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Abstract

The general quadratically constrained quadratic program (QQP) is an important
modelling tool for many diverse problems. The QQP is in general NP hard, and nu-
merically intractable. Lagrangian relaxations often provide good approximate solutions
to these hard problems. Such relaxations are equivalent to semidefinite programming
(SDP) relaxations and can be solved efficiently.

For several special cases of QQP, the Lagrangian relaxation provides the exact
optimal value. This means that there is a zero duality gap and the problem is tractable.
It is important to know for which cases this is true, since they can then be used as
subproblems to improve Lagrangian relaxation for intractable QQPs.
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In this paper we study the special QQP with orthogonal (matrix) constraints
XXT = 1. If C = 0, the zero duality gap result holds if the redundant orthogo-
nal constraints X' X = I are added. We show that this is not true in the general
case. However, we show how to close the duality gap in the pure linear case by adding
variables in addition to constraints.

Keywords Quadratic Objective, Orthogonal Constraints, Semidefinite Programming,
Lagrangian Relaxation, Redundant Constraints, Strong Duality, Procrustes Problem.

1 Introduction
We study the quadratic (matrix) program with orthogonal constraints

©.— min Trace AXBXT —20XT
QQPo g st. XXT=1 (1.1)

where A, B are n X n symmetric matrices and C is n X n. This constraint set is often called
the Stiefel manifold, [13]. If the objective function is written as ||AY — X B||*, with both
X,Y orthogonal, then this is the orthogonal Procrustes Problem. (See e.g. [11, 5, 13] for
references, theory, and applications.)

The special case that C = 0 in (1.1), the homogeneous case, is studied in [2]. These
problems arise as orthogonal relaxations of the quadratic assignment and graph partitioning
problems, e.g. [6, 1, 15]. It is shown that the resulting, well-known, eigenvalue bounds for
these problems can be obtained from the Lagrangian dual of the orthogonally constrained
relaxations, but only if the redundant constraint XT X = I is explicitly added to the orthog-
onality constraint X X7 = I.

In this paper we show that this strong duality result does not hold if C' # 0. Nor does
it hold for the pure linear case. We do this with a simple counterexample in the purely
linear case using the property that the dual is independent of the signs of the individual
components of C, see Lemma 2.4; while the optimal value of the primal is based on the sum
of the singular values of C, see Example 3.2. We then show how to close the duality gap
in the pure linear case by adding variables in addition to adding constraints. (See Theorem
2.6.)

We still leave open the question: what modifications are required to the constraints
and/or variables to close the duality gap for the general case. One purpose of the paper is to
present an approach that might lead to closing this duality gap. This approach is outlined
in the second proof of Theorem 2.2.

The paper is organized as follows. We complete this section with notation in §1.1. In §2,
we derive optimality conditions as well as the dual of (1.1). We do this in stages starting
with the homogeneous case in §2.1 and proceeding to the general case in §2.2. We specialize
this to the linear case in §2.3, where we also show how to close the duality gap. The main
results are: in §2.1 we present a new proof of strong duality for the homogeneous case; in
§2.3 we also show how to close the duality gap in the pure linear case; and in §3 we present
the examples with the duality gaps. We summarize our results in §4.



1.1 Notation

We work in the space of real n x n matrices, M,,, with the trace inner product, (M, N) =
Trace MT N. The subspace of symmetric matrices is denoted S,,. This space is equipped with
the Lowner partial order, i.e. A > B denotes A — B is positive semidefinite.

We will use several linear operators, e.g. vec (X) denotes the vector formed (columnwise)
from the matrix X. The adjoint of a linear operator A is denoted A*, i.e. the adjoint satisfies

(Az,y) = (z, A'y), Vaz,y.

2 Lagrangian Duals

The simplest example of a quadratic constrained quadratic problem is the eigenvalue prob-
lem. Let A be an n X n symmetric matrix. Then the Rayleigh Principle yields the following
formulation of the smallest eigenvalue.

Ain(4) = min g(z) (= 27 Ax).
ztzr=1
This result can be proved easily using Lagrange multipliers, i.e. the optimum = must be a
stationary point of the Lagrangian ¢(z)+ A (1 — :ch) . We can get an equivalent semidefinite
programming (SDP) problem using Lagrangian duality and relaxation. Note that

Amin(A) = min max 2T Az + )\ (1 — CL’TJ}) (2.1)
> max minz? Az + ) (1 — .TL‘TSE) (2.2)
= max min :z;T(A — Az + A (2.3)
ANZ0 =
= max A (2.4)
A0
= Amin(4). (2.5)

This follows from the hidden constraints, i.e. the inner problems have hidden constraints.
For example, A — AI > 0 arises since a homogeneous quadratic function in bounded below
if and only if the Hessian is positive semidefinite.

Note that the above strong duality result still holds if the quadratic objective function
g(z) has a linear term. This case is called the Trust Region Subproblem, TRS. (See [12,
Theorem 5.1] for the strong duality theorem.) This problem is also equivalent to a max-
min eigenvalue problem, see [10], which is another way to see that the problem is tractable.
However, strong duality can fail if there are two constraints, i.e. the so-called CDT problem
[4]. Thus we see that going from one to two constraints, even if both constraints are convex,
can result in a duality gap. However, we will see below (Theorem 2.2) that strong duality
n+1

5 ) = n(n + 1)/2 constraints.

will hold for a nonconvex problem with (



2.1 Lagrangian Duals; the Homogeneous Case

We now consider our more general problem (1.1), but with C' = 0. Because of the similarity
of the orthogonality constraint to the norm constraint 7z = 1, the result of this section can
be viewed as a matrix generalization of the strong duality result for the Rayleigh Principle
given above.

9.— min Trace AXBXT
QQPHo . st. XXT=1. (2.6)

Though this is a nonconvex problem with many nonconvex constraints, this problem can
be solved efficiently using Lagrange multipliers and eigenvalues, see e.g. [7], or using the
classical Hoffman-Wielandt inequality, e.g. [3]. The optimal value is the so-called minimal
scalar product of the eigenvalues of A and B. We include a simple proof for completeness
using Lagrange multipliers. As was done for the ordinary eigenvalue problem above, we note
that Lagrange multipliers can be used in two ways. First, one can use them in the necessary
conditions (Karush-Kuhn-Tucker) for optimality, i.e. in the stationarity of the Lagrangian.
This is how we apply them now. (The other use is in Lagrangian duality or Lagrangian
relaxation where the Lagrangian is positive semidefinite. This is done below.) Also, the
Lagrange multipliers here are symmetric matrices since the image of the constraint X X7 — I
i1s a symmetric matrix.

Proposition 2.1 Suppose that the orthogonal diagonalizations of A, B are A =VIVT and
B = UAUT, respectively, where the eigenvalues in ¥ are in nonincreasing order, and the
eigenvalues in A are in nondecreasing order. Then the optimal value of QQPHp is u% =
Trace XA, and the optimal solution is obtained using the orthogonal matrices that yield the
diagonalizations, i.e. X* = VUT.

Proof. The constraint G(X) := XXT — I maps M,, to S,,. The Jacobian of the constraint
at X acting on the direction h is J(X)(h) = XhT + hXT. (This can be found by simple

expansion and neglecting the second order term.) The adjoint of the Jacobian acting on

SeS,is J(X)(S) =25X, since
Trace SJ(X)(h) = Trace hTJ*(X)(S).

But J*(X)(S) = 0 implies S = 0, i.e. J* is one-one for all X orthogonal. Therefore .J is
onto, i.e. the standard constraint qualification holds at the optimum. It follows that the
necessary conditions for optimality are that the gradient of the Lagrangian

L(X,S) = Trace AXBXT — Trace S(XXT — I), (2.7)
1s 0, 1.e.
AXB - SXI=0.

Therefore,
AXBXT =6 =297,

i.e. AXBXT is symmetric, which means that A and X BX7T commute and so are mutually
diagonalizable by the orthogonal matrix U. Therefore, we can assume that both A and B are



diagonal and we choose X to be a product of permutations that gives the correct ordering
of the eigenvalues. [ |

The second use of Lagrange multipliers is in forming the Lagrangian dual. The La-

grangian dual of QQPHp i1s

max Ir}(in Trace AXBX" — Trace S(XXT — I). (2.8)
S=S

However, there can be a nonzero duality gap for the Lagrangian dual, see [16] and Example
3.1 below. The inner minimization in the dual problem (2.8) is an unconstrained quadratic
minimization in the variables # = vec (X)), with Hessian

BRA-1®S.

We apply the hidden semidefinite constraint again. This minimization is unbounded only
if the Hessian is not positive semidefinite. To close the duality gap, we need a larger class
of quadratic functions. Note that in QQPHe the constraints XX = I and XTX = I are
equivalent. We add the redundant constraints X7 X = I and arrive at

©% = min Trace AXBXT

QQPHoo st. XXT=1I XTX=1I

(2.9)

We can use symmetric matrices S and T to relax the constraints X X7 = I and XX = I,
respectively. We obtain a dual problem

,LL](?I > z/g := max TraceS 4+ TraceT
DQQPHpo st. I®S)+(Tel) 2 (B®A)
S = ST, T=T1T,.

We now prove the strong duality presented in [2] for the case C = 0. We include two
proofs. The first proof is from [2]. It uses the well known strong duality for LAP, the linear
assignment problem, and the known optimal value from Proposition 2.1. The second proof
exploits the LAP duality results from the first proof. We include this second proof because
it illustrates where convexity and complementary slackness arise without using Proposition
2.1. If we hope to obtain a strong duality result for the general case, then these are the
sufficient optimality conditions that we need to satisfy, i.e. we have the curious statement:
these are the necessary sufficient optimality conditions. We now present the strong duality
theorem.

Theorem 2.2 Strong duality holds for QQPHeo and DQQPHoee, i.e. u% = v9 and both

primal and dual are attained.

Proof I. Let A = VXV, B = UAU”, where V and U are orthonormal matrices whose
columus are the eigenvectors of A and B, respectively, 0 and A are the corresponding vectors

of eigenvalues, and ¥ = diag (¢), A = diag (A). Then for any S and T,
(BRA) —(I8)—(Te)=UaV)[(A22)-(Ic5)—(T®I)] UTev?h),

5



where S = VISV, T = UTTU. Since U @ V is nonsingular, Trace S = Trace S and

Trace T = Trace T, the dual problem DQQPpe is equivalent to

1/2 = max TraceS + TraceT
st AE)-I®S)—(T®I) =0
S=8T T=17,

(2.10)

However, since A and ¥ are diagonal matrices, (2.10) is equivalent to the ordinary linear

prograr:

LD max els4elt

s.t. )\,'O'j—Sj—t,'ZO, i,jzl,...,n.

But LD is the dual of the linear assignment problem:

LP min Z/\,’O‘jy,'j
g
s.t. Zyij: 1, 1=1,....n
j=1

Zyij:]-a j:]-a"'7n
=1

y,'jZO, i,j:1,...,n.

Assume without loss of generality that \y < Ay < ... < A,,and 0y > 09 > ... > 0,. Then
LP can be interpreted as the problem of finding a permutation n(-) of {1,...,n} so that
Y i1 AiOx(iy is minimized. But the minimizing permutation is then 7 (i) =1, ¢ = 1,...,n,

and from Proposition 2.1 the solution value v/§ is exactly u9.

Proof II. Using the above notation in Proof I, we diagonalize A and B. We can write

(2.9) with diagonal matrices, i.e.

O .— min Trace VIVTXUAUTXT

QQPoo g st. XXT=1 XTX=1.
With
Y =VTXU,
we get the equivalent problem
QAPoo $® := min Trace DY AYT

st. YYT =1, YTY =1.
The Lagrangian for this problem is

L(Y,8,T) = Trace Y AYT — Trace S(YYT — I) — Trace (YTY" — T)).

6
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Stationarity for the Lagrangian is
0=VLY,S,\T)=XYA-SYI - IYT. (2.13)

Similar to the Proof I, the dual program is equivalent to the ordinary linear program LD,
which is the dual of the LAP, LP above. Let Y be the optimal permutation of LP above
and let S, T be the optimal solutions of LD above. Then the constraints of LD guarantee
that the Hessian of the Lagrangian L(Y,S,T') is positive semidefinite, i.e. the Lagrangian is
convex in Y. In addition, complementary slackness between LD and LP can be written as:

vij (MiiZj; — Sj; — Tii) = 0, (2.14)
while stationarity can be rewritten as
0=Y"SYA-YTSY - T. (2.15)

Since Y is a permutation, these are equivalent statements. Therefore, we have the three
sufficient conditions for optimality:

primal feasibility (and so complementary slackness);
stationarity of the Lagrangian; (2.16)
convexity of the Lagrangian.

Therefore Y is optimal for (2.12). After using the transformation (2.11), we get the optimal
X for the original problem. [ |

Remark 2.3 We first observe that the optimal values ;%) = v§) = Trace S = Trace T, i.e.
the sum of traces of the Lagrange multipliers. This type of relationship appears to be common
in these types of problems, e.q. see the eigenvalue problem above and also the trust region
subproblem.

The addition of the redundant constraints closes the duality gap because the resulting
equivalent linear program LD has a basic feasible solution, which yields an optimal solution
for the original problem. The addition of the redundant constraints X*X = I results in
the extra linear equality constraints needed in LD to ensure that the extreme points are
permutation matrices.

2.2 Lagrangian Dual; the General Case

We now look at the general case where C' # 0. Note that, as we saw above, we can assume
that A, B are both diagonal if desired, i.e. once we solve the problem in the diagonalized
case then we can recover the original solution using (2.11). We now derive the Lagrangian
dual for the general nonhomogeneous case.
We begin with the homogenized version of (2.9) above, i.e. we homogenize the linear
part.
p© := min Trace AXBXT —22,CXT
QAPoo st. XXT =1 XTX =1 (2.17)

2 _
x5 =1.

7



This does not change the problem or its Lagrangian dual. The Lagrangian is
L(X,S,T,w) = Trace AXBX" — 22,CXT — S(XXT —I) - T(X"X — I) — w(zl - 1),

where we have introduced a Lagrange multiplier w for the constraint on zy and Lagrange
multipliers S for XX = I and T for XTX = I. Note that the gradient of the Lagrangian
set to zero is equivalent to

0=AXB —Czy—SX — XT, w=TraceCX". (2.18)
We get the Lagrangian dual lower bound v/©.

,uo > 9 =
maxmin {Trace [AXBXT —SXXT _TXTX — warg]
S Tw X,z0 (2.19)
— Trace £o2C X"

+ Trace S + Trace T + w}.

With 2 = vec(X), y = <ZO> we get

V9 =

maxmin {y” [Lo — B®Diag (S) — O°Diag (T) — wEw] y (2.20)
STw vy .
+Trace § + Trace T 4+ w},

where we define the (n? + 1) x (r? + 1) matrices

o 0 —vec (C)T 110
Lq:= —vec(C) B®A }’ Eoo = [0 0}’ (2.21)

and the linear operators

BODiag (5) := [ 8 I<§>S ] , (2.22)
0°Diag (T) := {8 T%I}. (2.23)

There is a hidden semidefinite constraint in (2.20), i.e. the inner minimization problem
is bounded below only if the Hessian of the quadratic form is positive semidefinite. In this
case the quadratic form has minimum value 0. This yields the following SDP.

(Do) max TraceS + TraceT 4+ w
¢ st. Lo —B°Diag(S)— 0°Diag (T) — wEg = 0.

Equivalently, we get

max TraceS + TraceT + w

(Do) s.t. B9Diag (S) 4+ 0°Diag (T) + wEgo =< Lg,



where we recall that we have assumed, without loss of generality, that Lg is an arrow matriz,
ie. B® A is diagonal. With ¢ = vec(C), we can write the constraint in matrix form as

- —c ) 2.24

¢ BoA-IaS-Tol|=" (2.24)

We now obtain our desired SDP relaxation of (Q@Q Poo) as the Lagrangian dual of (Do ).

We introduce the (n?+1) X (r?+ 1) dual matrix variable Y = 0 and derive the dual program
to the SDP (Dop).

min Trace LgY

s.t. bOdiag (V) =1, o°diag(Y) =1
Yoo =1,
Y » 0,

(SDPo) (2.25)

The block-0-diagonal operator and off-0-diagonal operator acting on Y are defined by

bOdiag (V) := 3  Yiko). ko) (2.26)
k=1
and .
oOdiag (Y) 1= > Y.y, (h)- (2.27)
k=1

These are the adjoint operators of B°Diag (-) and O°Diag (-), respectively. The block-0-
diagonal operator guarantees that the sum of the diagonal blocks equals the identity. The
off-0-diagonal operator guarantees that the trace of each diagonal block is 1, while the trace
of the off-diagonal blocks is 0. These constraints come from the orthogonality constraints,

XXT =T and XTX = I, respectively.

2.2.1 Schur Complement

The constraints in (2.24) can be rewritten using the Shur complement. First, we assume
that the optimal w is known and fixed. From (2.18), we know that w = Trace CXT. That
—w > 0 holds by the semidefiniteness constraint in (2.24) and since ¢ # 0. Therefore,

(2.24) holds & (BRA-I®S-TQI)+ %ccT =0 (2.28)
& I®S—|—T®IjB®A—I—%cchB®A, (2.29)

since w < 0. We immediately have that the diagonal elements satisfy
Sii + Tj; < AuBj; — ﬁk(a‘—l)nﬂ'lz, Vi, J. (2.30)

Moreover, since the objective function of the dual involves only the traces of S,T, we can
restrict ourselves to diagonal matrices 5,7. What is remarkable about these equations is
that they are independent of the sign of the individual components of C. This is a strong
hint on how to obtain an example with a duality gap, see Example 3.2.

9



Lemma 2.4 Suppose that A,B € S, are diagonal and ¢ € R . Then the optimal value of
the dual program Do is independent of the signs of the elements ¢; of c.

Proof. Let

w

f:z{S,Tesn:(B®A—I®S—T®f)+iccTt0}'

Suppose that (S,7) € F. Then (2.30) holds, i.e. the diagonal values are independent of
the signs of the elements of ¢. Since the objective function depends only on the diagonals of
S, T, we can assume that both these matrices are diagonal. [ |

2.3 The Linear Case

We now assume that A = B = 0.

QQPLo pS := min Trace —2CXT

s.t. XXT =1 (2.31)

Just as in the homogeneous (quadratic) case, we can characterize the optimal solution, except
that the solution uses singular values rather than eigenvalues.

Proposition 2.5 Suppose we have the singular value decomposition C = USVT, where the

singular values, o;, are in the diagonal matriz X, and U,V are orthogonal matrices. Then the

optimal value of QQPLe is u® = —2Trace® = —2 5 a;. The optimal solution is obtained
i=1

using the orthogonal matrices that yield the decomposition, i.e. X* = UVT.

Proof. The decomposition implies
Trace CXT = Trace SV XTU.

Since X, U,V are orthogonal, the diagonal (in fact, all) elements of VI XTU are < 1. There-
fore the minimum is attained with VI XTU = I. [ |

From (2.28), the dual De in this purely linear case can be written as follows. Recall that
we can assume S, T are diagonal.

LD max els4elt 4w

s.t. Sj—l-tl' S —L|C(j_1)n+l'|2, i,j: 1,...,n.
|w]
Again we notice that the dual is independent of the sign of the individual elements of C.
This results in a duality gap, unlike the homogeneous case, see Example 3.2.

However, we can solve this pure linear case efficiently using singular values, i.e. it is a
tractable problem. In [14, 9], it was conjectured that quadratic problems that are tractable
can be solved with Lagrangian relaxation if appropriate redundant constraints are chosen.
We now see that this holds here if we add variables as well as constraints.

10



Theorem 2.6 Strong duality holds between the pure linear case and its Lagrangian dual if
the following equivalent problem for the sum of the singular values is used.

v, 0i(C) = max 2Trace YO XT

T _ T —

(SVD) st. WWH =1, W'W =1, (2.32)
W= XY

|V Z |

Proof. The singular values of C are the largest n eigenvalues of the symmetric matrix
T

g C(; . (This can be seen from the variational characterization of the singular values,

e.g. [8].) Therefore, using our results in Proposition 2.1 above, we get

" I 0 XY 0 CT XT yr
> or,0i(C) = max Trace{o 0]{‘/ Z}[C’ 0 }[YT ZT]

(2.33)
s.t. WWT =1, W'W =1,
where
X Y
W—[V Z]' (2.34)

We know that there is no duality gap for this program and its Lagrangian dual. And, the
objective function for this program can be simplified to yield the objective function of the
theorem. [ |

3 Examples with Duality Gaps

We now present two examples of problems with duality gaps. First we present the duality
gap for the homogeneous case, C' = 0, before adding the redundant orthogonal constraints.

(See [16].)
Example 3.1 Consider the the pure quadratic, orthogonally constrained problem

p*:= min Trace AXBXT

s.t. XXT =1, (3.1)
with 2 X 2 matrices
10 3 0
() ()
The dual problem is
pP = max —Trace S
st. (BRA+I®S)=0 (3.2)
S =57,

11



Then p* = 10. But the dual optimal value uP < 10, i.e. we have

B® A=

OO O W
O O OO
O = O O
co O OO

and for dual feasibility, we must have S11 > —3 and S99 > —6. To mazimize the dual,
equality must hold. Therefore —Trace S = 9.

The next example is for the pure linear case after adding the redundant orthogonal con-
straints.

Example 3.2 This ezample uses A= B = 0.

@* = min Trace — 20X 7T

st XXT =1 XTX=1, (3.3)
with 2 X 2 matriz
C 1 -1
1 1)
We then solve this example with the sign changed on -1, i.e.
11
o-(11)
The dual problem in the second case is
(Do) max TraceS + TraceT 4+ w
©) st BODiag(S)+ 0°Diag (T) + wEo = Lg,
where
0 -1 -1 -1 -1
-1
Lg = -1 . (3.4)
- 0
-1

We saw that the dual optimal value does not change, see Lemma 2.4. But here, the primal
does, since the sum of the singular values of the two matrices are: 2v/2 in the first instance
and just 2 for the symmetric C, i.e. the optimal values are —4(\/2) and —4, respectively.
Therefore, we have a duality gap in the second case.

4 Conclusion

In this note we have studied Lagrangian (and so SDP) duality gaps for problems with matrix
orthogonality constraints X X7 = I. We saw that in the homogeneous case we can have a

12



duality gap, which is closed if we double the number of constraints by adding the redundant
constraint X7 X = I to the primal problem before taking the Lagrangian dual.

We then presented a counterexample to show that one can still have a nonzero duality
gap for the general inhomogeneous problem. The duality gap can occur even for the pure
linear problem, even though the pure linear problem can be solved efficiently using singular
values. The duality gap can be seen to occur because the sign of an individual element of C
does not change the dual problem, see Lemma 2.4.

We then saw that we can close the duality gap in the pure linear case if we replace the
objective with the homogenized form YC X7, and add both variables and constraints, see
Theorem 2.6. Effectively, this doubles the number of variables but changes the linear case
to a quadratic case so we can apply our previous results on the quadratic homogeneous case.

We still have the open question of whether we can find redundant constraints and/or
relaxations to close the duality gap in the general case; or show that it is not possible.
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