symmetric positive semidefinite matrices of dimension (n +

1) x (n+1). Also,

Py — 0 bt Py = 0 0 Eo— 1T 0
b Q 0 1 00
The reader will note that (5.5) may be obtained as we did for the for the Rayleigh-Ritz program,
by homogenization of (5.2), transformation to matrix space and then by dropping the rank one
constraint. (We abuse the term homogenization to mean elimination of the linear terms from a
quadratic function.) We will do this in detail for a more general program later on.

This pair of linear primal-dual semidefinite programs (5.5, 5.4) have strict interior points.
Therefore the optimal values are equal; moreover, they are attained. Finally, part of the first
column of the primal semidefinite solution, the matrix Y, is feasible for (5.2). And, possibly with
an additional displacement chosen in the nullspace of the Lagrangean, this first column yields the
same objective value for (5.2) as its dual optimal. By this procedure, usually known as lifting of
(5.2) to the cone of semidefinite matrices and projecting back (by the first column), we see that

there are no duality gaps for (5.2). This is made precise in [75].

Theorem 5.1.1 The optimal solution to (5.2) and to its Lagrangean dual problem (5.8) are

attained and the corresponding objective values are equal.

The interesting aspect of this theorem is that the Lagrangean dual is shown equivalent to a semi-
definite program and its optimal value is deduced from this latter program. Therefore, interior-
point algorithms, as developed in the previous chapters, may be used to solve (5.2), even if the

objective function and the feasible set are non-convex. The result has been extended to upper and
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lower bounded trust-region subproblems but, interestingly, not to a finite number of constraints.

With as few as two constraints, a duality gap may appear [89, 90].

5.2 Multiple Trust-Regions

Consider now a quadratic objective function constrained by multiple quadratics,
min {xthx + 2bix — ag | x'Qx +2bix —ax < 0,1 <k <m,x € IR“}. (5.6)

As soon as two or more trust-regions are considered, the necessary and sufficient conditions that
hold for one trust region may no longer be sufficient for (5.6). This is reflected in the duality gap
exhibited by some instances of multiple trust-region programs.

To directly derive the relaxations, we introduce the vector y = (x x)t. We then require xj = 1

or, in terms of the new variable, y*Eoy = 1, to get a homogeneous program equivalent to (5.6),

min {ytPoy |v'Eoy = 1,y"Pry < 0,1 <k <m,y € R*"! } (5.7)
where
10 —ar bt
Eo = and Py = ,0<k<m.
00 br  Qx

The homogenization simplifies the notation and opens the way to the semidefinite relaxation. We

rewrite (5.7) using matrix variables,
min { (Y, Po) | (¥,Eo) =1,(Y,P) <0,1 <k <mY =yy'}.

The rank-one constraint is relaxed to a semidefinite constraint; a procedure that yields the La-

grangean relaxation. After some rearrangement of terms, the Lagrangean dual of (5.7) reads

m

max{min{ y*(Po+ Y AP +AEo)u —Ag |y e R™ T L A€ Rx R 5.

+
k=1
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For the inner minimization to be bounded we must now have

m m
Po+ > McPi+AoEo = 0, which implies Qo+ > ArQi > 0.
k=1 k=1

This, by the way, is where the duality gap arises. The standard necessary optimality conditions
for (5.6) do not require the Hessian of the Lagrangean to be semidefinite. But the Lagrangean
dual program we are deriving here requires the same Hessian to be semidefinite. We therefore
cannot expect the primal variables corresponding to an optimal dual solution to be, in general,
optimal for (5.6).

To complete the derivation, we note that the minimum over y will be attained at y = 0 from

which we get the dual program

m
max{on|Po +A0EO+Z}\kPk§0,A€RxRT}. (5.8)
k=1

We have now justified the claim of equivalence of the Lagrangean and semidefinite relaxations
since dropping the rank-one condition on the homogenized primal (5.2) or taking the semidefinite
dual of (5.8) will result in the following, which we will therefore simply refer to as the relaxation
of (5.6),

min {(PO,Y) | (Eo,Y)=1,(P,,Y)< 0,1 <k <m,Y = o}. (5.9)

This resulting semidefinite relaxation of (5.7) is equivalent to the one considered in the literature
[74, 15, 66].

The optimal value of the relaxation provides a lower bound for (5.6). We now need an approx-
imation for the optimum x. Feasibility properties of the first column of the semidefinite relaxation
were first shown by Fujie and Kojima [25] for an equivalent problem with linear objective function.
For an alternate view of this result, see [1], from which we extract the next results. Consider the

feasible set of the nonlinear program (5.6),

Fi={x € R" |x'Qix +2bjx —ar < 0,1 <k <m};



CHAPTER 5. SEQUENTIAL QUADRATIC PROGRAMMING 110
the feasible set of the semidefinite program (5.9),
Fi={Y = 0[(E0,Y) = 1,{Pi,Y) <0,1 <k <m};

and the projector map,

Pr: Sn—)Rn, PR(Y):PR =X.

Theorem 5.2.1 Suppose that Y is a feasible solution of (5.9). The projected vector, x = Pr(Y),

is then feasible for all convex constraints of (5.6).
Proof: Since we are concerned only with convex constraints, we may consider only those where

Qx > 0 and compute

x'Qrx +2bix —ax — (Py,Y) = x'Qix— (Qx,X)

—{Q, X — xx*).

Since Y > 0 implies X —xxt > 0, we obtain

x'Qrx + 2bix — ay

(P, Y) — {Qi, X —xx*)

S (Pk) Y)
< 0.
And therefore x is feasible for all convex constraints of (5.6). O

This feasibility of the first column is interesting to consider in more detail. First, in the case
of a problem where the quadratic constraints are convex (but maybe the objective is not) there
is an obvious way to improve this first column solution when it is not optimal.

An optimal pair Y,A to the semidefinite relaxation, if Y is not rank one, will in general map

to a vector x for which complementarity fails but improving the objective value while remaining
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feasible is then easy.

Lemma 5.2.2 Consider an instance of (5.6) with convex constraints. If the semidefinite primal
optimal solution Y is not rank one, let X = Pr(Y), (part of the first column of Y ). Then there is
a % chosen in N (Qo + Y_ AcQx), the nullspace of the Lagrangean, such that x = X + X, is feasible

and will improve the primal objective value of (5.6).

The idea is to choose a displacement along the nullspace of the Lagrangean until one or more

slack constraints is satisfied with equality. The value of the objective function is lowered since

0=x%x"(Qo+ Z AkQi)x > X' Qox

and therefore (X +Xx)*Qo(X + %) < xtQox. |
Consider now a more general case where the constraints may not be convex. Note that Theorem
5.2.1 implies that the projected first column x is feasible for any nonnegative combination of

constraints,

m
D> A(x'Qux +2bix —ax) <0, A>0, (5.10)
k=1

which results in a convex function. Thus we obtain feasible points for convex combinations of
constraints of (5.6) as in (5.10) from feasible points Y of the relaxation (5.9), even when these
are not rank one. Therefore the relaxation provides a convex approximation to the feasible set £
However, it actually provides a better approximation than this would initially lead us to believe.

Let us define a valid inequality for (5.6) as

D) M(x'Qix+2bix—ai) <0, where Qo+ ) AQx =0, A>0. (5.11)
k=1 k=1

These inequalities, an infinite number of them, are not, in general, convex. (Simply consider (5.2)

where the objective is strictly convex while the constraint is not.) However, they provide geometric
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insight into the semidefinite relaxation. The set of vectors satisfying all valid inequalities,

{x ‘ i A(x'Qrx +2bgx —ak) <0, Qo + i MQr = 0,A > 0}

k=1 k=1

establishes a relation between the set of projected columns of semidefinite solutions and some
intersection of the original constraints.

We now use the geometric descriptions sketched above to provide an approximate solution to
(5.6) from the optimum of (5.9). We use the first column of the optimum Y but then we use the
properties of the valid inequalities (5.11) to improve this column by moving onto a boundary of
a valid inequality.

In the general case of a non-convex feasible region, we obtain a step, which, unlike Lemma
5.2.2, attains complementary slackness, though not necessarily feasibility. Again, the value of the
objective function is improved. This additional step is a generalization of an idea introduced by
Moré and Sorensen [61] to solve (5.2) and there is an explicit expression for the step as there is for
(5.2), given here in Lemma (5.2.3). We give the technical construction of the step in the following

lemma and its value in Corollary 5.2.4.

1 xt
Lemma 5.2.3 Suppose that A and Y = are feasible for (5.9) and its dual. Let

x X
1
Y= . Z:=Po+AoEo+ ) APy, T={l,...m}
X keT
and suppose that they satisfy ZY = 0.
Let the matrix'Y be factored as
Y =TTE,

where T is (n+ 1) x v and full column rank v > 2. Let the matriz S be v x (r—1) and full column

rank with R(S) = N(T1.), i.e. with range space given by the orthogonal complement to the first
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row of T. Define
R:=TS, P:= Z APy, c:=y'Py,
kel

K:=R" (Pyy'P —cP) R.

Choose v such that
Rv # 0 and v'Kv > 0,

and define
a:=V'R'PRy, b= 2v'R'Py.

Then, for z defined as follows, we have
0
TSv = #0,

and

b2 —4ac > 0.

Moreover, if we define

and

then

wPw =0, and Zw = 0.

(—b + b2 = 4ac) /(2a) ifa#0
= ifa=0,

113

(5.12)

(5.13)

(5.14)

(5.15)

Proof: That (5.13) holds and Zw = 0 follows directly from construction of R and the assumption

of complementary slackness, ZY = 0. Note that ZY = ZTT* = 0 implies ZT = 0. We still need to
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show the equality of the quadratic form in (5.15). Now
wtPw = y*Py + a2vtR*Py + x?v R'PRv.

(We assume that a w exists to make this quadratic 0. This may be seen from the ordinary trust-
region subproblem with the given A defining the single constraint.) The discriminant for this

quadratic in « is defined in (5.14), where
b? —4dac = 4v*Kv.

Therefore, the discriminant is nonnegative, and the quadratic has a real solution « as given by
the standard formula. O
We now make explicit the value of the previous lemma in finding an approximate solution to

(5.6).

Corollary 5.2.4 Suppose that Y,ZAw are defined as in Lemma 5.2.3 above. Then the La-

grangean dual bound is attained by w as well as complementary slackness.

Proof: That complementarity is attained is seen directly from the second equation of (5.15).

And from both equations we obtain
0 =w'Zw —w'Pw = wt(Py — AgEo)w.
Therefore, W*Pow = qo(x + ®z) = —Ag, the dual Lagrangean bound. a

5.3 Approximations of Nonlinear Programs

We assume the reader is familiar with Sequential Quadratic Programming, denoted SQP. We recall

only the main features and refer the reader to [76] and [12] for details. The usual justifications
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for the application of SQP to the nonlinear program
min {fo(x) | fi(x) =0,1 <i<mxeR"},

stem from applying Newton’s method to obtain stationarity of its Lagrangean .Z(x,A) := fo(x) +
> Aifi(x),

Vio(x*) + ) VFi(x*)Af =0,

f(x*) =0.

We will sometimes use the notation f(x) := [f1(x)...fm(x)]* and for the matrix of all gradients,
[Vf1(x)...Vfn(x)], we will use f'(x). An iterative attempt at the non-linear system above by
Newton’s method with some simplification involving d = x(k*1) —x(¥) and §, = Alk+1) _ A0k,

will produce the first-order Newton step,

V2.2 (x A 1 (x (k) d —Vfo(x(X)
f/(x(k])t 0 )\(k+1) _f(x(k])

This system produces a direction d and a new vector of Lagrangean multiplier estimates Ak+1),

The key justification for SQP is that the system of equations (5.3) may be derived as the first-order
necessary conditions of the quadratic program

min fo(x(¥) + Vfo(x(¥))td + Jdt V2.2 (xF) A K)d (5.16)

st fi(x¥) + Vi (x(¥)td =0, 1<i<m.
Stationarity of the Lagrangean of (5.16) yields the first line of (5.3), and feasibility yields the
second line. This is why SQP is viewed as an extension of Newton’s method to constrained
optimization.

It is now standard procedure to extend the derivation seen above to the inequality constrained
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program.

min{fo(x) | fu(x) < 0,1 gigm,xeR“}, (5.17)

and obtain the subproblem,

min fo(x(®) + Vfo(x¥)td 4+ Jdtv2.g(xF) A F))d (518)
st fi(x(®)) + Vi (x(¥)td <0, 1<i<m,
In summary, from the Taylor first-order expansion of Z(x,A), we obtain the standard SQP

subproblem, which approximates the objective function to second order yet approximates the

constraints only to first order. Consider now a second-order Taylor expansion of .Z(x,A),

> MVE(xM) + V2.2 (x9N d + Hz (8, 8) —Vfo(x¥)
f/(xM)d + Jd+ " (x()d —f(x(¥))

where we have grouped the third-order derivatives under the name H3z because we intend to
neglect them. Consider also replacing V2.2 (x(¥), A(K)) by V2.2 (x®) A(k+1)) We then obtain an
approximation of the necessary optimality conditions which sits between a first and a second-order

expansion and is obtained by solving

min  fo(x®) + Vfo(x)td + 1d*V2fo (x*)d
st fi(x(9) + Vi (x(F)td + 1d*V2f (x(K)d <0, 1<i<m (5.19)
dtd < 82,

without the additional trust-region, which is added to ensure a bounded solution.

Such a straightforward subproblem has often been considered, but has, just as often, been
discarded as unsolvable. One notable exception is an algorithm by Maany [54] developed, in-
terestingly enough, because the standard SQP approach failed on the highly nonlinear orbital
trajectory problems they were studying [21]. Because (5.19) is a closer approximation to the
original problem (5.17) than the quadratic program, we expect it to be a better subproblem to

solve in a sequential programming approach and, in fact we have the following,
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Lemma 5.3.1 Assume that x\*) is feasible for (5.17). If the (5.19) subproblem is solved by d =0

k) and A satisfies the first-order conditions and

with multipliers N, then the pair of vectors x|
second-order conditions of (5.17). Conversely, if x') and A satisfy the first and second-order
necessary conditions of (5.17), then the pair of vectors d =0, A satisfy the first and second-order

conditions of (5.19).

This implies that the (5.6) subproblem does better than the (5.16) subproblem since they both
solve the first-order conditions but only the former guarantees second-order optimality conditions.
This is expected of a trust-region approach.

Is also does better by providing second-order multiplier estimates in the sense that the multi-

pliers A(¥+1) obtained from (5.19) satisfy
min {||Vfo(x“‘)) +V22(x¥ m)d+ Y mVi )3 | ne R‘“}.

If we are close to the solution we therefore obtain, directly from the solution of the subproblem,
not only a good search direction in primal space, but better multiplier estimates than provided
by the standard (5.16) subproblem. (For more details on second-order multiplier estimates, see

[30].)

5.4 Quadratically Constrained Programming

Note that, for simplicity, we assume that our constraints are nonlinear. Linear constraints have to
be treated differently, essentially squared [66]. Equivalently, linear constraints may be eliminated
or mapped to a linear constraint in matrix space.

Homogenization of (5.19), obtained by adding a component dy to the vector d, together with

the constraint d3 = 1, yield the semidefinite relaxation,

min {(Po, ) | (Eo,¥) =1, (P, Y) €0,1 <i < m, (P Y) < 82}, (5:20)
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where
—Qaj Vf{(X(k))t 0
Pi= | Vfi(x(M) V2 (x0) o], ai==2f(x"), 0<i<m,

0 0 0

and where Ey and P have their usual definitions,
EO = )PI = )

and Y > 0.

But this relaxation may be infeasible if the current estimate is too far from the feasible region.
To overcome this difficulty in SQP, Vardi [84] suggested a heuristic shift of the linear constraints.
We do a related shift of our second-order constraints by allowing the additional component dg
to take values between zero and one. That is, we change d3 = 1 to df < 1. This additional
relaxation allows for a feasible subproblem. Of course we would want doy to be as close to 1 as
possible and examination of the subproblem shows that it automatically tries to make dy “large”.
We need no heuristic to choose a Vardi-type parameter.

The dual program to (5.20) is then

m
max{—?\o | Po+AoEo + Y APy + ArPr = 0, € R x RT}. (5.21)
i=1

Solving the primal-dual pair (5.20),(5.21), in the case of gap-free (5.17), is enough since, as
we have seen, the first column is optimal for the quadratic approximation. But, in general, we
need an appropriate merit function to ensure sufficient decrease at each step and guarantee global

convergence of the algorithm, whether we use a line search or a trust-region strategy.
After solving the (5.6) subproblem for a direction d # 0, the next iterate is obtained by
x(k+1) = x(k) 1 d. This new point serves for the expansion of a new problem by second-order
polynomials and we iterate until the subproblem yields d = 0. As with any trust-region based

algorithm, we adjust the trust-region radius according to the ratio of predicted improvement
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to actual improvement. At the end, we have a solution satisfying both first and second-order

conditions of (5.17). Somewhat more formally, Algorithm 5.4.1 describes the approach.

Algorithm 5.4.1 Sequential Quadratically Constrained Programming

Given fi, Vfi, V2fi, x(®) {Functions and derivatives}
Given € {Steplength tolerance}
k:=0 {Iteration count}
repeat
Y € argmin{(Po, Y): (P;,Y) < 0,(Ep,Y)=1,Y = 0}; {Solve semidefinite pair}
AR+ € argmax{—Ag : Po + 3 APi +AoEo = 0,A € R x RT*};
d:=Pr(Y); {Project down by first column}
x(H1) = x(K) 4 g; {New point}
Tk = q‘gzzt;;:;"s;‘;::}] {Decrease ratio}

if (1% < 7) then

d=105/4 {Bad model, shrink trust-region}
else
if (v* > 3) and [[x(**V) —x(¥)|| = § then
=25 {Good model, expand trust-region}
end if
end if
ki=k+1 {Bump iteration}
until (||d]| <€) {Attained optimality}
Find maximal d € NV'(V2.%) such that f(x(*) +d) <0
x(K) = x4 g {Nullspace move}
return(x(®) A(K)) {Primal iterate and multiplier}

If the (5.19) subproblem is convex, or more generally, if it is an instance without duality gaps,
then solving the semidefinite relaxation, which may be done efficiently, will be enough since the
primal semidefinite solution will be rank one. We will have a pair of primal-dual vectors satisfying
the sufficient conditions for optimality of (5.6).

This takes care of the convex case and of many non-convex cases. In other cases, we move
along the nullspace of the Lagrangean until we hit one of the constraints. This nullspace-restricted

step improves the objective value even if it does not lead to an optimal solution.
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Example 5.4.1 Illustrative comparison of SQP and SQ*P.

min{—)q — X3 |x?—xz§0, x?—i—x%—l SO}

Figure 5.1: Iterations of SQP on Example 5.4.1,
from initial point (% %)t. As the first iteration
demonstrates, the direction given by the QP sub-

problem can be poor.

5.5 Conclusion

15

Start

N

0.5F

Figure 5.2: Iterations of SQ*P on the same ex-
ample. The horizontal scale is changed to high-
light the value of the direction provided by the

semidefinite subproblem.

Efficient approaches to unconstrained optimization based on Newton’s method all involve local

quadratic models of the objective function. Yet for constrained optimization, the extension of

Newton’s method, SQP, uses linear approximations. Some second-order information is included

in the model, but in an aggregate form.

In this chapter we have outlined an approach that deals more closely with the true quadratic

model of the problem at hand. One of the key features is the relationship between the Lagrangean

and Semidefinite relaxations which leads to what we have called the SQ?P algorithm for general

nonlinear programs.
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This algorithm builds second-order approximations of both the objective function and the
constraints and then solves the Lagrangean relaxation of this quadratic model via semidefinite
programming. The approach provides a stronger relaxation than the standard quadratic program
used in SQP methods; at every step it provides better multiplier estimates; it handles potential
infeasibility of the subproblem in a straight-forward manner; finally, it aims at solutions satisfying
both first and second-order optimality conditions. Many implementation issues still need to be
resolved but the recent advances in numerical solutions of large semidefinite programs encourage
further study.

As a final note, we should make clear that it may turn out that the semidefinite relaxation is
not exactly the right one to use for efficiency reasons. But the point remains that we are nowadays
in a position to do better than the linear relaxations so popular during the seventies and eighties.
Because we had at our disposals good linear programming solvers, the world seemed linear or,
at least, mathematical models tried to make it so. We now have good solvers for quadratic
programs, either via semidefinite relaxations or, possibly via some second-order cone relaxation,

and we should make full use of these new tools.



Chapter 6

Future Directions of the

Gauss-Newton Direction

Starting from the optimality conditions of the log barrier problem associated with the standard
linear semidefinite program, we used the classical tool box of applied mathematicians and numer-
ical analysts to obtain a family of search directions and interior-point algorithms. This approach
led us to consider the least-squares solution of the linearized and smoothed optimality conditions.
We obtained a solution, which we call the Gauss-Newton search direction, that is different from
search directions previously considered.

The Gauss-Newton direction was shown to be well-defined and to guarantee descent of a valid
merit function; computed on the prototypical cases of a standard linear program and on the
central path of a semidefinite program, it coincides with the major primal-dual search directions;
under usual assumptions, the defining system of equations is full rank and is at least as far from
singularity as the best practical directions known until now; finally it is invariant under both
affine transformation of the space and orthogonal transformation of the underlying cone.

From this direction we have exhibited an accurate algorithm for solving semidefinite programs
with an implementation aimed at small dense problems and another aimed at large sparse prob-

lems.

122
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Our approach might be construed as a step backward since the subproblem we are solving
at every step is larger than the subproblem solved by all other algorithms. Yet the weaknesses
of current implementations based on other directions, their failure to accurately solve even well-
conditioned problems to machine precision, for example, should convince the reader that the last
word has not been written from a practitioner’s point of view and that our approach is valid even
if more costly in its current implementation.

The main objective of our work was to develop a robust algorithm, one that would reliably and
accurately solve any problem in a wide family. Along the way, we tried with limited success to
develop a proof of polynomial convergence of the algorithm. Within our scope, the experimental
results and the bounds of Chapter 4 should convince the reader that we have attained our objec-
tive. We restricted ourselves to feasible problems and therefore one obvious avenue of research is
to explore the behavior of the direction on infeasible problems.

At the onset of our research, after the introduction of the Gauss-Newton direction, we believed
that the next interesting question was to apply the scalings of the Monteiro-Zhang family to
the the iterates and explore the characteristics of the resulting scaled Gauss-Newton directions.
This might still be interesting and was done for the Nesterov-Todd scaling [47] but much more
interesting questions arise when we consider that all the Monteiro-Zhang family can be obtained
by applying projections to the Gauss-Newton system.

For a simple example, as we described i equation (2.31), the AHO system can be obtained by
projecting away the skew-symmetric part of the Gauss-Newton Jacobian and the corresponding
right-hand side,

Jaho =PJlgn, faho =Pfgn, where P=1[I 0],

and where the identity and the zero are of appropriate dimension. The other directions in the
family trade the identity for another matrix that depends on the current iterate.

Because this operator is applied before solving Jd = —f, in a mind attuned to the needs of
numerical linear algebra, it is suggestive of a pre-conditioner, but a pre-conditioner chosen for all
the wrong reasons, namely to create a square system, oblivious to the increase in the condition

number. Are we not emulating the sixties where every least-squares problem was transformed via
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the normal equation to a square system?

If we view the relation between the Gauss-Newton and every other direction as the result
of some pre-conditioning, the interesting questions obviously become: What are the right pre-
conditioners for a given family of problems? How can we obtain more accuracy, simpler systems,
sparser systems? Should we not apply an iterative scheme until we get close to the optimal
solution? For theoretical reasons, we also might be interested in finding justifications for the
pre-conditioners that yield the AHO or NT directions. It might even be possible to find some
optimization problems for which those pre-conditioners are the solutions.

Also on the computational side, we intend to re-implement our algorithm using the latest
parallel numerical linear algebra techniques. Since the principal operator is built from Kronecker
products, an inherently parallel structure, we expect major gains from this area of research.
On a more prosaic note, we intend to develop interfaces to the major databases of problems,

transforming a research project into a useful tool for the optimization community.
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