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Abstract

The contribution of this paper is to describe a general technique to solve some
classes of large but sparse semidefinite problems via a robust primal-dual interior-point
technique which uses an inexact Gauss-Newton approach with a matrix free precon-
ditioned conjugate gradient method. This approach avoids the ill-conditioning pitfalls
that result from symmetrization and from forming the so-called normal equations, while
maintaining the primal-dual framework.

First, we apply a preprocessing step that reduces the optimality conditions before
linearization and results in a single, well-conditioned, overdetermined bilinear operator
equation. We then use preconditioned conjugate-gradients to approximately solve the
linearization at every step of a path-following approach. We do not form the matrix
representation of the linearization. In addition, once close to the optimal solution, we
apply a crossover technique after which the iterates are no longer forced to be positive
definite.

In the experimental part of this paper, we use Max-Cut to illustrate the technique.
We describe preconditioners that exploit the operator structure of the constraints and
show how the crossover can be effective in practice and how it allows for warm starts.
In all cases we obtain high accuracy solutions.
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1 Introduction

The many applications, elegant theory, and practical algorithms for Semidefinite Program-
ming (SDP) have, arguably, made SDP the hottest area of optimization. Its popularity,
however, remains concentrated among specialists rather than mainstream nonlinear pro-
gramming practitioners and users. Most of the current algorithmic approaches use sym-
metrizations and apply Newton’s method. The next (complicated and costly) step is to
use block elimination and construct the matrix for the normal equations. In general, this
results in a dense ill-conditioned system that can be solved using Cholesky factorization.
However, there is a lack of SDP solvers that can efficiently exploit sparsity. (For example,
see the papers [13, 24] and the references therein.) In addition, it is difficult to avoid the
ill-conditioning of the normal equations system near the optimum or near the semidefinite
boundary. (See e.g. the improved factorization scheme in [29] and the references therein.)
Therefore, it is hard to apply iterative methods such as preconditioned conjugate gradients
(PCG). These difficulties mean that the SDP model will not replace the simpler Linear
Programming (LP) model even in cases where SDP provides stronger relaxations.

The purpose of this paper is to illustrate a simple alternative algorithmic development
for SDP that is completely based on standard principles from numerical analysis, i.e. on
the (inexact) Gauss-Newton (GN) method with PCG. The only additional tool we use is
the definition of a linear operator and its adjoint. There is no need to construct matrix
representations of operators. No ill-conditioned system is formed. (Thus long steps to and
beyond the semidefinite boundary can be used.) Instead, we use preprocessing (presolve) to



reduce the optimality conditions at the start, before any linearizations are performed. In
addition, we use a crossover technique once the barrier parameter p is small enough, i.e.
after the crossover we use a step length of one and no longer backtrack to force positive
semidefiniteness of the iterates. (This allows for warm starts.)

For illustration, we restrict ourselves in this paper to the semidefinite relaxation of the
Max-Cut problem. We derive and use the optimal diagonal and the incomplete Cholesky
preconditioners in the PCG method. Our approach is currently being applied to several
other problems with more sophisticated preconditioners, see e.g. [1, 28, 16].

1.1 Related Work

The GN direction was introduced in [20]. A scaled variant was shown to converge in poly-
nomial time in [7], see also [21].

Several recent papers have concentrated on exploiting the special structure of the SDP
relaxation for the Max-Cut problem. A discussion of several of the methods is given in
Burer-Montreiro [5]. (See also [32].) In particular, Benson et al [3] present an interior-
point method based on potential-reduction and dual-scaling; while, Helmberg-Rendl [18] use
a bundle-trust approach on a nondifferentiable function arising from the Lagrangian dual.
Both of these methods exploit the small dimension n of the dual problem compared to the
n+1

2

equation is sparse if the matrix of the quadratic form () is sparse. Therefore each iteration

dimension ) = n(n + 1)/2 of the primal problem. Moreover, the dual feasibility

is inexpensive. However, these are not primal-dual methods and do not easily obtain high
accuracy approximations of optimal solutions without many iterations.

The methods in [5, 32] use Cholesky type transformations X = VV7T and discard the
semidefinite constraint. For example, the method in [5] reduces to a first order gradient
projection method. They argue for using a search direction based on first order information
only (rather than second order information as used in interior-point methods) since this
results in fast and inexpensive iterations. However, the cost is that they need many iterations,
contrary to interior-point methods which need relatively few. Therefore, their approach is

useful in obtaining optimal solutions to moderate accuracy. Their formulation has ") =

2

n(n — 1)/2 variables (unknowns).

Similarly, our algorithm has <n + ) variables. However, it is based on the primal-dual

2
framework. We make the opposite argument, (common in nonlinear programming), i.e. it is
important to start with a good search direction. We find a GN search direction using a PCG
approach. We use an inezact Newton framework, e.g. [9], to lower the cost of each iteration.
In fact, restricting CG to one iteration results in a first order method with the same cost
per iteration as that in [5]. Since we have a well-posed system, (full rank Jacobian), we can
obtain g-quadratic convergence and highly accurate approximations of optimal solutions.
The cost of each CG iteration is a sparse matrix multiplication (essentially ZAX) and a
matrix scaling (essentially Diag (Ay)X).



2 Motivation and Bilinear Optimality Conditions

2.1 General Case

The primal semidefinite problem we consider is

p*:= max traceCX
(PSDP) st. AX =0 (2.1)
X = 0.
Its dual is
d*:= min by
(DSDP) st. Ay—2=C (2.2)
Z 0,

where X, Z € §™, §™ denotes the space of n X n real symmetric matrices, and > denotes
positive semidefiniteness. A : ™ — R™ is a linear operator and A ™ is the adjoint operator.

SDP looks just like a LP and many of the properties from LP follow through. Weak
duality p* < d* holds. However, as in general convex programming, strong duality can fail;
there can exist a nonzero duality gap at optimality p* < d* and/or the dual may not be
attained. (Strong duality can be ensured using a suitable constraint qualification (CQ), e.g.
Slater’s CQ)j; strict feasibility.)

The primal-dual pair leads to the elegant primal-dual optimality conditions, i.e. primal
feasibility, dual feasibility, and complementary slackness, e.g. [27].

Theorem 2.1 Suppose that suitable CQs hold for (PSDP), (DSDP) (for example Slater’s).
The primal-dual variables (X,y, Z), with X,Z = 0, are optimal for the primal-dual pair of
SDPs if and only if
Ay—2Z-C
F(X,y,Z):= AX —b = 0. (2.3)
zZX

Since the product ZX is not necessarily symmetric, we have F' : 8" x R x 8" — 8" x R™ x
M"  where M" is the space of n X n matrices. (Z, X are diagonal matrices in the LP case.
This is one of the differences between SDP and LP that, perhaps, has had the most influence
on algorithmic development for SDP.) Currently, the successful primal-dual algorithms
follow the LP approaches, i.e. they are path following interior-point algorithms that use
Newton’s method to solve (symmetrizations of!) the perturbed optimality conditions:

Ay—2Z-C
F.(X,y,Z):= AX -0 =0. (2.4)
ZX —ul

These symmetrization schemes can be considered from the view of preconditioning of
the optimality conditions (2.4), using some preconditioner. Suppose that we start with the
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optimality conditions that arise from the dual log-barrier problem, i.e.

Ay—7Z-C
AX =0 = 0. (2.5)
X —pzZ7t

Premultiplication by Z (a form of preconditioning) leads to a less nonlinear system, avoids
the ill-conditioning, and results in the more familiar (ZX — pI) form.

I 0 0 Ay—7Z-C Ay -2 -C
0 I 0 AX-b = 4ax-» |=o0 (2.6)
00 Z X -z ZX — ul

Unfortunately, the system (2.6) is overdetermined, which prevents the next step used in LP,
i.e. application of Newton’s method. Therefore, preconditioning is done a second time using
the linear operator P with symmetrization operator S.

I 0 0\ /I 0 0 Ay —2Z-C
PF(z,y,Z)=|0 I 0|0 I 0 AX —b = 0. (2.7)
00 S/\o o z X —pz-!

However, the symmetrizations used in the literature, in general, reverse the previous process,
i.e. after the symmetrization the ill-conditioning problem has returned. This framework
encompasses many different symmetrized systems with various acronyms, similar to the area
of quasi-Newton methods, e.g. AHO, HKM, NT, GT, MTW. The survey of search directions
by Todd [30] presented several search directions and their theoretical properties, including:
well-definedness, scale invariance, and primal-dual symmetry. For example, Section 4 in that
paper studies twenty different primal-dual search directions.

The point of view and motivation taken in this paper is that after the change to the
Z X — pl system is made, the algorithm can be viewed as path following, i.e. the interiority
condition is not essential. Moreover, the framework of symmetrization in itself (contrary to
the premultiplication by Z) can be counterproductive. This can be seen from basic texts in
Numerical Analysis and the preconditioning point of view in (2.7). Let us ignore that some
of the variables are in matrix space, and look at the overdetermined nonlinear system (2.4),
F.(z,y,Z) = 0, with zero residual. Then the approach in any standard text (e.g. [10]) is
to apply the GN method. This method has many desirable features. Preconditioning (from
the left, since it is scale invariant from the right) is recommended if it results in improved
conditioning of the problem, or in a problem that is less nonlinear. This view can be used to
motivate our GN approach, i.e. the symmetrization schemes used in the literature are not
motivated by conditioning considerations. But, on the other hand, they attempt to recreate
the LP type framework. In instances studied in Kruk et al. [20], theoretical and empirical
evidence shows that conditioning worsened for these symmetrization schemes, i.e. the op-
posite effect of preconditioning was observed. In particular, many of the symmetrizations
have a catastrophic effect in that they result in an ill-posed problem, i.e. a singular Jacobian
at p = 0, resulting in numerical difficulties in obtaining high accuracy approximations of
optimal solutions.



The second motivation for GN arises from the need to exploit sparsity in many applica-
tions of SDP. The linearization of (2.7) yields

0 A T AZ
A 0 0 Ay | =-F.X,y,2). (2.8)
S(Z) 0 S(X) AX

As in LP, block elimination is used on (2.8) in order to exploit the four blocks of zeros. The
first row is used to eliminate AZ in the third row. We can leave the symmetrization to later.

I 00 0 A* —I 0 A* I
0 I 0 A 0 0 |=] A 0 0 (2.9)
—X 0 I Z. 0 X Z- —(A*)X 0

Then the last row is used to eliminate AX; this leaves the normal equations of size m in
Ay. Then backsolves are used to recover AZ, AX. (The backsolve for AX can also be shown
to be ill-posed, i.e. it becomes ill-conditioned as the optimum is approached [16].) Therefore,
though the literature views this as a true primal-dual method, it can also be viewed as a
dual method, since it uses a modified/simplified system to find the dual variables Ay and
then recovers the primal variables AX using an ill-conditioned backsolve.

The symmetrizations, the corresponding normal equations systems and the resulting ill-
conditioning that arises from these two operations, combine to make it extremely difficult
to exploit sparsity. Many attempts have been made. But in each case the matrix problem
is changed to a vector problem and then the structure of the original problem is used in the
vector problem. For the GN method, a standard approach to solving large sparse problems
is to use a preconditioned conjugate gradient method. Again, as above, this does not need
to take into account that some of the variables are in a matrix space. There is no need to
change back and forth between matrices and vectors. One should consider the function as
an operator between vector spaces, i.e. a black box for the GN method with preconditioned
conjugate gradients (PCG).

In addition, we attempt to exploit the blocks of zeros in (2.8) in a different way, i.e. so
as to avoid the ill-conditioning that results from the backsolve for AX. To fully exploit
this approach, we first eliminate the linear equations from the optimality conditions in a

preprocessing phase. For a linear constraint A (X) = b, where the linear operator A is
n+1 —m

full-rank, m, let the linear operator A : ?ﬁ( 2 ) — 8" have range equal to the null

space of A. Then

AX)=b if X=A+(T—-ATAW, for some W € S"
(") (2.10)
iff X:Afb—l—./\f(w), for some w € R\ ?

We can now substitute for both Z, X in the complementarity equation and obtain a smaller
but equivalent system describing the optimality conditions. (By abuse of notation, we keep
the symbol F for the nonlinear operator. The meaning is clear from the context.) We now
state the obvious corollary for future reference.



Corollary 2.2 Suppose that suitable CQs hold for (PSDP), (DSDP) (for example Slater’s).
Suppose also that A is onto (full rank) and N defines the null space as in (2.10). Then
variables (x,y) are optimal for the primal-dual pair of SDPs if and only if

Fla.y) = (A"(y) — O)(A'b+ A (2)) = 0, (2.11)

(A*(y) — C) = 0 and (Atb+ N (z)) > 0.

Proof. Follows from substitution of Z and X into the complementarity equation. [ |

One interesting consequence of this re-writing of the optimality conditions is given in the
following:

Theorem 2.3 Consider the primal-dual SDP pair (PSDP),(DSDP). Suppose that A is onto
(full rank), N defines the null space as in (2.10), and X,y, Z are unique primal-dual optimal
solutions that satisfy strict complementary slackness, i.e. X + Z »= 0. Then the matriz of
the system

, Ax

= (A%(y) = O)N (Az) + A" (Ay)(N () + A'b)
(F', Jacobian of F(x,y)) is full rank.

Proof. That the original overdetermined system F'(X,y, Z) is full rank is proved in [20].
We observe that the system is obtained by block Gaussian elimination, which is equivalent
to premultiplication by invertible operators. [ |

Remark 2.4 If we choose N correctly, e.q. an isometry, then the condition number for
the Jacobian F' is not increased by the reduction to the system in (2.12), i.e. the condition
number of the system in (2.9) is at least as large as the condition number after we restrict
to a subspace

0 AT I I 0 0 0 A I
A 0 0 01 0 |=| AN 0 0o |. (2.13)
Z- —(A")X 0 00 N ZN . —(A")X 0

The second row reduces to zero and the third row yields the system in (2.12).

2.2 Specializing to Max-Cut

The Max-Cut problem, e.g. [12], consists in finding a partition of the set of vertices of a
given undirected graph with weights on the edges so that the sum of the weights of the
edges cut by the partition is maximized. This NP-hard discrete optimization problem can



be formulated as the following (quadratic) program (e.g. @ is a multiple of the Laplacian
matrix of the graph).

*

p* = max v!Qu
st vi=1, i=1

(MC0) (2.14)

ey M

Using Lagrangian relaxation, (see e.g. [2]), one can derive the following semidefinite relax-
ation of (MCO).
p* <v*:= max trace@QX
(P) s.b. diag (X) =e (2.15)
X>0,Xes8",

where diag denotes the vector formed from the diagonal elements and e denotes the (column)
vector of ones. For our purposes we assume, without loss of generality, that diag (Q) = 0.
This relaxation has been extensively studied. It has been found to be surprisingly strong
both in theory and in practice. (See e.g. the survey paper [14].)

We work with the trace inner product in matrix space

(M,N) = trace M N, M,N e M".

This definition follows through to 8™, the space of n x n symmetric matrices. The induced
norm is the Frobenius norm, |M|r = Vtrace MTM. Upper case letters M, X, ... are used

to denote matrices; while lower case letters are used for vectors.

2.2.1 Adjoint Operators; Generalized Inverses; Projections

We define several linear operators on vectors and matrices. We also need the adjoints when
finding the dual SDP and also when applying the conjugate gradient method. v = vec (M) €
R™" takes the general rectangular m x n matrix M and forms a vector from its columns. The

inverse mapping Mat := vec™; z = u2svec(X) € 5R<2) is V/2 times the vector obtained

columnwise from the strictly upper triangular part of the symmetric matrix X; (n) =

2
n(nz_l). (The multiplication by V2 makes the mapping an isometry.) Let u2sMat := u2svec

denote the Moore-Penrose generalized inverse mapping into S™. This is an inverse mapping
if we restrict to the subspace of matrices with zero diagonal. The adjoint operator u2sMat * =
uZsvec, since

(u2sMat (v), S) = traceu2sMat (v)S
= vTu2svec(S) = (v,u2svec(S)).

Define the orthogonal projection offDiag (S) := S — Diag (diag (5)), where diag (S) de-
notes the diagonal of S and diag *(v) = diag '(v) = Diag (v) is the adjoint operator, i.e. the
diagonal matrix with diagonal elements from the vector v. Then: diagDiag = I on R"™;
Diag diag * = Diag diag ' is the orthogonal projection on the subspace of diagonal matrices
in 8™, the range of Diag; and

u2sMat u2sMat * = u2sMat u2sMat I = off Diag = offDiag *,

8



is the orthogonal projection onto the subspace of matrices with 0 diagonal, the range of
u2sMat .
When we apply (2.10) to (P), we obtain

diag(X) =e iff X :=TI+4u2sMat(z), for some = € §R(2) (2.16)

x

Below, we equate X := u2sMat (z) + I, Z := Diag(y) — Q. We use s = y). The

following operators are used in the optimality conditions and in the GN method.

X ﬂn?” — §R(2), X (-) := vec(Diag (-)X); (2.17)
z.8v0) R, Z(+) := vec(Zu2sMat (+)).

We evaluate the adjoint operators. Let A o B denote the Hadamard (element-wise) product
of the matrices A, B. Let w = vec (W).

(w,X(v)) = trace W'Diag(v)X
— trace Diag (v)XW7
= vldiag (XMat (w)")
— (X o Mat () )
— (X o Mat (w))e) T

= (X7(w),v).

(w,Z(v)) = trace WTZuZSMat( )
= traceu2sMat (v {ZW + WTZ}
1
= vT§u2svec {ZMat (w) + Mat (w)TZ}
= (2%(w),v).

Summary:

X*(w) = diag (XMat (w)”) = (X o Mat (w))e;
X*X(y) = diag (X*Diag(y)) = (X o Diag (y)X)e;

Z*(w) = —uZSveC {ZMat( )+ (ZMat (w T ; (2.18)
Z*Z(x) = —uZSveC {Z*u2sMat (z) + uQSMat (2)Z?%}; '

Z*X(y) = iu2svec {ZDiag(y)X + XDiag (y)Z};
X*Z(x) = diag (Xu2sMat (2)Z).




2.2.2 Duality and Optimality Conditions

Recall the primal SDP given in (2.15). To obtain optimality conditions we use a dual
problem. Slater’s CQ (strict feasibility) holds for (P), which implies that we have strong
duality with the Lagrangian dual (e.g. [26])

vt = min ely
(D) subject to Diag(y)— Z =@ (2.19)
Z = 0.

Weak duality for feasible variables can be expressed as:
0 < efy—traceQX = ey —trace (Diag (y)—Z)X = (e—diag (X)) y+trace ZX = trace ZX.

Therefore, a zero duality gap is equivalent to trace ZX = 0. Moreover, since X, Z > 0, this
is equivalent to ZX = 0. Since Slater’s condition is also satisfied for the dual program, we
have primal attainment and get the following well-known characterization of optimality for

(P). (See Theorem 2.1.)

Theorem 2.5 The primal-dual variables X,y, Z with X > 0,Z > 0 are optimal for (P),(D)
if and only of
Diag(y) — Z = Q (dual feasibility)
diag (X) =€ (primal feasibility)
ZX =0 (complementary slackness)

Proof.  This is a specialization of Theorem 2.1 since Slater’s CQ always holds for (P). B

Rather than linearize the optimality conditions and then reduce them to e.g. the normal
equations, we apply elimination right from the start. First, since the diagonal of X is
fixed, we can use the constant K = eTdiag (Q) in the objective function. We could also
set diag (@) = 0 so that K = 0. Therefore we assume without loss of generality that
diag (@) = 0. The simplicity of the primal feasibility equation yields an equivalent problem
to (P) with the representation & = u2svec (X), X = u2sMat (z) + I.

Remark 2.6 In the general SDP notation, we found AX = b is equivalent to X = N (x) +
X, where N is a linear operator with range equal to the null space of A and X is a particular

solution that satisfies X = N (z) + X = 0. This approach can be directly applied to general
problems with constraints of the form AX <b, X = 0. Obtaining an initial feasible starting
point can be done using the self-dual embedding, e.g. [6, 8].

Theorem 2.7 The primal-dual variables X,y,Z, with X = u2sMat(z) +1 » 0, Z =
(Diag (y) — Q) = 0, are optimal for (P),(D) if and only if they satisfy the single bilinear
optimality equation

F(z,y) := (Diag (y) — @)(u2sMat (z) + I) =0, F(z,y): 9?(2) x R" — M™.  (2.20)
Proof.  This is a specialization of Corollary 2.2. [ |
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This leads to the single perturbed optimality conditions that we use for our primal-dual
method.

n

F,(z,y) := (Diag (y) — Q)(u2sMat (z)+I)—pl =0, Fu(z,y): %(2) xR — M". (2.21)

When we implement GN we use vec (F,(z,y)) = 0. This is a nonlinear (bilinear) overdeter-
mined system. The linearization (or GN equation) for the search direction Az, Ay is (vec
is understood)

—Fu(z,y) = Fi(z,y) (i;)

Z(Az) 4+ X(Ay)
= (Diag(y) — Q)u2sMat (Ax) + Diag (Ay)(u2sMat (z) + I).

(2.22)

This is a linear, full rank (in the nondegenerate case), overdetermined system and we find
the least squares solution. The first part Z(Ax) is the large part of the system since it maps

ER( 2) — M". However, the operator Z is sparse, i.e. the cost of the operation Z(Axz) is not

order n*. Instead, it is equivalent to the matrix product of two symmetric matrices, where
the first matrix Z is sparse, i.e. it is of order kn?, where k is the average number of nonzeros
per row in Z. The second part is the small part since it only has n variables, though the
matrix X is usually dense. The latter is the size of the normal equations system that arises
in the standard approaches for SDP. Sparse least squares techniques can be applied. In
particular, the distinct division into two sets of columns can be exploited using projection
and multifrontal methods, e.g. [4, 15, 22, 23].

2.3 Preconditioning
2.3.1 Preconditioning Techniques

The Jacobian J := F' = [Z | X]. Suppose that we have an approzimate factorization J*.J =

R*R. Then we replace the linear system for the search direction As = (ii), JAs=—F,
with the (better conditioned) system JR™'(RAs) = —F. (We can also precondition, or

scale, from the left MJR™'(RAs) = —MF, for appropriate M. This will be explored in a
future study.)

2.3.2 Diagonal Column Preconditioning

We begin with the simplest of the preconditioners. This has been identified as a success-
ful preconditioner for least squares problems, see [17, Sect. 10.5], [31], and [11, Prop.
2.1(v)]. In the latter reference, it was shown to be the optimal diagonal scaling in the
sense that, for A,m x n,m > n a full rank matrix, the solution of the optimization
problem minw((AD)T(AD)), over all positive diagonal matrices D, with condition num-

ber w(K) = w is given by D,, = . And, w is a measure of the condition number
det(K)m [1A:r | ’ )

11



in the sense that it is bounded above and below by a constant times the standard condition
number (ratio of largest to smallest singular values).

We first find the columns of the operator F'(x,y)(-,-) = Z(-) + X(-), which we write as
F'=[Z | X]. The columns are ordered using ¢ = 1,2, ... where ¢ represents (k,j), 1 <k <
J < n for the upper triangular part of X; and then represents k = 1,...,n for the elements
of y.

1.
Z(e.) = vec(Diag(y)— Q)u2sMat (e.)
e (Ding (5) — Q) (exe] + )
svee {(yeewe] +meref) — (Quel + Quef) } -

Therefore
1Z2(e)llF = 5{(Z%)m + (Z°)u}
= 3 {llvker — Qull® + llmer — Qull*} (2.23)
s UQull” + 1Qul* + v + vi}

since diag (@) = 0 by assumption. We see that this calculation is inexpensive since
one need only find the norms and sums of the columns of the sparse matrix ) once, at

the beginning of the algorithm.

X (e;) = vec (Diag (e;)(u2sMat (z) + I)).

Therefore
12 (ed) |7 = (| X117 (2.24)

Therefore the diagonal of the preconditioning matrix D is found from the components defined

in (2.23) and (2.24).

2.3.3 Partial (Block) Cholesky Preconditioning

We now look at finding a partial Cholesky factorization of

pery (222X
(F)F_<X*Z XX

by finding the Cholesky (or partial) factorizations of the two diagonal blocks.

From (2.18) and (2.24), we conclude that the bottom right block A*X" is a positive
semidefinite (positive definite if no columns of X are 0) diagonal matrix with diagonal
elements || X;.|*. Therefore, we cannot improve on the diagonal scaling derived in Section
2.3.2 by using a Cholesky factorization of this block. However, the top left block is not
diagonal. We can use (2.18). As above, we use the transformation between indices

c = (k,1), c:(l_léﬁ—l—k, E<ecl<k<l<n.

12



The columns of this top left block follow.

Z2*Z(e.) = ﬁustec {Z2 (ekelT + eleg) + (ekel + elek) Zz}
inrow k (Z?%),
inrow ! (Z7%),, (2.25)

1
- 2\/5u28V6C in col k in col I
(2%), (Z%) 4

For ¢ # j, we let E;; = ﬁ (e e; + eje; ) denote the orthonormal basis for the symmetric

matrix space. (When i = j, we use e;el.) &;; denotes the Kronecker delta. Therefore, the
element in row r = (7, ) and column ¢ = (k,[), with r > ¢, of the matrix representation
M=~ Z*Z is
M,. = (u2svec(E;;),Z2*Z(u2svec(Ey)))

%quvec (E;;)Tu2svec {Z?Ey + EnZ*}
%trace (Eij){Z*Ew + EnZ*}
trace E,'j lelZ2
%trace (e,'e]T + ejel)(enel + eel) Z*
%trace (e eTekelT + ¢ eTelek + e]eTekel + ejeiTeleZ) Z?
= 3 {02 4 851 (Z%)xi + 8ir(Z°)1j + (25}

s UZ%a + (2%}, ifr=c=(i,))

(2.26)

%(Zz)lk, ifr>ecg5=1

— %(Zz)jl, ifT>C,i:k
%(Zz) ifr>ci=1
0 otherwise.

Now let the column ¢ = (k,[) be fixed and look at the vector w = (M), 7 = (7, 7). Then
there are (at most) 2(n — 2) 4+ 1 nonzero elements in column ¢ given by:

r=c=(kl): M. = 5{(Z%)ix + (Z°)u}
(k,)Ze<r=(ig), 1<j:

k<i<j=li=k+1,...,5—-1: M= 3(2%
1=k<l<jg=1l4+1,...,n: M,. = (Z*);
k<i:l<j,j:l—|—1,...,n: MTC:%(ZZ)]W‘

We can simplify as done for the diagonal preconditioning above, i.e.

M. = %{||Qk||2 + ”Q:l”2 + yi + y12}7
Mrc = %(Zz)st = % (_(ys + yt)Qst + (Qz)st) .

we see that we need only calculate the Q2 once at the beginning of the algorithm during
initialization. Updates to M,. are done using the elements of y. Updates to M,.,c < r, need
to be done only if the corresponding @, # 0. Moreover, a reordering for sparsity in the
Cholesky factorization of M need only be done once during the first iteration.

Remark 2.8 If we first precondition on the left using the operator M(-) := Z7'(-), then
the large upper left block would now be diagonal and the work in the block preconditioning

requires the partial Cholesky factorization of the smaller n X n lower right block, i.e. this
reduces to the partial Cholesky of Z7% o X2,
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2.4 Long Steps and Crossover Criteria

Advantages of the GN approach include a zero residual and full rank of the Jacobian at
each iteration, as well as at optimality in the nondegenerate case. Therefore, there is a local
neighbourhood of quadratic convergence around each point on the central path for each
g > 0; and, this neighbourhood is not restricted to X, Z > 0. Therefore, for each p > 0, we
take long steps to the boundary and do not backtrack to maintain positive definiteness. Once
we are in the neighbourhood for y = 0, we can safely set the centering parameter o = 0 in the
algorithm and use step lengths of one without backtracking to maintain positive definiteness.

This is in contrast to most interior-point algorithm where, at every step, care is taken to
ensure that the iterates remain positive definite, i.e. do not get too close to the boundary.
Gauss-Newton allows the iterates to go outside the cone, because they will return, as we now
proceed to explain.

Standard convergence results, e.g. [10, 19] show that the GN method applied to F(s) =

0, s = ; , 1s locally g-quadratically convergent, since the Jacobian at the optimum is

full column rank (one to one operator). We follow the notation in [10, Theorem 10.2.1]
and discuss several constants used to determine the region of quadratic convergence. We
use these constants to develop a heuristic for the crossover. (We include the theorem for
completeness. Here Lip., (D) denotes Lipschitz continuity with constant v on the set D; and,
N (54, €) is a ball of radius € centered at s..)

Theorem 2.9 ([10, Theorem 10.2.1]) Let F : R* — R™, and let f(s) = $F(s)TF(s) be
twice continuously differentiable in an open convex set D C R". Assume that the Jacobian
J(s) := F'(s) € Lip, (D) with |[J(s)|l2 < a for all s € D, and that there exists s, € D and
A\, >0, such that J(s.)TF(s.) = 0, X is the smallest eigenvalue of J(s.)T.J(s.), and

1(7(s) = T(s)) " F(s)l2 < 7 lls = sl

for all s € D. If 6 < X, then for any ¢ € (1,\/c), there exists € > 0 such that for all
S0 € N(Su,€), the sequence generated by the GN method

sipt = sk — (T (s1) " T (1)) 7" I (s1) T F(s1)
1s well defined, converges to s., and obeys
co ca
lsis = sl € Tllswen = sull + S5l = s
and

co + A
2\

k1 = sall < sker = sall < llsksr — sull®.
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In our case, we have a zero residual. This implies that the corresponding constant ¢ = 0.
Since

| F'(As)||F || Zu2sMat (Az) + Diag (Ay)X || ¢

|| Zu2sMat (Az)||r + ||Diag (Ay) X || r

| Z]|p|lu2sMat (Az)|F + ||Diag (Ay)|| || X
1 Z][FllAz|[2 4+ |Ayll2]| X |7

VIZ|E + | X][Z||As]l2, (by Cauchy-Schwartz inequality)

IA I IAIA

a bound on the norm of the Jacobian is a = \/||Z||% + | X |3

I1E"(s = 5)(As)||r I(Z — Z)u2sMat (Az) + Diag (Ay)(X — X)|Ir i}
1(Z = 2)||F[[u2sMat (Az)|[r + [|Diag (Ay)|[r[|(X — X)||r

Ity = wll=l[Az]l> + [|Ay]l2]l (z = 2)][2.

IVANT

Therefore the Lipschitz constant v = 1.
We assume nondegeneracy of the optimum. Thus s* is unique and the smallest singular
value satisfies omin(F'(s)) > VK, for all s in an €; neighbourhood of s*, for some constant

K > 0. Following [10, Page 223], we define

. { K} _ { K }
€:=minq €,— p = miny €y, .
ay VIIZHE + | X+1%

Then g-quadratic convergence is guaranteed once the current iterate is in this € neighbour-
hood of the optimum. Suppose that As is the search direction found using (2.22) but with

o = 0. (This can be done efficiently using lsqr, i.e. two right hand sides can be used,
or within a predictor corrector framework.) Then As is our current best estimate for the
distance to the optimum s*. One possible heuristic is to start the crossover if

N Omin F'(s 2
As) < p—ZmnlE k)
VIZilE + 1 X%

p € (0,1).

Note that this bound is overly restrictive since it does not take into account the direction
of the step. Moreover, it is expensive to calculate if one wants an accurate estimate of the
smallest singular value. But a cheaper estimate can be obtained by estimating the condition
number & (cheap condition number estimates exist), and the norm (hence the largest singular
value) of F’ and then get an estimate by

R2(F'(s))
CF (52 1/ T2l + X7

But even this is expensive and did not seem useful in practice. In our tests we started the

crossover when the relative duality gap % < .1. This simpler heuristic never failed.

[As]| < p pe(0,1).
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Algorithm 3.1: Primal-Dual Gauss-Newton via PCG for Max-Cut

Input: Q € 8™; 61 >0; 43 >0 {Objective, gap and least-squares tolerances}
q; = |@Q.4ll2; * =0; y = 2Diag (q) — Q; {Initial iterate}
¢y = false; {Crossover state}
repeat
if ¢; = true then
o= 10;
else
Set o adaptively, depending on last step size.
end if
Counstruct preconditioner P according to Section 2.3
[A"L‘ Ayl =LSQR(A,b,Q, P, F,,, x,y,0s); {Least squares solve of (2.22)}
¢; = true then
a=1; {Full Gauss-Newton step}
else

a = .9997 of the distance to the semidefinite cone.  {Damped Gauss-Newton step}

end if
r=1x+ QA;L’ y =1y + aAy; p = (trace (u2sMat (z) + I)(Diag (y) — Q))/n;

if traceQ(uZSMat( o < .1 then
¢y = true; {Time to crossover}
end if
until { /2 < &)

trace @ (u2sMat (z)+1)+1

3 Primal-Dual Interior-Point Algorithm

We use equation (2.21) and the linearization (2.22) to develop the primal-dual interior-point
which we now sketch. We leave vague the update of ¢ and o because the complexity only
obscures the presentation.

This modifies the standard approach in e.g. [33]. Our approach differs in that we have
eliminated, in advance, the primal and dual linear feasibility equations. We work with an
overdetermined nonlinear system rather than a square symmetrized system; thus we use a
GN approach, [20]. We use a crossover step, i.e. we use o = 0, and we do not backtrack to
preserve positive definiteness of Z, X once we have estimated the region of quadratic con-
vergence. The search direction is found using a preconditioned conjugate gradient method,
1sqr [25]. The cost of each CG iteration is a (sparse) matrix multiplication and a diagonal
matrix scaling, see e.g. (2.22). Before the crossover, the step length that preserves positive
definiteness is the same for both the primal and dual variables.

There are many advantages for this algorithm:

e Primal and dual feasibility is exact during each iteration (assuming that the the basis
for the null space was computed precisely);

e there is no (costly, dense) normal equations system to form;
e There is no need to find Z=! (which becomes ill-conditioned as p goes to 0);

e The sparsity of the data @) is exploited completely;
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e By the robustness of the algorithm, there is no need to enforce positivity of Z, X once
i gets small enough; g-quadratic convergence is obtained;

e The entire work of the algorithm lies in finding the search direction at each iteration by
solving a (sparse) least squares problem using a CG type algorithm. Each iteration of
the CG algorithm involves a (sparse) matrix-matrix multiplication and a diagonal row
scaling of a matrix. The more efficiently we can solve these least squares problems,
the faster our algorithm will be. Better preconditioners, better solvers, and better
parallelization in the future will improve the algorithm;

e The techniques can be extended directly to general SDPs, depending on efficient
(sparse) representations of the primal (and/or dual) feasibility equation.

4 Numerical Tests

We present here only some tests to highlight three aspects of the algorithm, the handling of
sparsity, the effect of preconditioning and the effect of the crossover.

First some general remarks. The tests were done using MATLAB 6.0.0.88 (R12) on a
SUNW, Ultra 5 — 10 with one GB of RAM using SunOS 5.8 (denoted by SUN), as well as
on a Toshiba Pentium II, 300 MHZ, with 128 MB of RAM (denoted by PII) and finally an
SGI computer. Diagonal preconditioning was used. (Some preliminary test results with the
partial Cholesky preconditioning are included at the end of this section.) 99% of the cputime
was spent on finding the search direction, i.e. in the PCG part of the code in finding the
(approximate) least squares solution of the GN equation. The cost for the early iterations was
very low, e.g. 21,50 CG iterations, 24, 58 cpu seconds for the first two iterations for n = 365
on the SUN. (This reduced to 10,11 iterations for the partial Cholesky preconditioner.)
This cost increased as the relative duality gap (and the requested tolerance for the least
squares solution) decreased. Low accuracy solutions were obtained quickly, e.g. one decimal
accuracy after 4 to 5 iterations. The cost per iteration increased steadily and then leveled
off near the optimum.

The first conclusion from our tests is that the crossover to a steplength of 1 has a sig-
nificant effect on both the number of iterations and the conditioning of the linear system.
The number of iterations are approximately halved (See Table 4.1). The best results were
obtained by staying well-centered before the crossover. This is in line with what we know
from the theory. This appeared to help with the conditioning of the Jacobian and lowered
the number of PCG iterations. For simplicity, the crossover was done when the relative
duality gap was less than .1 and we used a steplength of 1 after the crossover, rather than a
line search to guarantee sufficient decrease in ||ZX||p. In all our tests on random problems
or on the SDPLIB problems, we converged to a high accuracy solution.

In Tables 4.2 and 4.3 we see the effect of preconditioning and dimension on the cputime
of the algorithm. The effect of the dimension is predictable and trivial but the effect of
preconditioning is surprising, especially since only the simple diagonal preconditioning is
used in these tests. The number of major iterations does not change much,of course, but the
work required by the least-squares solver is reduced considerably.
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Crossover toler. | nmbr of major | norm(ZX) at end | min. eig. pos. violation

in relative gap iterations in 7, X
1.0e-1 11 3.6281e-12 -4.6478e-12
1.0e-3 14 1.9319e-13 -2.1580e-13
1.0e-5 16 2.0917e-11 -2.2839%e-11
1.0e-7 18 1.8293e-13 -1.5546e-13
1.0e-9 20 7.2534e-10 6.7006e-12
1.0e-11 20 7.2544e-10 6.7004e-12

Table 4.1: Size of Q), n = 25; Requested Accuracy in relative duality gap: 1.0e-10; Density
is L Optimal Value is 5.7041e+01.

259

To consider the effect of sparsity, Figure 4.1 illustrates the number of nonzeros in Q
versus the increase in total cputime (when dimension runs from 15 to 105 with increments

of 10).

Dimension of @ | total cpu seconds | nmbr of major | norm(ZX) at violation of
n iterations end eig. pos. in Z, X
15 7.75 9 1.7535e-014 -3.0863e-015
25 17.36 10 1.9291e-013 -1.5217e-013
35 30.43 10 1.1044e-012 -8.4977e-013
45 59.87 11 2.7926e-011 -2.763e-011
55 86.89 12 4.0912e-011 -3.7568e-011
65 131.11 11 4.9924e-012 -5.0519e-012
75 275.89 12 1.0448e-008 -1.4504e-008
85 468.46 14 8.6208e-011 -3.4404e-010
95 414.03 11 7.4253e-011 -3.0935e-010
105 878.64 15 7.5993e-010 -1.4946e-008

Table 4.2: Requested Accuracy in relative duality gap: 1.0e-10; Density is %; crossover
tolerance 1.0e-01; optimal values of order 150; PII computer.

We have applied the algorithm to all the problems in SDPLIB. The results are shown in
Table 4. The reader will keep in mind that the implementation is entirely in MATLAB and
yet sizeable problems are solved. An equivalent implementation in C or FORTRAN would
increase the attainable sizes by an order of magnitude.

Finally, we discuss some preliminary tests using the partial (block) Cholesky precondi-
tioner discussed in Section 2.3.3. We used a SUN-FIRE-280R with 2 GIG RAM and with
MATLAB 6.5, Release 13. We solved problems with n = 400, 500, 600. The number of major
iterations and LSQR iterations were similar. For example, with n = 600 and 1,192 nonze-
ros in @, (We note that the linear system of equations that we are solving for the search
direction has 360,000 rows and 180,300 columns, or 3.250809 x 10'° entries in the matrix rep-
resentation.) The early iterations took (approx.) 20 cpu seconds to find the preconditioner
which contained (approx.) 2.5 million nonzeros. It took (approx.) 15 cpu seconds to find
the search direction using LSQR (approx. 15 LSQR iterations). Later iterations increased
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Dimension of @ | total cpu seconds | nmbr of major | norm(ZX) at violation of
n iterations end eig. pos. in Z, X
15 30.1 11 1.9039e-011 -3.5098e-012
25 134.13 15 1.9742e-009 -2.7465e-010
35 117.27 12 2.5534e-010 -8.8532e-011
45 174.34 11 1.3799e-008 -1.9154e-008
55 373.6 14 7.3741e-009 -3.1854e-009
65 1388.1 19 9.6109e-009 -2.7634e-009
75 507.46 13 3.5887e-009 -3.3886e-009
85 1856.1 16 6.4806e-011 -4.7964e-011

Table 4.3: Without preconditioning; Requested Accuracy in relative duality gap: 1.0e-10;
Density is %; crossover tolerance 1.0e-01; optimal values of order 150; PII computer.

no. of nozeros vs cputime for dim 15 to 105 by increments of 10
900

800 -

700 -

600 |-

500 -

400 -

300

200 -

100

0

1 1 1 1 1 1
0 50 100 150 200 250 300 350 400

Figure 4.1: Nonzeros vs cputime. n = 15 : 10 : 105.

19



in cost to (approx.) double the time for finding the preconditioner and 10 times the time for
LSQR to find the search direction. The increase in cost for the preconditioner appears to be
due to a doubling in the number of nonzeros in the Cholesky factor. This and the increase
in accuracy increases the cost for LSQR. The total number of major iterations were in line
with those for the diagonal preconditioner.

Dim @ | cpu sec | major | rel. opt. | rel. norm(ZX) rel. viol. nnz
n iter. at end at end eig. pos. Z,X | in ()
100 96.34 12 226.16 1.2399e-13 -1.2062e-12 638
124 252.57 13 141.99 1.2238e-14 -2.3655e-13 410
124 171.99 13 269.88 2.0918e-11 -1.1324e-11 760
124 292.48 13 467.75 7.0013e-13 -5.9152e-13 1364
124 289.21 13 864.41 5.7229e-11 -1.035e-11 2666
250 1134.9 14 317.26 2.9025e-11 -5.5891e-11 892
250 1058.3 14 531.93 2.8552e-16 -5.5638e-16 1472
250 1633.6 12 981.17 8.9829e-12 -5.8956e-12 2816
250 3036 14 1682 3.481e-11 -2.1537e-11 5092
500 14669 19 598.15 4.12e-13 -2.9424e-12 1701
500 21489 17 1070.1 1.0229e-11 -2.7013e-11 2939
500 20691 15 1848 3.6924e-11 -1.364e-11 5210
500 46752 16 3566.7 3.3634e-11 -1.5e-11 10740

Table 4.4: Requested Accuracy in relative duality gap: 1.0e-10; SDPLIB test problems;
crossover tolerance 1.0e-01; SGI (Irix6.5_64-Mips) computer.

5 Conclusion

We have presented an alternative approach to solving SDPs and applied it to the SDP
relaxation of the Max-Cut problem. This approach avoids both the ill-conditioning that
arises from symmetrization of the optimality conditions as well as that which arises from
the formation of the normal equations. The approach is based on the strong/robust primal-
dual path-following interior-point framework. But, it can still exploit sparsity in the data.
The method uses basic tools that are successful for solving an overdetermined system of
nonlinear equations with zero residual, i.e. matrix free PCG applied to the GN method. We
have shown how to derive preconditioners for this approach and, in particular, derived the
optimal diagonal column scaling and block Cholesky preconditioners. The total cost of an
iteration lies in the solution of a linear least squares problem. This least squares problem
is solved using the (preconditioned) conjugate gradient type method of Paige and Saunders
[25]. The cost of each CG iteration is a sparse matrix multiplication (essentially ZAX) and
a matrix scaling (essentially Diag (Ay)X).

Numerical tests are ongoing as are extensions to more general SDPs. This includes a
comparison between using first order methods and an inexact GN framework, i.e. solving
the least squares problem to a desired accuracy so that the work is of the same order as one
iteration of first order methods.
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Ongoing research involves: further testing on the SDPLIB problem set; developing im-
proved block diagonal and partial Cholesky preconditioners including preconditioning from
the left; parallelization of the PCG approach; purification techniques to recover positive
semi-definiteness; and proving convergence for the crossover technique.
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