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Abstract

Solving an ill-conditioned linear least-squares problem, minimizing the norm of the residual
vector, in practice often yields a solution which may differ significantly from the “true”
solution, particularly when the right-hand side is subject to noise. By finding the solution of
minimum norm, subject to some tolerance on the norm of the residual, we find a “smoother”
solution, which, in practice, is closer to the true solution. In this work, we make use of the
fact that this process of regularization is a special case of the Trust-Region Subproblem
(TRS), and apply the work of Rendl and Wolkowicz to derive a new method for computing
a regularized solution by computing an eigenpair. The technique exploits sparsity, and

scales to large problems.
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Chapter 1

Introduction

1.1 What is Regularization?

1.1.1 Linear Least-Squares Problems

Consider the problem:
min |Gz — dJ|,, (1.1)

where z € R”, d € R™, and G € R™*". Denote

gt
G- | %
Im
Note that squaring the objective function in () shows that the problem is equivalent to

solving
m

min |Gz — d||; = > (glz—di). (1.2)

i=1
Hence, we refer to () as a least-squares problem. For a given vector z, we refer to Gz —d
as the residual of z, and refer to the norm of the residual, |Gz — d||,, as the discrepancy

of x.



Introduction 2

As ||||§ is convex and differentiable, any solution to () is characterized by the sta-
tionarity condition:

0=V,|Gz —d||> =2G"Gz — 2G"d,

or simply

G'Gz = G"d, (1.3)

known as the normal equations. If m > n and G has full rank, then the normal equations

have a unique solution, which may be found using standard techniques for solving systems

of linear equations (e.g. finding a Cholesky factorization of GT G or a QR factorization of

G). Otherwise, given a solution z to (&), the manifold of solutions is {z +r : r € N(G)}.
In Chapter B we show that the solution to () with minimum norm is

zy = Gld,

where G' represents the Moore-Penrose generalized inverse of G. We refer to z; as the
best least-squares solution. Some properties of the Moore-Penrose inverse and the best
least-squares solution are discussed in greater detail in Chapter Bl Also, see e.g. [H] for

more details.

1.1.2 Regularization of Linear Least-Squares Problems

In practice, the elements of d in (I&I) are often obtained from measurements which may be
subject to error. This may be modeled by setting d = dye + €4, where dype 1s the correct
set of values to be used in (II) and e € R™ is a vector of random variables representing
the measurement errors. When attempting to fit data to a real-world problem, we will
assume that the model, given correct data, will yield a perfect fit. In other words, it is
assumed that G = dj. is consistent. (This assumption also appears in [].)

Recall from Section [EIl that the best least-squares solution is given by
Tr = th = Gf(dtrue + ed).

A desired solution is given by zpye = GYdjpue. Thus, the error in the minimum norm
solution is given by

T= Tt — Tpge = Gf(ed).
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In the case that G is ill-conditioned, ||r|| may be larger than given tolerances would allow.
Thus, the best least-squares solution z; may be unacceptable, as it fits noisy data too
closely. Therefore, it is helpful to reformulate the problem to try to obtain a solution of
minimum norm, subject to some tolerance for discrepancy in the solution. In other words,

we instead solve
min, ||z,

(1.4)
s.t. ||Ge —dJ|, <€,

given some € € R,;. The technique of allowing greater discrepancy in order to find a

smoother solution is known as reqularization. Note that
Gtrae — dl, = Gtrue — divae — eally = el

Thus, in order to potentially obtain ;.. as a solution, we want to set e = | eql|,, the
norm of the error in the data. This is known as the discrepancy principle (see e.g. [EH]).
Unfortunately, ||eq|| is likely unknown, so we use an estimate instead. If, for example, eq
is a vector of normally-distributed random variables with known standard deviations, we
may use € = E(]|eq||,), the expected value of | eq||,.

Techniques for regularizing linear least-squares problems are discussed in more detail

in Chapter @

1.2 What is the Trust Region Subproblem?

1.2.1 Motivation — Trust Region Methods

Consider the general unconstrained optimization problem

min f(z), (1.5)

where f is assumed to be twice-differentiable and bounded below. We outline an iterative

technique for solving (IE3) based on a quadratic approximation of f at the current iterate.

Algorithm 1.2.1 Basic Trust Region Algorithm
INPUT: Initial point xo, step quality thresholds no,m satisfying 0 < no < mp < 1 and

wnitial trust region radius Ag.
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1. Setk=0.

2. Determine a norm ||-||,, and a model my(z) that approzimates f within some neigh-

bourhood of xy.

3. Find a step s, such that ||sg|| < Ag, and my(zr + sk) is “sufficiently” less than
mk(xk).
4. Fvaluate
flag) = fl@r + s1)

my(xr) — my(zy + Sk)'

If the result 1s > ng, set xrr1 = xp + si. If the result is greater than 1y, set Apiq
to be larger than Ay (otherwise set Apyr = Ag). If the result is less than no, set

Tpr1 = Tk, and set Apyq to be less than Ay.

5. Increment k by 1 and go to step 2.

Note that the above algorithm does not define stopping criteria, nor does it describe de-
tails for the individual steps. For additional information on the Trust Region Subproblem,
see e.g. [H].

The specific implementation of Step 3 is known as the Trust Region Subproblem. A
comimon approach is to solve

min ¢(s)

1.6
st ||s|| < Ag, (1.6)

where ¢ is a quadratic approximation of f at zj, with z; translated to the origin. The [,
norm is commonly used.
The Trust Region Subproblem is discussed in detail in Chapter B

1.3 Basic Optimization Theory

1.3.1 SDP Duality

Definition 1.3.1 Let A: £ — F be a linear transformation where £, F are inner-product
spaces. We define the adjoint of A, denoted by A* : F — &, as a linear transformation
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satisfying

(A(z),y)r = (2, A(Y))e
forallz € & and y € F.

In semidefinite programming, our variables are elements of ™, the space of n X n real

symmetric matrices, to which we apply the Frobenius inner-product:
(X,Y) = trace (XY).
The standard form of a semidefinite programming problem is

min trace (CX)
(P) s.t. AX)=0b (1.7)
X =0,

where X, C € 8™, A is a linear transformation from §™ to R™, and b € R™. The notation
X = 0 means that X is positive semidefinite. The dual program corresponding to (E=) is

max by
(D) st. A(y)+5=C (1.8)
S =0,

where y € R™, § € 8", and -* denotes the adjoint operator. Weak SDP duality states
that for any X feasible for (IE) and (y, S) feasible for (IEJ), it follows that

trace (CX) — b'y = trace (X S) > 0.

Definition 1.3.2 A matriz X € 8" is called a Slater point for =) if A()N() = b, and
X = 0.

Definition 1.3.3 A pair (i, S) € R™x 8" is called a Slater point for (L) if A*(i)+5 = C
and § > 0.

If (E3) has a Slater point, and the objective value of (E3) is bounded above, then ()
has an optimal solution, and the optimal values of () and (E3J) are equal.



Chapter 2
Regularization Theory

Recall from Chapter ll that the linear least-squares problem (E) is
min |Gz — dJ|, ,

where z € R”, d € R™, and G € R™*".

2.1 Discrete Regularization

2.1.1 Singular Value Decompositions and the Moore-Penrose Gen-

eralized Inverse

Given the matrix G as defined above, the singular value decomposition of G is:
G=UxvV"

where:

e U is an m X m orthogonal matrix whose column vectors form an orthonormal basis

of R™ (the data space);

e V is an n x n orthogonal matrix whose column vectors form an orthonormal basis of

R"™ (the model space);
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e ¥ is an m X n matrix. The entries of ¥ are nonnegative, and the (7, j) entry is given
by
o;, if1=7, and
Yij = S e
0 if v # 5.
where o; is the i-th smallest singular value of G.

For more discussion of singular value decompositions, see, e.g. [M].

We may define a square diagonal matrix ¥ = Diag (o, ...,0,), where ay,...,0, are
the strictly positive singular values of G (and we may define U, V to be the column sub-
matrices of U and V, respectively, corresponding to the p positive singular values of G).

In particular, since any rows or columns discarded from ¥ to obtain ¥ are identically zero,
G=UsvVT,

The columns of U form a basis for R(G), while the columns of V' form a basis for R(GT).
Note that ¥ is a diagonal matrix with strictly positive diagonal entries, and is hence

invertible. The Moore-Penrose inverse of G is defined to be:
Gh=VveTUT. (2.1)

Several properties of the Moore-Penrose generalized inverse should be noted based on this
construction. In particular, given G € R™*" and its Moore-Penrose generalized inverse G,

the following hold (see e.g. []):
1. GG'G =G,
2. G'GGH = G,
3. (GGYHT = GG, and
4. (G'Q)T = GIG.

We refer to
.TL‘]L = Gfd

as the best least squares solution to (I), and obtain the following result (proved in e.g.

).
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Theorem 2.1.1 The best least squares solution x; is a solution to (), and furthermore,

given any solution x to (), we have
lzilly < Izl -
Proof. Note that () is equivalent to
min [|USVTz — d||; .

Specifically, we order the columns of U and V, and the nonzero entries of ¥ such that

S = [ B Opx (n-p) ]
Om-p)xp  O(m-p)x(n-p)
where 0,4 1s the ¢ X 7 zero matrix. Furthermore, we define U by U = [ U U ] and V by
V= [ VvV ] As U is an orthogonal matrix, it is norm-invariant. Thus, (&) is further

equivalent to
min |[S(VTz) - UTd||] .
If we define y € R” by y = V' z, then we may rewrite the problem as
min HZy — UTdﬂz

or

min HS@ — UTdHE + HU — (}Td)

[1)

Note that y is a solution to (B if and only if

z, (2.2)

where y € R?, and

gy =707
Furthermore, the solution to (E) with minimum norm would be the one satisfying § = 0.
Thus, a minimum norm solution z to (IZ) is characterized by
Vi

T
:V;ﬂ: VT

X
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Thus, V72 = 0, and
Vg = Y.

Noting that
=z =VEUTd=Vy

solves (E=3) (since VTV = L), we have the desired result.

Note that z; may also be written as

where u;, v; are the i-th columns of U and V respectively.

(2.3)

(2.4)

Recall from Chapter @l that the value of d is usually subject to some measurement error

(i.e. d = dirye + €4). This error can have a considerable effect on the determined value of

zi. In particular, as 244 = G dirye,

||$’[ - xtrueHz - }‘Gt(d - dtrue)
= [|G el

< [|GY]] lleall,

1
=5 leall, -

Note that if e = au,, then by the application of (E),

T
uup o

Gleg= a2t vy = —Up,
9p Op
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and so the above bound is tight. Furthermore, note that

: u;rdtrue
el = |3 L,
i=1 7 2
Z u?jtruevl
1 2
[ Ml
a1 9

[ eruel

2 o
[ erue |2

a1 ’

Combining the previous two results, we obtain

|2t = Zeruell, _ o1 _[leally

leill, o lderell,”

Thus, we see that the value of Z& can be interpreted as a scaling factor for the relative
9p

error of the best least-squares solution. This value Z-

1s known as the condition number
9p

of G, and is denoted by cond (G). If a matrix has large condition number (i.e. the largest
singular value is several orders of magnitude larger than the smallest singular value), then

the matrix is said to be ¢ll-conditioned.

2.1.2 The Truncated Singular Value Decomposition

As discussed at the end of the previous section, relatively small singular values may result
in large errors in our least-squares solution.

We may approximate G with
Gl = Vs U7

where 1 <1 < p, U;, V] are the submatrices obtained from the first / columns of U and V/,
respectively, and ¥; = Diag (1, . ..,07). Furthermore, we denote by xiL = G;d the truncated
singular value decomposition solution of rank [ (TSVD) of (). This is an approximate
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solution which satisfies

|E
t true g1 g1
— o <l < — -
Izt 1, o %
Thus, by discarding successively larger singular values of G, we obtain progressively

lower upper bounds on the norm of our solution, at the cost of increased inaccuracy.

Example 2.1.2 Using the MATLAB shaw routine in [Tl], we generate G, dirue, Tirue for
a discretization of a Fredholm integral equation of the first kind (as described in [B3]). We
select the discretization to give G € R**?° gnd x,d € R?°. Note that for this problem, G
has rank 20, and has condition number 9.2692 x 10'%, based on largest and smallest singular
values of 2.9934 and 3.2294 x 107'¢, respectively (as found using MATLAB). We perturb
dirue a5 d = dypye + €q for some vector eq € R* of normally distributed random values with
mean 0 and standard deviation 0.1. We then proceed to find :z:i‘ using G and d, for values of
[ between 1 and 18. The results are presented in Table and graphed on a log-log scale in
Figure B21. The roughly “L”-shaped distribution of approzimate solutions arises frequently

for ill-posed problems, and is discussed in greater detail in Section B

15

|

o o

13 =) 3
T T T
I I I
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|
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x
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25 \ s
0 15 20 25 30
log [|]|2

Figure 2.1: Solution points for Example B on a log-log scale.
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Table 2.1: TSVD solution and residual norms for 20 x 20 Shaw problem.

Rank (1) | G}~ d] | 1]
1 3.1794e+00 | 3.3585e+00
2 2.7570e+4-00 | 3.4651e+00
3 4.7863e-01 | 4.3471e+00
4 3.4775e-01 | 4.4267e+00
5 3.3921e-01 | 4.6135e+00
6 3.3884e-01 | 4.6364e+00
7 3.1808e-01 | 6.6373e+00
8 3.1292e-01 | 1.5666e+01
9 3.0980e-01 | 4.2594e+01
10 3.0806e-01 | 5.8060e+02
11 3.0295e-01 | 1.1010e+04
12 3.0027e-01 | 2.9154e+04
13 2.6087e-01 | 5.6641e+05
14 2.4009e-01 | 4.8848e+06
15 2.2587e-01 | 7.6133e+07
16 2.2371e-01 | 5.3159e+08
17 1.8319e-01 | 3.2011e+10
18 1.5722e-01 | 8.9940e+11

12
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2.2 Regularization by Continuous Parameters

The previous section discussed a means of regularizing least-squares solutions, parametrized
by the rank [ of the truncated singular value decomposition. In this section, we introduce
several parameters which may be varied continuously to obtain an infinite family of regu-

larized solutions.

2.2.1 Basic Regularization Theory

When selecting from several available regularized solutions, we apply the discrepancy prin-
ciple [l], which dictates that we select the solution that minimizes the norm of z, subject
to a constraint on the accuracy of the model as applied to the data, parametrized by a

tolerance ¢ (which should correspond to the norm of the error in d):

€ = min IE3]

2.5
st |Gz —d|| < 6. (2:5)

Over varying values of 4, this problem yields various values for the optimal ||z| and |Gz —
d||, which follow a curve of optimal values. Given a sufficiently ill-conditioned matrix G, if
this curve is plotted on a log-log scale, the resulting graph often resembles an “L”. Thus,
this curve is called an L-curve (see e.g. [ld]). In the two lemmas below, we show that the

choice of § above and subsequent solution for € are consistent with the following:

d= min |Gz —d|
st |z < e

This result appears in an exercise in [fll].
Lemma 2.2.1 Suppose G m X n and d € R™ are given. Let

0<e< |G| 2.6)
and

d= min ||Gz —d||

2.7
st |z < e (27)
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Then

€= min Iyl

2.8
s.t. |Gy —d| <. (28)

Proof. Note that we can square the terms to simplify the differentiations.

Suppose that 0 < € < ||Gtd||. First we look at program (E=d). The compactness of the
feasible region guarantees that an optimum z* exists. This is a convex program and the
Slater constraint qualification (strict feasibility) holds. The first-order necessary optimality
conditions imply that

2GTGz* — 2GTd 4+ 2)\z* = 0,
for some A > 0. If A = 0 then GTGz* = GTd, and so ||z*|| = ||G'd||, implying that z* is
infeasible for (EX). Thus, the optimal Lagrange multiplier A > 0 and so complementary

slackness implies that the norm of the optimum ||z*|| = ¢, i.e.
%] =€ [[Gz" —d]| = 4. (2.9)
Now suppose that y* is an optimum for (EH). By (BEX), =* is feasible for (BEH), and so
Il <e Gy —dl <5 (2.10)

Now, y* is feasible and optimal for (). Thus, we cannot have ||y*|| < € or we would
contradict the complementary slackness argument stated above for program (E).

If 0 = ¢ < ||G'd|| then the only feasible point in (E=I) is + = 0. Thus, the optimal
solution is * = 0 and § = ||d||. In (EJ), the unconstrained minimizer y = 0 is feasible,
and thus is optimal. Thus the result holds.

If 0 < e = |G|, then z = G'd is feasible for (E=0). As stated previously, this
solution is an unconstrained minimizer for |Gz — d||, and hence is optimal for (E). Thus,
§ = ||GG'd — d||. In (BE3), y = G'd is feasible, and is the solution of least norm. Thus it
is optimal. Hence, the optimal value for (E3) will be ||GTd||. [ |

Lemma 2.2.2 Suppose G m X n and d € R™ are given. Let
|GGHd — d| < § < |d]. 2.11)
If € is defined as in (BER), then (BH) holds.
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Proof. As in the proof of (B2ZJ), we may square all values to simplify differentiation.
Suppose that ||GG'd — d|| < § < ||d||. Consider first, the program (E3). The point

y = G'd is strictly feasible, and so Slater’s constraint qualification holds. The objective

function is strictly convex, and so the existence of an optimum y* is assured. The first-order

necessary optimality conditions imply that
2u* —2AGTGy* —20GTd =0

for some A > 0. If A = 0 then y* = 0. However, this would imply that |Gy* — d|| = ||d||,
which implies that y* is infeasible. Thus, A > 0. By complementary slackness, this implies
that |Gy — d|| = 9. i.e.

ly"ll = & IGy" —dl = 6

Now, suppose that z* is an optimum for (EZ0). Since y* above is feasible for (EX), we

obtain an upper-bound on ||z*||. Hence, we may infer the following conditions on z*:
2] < |G — d] < &

Now, z* is feasible and optimal for (EJ). Thus, we cannot have |Gz* — d|| < d, or we
would contradict the complementary slackness argument made above.

Suppose that ||GG'd — d|| = § < ||d||. Thus, a feasible solution to (EH) would be
y = G'd. Among solutions that maintain this level of accuracy, G'd has the least norm.
Hence this solution is optimal for (EJ), and so € = HG“dH. Thus, z = G'd is feasible for
(E3). Since this is an unconstrained minimizer for |Gz — d||, it will also be an optimum
for (E=), and the optimal value will be |GGTd — d||.

Suppose that ||GG'd — d|| < § = ||d||. Then, y = 0 is a feasible solution for (EH). As it
is also an unconstrained minimizer for ||y||, we therefore have that e = 0. Thus, the only

feasible point in (E=0) is + = 0, and the optimal value for () must therefore be ||d||. W

Thus, we see that under reasonable assumptions, (EJ) and (BE=) are equivalent prob-

lems.
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2.2.2 Tikhonov Regularization

In this section, we consider the problem
min |Gz — d||; + o ||z, , (2.12)

varying the value of a. We will see that « is a regularization parameter, like € and § from
the previous section.

The problem presented in () provides a continuous method for regularizing a linear
least-squares problem. This method is known as Tikhonov reqularization. Note that if
a =0, (BEI) simply reduces to the original linear least-squares problem, (), while as o
approaches infinity, the optimal solution will tend towards zero. We may rewrite (EI) as:

i)

] are linearly independent (and as stated above,

2

G

o (2.13)

min

2

o

If @ # 0, then the last n rows of l @

a = 0 corresponds to the case when no regularization is occurring). Thus, (BE) is a

full-rank linear least-squares problem, and hence may be solved by means of the normal

equations, (I=3):

G d
o at]| & o=l a5
ol 0
which simplifies to
(GTG + ® Nz = G"d. (2.14)

Note that as this is a full-rank system, the normal equations have a unique solution.

Applying the singular value decomposition to G, we may rewrite (EEI) as
(VSTUTUSVT + o* Nz = VETU 4,
which we may rewrite as

VTSV + o* Nz = VETUT A (2.15)
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Note that the solution to this system is

P
o? uld
Ty = E — ;.
(g2 +a? o;
=1 !

We can demonstrate that this solution is correct by substituting into (E=I):

(VETZVT + az_f) f:1 (,?:i@ U;Tidvi

2 T
=2 (r?:f@ u;id(VZTEVT + a?I)v;
= f:1 o?(fﬂ uz.d(VETzei + azf’l),')
= f:1 (,?ofa2 uid(aizvi + a*Iv;)
=>"r, oul dv;
=VyTUuTd

Thus, we see that z, is the unique solution to (EId). Note the similarity between the
formulation of z, and the best least-squares solution (). The terms in the summation

are scaled by a filter factor
2

fi= o+ a?
For o < o;, fi ® 1. If @ > o, then f; &= 0. As « increases, the smaller singular values have
a smaller effect on the solution obtained. Thus, we may think of this as a continuous version
of TSVD regularization. Furthermore, we show in the next lemma that regularization by
varying « is equivalent to regularization by varying e (and hence d) as discussed in the

previous section (this result also appears in e.g. [E¥]).

Lemma 2.2.3 For each choice of o > 0, a solution to () is also a solution to (ED) for
some unique choice of € € [0, HG“dHJ.

Proof.  First, we consider the case when o = 0. In this case, the problem reduces to
the unconstrained least squares problem, which is in turn equivalent to the case where
— T
e = ||Gtd]],.
We recall that the Lagrangian of (E=) is

L(z;N) = ;L'T(GTG + Az — 24" Gx + dTd — \e.
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For any fixed A > 0, £(z; A) is a convex function in z. Thus, stationarity of the Lagrangian

characterizes primal optimality. Hence optimal solutions are characterized by
(GTG + M)z = G"d,

for some choice of A. Recall that a solution to (EX) for o > 0 is uniquely given by the
normal equations (EZIZM). Setting A = a?, we see that a solution z to (E=) also satisfies
stationarity of the Lagrangian of (EZ8). Setting € = ||z||,, we obtain a unique choice of €
for each a. Conversely, it is shown in [Bll| that the optimal Lagrange multiplier X is given

uniquely. Hence, setting o = /A, we obtain a unique choice of o for each e. [ |

Example 2.2.4 Using the same values of G and d from Ezample BELA, we now apply
Tikhonov regularization. We vary our choice of o between 107" and 10 (recall that the
largest and smallest singular values of G are approzimately 2.9934 and 3.2294 x 1071¢),
respectively. The resulting values of |Gzo — d||, and ||z, appear in Figure B2

25

log [|Ge — d||2
I ° P
1% o o [ (%]
T T T T T
L L L L L

|

[N
T
I

~15F 4

-5 0 5 10 20 25 30 35

tog el
Figure 2.2: Solution points for Example B2ZA on a log-log scale.

In theory, we may vary «, until we obtain a solution x, that satisfies the discrepancy

principle. For small problems, this technique works well. As problems become large, the
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cost of computing the SVD of G becomes prohibitive and it becomes necessary to employ
other techniques to solve (BE) directly. One such technique is described in Chapter @l



Chapter 3

Trust Region Subproblem Theory

3.1 TRS Solutions

Recall from Chapter ll that we wish to consider the Trust Region Subproblem (), for-

mulated as:

min ¢(s)

s.t. |s|l, <A (3.1)

s e R,
for some quadratic function ¢ and a trust region radius A. In particular, we generally
consider ¢ of the form
q(s) = %STAS +a's,

for some A € S (where S™ is the space of n x n symmetric matrices) and a € R™. Note
that the feasible region is a compact set and the objective function is continuous. Hence,
we have attainment of the optimum for (). If ¢ is convex, we may attain the optimum
in the interior or on the boundary of the trust region. If ¢ is not convex, the minimum will

be attained on the boundary. To simplify differentiation, we rewrite () in the equivalent

form
min s As+ 2a’s
st sTs < A? (3.2)
s € R™

20
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Note that the Lagrangian of (B is
L(s;A) = sTAs+2a%s + /\(STS — Az)

Thus, s* is a solution to (BE) if and only if

[ < A (Primal Feasibility)
A+ XTI =0,)*>0
+ - = (Dual Feasibility) (3.3)
VL(s*;A*) =0 =2A4s" 4+ 2a + 2X*s*
M (s*Ts* — A?) =0 (Complementary Slackness),
for some choice of optimal Lagrange multiplier A*. (see e.g. [, [B]). We rewrite the

dual feasibility condition (stationarity of the Lagrangian) as

(A4 X1I)s" = —a.

3.1.1 Dual-parametrized solutions for TRS

We can use the optimality conditions (BEJ) to characterize the solution to (BEZ) by the
choice of optimal Lagrange multiplier. In particular, the stationarity of the Lagrangian,
given by

(A4 X1)s=—a (3.4)

suggests some methods for characterizing an optimal solution. In particular, if A+X*1 > 0,
then s = (A + A I)"'a is the unique solution to (BZ) corresponding to A*. In general, we
define

s(A)=—(A+ )\I)ta.

Applying a singular value decomposition to A + A1,
A+ A =05,V
and using the definition of the Moore-Penrose generalized inverse (E), we see that

(A4 AD)s(A) = —U,E, V)2 ' Ul a
= -U,U) .
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Recall that the columns of U, form a basis for R(A + M. Thus, for some choice of A,
if a Y N(A+ AI), then s()) is the unique solution to (BEZ). However, for A # \*, s(})
will violate primal feasibility or complementary slackness (as A* is the unique value that
satisfies (BZd). See [E].)

Recall that for A to satisfy dual feasibility, it must satisfy A > —X(A). If a £
N(A— X (A)I), then for any dual feasible A, s(\) is the unique solution to the Lagrangian
stationarity condition (since for any feasible A, either A = —X{(A), or A+ Al > 0). This
is known in the literature as the easy case (see e.g. [[]). Note that in the easy case, as
AN\, —A1(A), the smallest singular value of A 4+ Al (which is also the smallest eigenvalue
of A+ M) will tend to zero. Since the column of U, corresponding to this singular value
is not orthogonal to a, it follows that as A \, —A1(A4), ||s(A)|| — oo. Hence, in the easy
case, to maintain primal feasibility, we must have \* > —X;(A).

Suppose on the other hand that a 1 N (A—X{(A)I). This situation is referred to in the
literature as the hard case for TRS. In this case, we note that s()) is still the unique solution
to (B for A > —A;(A). If the optimal Lagrange multiplier A* does satisfy A* > —X;(A),
we refer to this as (case 1) of the hard case (see e.g. [l]). If, however, \* = —X;(A4), s(A¥)
is not the unique solution to (BEZM), and hence may not yield an optimal solution to (BEZ).
We refer to this situation as (case 2) of the hard case. If |[s(—=X1(A)]|, = A or A (A) =0,
then the complementary slackness condition is satisfied, and all optimality conditions hold.
(Note that primal feasibility is guaranteed by the fact that ||s(A)]],
for A > =X (A). If ||s(=A1(A))]], > A, then A* > —\;(A) and the hard case (case 1) would
hold.) If, on the other hand, —A;(A) > 0 and ||s(—X{(A4))||, < A, then the complementary
slackness condition is violated. In this case, the optimal solution is s(—A;(A))+ d for some
d € N(A — Ai(A)) such that ||s(=Ai(A) + od]|, = A.

We review the various cases presented above in Table Bl (Note that this table is

is a decreasing function

reproduced from [E0].)
At this point, we note that, except in the hard case (case 2), subcase (ii), s(A) will yield
an optimal solution for (BZ). The remainder of this section is devoted to examples that

demonstrate the various cases presented above.

Given a spectral decomposition UAUT for A, such that A = diag (A.(A4), \u_1(A4) ..., A\ (A))
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Easy Case Hard Case (case 1) Hard Case (case 2)
a L N(A-XM(A)I)
a L N(A—-X(AI) al N(A—=X(AI) and \* = —X;(4)
(implies A* > —A;(A4)) and A* > —X;(A4) 1) [[s(=A1(A)|l, =Aor Ay (A) =0

(ii) |s(=A1(A))]l; < Aand —A1(A) >0

Table 3.1: Different cases for the trust region subproblem.

with Aj(A) < A(A4) < -+ < A, (A), it follows that

(A4 D) =U,(A, + ML) 'UY,

where p+1 corresponds to the index of the first zero eigenvalue of A+ Al in A+ AI. Hence,

s(A) may be written as
P ula
A) = — —

where u; corresponds to the i-th column of U. Recall that we must also satisfy ||s(A)|], < A.

Thus, for convenience, we define

o0 = IOl = Y 35

As we must maintain dual feasibility, we need only consider values of A such that A >
—A1(A) and A > 0. We have a solution in the interior if A\j(A) > 0 and ¥(0) < A%
Otherwise, we attempt to find some feasible A such that ¢»(\) = A% In all cases except the
hard case (case 2) (ii), such a A will exist. We demonstrate the easy case when A > 0 in
Example Bl and the easy case when A is indefinite in Example B We then present
an example of the hard case in Example BEIZ3

Example 3.1.1 Consider the TRS problem given by the following choices of A and a:

10000 1
01000 1
A={00200|, a=|1
00030 1
[ 0000 4] 1]
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This example demonstrates the case when A is positive definite. In this case, the solution to
(B is uniquely defined for any feasible . We plot () versus A, and show the resulting
graph in Figure B2l The bold curve represents the possible (A, A?) pairs that may yield a
solution to the problem (i.e. values of (A, A*) such that complementary slackness, primal
feasibility, and dual feasibility would all hold). The bold vertical line occurs at A = 0,
as complementary slackness allows solutions in the interior of the trust region only when
A = 0. Thus, if A* > ¢(0), the solution s(0) is in the interior. If, however, X\ > 0, the

solution must lie on the boundary, and hence we must satisfy ¥(A) = A?.

I I I
-3 -2 -1 0 1 2
A

Figure 3.1: Values of ¢(\) and A?()) versus A in Example EZZ1

Note that ¥ (A) will be discontinuous at each point where A = —\,;(A) for some i €
{1,2,...,n}. Ifula # 0, then ¥)(\) — oo as A — X;(A). This is the easy case, which we

present in the following example.



TRS Theory 25

Example 3.1.2 Consider the TRS problem given by the following choices of A and a:

[ -1 00 0 0] [ 1]
0 0000 1
A= 0 0000 ]|, a=1|1
0 00 10 1

| 0 000 2 |1 ]

As A is indefinite, our TRS objective is not convex, and hence our solution will lie on the
boundary of the trust region (i.e. (X)) = A?). Furthermore, to maintain A + M\ positive
semidefinite, valid solutions must also satisfy A > 1. The valid (X, A?) pairs are shown in

the bold curve in figure B

(), A%

Figure 3.2: Values of ¢(\) and A?()) versus A in Example EEIA

On the other hand, if ul'a = 0 for all u; in the eigenspace corresponding to A;(A), then
(/\1(?57)“_')_1)2 — 0 as A = —A;(A). Thus, ¥»(A) will not have a pole at —A;(A). This is the

hard case, which we present in the following example.
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Example 3.1.3 Consider the following slight variation on Ezample BE2LA:

[ 100 0 0] [ 0 ]
0 00 0O 1
A=10 000 0|, a=|1
0 0010 1
| 0 00 0 2 | 1
Note that in this case, ula = 0, and M\ (A) is a simple eigenvalue. Thus, we have

A > = M(A) = 1, but ¥(X) has no pole at X = 1. In fact, () attains a mazimum
value of approzimately 2.34 on the domain A > 1. As feasible N must satisfy A > 0,
complementary slackness implies that the solution to TRS must lie on the boundary. If
A? < limyo_x, (4)¥(A), @ solution to p(X) = A? exists for some X > —A(A). This is the
hard case (case 1). In this case, s(\) would still be the unique solution to the stationarity
condition (BZ). If A* =limy_,_y, (4) (), we would have ||s(=M(A)|l, = A, and the hard
case (case 2) (i) would hold. If, however, A* > limy_,_y () ¥(A), the hard case (case 2)

(11) holds, and s(X) is not a valid solution for any feasible A (in particular, there is no

feasible )\ such that (X)) = A%.) See Figure B for the graph of () versus A.

We may generalize the ideas presented in Example B to arbitrary problems for which
the hard case holds. In particular, there will be some finite critical value

2 . :
Acri T ,\\l_lf\rll(A) 771)(/\)

such that for all A? > A2 there will be no solution to ¥ (\) = A%

cra?

3.1.2 Newton’s Method for TRS

T

all ¢ such that A\;(A) = A (A). This situation is sometimes referred to as the near-hard
case. In this case, whereas 1(A) has a pole at A = —A;(A4), it may be highly nonlinear near

In addition to the hard case, numerical difficulties may arise when u; a is nearly zero for

this pole. This behaviour may give rise to slow convergence of Newton’s method applied

to finding a solution to ¥(\) = A?. For example, in Figure B2 we present plots of /()
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Figure 3.3: Values of ¢(\) and A?()) versus A in Example I

versus A for modified versions of Example BB with different values of a;. Note that as
a; becomes smaller, the function becomes increasingly nonlinear near the pole.

An alternative is therefore to apply Newton’s method to solving ¢(A) = 0), where

() = 1 1 1 1

P A s A

Note that as 1(X) was positive for all A, and had poles at —\;(A) for each ¢ € {1...,n},
1/% will be nonnegative for all A, and have roots at —\;(A). The behaviour of ¢
may be seen in Figure B2l which features a plot of 1/% versus A, using the same sets

of parameters as Figure Bl Some properties of ¢ are described in the following Lemma

(which appears in [H]).

Lemma 3.1.4 Ifa # 0, and A > A\ (A), then the function ¢(\) defined above has first and

second derivative given by

s(M)TVas(N)

Is(M)1l3
3 [(s(N)Vas(A)? = s IVxsV]l3]
Is(M)113

S0 = -
and

qb//(A) —
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Figure 3.4: Plots of ¢()) for different values of a; in Example EEI4
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Figure 3.5: Plots of 1/4/%(\) for different values of a; in Example B
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respectively, where Vys(A) = —(A+ M)7's(A).

Proof. First we establish some preliminary results which will be used later in the proof.
Recall that
(A4 A)s(A) = a.

Differentiating both sides of the above equation with respect to A we get
S(A) + (A + M)Vas(\) =0, (3.6)
and hence
Vas(A) = —(A+AD)s(N).
Differentiating both sides of (B), we obtain

Vas(A) + Vas(A) + (A + A)V3,s(X) = 0,

and so

V2,5(\) = —2(A + A\)'Vs()).

Taking the /5 inner product of both sides of this equation with s(\), we obtain

S(A)TV§/\3(A) = —QS(A)T(A + A)7tVas())
= =2V s(M)T(A+ X)71s())
= QV)\S(/\)TV,\S(/\)
=2 Vas(A)]; -

Having obtained these preliminary results, we proceed to find ¢'(\):

FN) =45 [(s()Ts(A)2 = 3]
= —(A%)(TSV(A);S(A))‘?’”%S(A)TS(A)

lls(M)Il

Differentiating further, we find an intermediate expression for ¢”(\):

$'(N) = —s(N)TVas(V) 4k (s)Ts(0) ™" = (s(N)Ts(X) ™7 (N Vas(N).

d

>
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Evaluating individual terms in the above expression, we find that

d 2
3 (s()TVas(0)
lls(MIl3 ’

>

s()TVas(A) L (s(N)Ts(A) ™ = s(A)TV,s(A) [——3 (s(M)Ts(n) " (QS(A)TV,\S()\))]

and (performing the substitution given in (EX))

(s(N)Ts(0) 2 Ls(ANTVs()) = (S(A)2T3(A))‘3/2 [Vas(N)TVas(A) + s(A)TV2,s(N)]
= Qe 119 as V)13 + 2 Vas(V3]
— LB 0l

Hence, we find that

(s Vas(N)” = sl Vsl
Is(1l3

qb//()\) — 3

Note that in Lemma B2 we can write ¢'(\) as

S()\)T(A + AI)s()

[[s(A)3]]
As (A 4 XI) is positive definite for A > —X;(A4), we see that ¢()) is strictly increasing.
Furthermore, the Cauchy-Schwartz inequality implies that

¢'(A) =

s(A)Vas(d) < s Vas]l,

and so ¢”(A) < 0. Thus ¢()) is a concave function.
With the derivative of ¢()), we can solve for ¢(A) = 0 using Newton’s method. In

particular, given some estimate A, we find the next iterate as

Anew = A = (A) [/ (A).
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3.2 Dual Formulations of TRS

To simplify calculations, we multiply the objective value of (BE&) by 2, yielding

min sTAs+ 2aTs

s.t. ||5||§ < A2 (38)
The Lagrangian of (BEX) is therefore
L(s,A) = sTAs +2aTs + /\(STS — A?)
= sT(A+ M)s +2aTs — ANAZ
The following result was shown in [El].
Theorem 3.2.1 Strong duality holds for (BER), i.e.
ut = msinrf\l;gclj(s, A) = Iilzagcmsin/:(s, A).
In particular, it was shown in Section B that a solution to
min £(s, A), (3.9)

5

for some fixed A > 0, where A > —X;(A) is
s(A)=—(A+ )\I)fa.

Furthermore, if A + A is singular and a f N (A + AI), we may select d € N (A + AI) such
that dTa < 0. Evaluating £(ad, \) with o — oo, we find that the dual functional (BEX) is
unbounded. If A+ A[ is singular and a L N(A + AI) then the dual functional corresponds
to s(A\) + d for any d € N (A + AI). If this occurs for our optimal choice of A, say A\* (i.e.
M = =X (A + AI)), then consider the sequence A\, — AT*, with A+ AT > 0. In this case,
the corresponding s(A) will be —(A + A I)"'a, and s(Ax) — s(A). Thus, the Lagrangian
dual problem of (BEH) becomes

p* =sup h(A)
(D) st. A+ A =0, (3.10)
A >0,
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where
h(A) =a ' (A+ XD A+ M)A+ ADTa —2aT(A+ M)ta — AA?
= —al(A+ M)ta — AAZ
The strong duality between (BEH) and (BEXIH) allows us to derive another dual form by
homogenizing (BEJ) (as in [ZH]):

* = min  s!As + 2y0aT5
[Isll, <A¥3=1

— max min s'As4+ 2y0aT3 + tyg —t
tlslly<Ay3=1

> max min sTAs 4+ 2y0aT3 + tyg —t
b lslB+v <A+t

. T T 2 2 2 A2
Ztﬁé%\éog};?S As +2yoa” s +tyg —t+ A(||s|l; +vo — A 1)

_ T T ' 2 A2
_rerﬁ%\}éog};gls As +2yoa’ s +rys —r + A(||s||; — A%)

= max (maxmin sTAs 4+ 2y0aT5 + ryg —r4 /\(||s||§ - A2)>

A>0 r 5,90
— max min s! As + 2y0aT3 + )\(||5||§ — Az)
A20 sy2=1
_= ILL*'
The above uses the substitution r = ¢+ A. The last equality follows from the strong duality
result from Theorem BEZZL
Using the third expression in the above chain, we have a further dual problem to (BEX):

p* = max min  (yo,s”)D(t) ( vo ) —t,

E|lsll34us <A 41 E

where

a A

Suppose t* is the optimal choice of ¢ in the above problem. If A;(D(¢*)) > 0, then s = 0 and
yo = 0. Thus, the optimum will occur at the minimum ¢ such that A;(D(¢)) > 0. However,
this minimum will not be attained, since A;(D(-)) is a continuous function. Thus, we may

assume that for an optimal choice of t*, A (D(#*)) < 0. Under this assumption, we are
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assured that for some optimal choice of s and o, ||5||§ +y2 = A? + 1, and so the dual
problem becomes
p* =max; (A?+ 1)\ (D(t)) —t
s.b. A (D(t)) <0.
By introducing an additional variable A\, we may reformulate this dual problem as the

following semidefinite program:

p* =max —(A*24+1)A—t
(DSDP) st. D(t) + M =0 (3.11)
A>0.

We may rewrite (Bl as a dual semidefinite program in standard form:

max ( —1, —A2—1)<i)

s.t. —telelT — A+ 5 =D(0)
S0
A >0,

where e; is the first standard basis vector, and we apply the fact that D(t) = D(0)+te;el.
Thus, the corresponding primal SDP is

min trace (D(0)X)

s.t. trace(—Xejel ) = —1
trace (—X1) < —A%? -1
X =0,

which we rewrite in the more convenient form

p* =min trace (D(0)X)
b, trace X < A?+1
(PSDP) St fraced S ATt (3.12)
Xn=1

X >~ 0.

We justify the equality in the objective values between (BEI) and (BEZ) by observing that
(BE) has a Slater point, and is bounded above. Hence, strong SDP duality holds.
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Note that (B2 is, in fact, a semidefinite relaxation of the homogenized form of (BEX).
If we select X given by

where y2 = 1, then we observe that

yoa's alssT

yga + As yoasT + AssT
= yoa's + trace (yoasT) + trace (ASST)
= sTAs + 2y0aT3.

trace (D(0)X) = trace

Furthermore, trace X = 1 + ||s||§ As X is defined as the outer product of a vector with
itself, we also have that X > 0. Hence, any feasible solution of (BH) maps to a feasible
solution for (BXA), and the objective value is preserved. In fact, the following theorem
(presented in [EH], and reworded here for clarity) shows that optimal solutions to the
primal-dual SDP pair can be used to obtain optimal solutions to (BEJ) and (EII).

1 *T
Theorem 3.2.2 Suppose that (\*,t*) and X* = iz* are optimal for (BEX) and

*

Y
(BEXA) respectively. Then p* := =M (A? +1) —t* = —XA? —aTy*, and |ly*||, < A.

o If \(D(t*)) is simple, then s* := y* is optimal for (BE).

e Otherwise, A\ (D(t*)) is not simple. Consider the matriz factorization for X* given
by X* = TTT, where T is (n + 1) x r and full column rank. For every v € R" such

0
that v # 0 and Tv = , we have n, € N(A — X*I). Furthermore, setting

A — [ly*|l;

v T+ sgn(yTn)y/ (Tne)? + (A2 — ye[2)

a =

we have that s* 1= y* + an, is an optimal solution to (BEJ).
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Given =* defined in the appropriate case above, we have that the unique optimal Lagrange

~ 1
multiplier for s* in (B is A* = A (D(t*)). Also, X := ( . ) (1 s*) is optimal for (B,

S

1
and ( . ) is an eigenvector for A (D(t*)).

S



Chapter 4

Regularization using TRS Theory

4.1 Fundamentals

4.1.1 Formulation
Recall from Chapter B that our least-squares problem is
min |G — dll

for some matrix G and vector d. We obtain regularized solutions by minimizing the norm

of the solution subject to a constraint on the norm of the residual:

min, ||z,

s.t. |Gz —d||, < 4.
It was also shown that this formulation was equivalent to

min, |Gz —d|,
s.t. lz]], <,

for appropriate choices of § and e. If we square the objective function and constraint in

this last formulation, we obtain

min, |Gz —d||5 =2"(GTG)x —2d" Gz +d"d

s.t. ||"c||§ < €2,

36
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We then subtract d’d from the objective function (which does not affect the optimal-
ity of any given solution). The resulting problem is a special case of the Trust Region

Subproblem, with A = GTG and a = —G7d:

p*=min z'GTGzr — 247G

s.t. ||:1;||§ < €.

(4.1)

Note, in particular that GTG = 0. Hence, the hard case, case (2) (ii) cannot hold. Recall
from the dual formulation (EZ), that

pu* = max —(62 + 1A —t

st. D)+ A =0 (4.2)
A >0,
where in this case,
t  —d'G
D(t) = .
®) ~-GTd GG
This dual achieves optimality for A* = —X{(D(#*). Furthermore, we know by Theorem

B2 that a vector in the eigenspace of A (D(#*)), normalized to have first component 1,
yields an optimal solution to (EZ).

Let t*(€), A*(€) be an optimal solution to (E) for a given choice of e. We have already
shown that A\* is optimal for the TRS dual program:

©* = max —dTG(GTG + AI)“GTd — )é?
s.t. GTG 4+ M = 0.

Furthermore, we have established in Chapter B that a given choice of A* > 0 uniquely

yields the parameter a such that o? = \*, and an optimal solution z* to
minz! GTGz — 2d" Gz + /\(||:L'||§ — 62)
is also an optimal solution for
. G - d 2 2 2
wmin |G — df2 + o ]2

Hence, for every value of A > 0, we can uniquely specify the regularization parameter.
Note though, that our choice of A arises as A = —A{(D(¢)). Thus, it remains to show that
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each choice of ¢ yields a unique value for A\;(D(¢)). Recall that (E) may be written in the
unconstrained form:

max k(t) = (62 + DA (D(1)) — ¢t

As this form does attain a finite optimum, stationarity must hold at optimality. In other

words,
d
F() = (¢ + 1) (D) ~ 1 =0,
and hence,
d ., d 1
a/\ (t) = p7ie M(D(t) = — < 0.

e+ 1

Note that &(t) is not defined only when the multiplicity of the smallest eigenvalue of D(t)
changes (shown in [Z0]). However, we will show later in this section that we may restrict
our choice of ¢ such that A\;(D(#)) < 0 < A\(GTG), and hence the multiplicity of A;(D(t))
is constantly 1. Therefore, we see that for every increase in t*, our optimal choice of
A* decreases, as does o* and ¢*, whereas €* increases. Thus, we can obtain regularized

solutions to a linear least squares problem by varying ¢, and obtaining an eigenvector
1

Yy = ( ) corresponding to A;(D(t)) (where the resulting vector x is a regularized least
x

squares solution).
We wish to find appropriate values for ¢, such that we actually find valid regularized

solutions. Observe first that from our unconstrained dual formulation, we have

E(#) = (€2 + )M\ (D(t)) — t*

— ILL*

= 2" TGTGr* — 2dT Gz*
= G — dlf; — d"d
=52 dtd.

Since our regularization parameter ¢ is bounded below by HGG“d — de, we therefore have
that
< d'd— |GG — d||; + (€2 + )M (D) < d"d - ||GGtd - d||;

(where this last inequality follows from the fact that A;(D(¢*)) < 0). Hence we obtain an
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upper bound on t*. Note also that we may rewrite this upper bound as:

d"d — ||GGtd — d||; =dTd—dT(GGNTGGYd + 2d" GGl — d"d
= —dTGG'GGId + 2dTGGHd
= —dTGG'd + +2d"GGYd
= dTGGd.

The following result shows that this bound is tight:

Theorem 4.1.1
lim M (D(¢)) =0.

t—dTGGtd

Proof.  First, we note that A (D(¢)) > 0 if and only if D(¢) > 0. Taking the Schur

complement of D(t) we note that

Dt)»0 & G'G—1G"dd"G =0
& GTGTGTGGG — 1GTGITGTdd" GGG = 0
& GT(GGHTGGIG — 1GT(GGHTddT (GGG = 0
& GTGG'GGIG — LGT(GGYddT (GGHTGE = 0
& GTGGHG - LGT(GGH)(GGH)TG = 0
& GT(GGY — (GG (GGG = 0.

Now, since all of the columns of GG' and (GG'd)(GG'd)T are in R(G), it follows that
1
D(t) = 0 & GG' — ?(GG“d)(GG‘Ld)T = 0.

Now we define an orthonormal basis for R™ as follows: the first basis element is a vector in
the direction of GG'd, and the next p — 1 elements are constructed to yield an orthonormal
basis of size p for R(G). The remaining m — p basis vectors are constructed to yield our
orthonormal basis for R™. Let U be a suitable change-of-basis matrix for this system.

Thus,
1 - dfaeld 0

GG*—%(GG*d)(GG*d)T:UT o L, 0 |T
0 0 Om,
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where 0,,—, is the (m — p) X (m — p) zero matrix. Thus, we have that A;(D(¢)) > 0 if and
only if t > dTGG'd. The limit follows from the continuity of A, (D(-)). |

We further obtain the following corollary which shows that ¢ is an appropriate choice

for a regularization parameter:

Corollary 4.1.2 Every choice oft in the interval (—oo,dT GGd] yields a solution x* which
solves

min |Gz — d||; + o ||«; (4.3)

for some unique o on the interval [0,00). Furthermore, for each choice of a* € [0,00), we

can find some t € (—oo,d' GG'd] such that the solution x* corresponding to t minimizes

(=).

Proof. Above, we have shown that ¢ is in one-to-one correspondence with A;(D(t)) if
€ # 0. Thus, for € # 0, every choice of t < d' GG'd yields a unique choice of A\;(D(#)) < 0.
Note that A\ (D(t)) = —A* = —a®. Hence, if € # 0, every choice of ¢ in the relevant

interval yields a unique choice of a? > 0. Note that ¢ — 0 as a* — oo. Note, though that
a® — 0o only when A;(D(t)) — —oo, which only occurs as ¢ — —oo. Thus, this one-to-one
correspondence holds for every choice of ¢ € (—oo,dT GGYd].

Note that on the domain (—oo,d? GG'd], A\;(D(-)) is a monotonically increasing func-
tion which we have already shown maps to values between —oo and 0. Thus, we may
conclude that A\;(D(+)) is an isomorphism mapping (—oo, d? GG'd] to (—oc, 0]. Hence, we
may define an isomorphism a?(+) := —X;(D(-)) which maps (—oc,d’ GGd] to [0,00). W

Thus, we observe that ¢ is an appropriate choice for a regularization parameter. At this

point, we present a brief review of the regularization parameters we have examined so far:

4.1.2 Methods

The L-curve for a least-squares problem may be found by obtaining the minimum eigenvalue
(and corresponding eigenvector) of D(t) for many values of ¢. However, particularly given

a large matrix G, the eigensolver may take a considerable time to converge. Thus, it
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Parameter Valid Domain Behaviour as t increases
t (—oo, d'GGH d] increases
a? [0, 00) decreases
A [0, 00) decreases
€ [O, HG“de] increases
) [}‘Gth—d“2,||d||2] decreases

Table 4.1: Summary of regularization parameters.

is advantageous to select values of ¢ which are close to the corner of the L-curve, as
this is presumed to be the region of interest (as explained in Chapter H). We use various
heuristics to attempt to isolate the corner of the L-curve, preferably minimizing the number
of eigenvalue problems which must be solved.

We have the following preferences for the points we compute:
1. we should compute as few points to the left of the corner of the L-curve as possible;
2. we should compute as few points to the right of the corner of the L-curve as possible;
3. we should compute points as near the corner of the L-curve as possible;
4. we should compute enough points that the shape of the L-curve is clear.
An algorithm which implements these techniques is presented as a flowchart, with
corresponding MATLAB code, in Appendix Bl
Finding a sufficiently low starting value for ¢

Assuming we have some estimate ||é4]| on the norm of the measurement error d — diye,
we may assume that points to the left of the corner of the L-curve are those with residual
greater than ||€4)|. With & > ||&4]|,

tiow < dTGGTd + My (D (tiow))(€(tion)? +1) — [|€al| - (4.4)
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As M (D(tow)) and €(tiow) are dependent on tj,,, and A (D(t))(e(t)* + 1) < 0 for ¢t <
dTGGYd, it is not possible to guarantee that a given choice of ¢ will satisfy (E). Thus,
we initially set

t=d"GG'd— Bl|éd|?,
for some value 8 > 1. Using this choice of ¢, we may then find the minimum eigenpair for
D(t), and also determine €(t) and §(¢). If §(¢) > ||é4]| then we use this choice of ¢ as our
starting value, tjow. Otherwise, set
=766 - s A - (D)l +
Now we compute the minimum eigenpair for D(#'), and repeat this process until we find a

suitable choice of #,,.

Updating ¢

We establish some step size s. A reasonable choice is to initially set

 dTGGH — tig

?

S
m

for some positive integer m. In general, we update ¢t < t+s. Note that we likely want more
than m points for our graph of the L-curve, but initially want to take larger steps (since
small changes in ¢ only result in large changes to solutions once ¢ is close to dT GGtd). If
t+s > d'GG'd, then before updating ¢, we update s < s/h, for some h > 1. Note that as
t approaches dT GG'd, \;(D(t)) approaches zero. As the smallest eigenvalue of GT G may
be zero or numerically indistinguishable from zero, sufficiently small values of A (D(t))
may correspond to near hard-case solutions. In the near-hard case, our eigenvalue solver
may not converge, or may yield inaccurate solutions. Thus, if A\;(D(t)) > —¢ for some
small choice of ¢ (within two or three orders of magnitude of the machine epsilon), we are
too close to d' GGYd. In this case, we revert to our previous choice of #, and decrease the

step size.

Focusing on the corner of the L-curve

Suppose we update t as t' := t 4+ s, for some step size s. We associate the points to the

left of the corner of the L-curve with small changes in €(t) with each update. To the right
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of the corner, small changes in ¢ will result in large changes in €(t). Thus, we fix some

threshold n > 1, and assume that if

e(t') > ne(t),

then ¢ describes a point to the right of the corner of L — curve. Thus, we discard ¢, update

s + s/k for some integer k, and find a new ¢’ := ¢ + s.

4.2 Discussion

As mentioned in Section EIZ the norm-constrained least squares problem is a special
case of TRS. The particular structure of the problem allows us to avoid some of the more
difficult aspects of TRS, discussed in Chapter B

First, as mentioned in Section E=Il, we recall that GTG > 0, and hence the hard case,
case (2) (ii) cannot hold. Furthermore, for any choice of ¢ such that A;(D(t)) < 0, it follows
that GTG — X\ (D(t)) = 0.



Chapter 5

Numerical Results and Applications

5.1 A Simple Example

Example 5.1.1 Recall the Shaw problem presented in Examples and B2 We now
solve this problem using our dual TRS technique described in Chapter[|] Recall that we our
expected error is \/20/10. Thus, we use this as an estimate for the norm of the residual at
the corner of L-curve. We set our parameters for the algorithm as: t,q. = 15, n = 1.25,
h =5 k=25, and f = 1.5. The norm and residual for the 15 computed solutions are
shown in Table B0, and are graphed on a log-log scale in Figure B2l

5.2 Large Sparse Least-squares Problems

A major benefit of the algorithm presented in Chapter lis the fact each iteration involves
the solution of a single eigenvalue problem, a task which requires only a series of matrix-
vector multiplications, and which can fully exploit sparsity in the matrix G. Additionally
at each step the algorithm uses the previously computed eigenvector as an estimate for the
new eigenvector. Given sufficiently small changes in ¢, the difference between consecutive
solutions is small, making the estimate quite accurate. Thus, the algorithm is suitable for

regularizing large-scale sparse problems efficiently.

44
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Point | Gt — d] | 4]

1 4.9708e-01 | 4.1679e+-00
2 4.5072e-01 | 4.2146e+00
3 4.0903e-01 | 4.2644e+00
4 3.7452e-01 | 4.3187e+00
5 3.5019e-01 | 4.3830e+00
6 3.4651e-01 | 4.4005e+00
7 3.4277e-01 | 4.4259e+00
8 3.3738e-01 | 4.4920e+00
9 3.3560e-01 | 4.5271e+00
10 3.3320e-01 | 4.5893e+00
11 3.2967e-01 | 4.7222e+00
12 3.2404e-01 | 5.0998e+00
13 3.2258e-01 | 5.2531e+00
14 3.2103e-01 | 5.4581e+00
15 3.1946e-01 | 5.7400e+00

Table 5.1: Values of |Gz — d||, and ||z||, for Example BZIZI

5.2.1 Deblurring noisy images

Image deblurring is an example of a large, sparse regularization problem which occurs in
the real world. In the examples we present here, the images are two-dimensional grayscale
figures. In order to perform operations on them, we must represent these images as vectors.
We begin with a sample 100 x 100 image generated by the “blur” command in P.C.
Hansen’s regularization tools package ([[IE2]). This image is shown in Figure B2
This image is converted to a vector by column-stacking, i.e. if the image is given by

the matrix X = (x1,,...,Z100), where z; € R'® describes the brightness of the pixels in
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Figure 5.1: Points computed by dual regularization algorithm for Example B2

the i-th column of the image, then the resulting vector is:

T

T2

Z100

Note that =z € R The “blur” command creates a 10000 x 10000 blur matrix G,

as follows: given a blur bandwidth b and a smoothness parameter o, construct a vector
z € R by

e~ =120 << p

0 b<i<100

Zy =

Next, let A be the 100 x 100 symmetric Toeplitz matrix given by

1 Z9 2100
Z9 1 Z9 Z3 e e Z99
A= Z3 Z9 1 Z9 Z3 Ce 298

| 2100 299 298 ... 1
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Figure 5.2: Original image for deblurring example.

Let G = A® A, where ® denotes the Kronecker product. We then compute the blurred
image dyye as Gx = dypye. For our example, we use a bandwidth of 5 and a o-value of 5.
The blurred image is shown in Figure B2

We then construct d = dy,ue + €4, where eg € R199%9 is a vector of normally-distributed
random values, generated with mean 0 and standard deviation 0.05. Thus, the expected
value of ||eq]| is 5. The resulting blurred image with this added noise is shown in Figure
o |

Next, we apply the algorithm from chapter . To demonstrate overly smoothed so-
lutions, we set ||é4]| = 6. Other parameters are § = 2, n = 1.25, h = 5, k = 5, and
imaz = 10. The resulting L-curve is shown in Figure BE1 The ¢-values used, as well as
resulting norms and residual norms, are shown in Table B2ZJl The images corresponding

to some of computed solutions are shown in Figures B through B2

5.3 Applications

For the problem in Example B2l it would be simpler to compute the full singular value
decomposition of G and apply Tikhonov regularization (as we did in Example EZ). In
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Figure 5.3: Blurred image for deblurring example.

this case, each point could be computed by summing a collection of vectors, based on
the filter factors given by our regularization parameter o. Assuming a full singular value
decomposition is available, it is not efficient to solve an eigenvalue problem at each iteration.

However, as shown in Section B2ZJl our eigenvalue-based approach is able to produce
regularized solutions to large least-squares problems in a matter of minutes, using consumer
hardware. Computing a full singular value decomposition for a 10000 x 10000 matrix is
not currently feasible, and hence applying Tikhonov regularization by filter factors is not
possible. The eigenvalue-based approach is also able to exploit sparsity in G. Hence, the

algorithm appears well-suited to large sparse problems.

5.4 Limitations

5.4.1 Performance

Whereas the algorithm provides a means for computing solutions to large sparse linear
least-squares problems, its performance is poor compared to other modern techniques for

solving these problems. For example, the curve in Figure B2 required approximately 20
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Figure 5.4: Blurred image for deblurring example, with noise added.

minutes to compute in MATLAB on an AMD Athlon XP-2000+ (including a 10 minute
calculation to find a point that was far to the right of the corner of the curve, which was dis-
carded and resulted in a reduction in step size; see Section EI). By comparison, the curve
in Figure B with 50 points, was computed with Hansen’s MATLAB implementation of
the LSQR algorithm (see [I2] and [E]) in under 2 seconds on the same machine.

In particular, for larger values of ¢, solving for the eigenpair for A;(D(¢) seems to require
more time (based on experimental observations). Furthermore, for values of ¢ which yield
solutions far to the right of the corner of the L-curve, the eigenvalue calculation takes much
longer, while the points obtained are simply discarded by the algorithm and the step size

1s reduced.

5.4.2 Finding an appropriate regularization parameter

The algorithm presented makes use of the discrepancy principal to find a suitable lower
bound on the values of . We find a value of ¢ such that z(¢) satisfies |Gz(t) — d||, > ||&4]|,
for the expected error €4. In practice, for many applications, the variance of the noise is
not known (see e.g. [H). In theory, one could select an arbitrarily large error estimate,

and compute points until the shape of the L-curve begins to appear. The eigenvalue-based
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Figure 5.5: Points computed by dual regularization algorithm for deblurring example.

regularization algorithm appears to compute points to the left of the corner of the L-curve
more efficiently.

Currently, the only stopping criterion for the algorithm is achieving the maximum
number of iterations, t,,4,. It is assumed that the first iteration begins near the corner
of the L-curve, on the left side. Furthermore, the heuristic which restricts the change in
solution norm between subsequent iterations intuitively keeps computed points near the
corner. However, as values of ¢t approach the upper bound, the cost of each iteration
appears to increase. Thus, it would be desirable to identify the optimal regularization
parameter without spending very many iterations to the right of the L-curve.

Several techniques exist to identify the optimal regularization parameter. We have
already discussed the discrepancy principal. Another technique is that of generalized cross-
validation, or GCV (see [H] and [F]). Applying GCV to our eigenvalue-based regularization

algorithm, we would select ¢ to minimize
IG(t) — dIl;
(T(®)?

where

T (t) = trace (I — G(GTG + Al(D(t))zf)_lGT).



Numerical Results and Applications 51

Point [ ¢ | [Ga(t) = d|, | lle(t)ll, |logliGa(t) - d], | log [lz(1)], | time (s)
1 1170.6 | 6.9514 84.6676 1.9389 4.4387 7.62
2 1209.6 | 6.2417 87.7257 1.8313 4.4742 7.59
3 1248.6 | 5.6300 90.9315 1.7281 4.5101 12.18
4 1287.5 | 5.1345 94.5645 1.6360 4.5493 12.14
5 1326.5 | 4.6894 101.5635 | 1.5453 4.6207 25.73
6 1334.3 | 4.5516 106.5735 | 1.5155 4.6688 34.8
7 1342.1 | 4.3045 125.0357 | 1.4597 4.8286 71.1
8 1343.7 | 4.2213 135.5584 | 1.4401 4.9094 89.17
9 1345.2 | 4.1149 153.1565 | 1.4146 5.0315 125.41
10 1346.8 | 3.9771 183.5408 | 1.3806 5.2124 193.52

Table 5.2: Result data for deblurring example.

The computation of T () generally involves the construction of a full matrix, which in the
case of large sparse G causes computational difficulties.

The technique for finding an optimal regularization parameter presented throughout
this work, albeit intuitively, is the idea of identifying the “corner” of the L-curve. Hansen
and O’Leary (see [[H]) defined the “corner” as the point on the L-curve with maximum
curvature. The L-curve criterion for selecting the regularization parameter is often more
robust that the GCV method when dealing with correlated errors (see [E]).

5.4.3 Potential future work

As mentioned in the previous section, the LSQR method appears to find a collection
of regularized solutions much faster than our eigenvalue-based regularization algorithm.
However, the LSQR method used did not provide a choice of points to compute. Thus, it
may be worthwhile to first compute a discrete sketch of the L-curve using LSQR, and then
use the eigenvalue-based approach near the corner of the L-curve, in the hopes of finding
a better solution (as the eigenvalue approach, like Tikhonov regularization, can compute
any point on the L-curve).

Furthermore, there may be some value in adding to the algorithm the capability to
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Figure 5.6: Deblurred solution corresponding to t = 1170.6.

allow it to compute the curvature of the L-curve at each point. In theory, the algorithm
could use a binary search, or some other search technique, to find the point of maximum

curvature to a high accuracy.
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Figure 5.7: Deblurred solution corresponding to ¢ = 1248.6.

Figure 5.8: Deblurred solution corresponding to t = 1287.5.
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Figure 5.10: Deblurred solution corresponding to ¢ = 1334.3.
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Figure 5.12: Deblurred solution corresponding to ¢ = 1345.2.
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Appendix A
A Regularization Algorithm

MATLAB code for newlplot.m

function newlplot(G,d,err_est,beta,tlow,tup)

global x counter;

ub = d’*d;

Joub = d™(G*(G\d));
n = size(G,2);
eigenvals = [];

eigenvecs = ;

xvals = [];
normx = [];
resid = [];
tvals = [];
lambdas = [];

counter=0;

%OPTIONS.tol= 100%eps; % need accuracy here  was eps 999999
OPTIONS.tol= le-7; % need accuracy here — was eps 999997
OPTIONS.disp = 0; % no display of the output for eigs.m

OPTIONS.maxit = max(500,n);
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OPTIONS.issym = 1;
starttime = cputime;
Dhandle2 = @Dfun2;
Dhandle = @Dfun;

if nargin > 4,

1b = tlow;

ub = tup;

stepsize = (ub-1b)/5;
else

1b = ub - betak*err_est™2;
%OPTIONS.v0 = ones(n+1,1);
fixflag=1;
% Try initial iteration to see how closely Ib matches desired behaviour
while fixflag,
inittime = cputime;
[va,lambda,flageigs]=eigs(Dhandle,n+1,1,’SA’ ,0PTIONS,G,d,1b);
disp([’Preliminary eigenvalue calculation time: ’,
num2str(cputime-inittime)]) ;
vatemp = vax*x(1/va(l));
xval = vatemp(2:n+1);
curresid = norm(G*xval-d);
if curresid < err_est,
0oldlb = 1b;
%lb = ub - beta*(err_est"2/curresid "2)*(ub-1b);
% Store current norm and residual anyway - Free points!

normx = [norm(xval) normx];

resid = [curresid resid];

xvals = [xval xvals];

[1b tvals];

1b = ub - beta*(err_est/curresid)*(err est™2 -
lambda*(norm(xval) ~"2+1));

tvals
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disp([’Reestimated lower bound from ’,
num2str(oldlb),’ to ’,num2str(lb)]);
else
fixflag =0;
end
OPTIONS.vO = va;
end

eigenvals = [lambda eigenvals];

eigenvecs = [va eigenvecs];
vatemp = vax*x(1/va(1));

xval = vatemp(2:n+1);

xvals = [xval xvals];

normx = [norm(xval) normx];

resid = [norm(G*xval-d) resid];
tvals [1b tvals];

lambdas = [lambda lambdas];
stepsize = (ub-1b)/5;

end

i=1;

Dt = 1b + stepsize;

while 1<10 & stepsize > 1000*eps,
curcounter = counter;
eigtime = cputime;
[va,lambda,flageigs]=eigs(Dhandle,n+1,1,’SA’ ,0PTIONS,G,d,Dt);

eigenvals = [lambda eigenvals];

eigenvecs = [va eigenvecs];

vatemp = vax*x(1/va(l));

xval = vatemp(2:n+1);

if (flageigs==0) & lambda < -OPTIONS.tol & ...
testnorm(norm(xval) ,normx,1.25),

disp([’Got point ’, num2str(i),
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> - Eigs time:’, num2str(cputime-eigtime),
> Dfun calls: ’,num2str(counter-curcounter),
> Dt: ’, num2str(Dt),
> Norm(x): ’, num2str(norm(xval)),
>’ Resid: ’, num2str(norm(G*xval-d))]);
OPTIONS.vO = va;
xvals = [xval xvals];

normx = [norm(xval) normx];

resid = [norm(G*xval-d) resid];
[Dt tvals];

lambdas = [lambda lambdas];

Dt = Dt + stepsize;

tvals

if Dt < ub-.2*stepsize,
i = 1i+1;

else
Dt = Dt - stepsize;

stepsize = stepsize/5;

disp([’Too close to boundary, reduced stepsize to 7,...

num2str(stepsize)]);
Dt = Dt + stepsize;
i = i+1;
end
else
Dt = Dt-stepsize;
stepsize = stepsize/5;
disp([’Reduced stepsize to ’,num2str(stepsize),
’ Eig time: ’, num2str(cputime-eigtime)]);
Dt = Dt + stepsize;
end
end

disp([’Running time: ’, num2str(cputime - starttime)]);
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plot (log(normx),log(resid),’x’);
keyboard;

function val=testnorm(curnorm,oldnorms,threshold)
if size(oldnorms,2) == 0,
val = 1;
else
if curnorm/oldnorms(1) > threshold,
disp([’Previous norm: ’, num2str(oldnorms(1)),
>, Current norm: ’, num2str(curnorm),
> -- t-value probably near corner of L-curve’]);
val = 0;
else
val = 1;
end

end

(* LaTeX generated by highlight 2.0-13, http://www.andre-simon.de/ *)
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Regularization Algorithm

Set tup = dTGthy tlow - tup - /6 ||éd||§

Input:

G e R™xn
deR™
[€all, € Ryt
p>1

Compute eigenpair Ay, v for D(tio ).

Let v/ = Lo

1
Let = be given by v’ = l ]

j :

|Gz —d]|, > [[éall,? —

Set At = Al (Jleg12— A, ||z +1), | |

[[Ga—d[l
tiow = tup — AL

Let s = (tup — tiow)/ 5.

Iteration loop (Pg. B

end
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Iteration Loop

Store current z value.

Let 1 =1+ 1.

l

|Let t =t + s.|

l

Compute eigenpair A1, v for D(t).

l

Let v/ = Lo.
vo

A >

Lett=t—s, s =s/k.

Let s = s/h.
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