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Abstract The Quadratic Assignment Problem, QAP, is arguably the hardest of
the NP-hard problems. One of the main reasons is that it is very diffi-
cult to get good quality bounds for branch and bound algorithms. We
show that many of the bounds that have appeared in the literature
can be ranked and put into a unified Semidefinite Programming, SDP,
framework. This is done using redundant quadratic constraints and La-
grangian relaxation. Thus, the final SDP relaxation ends up being the
strongest.

Keywords: Quadratic Assignment Problem, Semidefinite Programming, Lagrangian
Relaxation, Redundant Constraints.

1. INTRODUCTION

The Quadratic Assignment Problem, QAP, can be considered to be
the hardest of the NP-hard problems. This is an area where dimension
n = 30 is considered to be large scale, and more often than not, is
too hard to solve to optimality. One of the main reasons is that it is
very difficult to get good lower bounds for fathoming partial solutions
in branch and bound algorithms. In this chapter we consider several
different bounding strategies. We show that these can be put into a
Semidefinite Programming, SDP, framework.

Bounds for QAP can be classified into four types: Gilmore-Lawler
type; eigenvalue based; reformulation or linear programming type; and
semidefinite programming based. A connection between the reformula-
tion type bounds and the Gilmore-Lawler type bounds has been made
using Lagrangian relaxation, see [16, 1]. The connection between La-
grangian and semidefinite relaxations is now well known, see e.g. [39,
33, 43]. In this chapter we unify many of the bounds in the literature
using the Lagrangian relaxation approach. Our main theme is to show
that with the correct choice of redundant constraints, we can illustrate
the equivalence of many of the bounds with Lagrangian relaxations and
therefore show in a transparent way how the bounds rank against each
other.

The following (1.1) is the trace (Koopmans-Beckmann [25]) formula-
tion of the QAP (see e.g. [30, 31] for various formulations and many
useful applications), where the variable X is a permutation matrix and
e is the vector of ones. As a model for facility location problems, where
there are n facilities (locations), the matrix B represents distances be-
tween locations, the matrix A represents flows between facilities, and
the matrix C represents fixed costs. We use the fact that assignment
problems can be modelled using permutation matrices, and permutation
matrices are 0,1 matrices with row and column sums 1. This formulation



illustrates the quadratic nature of the objective function.

po= max q(X) (: Trace (AXB — ZC)XT)
AP subject to Xe=ce¢ 1.1
Q YTo o (1.1)

X;; € {0,1} Vi,j.

Rather than restricting the data to being the product of flows and
distances, a more general formulation was given in [27]; see also [1].

1.1 PRELIMINARIES

1.1.1 Notation.

M, the space of t X t real matrices

St the space of t X t symmetric matrices

t(n) %, the dimension of S;

(A, B) Trace AT B, the trace inner product of two matrices, § 1.1.2
Pt or P the cone of positive semidefinite matrices in S

My > M, My, — M, is positive semidefinite

A* the adjoint of the linear operator A, (1.2)

AoB (Ai; Bi;) , the Hadamard (elementwise) product of A and B
AQ B the Kronecker product of A and B

vec (X) the vector formed from the columns of the matrix X
Mat (z) the matrix formed, columnwise, from the vector X
Diag (v) the diagonal matrix formed from the vector v

diag (M) the vector of the diagonal elements of the matrix M
E the matrix of ones

e the vector of ones

u the normalized vector of ones, u = ¢e/||e||

14 the orthogonal matrix to u, so [u | V] is orthogonal

e; the i-th unit vector
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F;; the matrix E;; := eie'f

R(M) the range space of the matrix M
N (M) the null space of the matrix M

£ {X : Xe = XTe = e}, the set of matrices with row and column
sums one

{X : X;; € {0,1}}, the set of (0,1)-matrices

zZ

N {X : X;; > 0}, the set of nonnegative matrices

@) O :={X : XXT = XTX = I}, the set of orthogonal matrices
I

the set of permutation matrices, (1.3)

z,y)_ PmiII'II (z, Py) , the minimal scalar product of two vectors
€
r(A) Ae, the vector of row sums of A
s(A) el Ae, the sum of elements of A
Yx the lifting of the matrix X, with = vec (X),
T
o r 2

YX::[ - :E:I:T]’ zp=1

Gs(Y) Gangster operator, an operator that “shoots” holes or zeros

in the matrix Y, (1.44)
PG(Y) Gangster operator projected onto its range space, (1.47)
Arrow () the Arrow operator, (1.34)
BDiag (-) the Block Diag operator, (1.35)
0°Diag () the Off Diag operator, (1.36)
arrow (-) the arrow operator, (1.38)
bOdiag (-)
o%diag (-) the off diag operator, (1.40)
QAP The trace formulation of QAP, (1.1)

the block diag operator, (1.39)

LAP The linear assignment problem (QAP with no quadratic term)
QAP: an equivalent formulation of QAP, (1.27)
QAP an equivalent formulation of QAP, (1.28)
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1.1.2 Background. We work with n X n real matrices and use
the trace inner product (A, B) = Trace AT B. We also work with several
linear operators and their adjoints. Though linear operators in finite
dimensions are equivalent to matrices, we find that using adjoints, rather
than the transposes of the equivalent matrix representations, simplifies
things in the long run. Note that for a linear operator A, the adjoint
operator, A*, satisfies

(Az,y) = (z, A™y), Ve,y. (1.2)

The bounds we discuss involve relaxations of QAP. The constraints in
QAP can be expressed in several ways, e.g. the permutation matrices
satisfy

N=0NENN=0NN=0NZ=ENZ. (1.3)

Relaxations can be interpreted to mean that we ignore part of the defi-
nitions of permutation matrices. Usually we ignore the hard (or combi-
natorial) parts, e.g. A/ and/or Z.

In [28], the authors present a review of three categories of exist-
ing bounds: first is Gilmore-Lawler (GLB) related bounds [18, 27] and
the authors’ new lower bounds (see also [37]); second is eigenvalue re-
lated bounds [15, 35, 21, 20]; third is reformulation type bounds e.g.
[7, 11, 12, 1]. In [1], the authors present a new lower bound based on a
mixed 0-1 linear formulation which is derived by constructing redundant
quadratic inequalities and then defining additional continuous variables
to replace all product terms. They show that this technique provides a
strengthened version of the majority of lower bounding techniques. The
major tool that they use is Lagrangian relaxation.

A seemingly independent category appears to be bounds based on
semidefinite programming relaxations, e.g. [44]. In this chapter we
show how these SDP type bounds can fit into and unite the eigenvalue
type bounds and, in fact, the other bounds as well. The main theme
of this chapter is to show how the SDP bounds arise using Lagrangian
relaxation and thus provide strengthened versions of the other bounds.
Indeed, we follow a similar approach to [1] in that we use many re-
dundant quadratic constraints. However, the linearization that we do
is different. Rather than defining additional continuous variables to re-
place product terms, we use the hidden (semidefinite) constraint that: a
quadratic function bounded below must be convez (positive semidefinite
Hessian). We see that the addition of the correct redundant constraints
can be a very powerful tool in strengthening relaxations. In fact, in
§3.4.1, we show that our SDP bound is always stronger than the one in

[1].
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Due to the equivalence between Lagrangian and SDP relaxations, we
often do not differentiate between the two in this chapter.

1.1.3 Outline. This chapter is organized as follows. In §2. we
present various eigenvalue bounds and their duality properties. This
includes the hierarchical structure: the basic eigenvalue bound §2.1; the
eigenvalue bounds using transformations (perturbations) §2.2; and the
projected eigenvalue bound 2.3.

We then study the SDP relaxation for QAP in §3.. We derive the re-
laxation studied in [44] using Lagrangian relaxation, i.e. the relaxation
is the Lagrangian dual of the Lagrangian dual of the quadratic model
of the QAP obtained after adding redundant quadratic constraints. We
discuss the geometry of the relaxation in §3.2 including the so-called
gangster operator that results in a simplified relaxation at the end. Con-
cluding remarks are given in §4..

2. EIGENVALUE TYPE BOUNDS

Linear bounds such as the Gilmore-Lawler bound deteriorate quickly
as the dimension increases, e.g. [15, 20]. One of the earliest nonlinear
bounds for QAP was based on eigenvalue techniques. We now look at
several different eigenvalue bounds for QAP in increasing improvement,
viewed using the SDP and Lagrangian relaxations. In §2.1 we look at
the basic eigenvalue bound on the homogeneous QAP. Then §2.2 looks
at improvements to this bound using transformations (perturbations)
of the data. An improved bound is the projected bound in §2.3 which
avoids one class of the perturbations. It is quite interesting to see how
this bound can also be viewed using Lagrangian relaxation and adding
redundant constraints. This view allows one to easily see that one class of
the transformations (perturbations) are not helpful, i.e. the Lagrangian
relaxation finds the best of these transformations automatically, see §2.4.

2.1 HOMOGENEOUS QAP

The first eigenvalue bounds for QAP are based on ignoring all but the
orthogonality constraints, see e.g. [15, 20] and the survey article [30].
This was applied to the homogeneous QAP, i.e. the case where C' = 0.

The bounds were based on a generalization of the eigenvalue problem.
Let D be an n X n symmetric matrix. By abuse of notation, we define
the quadratic function ¢(z) = 27 Dz. Then the Rayleigh Principle yields
the following formulation of the smallest eigenvalue.

Amin(D) = min ¢(z) (=2 De).

zTe=1
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This result can be proved easily using Lagrange multipliers, i.e. the opti-
mum z must be a stationary point of the Lagrangian ¢(z)+ A (1 — :DT:L') .

We can get an equivalent SDP problem using Lagrangian duality and
relaxation. Note that
Amin(4) = min 2T Az
zTe=1
= min m}'fmx 2T Az + A (1 — 2Ty

T

)
> maxminzl Az 4+ A (1 - :r:T:n)
I z

Ty

= max minz! Az + A (1 —z )
AA>0 @

= max minze (4 - Az + X 1.7
AXI>0 @

=  maxXx A= Apin(4). 1.8
AXI>0

The second equality (1.4) follows from the hidden constraint on the in-
ner maximization problem, i.e. if 272 # 1 is chosen then the inner
maximization is +oco. If we add this hidden constraint zlz = 1 to the
minimization problem, then we recover the Rayleigh Principle. The next
inequality (1.5) comes from interchanging min and max. The following
equality (1.6) (and equivalently (1.7)) comes again from a hidden con-
straint, i.e. the quadratic function 7 (A — AI)z must be convex or the
inner minimization is —co. This then yields the equivalence to the small-
est eigenvalue problem (1.8) again. Thus we see the equivalence of this
norm 1 problem with an SDP and with its Lagrangian dual. The trick
to getting the equivalence was to use the hidden constraints.

Note that the above strong duality result still holds if the quadratic
objective function ¢(z) has a linear term. In this case the problem is
called the Trust Region Subproblem, TRS. (See [40, Theorem 5.1] for the
strong duality theorem.) However, strong duality can fail if there are
two constraints, i.e. the so-called CDT problem [13]. Thus we see that
going from one to two constraints, even if both constraints are convex,
can result in a duality gap. Therefore, the following strong duality result
in Theorem 2..2 below is very surprising.

We now relax the QAP to a quadratic problem over orthogonal con-
straints by ignoring both the nonnegativity and row and column sum
constraints in (1.3), i.e. we consider the constraints

xXTx =1, X eM,.

(The set of such X is sometimes known as the Stiefel manifold, e.g.
[14, 41].) Because of the similarity of the orthogonality constraint to
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the norm constraint 72 = 1, the result of this section can be viewed
as a matrix generalization of the strong duality result for the Rayleigh
Principle given above. Thus we consider the homogeneous version of the
QAP and its orthogonal relaxation

QAPo pC := min Trace AXBXT

st. XXT—=r. (1.9)

Though this is a nonconvex problem with many nonconvex constraints,
this problem can be solved efficiently using Lagrange multipliers and
eigenvalues, see e.g. [21], or using the classical Hoffman-Wielandt in-
equality, e.g. [9]. The optimal value is the minimal scalar product of the
eigenvalues of A and B. We include a simple proof for completeness using
Lagrange multipliers. As was done for the ordinary eigenvalue problem
above, we note that Lagrange multipliers can be used in two ways. First,
one can use them in the necessary conditions (Karush-Kuhn-Tucker) for
optimality, i.e. in the stationarity of the Lagrangian. This is how we
apply them now. (The other use is in Lagrangian duality or Lagrangian
relaxation where the Lagrangian is positive semidefinite. This is done
below.) Also, the Lagrange multipliers here are symmetric matrices since
the image of the constraint X7X — I is a symmetric matrix.

Proposition 2..1 Suppose that the orthogonal diagonalizations of A, B
are A = VEVT and B = UAUT, respectively, where the eigenvalues
i X are ordered nonincreasing, and the eigenvalues in A are ordered
nondecreasing. Then the optimal value of QAPo is u@ = Trace TA, and
the optimal solution is obtained using the orthogonal matrices that yield
the diagonalizations, i.e. X* = VUT.

Proof. The constraint G(X) := X XT—T maps M,, to S,,. The Jacobian
of the constraint at X acting on the direction h is J(X)(h) = XhT +
hXT. (This can be found by simply expanding and neglecting the second
order term.) The adjoint of the Jacobian actingon S € §,, is J*(X)(S5) =
25X, since

Trace SJ(X)(h) = Trace kT J*(X)(S).

But J*(X)(S) = 0 implies S = 0, i.e. J* is one-one for all X orthogonal.
Therefore J is onto, i.e. the standard constraint qualification holds at
the optimum. It follows that the necessary conditions for optimality are
that the gradient of the Lagrangian

L(X,8) = Trace AXBXT — Trace S(XXT — I, (1.10)

is 0, i.e.

AXB - SXI=0.
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Therefore,
AXBXxT=5=25T,

i.e. AXBXT is symmetric which means that A and XBX7T commute
and so are mutually diagonalizable by the orthogonal matrix U. There-
fore, we can assume that both A and B are diagonal and we choose X
to be a product of permutations that gives the correct ordering of the
eigenvalues. [ |

The second use of Lagrange multipliers is in forming the Lagrangian
dual. The Lagrangian dual of QAPg is

max n}gi_n Trace AX BXT — Trace S(XX7T - I). (1.11)
5=S

However, there can be a nonzero duality gap for the Lagrangian dual,
see [44, 6] and Example 3..2 below. The inner minimization in the dual

problem (1.11) is an unconstrained quadratic minimization in the vari-
ables vec (X), with Hessian

BA-I®S.

We apply the hidden semidefinite constraint again. This minimization
is unbounded only if the Hessian is not positive semidefinite. In order
to close the duality gap, we need a larger class of quadratic functions.
Here is where our theme comes in, i.e. we find some redundant quadratic
constraints to add. Note that in QAPo the constraints X XT = I and
XTX = I are equivalent. We add the redundant constraints X7X = I
and arrive at

QAPoo p® == min Trace AXBXT (1.12)
st. XXT=1, xTx =1 (1.13)

Using symmetric matrices S and T to relax the constraints X X7 = I
and XTX = I, respectively, we obtain a dual problem

DQAPoo pl > P := max TraceS + TraceT
st. I®S)+(T®I)<(B®A)
S=8T =17,

We now prove the strong duality presented in [6]. We include two proofs.
The first proof is from [6]; it uses the well known strong duality for LAP,
the linear assignment problem; and, it uses the fact that we know the
optimal value from Proposition 2..1. The second proof exploits the LAP
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duality results from the first proof; but, it illustrates where convexity
and complementary slackness arise without using Proposition 2..1.

Theorem 2..2 Strong duality holds for QAPpo and DQAPpp, i.e.
P = p® and both primal and dual are attained.

ProofI. Let A=VXVT B =UAUT, where V and U are orthonormal
matrices whose columns are the eigenvectors of A and B, respectively,
o and A are the corresponding vectors of eigenvalues, and ¥ = diag (o),

A = diag (A). Then for any S and T,
(BoA)-(I85)—(Tel) = (URV) [A®E) - (I®S5) - (Te )] (UTeVT),

where 5 =VIsV, T = UTT_U. Since U ® V is nonsingular, Trace S =
Trace S and Trace T = Trace T, the dual problem DQAPn is equivalent
to

,uD = max TraceS + TraceT

st. A®E)-(I®8)—(T®I) >0 (1.14)
S=8T =17,

However, since A and ¥ are diagonal matrices, (1.14) is equivalent to
the ordinary linear program:

LD max els + eTt
st. XNoj—s;—t;, >0, ¢,5=1,...,n
But LD is the dual of the linear assignment problem:
LP min Z Ai0;Yij

2%

n
s.t. Z?/ijzl, i=1,...,n
j=1

n
Z?/ijzl, j=1,...,n
=1
%; >0, 4,7=1,...,n

Assume without loss of generality that A; < Ay < ... < A,, and
oy > 09 > ...> 0,. Then LP can be interpreted as the problem of
finding a permutation m(:) of {1,...,n} so that 77" ; A\jo,(;) is mini-
mized. But the minimizing permutation is then 7(¢) = 4,7 =1,...,n,
and from Proposition 2..1 the solution value p is exactly p©.
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Proof II. Using the above notation in Proof I, we diagonalize A and
B. We can write (1.12) with diagonal matrices, i.e.

QAPpp  pP := min TraceVEVIXUAUTXT
st. XXT=1, XTx=1.

With
Y =vTXU, (1.15)

we get the equivalent problem

QAPoo ,uo := min TraceXYAYT

st. YYT=71 YTy =1. (1.16)

The Lagrangian for this problem is
L(Y,8,T) = Trace BYAYT — Trace S(YYT — I) — Trace (YTYT - T).
Stationarity for the Lagrangian is

0=VL(Y,S,T)=XYA - SYI - IYT.

As shown in Proof I, the dual program is equivalent to the ordinary lin-
ear program LD which is the dual of the LAP, LP above. Let Y be the
optimal permutation of LP above and let S,T be the optimal solutions
of LD above. Then the constraints of LD guarantee that the Hessian of
the Lagrangian L(Y, S, T) is positive semidefinite, i.e. the Lagrangian is
convex in Y. In addition, complementary slackness between LD and LP
is equivalent to the stationarity condition. Therefore, we have feasibility
(and so complementary slackness), stationarity and convexity of the La-
grangian, i.e. these are the ingredients needed to guarantee optimality.
Therefore Y is optimal for (1.16). After using the transformation (1.15),
we get the optimal X for the original problem. [ |

Remark 2..3 Though we have strong duality between the above dual
pairs, it is not known what happens if a linear term (C # 0) exists. The
second proof of the above theorem could be used to study this case, i.e.
one needs to use the optimal solution found from the dual LD to obtain an
optimal solution for the original problem. To prove optimality one needs
to use the following necessary conditions for sufficiency to hold: primal
feasibility; stationarity of the Lagrangian (equivalently complementary
slackness between the dual and the dual of the dual); and convezity of
the Lagrangian.
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In [42], it is shown that a duality gap can occur, for this orthogonal
relazation, if C' # 0. This becomes clear once one notices that the optimal
value of the dual is independent of the signs of the individual elements of
C. Whereas, in the pure linear case, the optimal value is found using the
sum of the singular values of C, see e.g. [42, Proposition 2.3]. However,
one can close this duality gap, in the pure linear case, by using the
objective function TraceYCXT and relazing the constraints to X XT +
YYT =1, see [42]. Thus, instead of doubling the number of constraints,
we double the number of variables.

2.2 PERTURBATIONS

Though the eigenvalue bound may be better then the linear type
bounds, it still deteriorates very quickly as the dimension grows. One
approach to improve this bound is to perform perturbations (transfor-
mations) on A and B that do not change the objective value but reduce
the influence of the quadratic part of the objective function.

Note that the quadratic part can be bounded using Proposition 2..1,
while the linear part is solved independently as a linear assignment prob-
lem, LAP. We let QAP(A,B,C) denote the optimal objective function
value of the QAP defined by matrices 4, B, C, and we let LAP(C) denote
the optimal value of the LAP defined by C'. The following eigenvalue
related bound was proposed in [15].

QAP(A, B,C) > (\(A),A\(B))_ + LAP(C). (1.17)

To improve the bound in (1.17), transformations are applied to A, B
and C that leave ¢(X) unchanged over II, but move a part of the
quadratic over to the linear part. (The advantage for this is that the
linear part is solved exactly.) Two types of transformations are known
to have this property:

1. adding a constant to A or B either row or column-wise and appro-
priately modifying C;

2. changing the main diagonal of A or B and appropriately modifying

C.

To be more specific, suppose g, f,r, s € R". We define
A(g,7) = A+ geT +egT + diag(r)
B(f,s) := B+ fef +efT + diag(s)

C(g,f,r,8) = C+2AefT +2geTB — 2ngfT — 2zgkefT
k
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+ diag (A)sT + 7 diag (B)T — 2¢sT — 2rfT — rs”.
Then it can easily be verified, see [15, 16], that

Trace (AXBT +C)XT = Trace (A(g,7)XBT(f,s)+C(g, f,7, s))XT
Vg, f,r,se R, VX € II.
(1.18)

Relation (1.18) shows that we may choose any transformation d :=
(g, f,7,s) € R4 to derive bounds for QAP. There are several strategies
for making reasonable choices for the transformations, [15, 35]. However,
we will see below that these transformations actually come about from
adding redundant constraints and taking the Lagrangian dual. There-
fore, the best transformations are automatically chosen when using the
semidefinite relaxation and there is no need for choosing any transfor-
mations.

2.3 PROJECTED EIGENVALUE BOUND

We saw above that we can solve the orthogonal relaxation of the
homogeneous QAP using Lagrangian duality. We can then improve the
resulting bound using perturbations. However, this results in a linear
term. The next obvious question is how to handle this linear term. In
addition, can we improve the bound by including the linear row and
column sum constraints?

Since Lagrangian duality was so successful, it appears to make sense
to use this now. However, The linear constraints have to be handled
in a special way. We cannot just bring them into the Lagrangian with
Lagrange multipliers as they will be ignored, since they have a zero con-
tribution to the Hessian of the Lagrangian, see [33]. There are several
ways to overcome this problem. One way is to eliminate the linear con-
straint. However, one would then drastically change the orthogonality
constraint. Instead, we can use a special substitution and elimination.
Let V be an n x (n — 1) orthogonal matrix with e in the null space of
VT ie.

Vie=0, vIv=1I

Let u := e/||e||. Therefore
P:=[u]|V] (1.19)

is a square orthogonal matrix. Then the following holds, see [21].
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Lemma 2..4 Let P be defined as in (1.19); let X ben X n and Y be
(n—1) x (n—1). Suppose that X andY satisfy

X:P(é 3>PT. (1.20)

Then, the following three statements hold.

1. Xe¢g;
2. XeN=VYVT > —uul;
3. Xc0,<=YcO, .

Conversely, if X € £, then there is a Y such that (1.20) holds.
|

Lemma 2..4 let’s us substitute for X and the linear equality con-
straints without damaging the orthogonality constraints.

¢(X) = Trace[A(vvT + VYVT)BT + CJ(voT + VYTVT)
= Trace {AvaBTv'vT + AvvTBTYVYTVT + AVYVTBTyoT+
AVYVIBTVYTVT 4+ CooT + CVYTVT}
= Trace {(VTAV)Y(VTBTV) + VTCV + 2VTr(A)rT(B)V}Y T+

5AsB_|_ﬂ_l
n? n

Let A:=VTAV, B:=VTBV,C :=VICV and D := 2VTr(A)rT(B)V+
C. We now define the projected problem PQAP.

min Trace AY BTYT 4 Trace D[vvT + VYTVT]
PQAP — 2rs(A)s(B) (1.21)
st. YeO,VYVT > —poT,

i.e. we have a very similar problem to QAP. The variable is still a
square matrix,Y (though one dimension smaller). The constraints are
still orthogonality and nonnegativity, though the nonnegativity is not
just on the matrix variable Y itself.

We have derived the following equivalence and bound from [21].

Theorem 2..5 Let X andY be related by (1.20). Then X solves QAP
<= Y solves PQAP.

Theorem 2..6 Let a symmetric QAP with matrices A, B and C be given.
Then, using the notation from above

QAP(A, B,C) > (M(4),\(B)) + LAP(D) — s(A)s(B)/n’.
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Though there are special cases where one can minimize both the
quadratic and the resulting term together, this is not true in general.
This results in the deterioration of the bound since we are using the
sum of the minimum of two functions rather than the minimum of the
sum. However, this bound is a definite improvement over the eigenvalue
bound without increasing the evaluation cost. We First note that the
constant row and column transformations are not needed.

Proposition 2..7

PB(A,B,C) = PB(A(g,0),B(f,0),C(g,£,0,0)) Vg, feR"

2.4 STRENGTHENED PROJECTED
EIGENVALUE BOUND

The above bound and proposition are proved in [21]. In [3] (numerical
tests in [4]), a strengthened version of the projected eigenvalue bound
is presented. This bound is an attempt to handle both the quadratic
and linear terms together while maintaining convexity, or equivalently,
tractability of the bound. We now look at a Lagrangian dual approach.

As mentioned above, we have to be careful how we handle linear
constraints when taking the Lagrangian dual. Above, we substituted for
X and eliminated the linear constraints. Another, equivalent, approach
is to change the linear constraint to a quadratic constraint, e.g. to
|| XTe —e||> 4+ ||Xe — e||? = 0. This was the approach used in [44]. We
now look at the Lagrangian dual of the problem with orthogonal and
linear constraints, i.e.

QAPg¢ ,uo := min Trace AXBXT —20XxT
st. XTX=I,XXxT=1, (1.22)
Xe=e,XTe=ce.

In the case that C' = 0, if we take the Lagrangian dual of this, then
we get the bound that is equivalent to the projected eigenvalue bound.
However, if we do the elimination or use the form || X7Te — e||? + || X e —
e||?> = 0 for the linear constraints, then the relaxation is equivalent
to the elimination. Therefore, we can add redundant constraints that
involve the linear constraints and not change the bound. For example,
we can add the constraint, X BXTe = X Be. After adding a Lagrange

multiplier, we get Trace evT (XBXT — XB) = 0. This is equivalent to
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the constant row transformation A + ev? which results in a linear term
Trace ev’ X B = Tracer(B)vTX. Similarly, we get the other constant
row and column sum transformations. So we see that the reason for the
lack of improvement is due to the considerations of adding redundant
constraints in the Lagrangian dual. In fact, we can get many other
transformations (perturbations) in this way, though they are no longer
needed.

2.5 TRUST REGION TYPE BOUND

The Rayleigh quotient result for the minimum eigenvalue can be ex-
pressed using inequality, i.e.

Just as above, this can be expressed using strong duality and semidefinite
programming. (In fact, we can add a linear term here as well and get the
TRS.) The extension to matrices for QAP would involve the constraint
XXT < I. A further relaxation of the above orthogonal relaxation is the
trust region relaxation studied in [24, 5],

pT := min Trace AXBXT

st. XXT<1I. (1.23)

Though using the constraints X XT < I in place of X XT = I weakens
the bound on QAP; i.e. uT < u®, the constraints X X7 < I are convex,
and so it is hoped that solving this problem would be useful in obtaining
bounds for QAP and improve eigenvalue bounds in the case that C' # 0.
We first present the solution to the problem.

Theorem 2..8 Let VITAV = X, UTBU = A, where U,V € O, ¥ =
Diag (o), A = Diag(A), 01 > 09> -+ > 0y, A1 > Ag > -+ > Ay Then
for any X with XXT < I we have

Emin{O, XiOn—iv1} < Trace AXBXT < Emax{O, Ao}
The upper bound is attained for X = VDiag(e)UT, where ¢ = 1 if
o;N; > 0, and ¢, = 0 otherwise. The lower bound is attained for X =
VDiag (e)JUT, where ¢, = 1 if o;An11-; < 0, and ¢, = 0 otherwise,
J = (en,en—1,-,€1) and e; is the ith element unit vector.
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As above we use the following problem with the redundant constraint

added.

APT T — min Trace AXBXT
i’
st. XXT<1, XTx<I.

The dual program is

DQAPT pT > pPT .= max —TraceS — TraceT
st. BRA)+IRS)+(T®I)>0
S>0,T>0.

The following strong duality result is presented in [5].

Theorem 2..9 Strong duality holds for QAPT and DQAPT, i.e. uT =

wPT and both primal and dual values are attained.

No numerical tests have yet been done with this relaxation. However,
it is interesting to observe that strong duality holds in this case even
though the objective function is not convex. It is still unknown what
happens if the objective function is not homogeneous.

3. SDP RELAXATIONS

We now present the SDP relaxation of QAP studied in [44]. (The miss-
ing details can be found there.) This relaxation arose by adding many
redundant constraints and taking the Lagrangian dual of the Lagrangian
dual and then removing redundant constraints at the end. Since we add
many redundant constraints at the start, it can be shown that this is the
strongest of the bounds that we have looked at so far. In addition, the
final bound is greatly simplified by the application of a so-called gangster
operator. This illustrates the strength of the Lagrangian dual approach
to finding the SDP relaxation. One can add many redundant constraints
at the start which contribute to the final SDP relaxation. This appears
to create a very large SDP relaxation. However, many linear constraints
can be shown to be redundant in the final relaxation.

Additional strengthening can be obtained by adding linear inequali-
ties. This is discussed below in §3.4.

The QAP can be lifted into a higher dimensional space of symmetric
matrices so as to obtain a tractable (convex) relaxation. (See e.g. [19,
29].) Suppose we represent the QAP using binary vectors z := vec (X).
Then the embedding in S™*+1 is obtained by

Yx = ( VefEJX) ) (20, vec (X)T), 22 =1,
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which results in Yx being a symmetric and positive semidefinite matrix.
We now outline this for the quadratic constraints that arise from the
fact that X is a (0, 1), orthogonal matrix . Let X € II be a permutation
matrix and, again, let 2 = vec (X), 23 = 1, and ¢ = vec (C). Then the
objective function for QAP (by abuse of notation we add z¢) is
¢(X,20) = Trace AXBXT — 20X 7T«

= 2T(B® A)z — 2Tz,

= Tracezz? (B® A) — 2cTzz,

= Trace LgYx,

where we define the (n” + 1) x (n? + 1) matrices

. 0 —vec (C)T
Lo = [ -vec(C) BQ®A ’ (1.24)
and
1 27
Yy = [ i ] . (1.25)

This shows how the objective function of QAP is transformed into a
linear function in the SDP relaxation. Note that if we denote Y = Yy,
then the element Y(; ;) (1) corresponds to z;;zy;.

We already have three constraints on the matrix Y, i.e. it is posi-
tive semidefinite, the top-left component Y3y = 1, and it is rank-one.
The first two constraints are tractable constraints; while the rank-one
constraint is too hard to satisfy and is discarded in the SDP relaxation.

In order to guarantee that the matrix Y, in the case that it is rank
one, arises from a permutation matrix X, we need to add additional con-
straints. For example, the (0,1)-constraints Xizj — X;; = 0 are equivalent
to the restriction that the diagonal of Y is equal to its first row (or col-
umn). This results in the arrow constraint, see (1.38) below. Similarly,
the orthogonality constraint, X X7 = I, XTX = I can be written us-
ing the block diagonal constraint, see (1.39). and the block off diagonal
constraints, see (1.40). The SDP relaxation with these constraints, as

well as the ones arising from the row and column sums equal 1, is given
below in (1.37).

3.1 LAGRANGIAN RELAXATION

Though we can derive the SDP relaxations directly as above, it is
interesting and useful to know that the relaxation comes from the dual
of the (homogenized) Lagrangian dual. Thus SDP relaxation is equiva-
lent to Lagrangian relaxation for an appropriately constrained problem.
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In the process we see several of the interesting operators that arise in
the relaxation and add the gangster operator which results in a great
simplification of the relaxation.

Remark 3..1 Note that it could be important to know where the relaz-
ation comes from in order to recover good approzimate feasible solutions.
More precisely, we can use the optimal solution of the dual of the SDP in
the Lagrangian relazation and then find the optimal matriz X where this
Lagrangian attains its minimum. This X is then a good approzimation
for the original QAP, see e.g. [26, 17].

As we saw above (and also in [33, 44, 6, 5, 2]), adding, possibly redun-
dant, quadratic constraints often tightens the SDP relaxation obtained
through the Lagrangian dual. Using the fact that II can be characterized
as the intersection of (0,1)-matrices with £ and O, i.e.

M=enZ=0n2Z, (1.26)
we can rewrite QAP as

p* = min Trace AXBXT - 20Xx7T
st. XXT=XTX=1
Xe=XTe=e¢
Xizj—Xijzo, Vi, j.

(QAP) (1.27)

We can see that there are a lot of redundant constraints in (QAPFs).
However, as we show below, they are not necessarily redundant in the
SDP relaxations. Additional redundant (but useful in the relaxation)
constraints will be added below, e.g. we can use the fact that the rank-
one matrices formed from the columns of X, i.e. X:iX:r‘g, are diagonal
matrices if ¢ = j; while their diagonals are 0 if ¢ # j. This is equivalent
to the fact that the Hadamard products

(XP)oX =0,

for all permutations P that do not leave any of the columns not per-
muted, i.e. the permutation does not have a 1-cycle. This latter con-
straint implies that there are a lot of zeros in the lifted matrices. This
is essentially the ingredient for the gangster operator.

We now apply the recipe for the relaxations. We have added the,
possibly redundant, constraints to the model. We now continue with
the homogenization and taking Lagrangian duals. After changing the
row and column sum constraints into || Xe — e||2 + || XTe — ¢||> = 0, we
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consider the following equivalent problem to QAP.

po := min Trace AXBXT —20Xx7T
st. XXT=1
(QAPy) XTX =1 (1.28)
|1 Xe - ]2 + | XTe - ]2 = 0
Xizj - X;; =0, Vi,j.

We used the approach that changes the linear constraint to a quadratic
constraint e.g. to || Xe — e||? = 0. This was the approach used in [44].
The result is an SDP relaxation where the Slater constraint qualification
(strict feasibility) fails. (To overcome this problem, in order to success-
fully apply interior point methods, one projects the problem onto the
so-called minimal face of the problem. Following this one can also re-
move redundant constraints. This is outlined below in §3.2.)

> = max min Trace [AXBXT + W(X o X)T
Ho = fic W XXT:XTX:I,ngI{ [ ( )

+uo(|[ Xel” + || XTe]2) — 20(2C + W) XT]
— 2m0uoeT(X + XT)e + 2nugzl}.
(1.29)
Introducing a Lagrange multiplier wq for the constraint on z; and La-
grange multipliers S for XXT = I and S, for XTX = I, we get the
lower bound pgr

Ko 2 pr 2 PR =

max  min{Trace[AXBXT 4 uo(||Xe||® + || X Te|?)
W,5,,50,u0,w0 X, o

+W(X o X)T + wozl + X XT + 5,XTX] (1.30)
— Trace 29(2C + W)XT — 2zoupeT (X + X7T)e
— wg — Trace Sy — Trace S, + 2nugzl}.

Both inequalities can be strict, i.e. there can be duality gaps in each of
the Lagrangian relaxations. Following is an example of a duality gap that
arises from the Lagrangian relaxation of the orthogonality constraint (see

[44]).

Example 3..2 Consider the the pure quadratic, orthogonally constrained

problem
p*:= min Trace AXBXT
s.t. xXxT=1,

10
02) P

(1.81)

with 2 X 2 matrices

o~

Il
TN
o W
I N ]
N—’
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The dual problem is

pP = max —Trace S's
st. (B®A+I®Ss) >0 (1.32)
S =87,

Then u* = 10. But is the dual optimal value uP also 10? We have

B® A=

o O o w
oo oo
O OO
o O O O

Then in order to satisfy dual feasibility, we must have S1; > —3 and
So9 > —6. In order to mazximize the dual, equality must hold. Therefore
—Trace Ss = 9 in the optimum. Thus we have a duality gap for this
simple ezample.

One can also easily construct a counterezample in the pure linear case,

t.e. the case where A = B = 0. The 2 X 2 example with C = (1 1)

provides such an example, see [/2].

In (1.30), we grouped the quadratic, linear, and constant terms together.
We now define z := vec (X), yT = (zo,27) and wT := (wy, vec (W)T)
and get

KR =
max min{y? [Lg + Arrow (w) + B°Diag (Sy) + O°Diag (S,) + D] y

w,Sy,Soug Y
— wo — Trace S, — Trace S, },
(1.33)

where Lg is as above and the linear operators

1, T
= Wo _§w1:n2

Arrow (w) == [ “lw,,: Diag (wym) ] ) (1.34)

Or- |0 0
B"Diag (S) := [ 0 19S5 ] ) (1.35)

o fo o0
O"Diag (S,) := [ 0 S.0I ] ) (1.36)

and T T T T
L n —et Qe n —e* Qe
D= —e®e IQF +[—e®e ERI ]
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There is a hidden semidefinite constraint in (1.33), i.e. the inner min-
imization problem is bounded below only if the Hessian of the quadratic
form is positive semidefinite. In this case the quadratic form has mini-
mum value 0. This yields the following SDP.

max —wg— Trace Sy — Trace S,

(Do) s.t.  Lg + Arrow (w) + B®Diag (S;) + O°Diag (S,) + ueD = 0.

We now obtain our desired SDP relaxation of (Q APp) as the Lagrangian
dual of (Dp). This dual is derived just as in linear programming. The
similarities are very noticeable. We introduce the (n*+1) x (n+1) dual
matrix variable Y > 0 and derive the dual program to the SDP (Do).

min Trace LgY

s.t. bUdiag(Y) =1, o%iag(Y)=1
arrow (Y) = ¢y, TraceDY =0
Y -0,

(SDPo) (1.37)

where the arrow operator, acting on the (n®+1) x (n” 4+ 1) matrix Y, is
the adjoint operator to Arrow (-) and is defined by

arrow (Y') :=diag (Y) — (0, (Y071:n2)T) ) (1.38)

i.e. the arrow constraint guarantees that the diagonal and 0-th row (or
column) are identical.
The block-0-diagonal operator and off-0-diagonal operator acting on

Y are defined by

bOdiag (Y) := > Yk (k) (1.39)
k=1
and "
oodiag (Y) = Z Y'(~,k),(~,k)' (140)
k=1

These are the adjoint operators of B’Diag () and O°Diag(-), respec-
tively. The block-0-diagonal operator guarantees that the sum of the
diagonal blocks equals the identity. The off-0-diagonal operator guar-
antees that the trace of each diagonal block is 1, while the trace of the
off-diagonal blocks is 0. These constraints come from the orthogonality
constraints, X X© = I and XTX = I, respectively.

We have expressed the orthogonality constraints with both X X7 =T
and XTX = I. It is interesting to note that this redundancy adds
extra constraints into the relaxation which are not redundant. These
constraints reduce the size of the feasible set and so tighten the bounds.
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3.2 GEOMETRY OF THE RELAXATION

Proposition 3..3 Suppose that Y is feasible for the SDP relazation
(1.87). ThenY is singular.

Proof. Note that D # 0 and both D,Y are positive semidefinite. There-
fore Y has to be singular in order to satisfy the constraint Trace DY = 0.

Thus the feasible set of the primal problem (SDPp) has no strictly
feasible points. However, it is easy to see that the dual problem (Do),
does satisfy the Slater’s constraint qualification (strict feasibility). This
means that there is no duality gap between this SDP dual pair but,
interior-point algorithms will have difficulty because, as formulated in
this way, we have an ill-posed problem, e.g. the dual may not be at-
tained. (See Example 3..4 below.) Fortuitously, one can use this to
advantage, i.e. when Slater’s condition fails one can project onto the
so-called minimal face of the problem, see [10] and also [34]. Moreover,
in our case here we can do this analytically and gain advantages without
losing anything to numerical instability.

Example 3..4 Consider the SDP pair

min 2X19 max Yo
. (0 y1 O 01
(P) st diag(X) = ( 1 ) (D) st [ 0 g ] : [ 10 ]
X >0

Slater’s condition holds for the dual but not for the primal. The optimal
value for both is 0. The primal is attained, but the dual is not.

3.2.1 The Minimal Face. In order to overcome the above diffi-
culties, we need to explore the geometrical structure of Fp. We project
the feasible set into a smaller dimensional space so that strict feasibility
is satisfied. To do this we need to characterize the so-called minimal face
of the problem, see [10].

The points

Yx = ) (1 vec(X)T), X em

1
vec (X)
are feasible. Moreover, these points are rank-one matrices and are, there-
fore, contained in the set of extreme points of Fp, see e.g. [32]. We need
only consider faces of Fp which contain all of these extreme points. To
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do this, we take a closer look at the assignment (row and column sums)
constraints defined by £. Surprisingly, it is only these constraints that
are needed to define the minimal face. (This is not true in general, see
Example 3..7 below.)

Define the following (n? 4+ 1) x ((» — 1)? 4+ 1) matrix.

= [reegTver
V= , (1.41)
%(e@e)‘V@V

where V' is an n X (n — 1) matrix containing a basis of the orthogonal
complement of e, i.e. VTe = 0. Our choice for V is
v l In—l ]
.— 7T .
—€n-1
The following theorem characterizes the minimal face by finding the
barycenter of the convex hull of the permutation matrices and using
the fact that a face of P can be characterized using the null space (or

range space) of any point in its relative interior. We now see that the
barycenter has a very simple and elegant structure.

Theorem 3..5 Define the barycenter

Y = % > vx. (1.42)

" Xell
Then:
1. Y has a 1 in the (0,0) position and n diagonal n x n blocks with di-
agonal elements 1/n. The first row and column equal the diagonal.

The rest of the matriz is made up of n X n blocks with all elements
equal to 1/(n(n — 1)) except for the diagonal elements which are 0.

1 ‘ %eT

Y =

l6
n

[;—QE ® E} + {m(’”— ~E)® (nI - E)}

2. The rank of Y is given by
rank (Y) = (n — 1)2 + 1.

8. The n® +1 eigenvalues of Y are given in the vector

1
(2’ ez;z—l)anegn—l)T'
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4. The null space and range space are

N(Y) =R(TT) and R(Y) = R(V) (so that N(T) = R(V) ).
u

With the above characterization of the barycenter, we can find the

minimal face of P that contains the feasible set of the relaxation SDP.
We let t(n) := @

Corollary 3..6 The dimension of the minimal face is t((n — 1)% + 1).
Moreover, the minimal face can be ezpressed as VS(,,_1)241 VT,

The above characterization of the barycenter yields a characteriza-
tion of the minimal face. At first glance it appears that there would be
a simpler proof for this characterization, the proof would use only the
row and column sums constraints. Finding the barycenter is the key in
exploiting the geometrical structure of a given problem with an assign-
ment structure. However, it is not always true that the other constraints
in the relaxation are redundant, as the following shows.

Example 3..7 Consider the constraints

T =1
z; +eo tez tzy =1
L1, L2, L3, Lq 2 0

The only solution is (1,0,0,0). Hence the barycenter of the relazation is
the set with only a rank one matriz in it. However, the null space of the
above system has dimension 3. Thus the projection using the null space
yields a minimal face with matrices of dimension greater than 1.

3.2.2 The Projected SDP Relaxation. In Theorem 3..5, we
presented explicit expressions for the range and null space of the barycen-
ter, denoted Y. It is well known, see e.g. [8], that the faces of the positive
semidefinite cone are characterized by the nullspace of points in their rel-
ative interior, i.e. K is a face if

K={X=0: N(X)>S}={X>0: R(X)C 5},
and

relint K = {X > 0: N(X)=S}={X>0: R(X)=S5"},
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where S is a given subspace. In particular, if X € relint K, the matrix

Vis n x k, and R(V) = R(X), then
K=VPVT.

Therefore, using V in Theorem 3..5, we can project the SDP relaxation
(SDPp) onto the minimal face. The projected problem is

pr1:= min Trace (VTLoV)R
(QAPr)) s.t. bdiag(VRVT)=1, o%iag(VRVT)=1
arrow (VRV ) =¢;, R > 0.
(1.43)
Note that the constraint Trace (VI DV)R = 0 can be dropped since it
is always satisfied, i.e. DV = 0.

By construction, this program satisfies the generalized Slater con-
straint qualification for both primal and dual. Therefore there will be
no duality gap, the optimal solutions are attained for both primal and
dual, and both the primal and dual optimal solution sets are bounded.

3.3 THE GANGSTER OPERATOR

The feasible set of the SDP relaxation is convex but not polyhedral.
It contains the set of matrices of the form Yx corresponding to the
permutation matrices X € II. But the SDP relaxations, discussed above,
can contain many points that are not in the affine hull of these Y.
In particular, it can contain matrices with nonzeros in positions that
are zero in the affine hull of the Yx. We can therefore strengthen the
relaxation by adding constraints corresponding to these zeros.

Note that the barycenter Y is in the relative interior of the feasible
set. Therefore the null space of Y determines the dimension of the
minimal face which contains the feasible set. However, the dimension of
the feasible set can be (and is) smaller. We now take a closer look at
the structure of Y to determine the 0 entries. (These entries are easy
to handle with a linear operator constraint.) The relaxation is obtained
from

_ 1 T
Yoo = (vec(X)>(1 vee X))
1
X:l
— X2 [ xT XxT : x7)

X:n
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which contains the n2 blocks
(X XL).
We then have
diag (X;X%) = X,;0X,; =0, if i # j,
and
X;0X;, =0, ifi#£7j,

i.e. the diagonal of the off-diagonal blocks are identically zero and the
off-diagonal of the diagonal blocks are identically zero. These are exactly
the zeros of the barycenter Y.

The above description defines the so-called gangster operator, i.e. for
Jc{(,j):1<4j<n?+1}. Gs: S™*H1 5 87+ is called the
Gangster operator if

Y, if (i,5)eJ

(G7(Y))is ::{ 0  otherwise. (1.44)

Denote the subspace of matrices
ST ={X eS8t X;; =0 if (i,j)¢J}.
Then the range and null space of G satisfy
R(Gs) =S’

and

N(G-1) =877,

where —J denotes the complement of the set J. Let J := {(¢,7) : Yij =
0}, be the zeros found above using the Hadamard product; we have

Gs(Y) =0. (1.45)

Thus the gangster operator, acting on a matrix Y, shoots holes (zeros)
through the matrix Y in the positions where Y is not zero. For any
permutation matrix X € II, the matrix Yx has all its entries either 0

or 1; and Y is just a convex combination of all these matrices Yx for
X € II. Hence, from (1.45), we have

Gs(Yx) =0, forall X €Il

Therefore, we can further tighten our relaxation by adding the con-
straint

Gs(Y) =0. (1.46)
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Note that the adjoint equation
Trace (G7(Z2)Y) = Trace (ZGs(Y)),
implies that the gangster operator is self-adjoint, i.e.
Gi=0y.

3.3.1 The Gangster Operator and Redundant Constraints.
The addition of the gangster operator allows makes many constraints
redundant. Define the subset J of J, of indices of Y, (a union of two
sets)

i=p-ln+q¢ji=@E-1)n+rq#r} U
{(Z,])Z: (p_l)n—l_qa]: (’l"— 1)n+ q,p?é”', (p,r#n),
((T,p),(p,’l‘)?é (TL— 2,71— 1)a(n_ 1an_ 2))}

These are the indices for the 0 elements of the barycenter. (We do not
include (up to symmetry) the off-diagonal block (n —2,n —1) or the last
column of off-diagonal blocks.) After removing redundant constraints,
this results in the following simple projected relaxation.

iR ;= min Trace (VTLQV)R
(QAPg2) st. G7(VRVT) = Eyo (1.47)
R > 0.

The dimension of the range space is determined by the cardinality of the
set J, i.e. there are n® — 2n? 4+ 1 constraints.
The dual problem is

HR2 = maX TYOO R
st. VI(Lg+G3(Y))V = 0.

Note R(G}) = R(Gs) = S7. The dual problem can be expressed as
follows

HR2 = maX TYOO R
st. VI(Lo+Y)V »0
Y es’.
3.4 INEQUALITY CONSTRAINTS

An important technique that is used to further tighten the derived
relaxations is to add generic linear inequality constraints. These con-
straints come from the relaxation of the (0,1)-constraints of the original
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problem. For Y = Yx, with X € II, the simplest inequalities are of the
type
Y i),y 2 0, since zjzr > 0,

see e.g. [23, 38]. In addition, in [22] the authors show that the so
called triangle inequalities of the general integer quadratic programming
problem in the (-1,4+1)-model are also generic inequalities for the (0,1)-
formulation. The basic relaxation (Q APgr;) can use both nonnegativity
and nonpositivity constraints to approximate the gangster operator, e.g.

G;(VRVT) <o. (1.48)

The advantage of this formulation is that the number of inequalities can
be adapted so that the model is not too large. The larger the model is
the better it approximates the original gangster operator.

Further strengthening can be done using a second lifting, see [2].

3.4.1 A Comparison with Linear Relaxations. We now look
at how our relaxations of QAP compare to relaxations based on linear
programming. Adams and Johnson [1] derive a linear relaxation provid-
ing bounds which are at least as good as other lower bounds based on
linear relaxations or reformulations of QAP. Using our notation, their
continuous linear program can be written as

(QAPcLp) perp :=min{Trace LZ : Z € Fcrp} (1.49)

where the feasible set is
Forr =1{ ZeN; Zuj ity = Zka) (ig)y L <65,k 1<ni <k j#

Z (k1) (kD) = ZZkl kp) = 1;

EZ,J k1) = D) (k1) L < Tk U<, jF#

£k

> ZG gyt = Dty 1< 4R I<n, i£k D

i#l
We now compare the feasible sets of relaxations (Q APgs) and (QAPcLp).
It is easy to see that the elements of Z which are not considered in Fgpp
are just the elements covered by the gangster operator, i.e. for which
Gs(Y) = 0. In (QAPgrs3) the gangster operator is replaced by nonneg-
ative and nonpositive constraints. The linear constraints in Forp are
just the lifted assignment constraints, but they are taken care of by the
projection and the arrow operator in (QAPgr3). The nonnegativity of
the elements is enforced in both feasible sets. Hence the only difference
is that we impose the additional constraint Y € P.
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4. CONCLUSION

In this chapter we have derived and ranked many of the known bounds
for QAP. The comparisons between the bounds was done using La-
grangian relaxation. Bounds were derived by using relaxed quadratic
models of QAP and taking the Lagrangian relaxation. Thus, stronger
quadratic models resulted in stronger bounds. The strongest of these
bounds was the SDP relaxation studied in §3.2.2. This relaxation had
a surprisingly simple form after the addition of the gangster operator.
A primal-dual interior-point algorithm that solves this SDP relaxation,
along with numerical tests, can be found in [44]. Further testing for
these bounds as well as new bounds based on trust region methods is
being done in [36].
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