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1. Introduction. We provide theoretical insights on how to compare different semidefinite programming

(SDP) relaxations for quadratically constrained quadratic programs (QCQP) with matrix variables. In particular,

we study a vector lifting relaxation and compare it to a significantly smaller matrix lifting relaxation to show

that the resulting two bounds are equal.

Many hard combinatorial problems can be formulated as QCQPs with matrix variables. If the resulting for-

mulated problem is nonconvex, then SDP relaxations provide an efficient and successful approach for computing

approximate solutions and strong bounds. Finding strong and inexpensive bounds is essential for branch and

bound algorithms for solving large hard combinatorial problems. However, there can be many different SDP

relaxations for the same problem, and it is usually not obvious which relaxation is overall optimal with regard

to both computational efficiency and bound quality (Ding and Wolkowicz [13]).

For examples of using SDP relaxations for QCQP arising from hard problems, see e.g., quadratic assignment

(QAP) (de Klerk and Sotirov [12], Ding and Wolkowicz [13], Mittelmann and Peng [25], Zhao et al. [36]),

graph partitioning (GPP) (Wolkowicz and Zhao [35]), sensor network localization (SNL) (Biswas and Ye [10],

Carter et al. [11], Krislock and Wolkowicz [23]), and the more general Euclidean distance matrix completions

(Alfakih et al. [2]).

1.1. Preliminaries. The concept of quadratic matrix programming (QMP) was introduced by Beck

(Beck [6]), where it refers to a special instance of QCQP with matrix variables. Because we include the study of

more general problems, we denote the model discussed in Beck [6] as the first case of QMP, denoted (QMP1),

4QMP15 �∗
P1 2=min trace4XTQ0X5+ 2 trace4CT

0 X5+�01

s.t. trace4XTQjX5+ 2 trace4CT
j X5+�j ≤ 01 j = 1121 : : : 1m1

X ∈�
n×r 1

where �
n×r denotes the set of n by r matrices, Qj ∈S

n, j = 0111 : : : 1m, S n is the space of n× n symmetric

matrices, and Cj ∈�
n×r . Throughout this paper, we use the trace inner product (dot product) C ·X 2= traceCTX.

The applicability of QMP1 is limited when compared to the more general class QCQP. However, many

applications use QCQP models in the form of QMP1 c, e.g., robust optimization (Ben-Tal et al. [9]) and SNL
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(Alfakih et al. [2]). In addition, many combinatorial problems are formulated with orthogonality constraints in
one of the two forms

XXT
= I1 XTX = I 0 (1)

When X is square, the pair of constraints in (1) are equivalent to each other, in theory. However, relaxations
that include both forms of the constraints rather than just one can be expected to obtain stronger bounds. For
example, Anstreicher et al. [5] proved that strong duality holds for a certain relaxation of QAP when both forms
of the orthogonality constraints in (1) are included; however, there can be a duality gap if only one of the
forms is used. Motivated by this result, we extend our scope of problems so that the objective and constraint
functions can include both forms of quadratic terms XTQjX and XPjX

T . We now define the second case of

QMP problems (QMP2) as

4QMP25 min trace4XTQ0X5+ trace4XP0X
T 5+ 2 trace4CT

0 X5+�01

s.t. trace4XTQjX5+ trace4XPjX
T 5+ 2 trace4CT

j X5+�j ≤ 01 j = 11 : : : 1m1

X ∈�
n×r 1

(2)

where Qj and Pj are symmetric matrices of appropriate sizes.
Both QMP1 and QMP2 can be vectorized into the QCQP form using

trace4XTQX5= vec4X5T 4Ir ⊗Q5vec4X51 trace4XPXT 5= vec4X5T 4P ⊗ In5vec4X51 (3)

where ⊗ denotes the Kronecker product (e.g., Graham [16]) and vec4X5 vectorizes X by stacking columns
of X on top of each other. The difference in the Kronecker products 4Ir ⊗Q51 4P ⊗ In5 shows that there is a
difference in the corresponding Lagrange multipliers and illustrates why the bounds from Lagrangian relaxation
will be different for these two sets of constraints. The SDP relaxation for the vectorized QCQP is called the
vector-lifting semidefinite relaxation (VSDR). Under a constraint qualification assumption, VSDR for QCQP
is equivalent to the dual of classical Lagrangian relaxation (see e.g., Anstreicher and Wolkowicz [4], Nesterov
et al. [26], Wolkowicz [34]).
From (3), we get

trace4XTQX5= trace4Ir ⊗Q5Y 1 if Y = vec4X5vec4X5T 1

trace4XPXT 5= trace4P ⊗ In5Y 1 if Y = vec4X5vec4X5T 0
(4)

VSDR is derived using (4) with the relaxation Y � vec4X5vec4X5T . A Schur complement argument (e.g.,
Liu [24], Ouellette [27]) implies the equivalence of this relaxation to the large matrix variable constraint
[

1 vec4X5T

vec4X5 Y

]

� 0. A similar result holds for trace4XPXT 5= vec4X5T 4P ⊗ In5vec4X5.

Alternatively, from (3), we get the smaller system

trace4XTQX5= traceQY 1 if Y =XXT 1

trace4XPXT 5= tracePY 1 if Y =XTX0
(5)

The matrix-lifting semidefinite relaxation (MSDR) is derived using (5) with the relaxation Y � XXT . A Schur
complement argument now implies the equivalence of this relaxation to the smaller matrix variable constraint
[

I XT

X Y

]

� 0. Again, a similar result holds for trace4XPXT 5.
Intuitively, one expects that VSDR should provide stronger bounds than MSDR. Beck [6] proved that VSDR

is actually equivalent to MSDR for QMP1 if both SDP relaxations attain optimality and have a zero duality
gap, e.g., when a constraint qualification, such as the Slater condition, holds for the dual program. In this paper
we strengthen the above result by dropping the constraint qualification assumption. Then we present our main
contribution, i.e., we show the equivalence between MSDR and VSDR for the more general problem QMP2

under a constraint qualification. This result is of more interest because QMP2 does not possess the same nice
structure (chordal pattern) as QMP1 c. Moreover, QMP2 encompasses a much richer class of problems and
therefore has more significant applications; for example, see the unbalanced orthogonal Procrustes problem
(Eldén and Park [15]) discussed in §3.1.2 and the graph partition problem (Alpert and Kahng [3], Povh [28])
discussed in §3.2.1.

1.2. Outline. In §2 we present the equivalence of the corresponding VSDR and MSDR formulations for
QMP1 and prove Beck’s result without the constraint qualification assumption (see Theorem 2.1). Section 3
proves the main result that VSDR and MSDR generate equivalent lower bounds for QMP2, under a constraint
qualification assumption (see Theorem 3.1). Numerical tests are included in §3.1.2. Section 4 provides concluding
remarks.
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2. Quadratic matrix programming: Case I. We first discuss the two relaxations for QMP1 c. We denote

the matrices in the relaxations obtained from vector and matrix lifting by

M4qV
j 4 · 55 2=

[

�j vec4Cj5
T

vec4Cj5 Ir ⊗Qj

]

1

M4qM
j 4 · 55 2=





�j

r
Ir CT

j

Cj Qj



 0

We let

y =

(

x0

vec4X5

)

∈�
nr+11 Y =

(

X0

X

)

∈ℳ
4r+n5r 1

and we denote the quadratic and homogenized quadratic functions

qj4X5 2= trace4XTQjX5+ 2 trace4CT
j X5+�j1

qV
j 4X1x05 2= trace4XTQjX5+ 2 trace4CT

j Xx05+�jx
2
0

= yTM4qV
j 4 · 55y1

qM
j 4X1X05 2= trace4XTQjX5+ 2 trace4XT

0 C
T
j X5+ trace

(

�j

r
XT

0 IrX0

)

= trace
(

Y TM4qM
j 4 · 55Y

)

0

2.1. Lagrangian relaxation. As mentioned above, under a constraint qualification, VSDR for QCQP is

equivalent with the dual of classical Lagrangian relaxation. We include this result for completeness and to

illustrate the role of a constraint qualification in the relaxation. We follow the approach in Nesterov et al. [26,

p. 403] and use the strong duality of the trust region subproblem (Stern and Wolkowicz [32]) to obtain the

Lagrangian relaxation (or dual) for QMP1 as an SDP.

�∗
L 2= max

�≥0
min
X

q04X5+
m
∑

i=j

�jqj4X5

= max
�≥0

min
X1x20=1

qV
0 4X1x05+

m
∑

j=1

�iq
V
j 4X1x05

= max
�≥01 t

min
y

yT
(

M4qV
0 4 · 55+

m
∑

j=1

�jM4qV
j 4 · 55

)

y+ t41− x2
05

= max
�≥01 t

min
y

trace

(

M4qV
0 4 · 55+

m
∑

j=1

�jM4qV
j 4 · 55

)

yyT + t41− x2
05

= 4DVSDR15























max t1

s.t.
[

t 0

0 0

]

−

m
∑

j=1

�jM4qV
j 4 · 55�M4qV

0 4 · 551

� ∈�
m
+
1 t ∈�0

(6)

As illustrated in (6), Lagrangian relaxation is the dual program (denoted by DVSDR1) of the vector-lifting

relaxation VSDR1 given below. Hence, under a constraint qualification, the Lagrangian relaxation is equivalent

with the VSDR. The usual constraint qualification is the Slater condition, i.e.,

∃� ∈�
m
+
1 s.t. M4qV

0 4 · 55+
m
∑

j=1

�jM4qV
j 4 · 55≻ 00 (7)



Ding, Ge, and Wolkowicz: On Equivalence of SDP Relaxation for QMP

Mathematics of Operations Research 36(1), pp. 88–104, © 2011 INFORMS 91

2.2. Equivalence of vector and matrix lifting for QMP1. Recall that the dot product refers to the trace

inner product, C ·X = traceCTX. The vector-lifting relaxation is

4VSDR15 �∗

V 1 2=min M4qV
0 4 · 55 ·ZV 1

s.t. M4qV
j 4 · 55 ·ZV ≤ 01 j = 1121 : : : 1m1

4ZV 5111 = 11

ZV � 00

Thus, the constraint matrix is blocked as ZV =
[

1 vec4X5T

vec4X5 YV

]

.

The matrix-lifting relaxation is

4MSDR15 �∗

M1 2=min M4qM
0 4 · 55 ·ZM 1

s.t. M4qM
j 4 · 55 ·ZM ≤ 01 j = 1121 : : : 1m1

4ZM51 2 r11 2 r = Ir 1

ZM � 00

Thus, the constraint matrix is blocked as ZM =
[

Ir XT

X YM

]

.

VSDR1 is obtained by relaxing the quadratic equality constraint YV = vec4X5vec4X5T to YV � vec4X5vec4X5T

and then formulating this as ZV =
[

1 vec4X5T

vec4X5 YV

]

� 0. MSDR1 is obtained by relaxing the quadratic equality

constraint YM =XXT to YM �XXT and then reformulating this to the linear conic constraint ZM =
[

Ir XT

X YM

]

� 0.

VSDR1 involves O44nr525 variables and O4m5 constraints, which is often at the complexity of O4nr5, whereas

the smaller problem MSDR1 has only O44n+ r525 variables. The equivalence of relaxations using vector and

matrix liftings is proved in Beck [6, Theorem 4.3] by assuming a constraint qualification for the dual programs.

We now present our first main result and prove the above-mentioned equivalence without any constraint quali-

fication assumptions. The proof itself is of interest in that we use the chordal property and matrix completions

to connect the two relaxations.

Theorem 2.1. As numbers in the extended real line 6−�1+�7, the optimal values of the two relaxations

obtained using vector and matrix liftings are equal, i.e.,

�∗

V 1 =�∗

M10

Proof. The proof follows by showing that both VSDR1 and MSDR1 generate the same optimal values as

the following program.

4VSDR′

15 �∗

V 1′ 2=min Q0 ·

r
∑

j=1

Yjj + 2C0 ·X+�01

s.t. Qj ·

r
∑

j=1

Yjj + 2Cj ·X+�j ≤ 01 j = 1121 : : : 1m1

Zjj =

[

1 xT
j

xj Yjj

]

� 01 j = 1121 : : : 1 r1

where xj , j = 1121 : : : 1 r , are the columns of matrix X, and Yjj , j = 1121 : : : 1 r , represent the corresponding

quadratic parts xjx
T
j .

We first show that the optimal values of VSDR1 and VSDR′

1 are equal, i.e., that

�∗

V 1 =�∗

V 1′ 0 (8)

The equivalence of the two optimal values can be established by showing that for each program, for each feasible

solution, one can always construct a corresponding feasible solution with the same objective value.
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First, suppose VSDR′

1 has a feasible solution Zjj =
[ 1 xTj
xj Yjj

]

, j = 1121 : : : 1 r . Construct the partial symmetric

matrix

ZV =























1 xT
1 xT

2 : : : xT
r

x1 Y11 ? ? ?

x2 ? Y22 ? ?

000 ? ?
0 0 0 ?

xr ? ? ? Yrr























1

where the entries denoted by “?” are unknown/unspecified. By observation, the unspecified entries of ZV are

not involved in the constraints or in the objective function of VSDR1. In other words, giving values to the

unspecified positions will not change the constraint function values and the objective value. Therefore, any

positive semidefinite completion of the partial matrix ZV is feasible for VSDR1 and has the same objective

value. The feasibility of Zjj 4j = 1121 : : : 1 r5 for VSDR′

1 implies
[ 1 xTj
xj Yjj

]

� 0 for each j = 1121 : : : 1 r . So all the

specified principal submatrices of ZV are positive semidefinite; hence, ZV is a partial positive semidefinite matrix

(see Alfakih and Wolkowicz [1], Grone et al. [17], Hogben [18], Johnson [20], Wang et al. [33] for the specific

definitions of partial positive semidefinite, chordal graph, semidefinite completion). It is not difficult to verify

the chordal graph property for the sparsity pattern of ZV . Therefore, ZV has a positive semidefinite completion

by the classical completion result (Grone et al. [17, Theorem 7]). Thus we have constructed a feasible solution

to VSDR1 with the same objective value as the feasible solution from VSDR′

1; i.e., this shows that �
∗

V 1 ≤�∗

V 1′ .

Conversely, suppose VSDR1 has a feasible solution

ZV =























1 xT
1 xT

2 : : : xT
r

x1 Y11 Y12 : : : Y1r

x2 Y21 Y22 : : : Y2r

000
000

000
0 0 0

000

xr Yr1 Yr2 : : : Yrr























� 00

Now we construct Zjj 2=
[ 1 xTj
xj Yjj

]

, j = 1121 : : : 1 r . Because each Zjj is a principal submatrix of the positive

semidefinite matrix ZV , we have Zjj � 0. The feasibility of ZV for VSDR1 also implies

M4qV
i 4 · 55 ·ZV ≤ 01 i= 1121 : : : 1m0 (9)

It is easy to check that

Qi ·

r
∑

j=1

Yjj + 2Ci ·X+�i =M4qV
i 4 · 55 ·ZV ≤ 01 i= 1121 : : : 1m1 (10)

where X =
[

x1 x2 · · · xr
]

. Therefore, Zjj , j = 1121 : : : 1 r , is feasible for VSDR′

1 and also generates the same

objective value for VSDR′

1 as ZV for VSDR1 by (10); i.e., this shows that �∗

V 1 ≥ �∗

V 1′ . This completes the

proof of (8).

Next we prove that the optimal values of MSDR1 and VSDR′

1 are equal, i.e., that

�∗

M1 =�∗

V 1′ 0 (11)

The proof is similar to the one for (8). First suppose VSDR′

1 has a feasible solution Zjj =
[ 1 xTj
xj Yjj

]

, j = 1121 : : : 1m.

Let X =
[

x1 x2 · · · xr
]

and YM =
∑r

j=1 Yjj . Now we construct ZM 2=
[

Ir XT

X YM

]

. Then by Zjj � 0, j = 1121 : : : 1 r ,

we have YM =
∑r

j=1 Yjj �
∑r

j=1 xjx
T
j = XXT , which implies ZM � 0 by the Schur complement (Liu [24],

Ouellette [27]). Because

M4qM
j 4 · 55 ·ZM =Qj ·

r
∑

i=1

Yii + 2Cj ·X+�j1 j = 11 : : : 1m1 (12)
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we get ZM is feasible for MSDR and it generates the same objective value as the one by Zjj , j = 1121 : : : 1m,
for VSDR′

1; i.e., �
∗
M1 ≤�∗

V 1′ .

Conversely, suppose ZM =
[

Ir XT

X YM

]

� 0 is feasible for MSDR1, and X =
[

x1 x2 · · · xr
]

. Let Yii = xi4xi5
T

for i = 1121 : : : 1 r − 1, and let Yrr = xrx
T
r + 4YM − XXT 5. As a result, Yii � xix

T
i for i = 1121 : : : 1 r , and

∑r
i=1 Yii = YM . So, by constructing Zjj =

[ 1 xTj
xj Yjj

]

, j = 1121 : : : 1 r , it is easy to show that Zjj is feasible for

VSDR′
1 and generates an objective value equal to the objective value of MSDR with ZM ; i.e., �

∗
M1 ≥�∗

V 1′ . This
completes the proof of (11). Combining this with (8) completes the proof of the theorem. �

Remark 2.1. Though the MSDR1 bound is significantly less expensive, Theorem 2.1 implies that the quality
is no weaker than that from VSDR1. Thus MSDR1 is preferable as long as the problem can be formulated as
a QMP1 c. Moreover, a solution ZM =

[

Ir XT

X YM

]

to MSDR1 can be used to construct the following corresponding
solution to VSDR1: ZV 422 nr + 1115= vec4X5, and ZV 422 nr + 1122 nr + 15= YV , where YV is constructed by
semidefinite completion, as in the proof of Theorem 2.1. In addition, the solution from MSDR1 can also be used
in a warm-start strategy applied to a vectorized semidefinite relaxation where additional constraints that do not
allow a matrix lifting have been added.

Example 2.1 (SNL Problem). The SNL problem is one of the most studied problems in graph realization
(e.g., Krislock [22], Krislock and Wolkowicz [23], So and Ye [31]). In this problem one is given a graph with
m known points (anchors) ak ∈ Rd, k= 1121 : : : 1m, and n unknown points (sensors) xj ∈ Rd, j = 1121 : : : 1 n,
where d is the embedding dimension. A Euclidean distance dkj between ak and xj or distance dij between xi
and xj is also given for some pairs of two points. The goal is to seek estimates of the positions for all unknown
points. One possible formulation of the problem is as follows.

min 01

s.t. trace4XT 4Eii +Ejj − 2Eij5X5= dij1 ∀ 4i1 j5 ∈Nx1

trace4XTEiiX5− 2 trace
([

aT
j 0

]

X
)

+ aT
j aj = dij1 ∀ 4i1 j5 ∈Na1

X ∈�
n×r 1

(13)

where Nx1Na refers to sets of known distances. This formulation is a QMP1 c, so we can develop both its
VSDR1 and MSDR1 relaxations.

min 01

s.t. I ⊗ 4Eii +Ejj − 2Eij5 · Y = dij1 ∀ 4i1 j5 ∈Nx1

I ⊗Eii · Y − 2aT
j xi + aT

j aj = dij1 ∀ 4i1 j5 ∈Na1
[

1 xT

x Y

]

� 00

(14)

min 01

s.t. 4Eii +Ejj − 2Eij5 · Y = dij1 ∀ 4i1 j5 ∈Nx1

Eii · Y − 2
[

aT
j 0

]

·X+ aT
j aj = dij1 ∀ 4i1 j5 ∈Na1

[

I XT

X Y

]

� 00

(15)

Theorem 2.1 implies that the MSDR1 relaxation always provides the same lower bound as the VSDR1 one,
although the number of variables for MSDR1 (O44n+d525) is significantly smaller than the number for VSDR1

(O4n2d25). The quality of the bounds combined with a lower computational complexity explains why MSDR1

is a favourite relaxation for researchers.

3. Quadratic matrix programming: Case II. In this section, we move to the main topic of our paper—i.e.,
the equivalence of the vector and matrix relaxations for the more general QMP2.

3.1. Equivalence of vector and matrix lifting for QMP2. We first propose the VSDR, VSDR2 for QMP2.
From applying both equations in (4), we get the following:

4VSDR25 �∗

V 2 2=min

[

�0 vec4C05
T

vec4C05 Ir ⊗Q0 +P0 ⊗ In

]

·ZV 1
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s.t.

[

�j vec4Cj5
T

vec4Cj5 Ir ⊗Qj +Pj ⊗ In

]

·ZV ≤ 01 j = 1121 : : : 1m1

4ZV 5111 = 11

ZV ∈S
rn+1
+

(

ZV =

[

1 vec4X5T

vec4X5 YV

])

0

Matrix YV is nr × nr and can be partitioned into exactly r2 block matrices Y
ij
V , i1 j = 1121 : : : 1 r1 where each

block is n× n. From applying both equations in (5), we get the smaller MSDR, MSDR2 for QMP2. (We add
the additional constraint traceY1 = traceY2 because traceXXT = traceXTX.)

4MSDR25 �∗

M2 2=min Q0 · Y1 +P0 · Y2 + 2C0 ·X+�01

s.t. Qj · Y1 +Pj · Y2 + 2Cj ·X+�j ≤ 01 j = 1121 : : : 1m1

Y1 −XXT
∈S

n
+

(

Z1 2=

[

Ir XT

X Y1

]

� 0

)

1

Y2 −XTX ∈S
r
+

(

Z2 2=

[

In X

XT Y2

]

� 0

)

1

traceY1 = traceY20

VSDR2 has O44nr525 variables, whereas MSDR2 has only O44n+ r525 variables. The computational advantage
of using the smaller problem MSDR2 motivates the comparison of the corresponding bounds. The main result
is interesting and surprising, i.e., that VSDR2 and MSDR2 actually generate the same bound under a constraint
qualification assumption. In general, the bound from VSDR2 is at least as strong as the bound from MSDR2.

Define the block-diag and block-offdiag transformations, respectively, as

B0Diag4Q52 S n
→S

rn+11 O0Diag4P52 S r
→S

rn+11

B0Diag4Q5 2=

[

0 0

0 Ir ⊗Q

]

1 O0Diag4P5 2=

[

0 0

0 P ⊗ In

]

0

(See Zhao et al. [36] for the r = n case.) It is clear that Q1P � 0 implies that both B0Diag4Q5 � 0 and
O0Diag4P5� 0. The adjoints b0diag1o0diag are, respectively,

Y1 =B0Diag
∗

4ZV 5= b0diag4ZV 5 2=
r
∑

j=1

Y
jj
V 1

Y2 =O0Diag
∗

4ZV 5= o0diag4ZV 5 2= 4traceY
ij
V 5i1 j=1121 : : : 1r 0

(16)

Lemma 3.1. Let X ∈�
n×r be given. Suppose that one of the following two conditions holds.

(i) Let YV be given and ZV defined as in VSDR2. Let the pair Z11Z2 in MSDR2 be constructed as in (16).

(ii) Let Y11 Y2 be given with traceY1 = traceY2, and let Z11Z2 be defined as in MSDR2. Let YV 1ZV for VSDR2

be constructed from Y11 Y2 as follows.

YV =





























V1

1

n
4Y2512In : : :

1

n
4Y251rIn

1

n
4Y2512In V2 : : :

1

n
4Y252rIn

: : : : : : : : : : : :

: : : : : : : : :
1

n
4Y254r−15rIn

: : : : : : : : : Vr





























1 (17)

with
r
∑

i=1

Vi = Y11 traceVi = 4Y25ii1 i= 11 : : : 1 r0 (18)
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Then, ZV satisfies the linear inequality constraints in VSDR2 if, and only if, Z11Z2 satisfies the linear inequality

constraints in MSDR2. Moreover, the values of the objective functions with the corresponding variables are

equal.

Proof. (i) Note that
[

� vec4C5T

vec4C5 Ir ⊗Q+P ⊗ In

]

·ZV = �+ 2C ·X+
(

B0Diag4Q5+O0Diag4P5
)

·ZV

= �+ 2C ·X+Q · b0diag4ZV 5+P · o0diag4ZV 5

= �+ 2C ·X+Q · Y1 +P · Y21 by (16)0

(19)

(ii) Conversely, we note that traceY1 = traceY2 is a constraint in MSDR2. ZV as constructed using (17)
satisfies (16). In addition, the n+ r assignment type constraints in (18) on the rn variables in the diagonals of
the Vi, i= 11 : : : 1 r , can always be solved. We can now apply the argument in (19) again. �

Lemma 3.1 guarantees the equivalence of the feasible sets of the two relaxations with respect to the lin-
ear inequality constraints and the objective function. However, this ignores the semidefinite constraints. The
following result partially addresses this deficiency.

Corollary 3.1. If the feasible set of VSDR2 is nonempty, then the feasible set of MSDR2 is also

nonempty and

�∗

M2 ≤�∗

V 20 (20)

Proof. Suppose ZV =
[

1 vec4X5T

vec4X5 YV

]

is feasible for VSDR2. Recall that matrix YV is nr × nr and can be

partitioned into exactly r2 block matrices Y
ij
V , i1 j = 1121 : : : 1 r . As above, we set Y11 Y2 following (16), and we

set Z1 =
[

Ir XT

X Y1

]

, Z2 =
[ In X

XT Y2

]

.

Denote the jth column of X by X2j , j = 1121 : : : 1 r . Now ZV � 0 implies Y
jj
V − X2jX

T
2j � 0. Therefore,

∑r
j=1 Y

jj
V −

∑r
j=1X2jX

T
2j = Y1−XXT � 0, i.e., Z1 � 0. Similarly, denote the kth row of X by Xk2, k= 1121 : : : 1 n.

Let 4Y
ij
V 5kk denote the kth diagonal entry of Y

ij
V , and define the r × r matrix Y k 2= 44Y

ij
V 5kk5i1 j=1121 : : : 1r . Then

ZV � 0 implies Y k −XT
k2Xk2 � 0. Therefore,

∑n
k=1 Y

k −
∑n

k=1X
T
k2Xk2 = Y2−XTX � 0, i.e., Z2 � 0. The proof now

follows from Lemma 3.1. �

Corollary 3.1 holds because MSDR2 only restricts the sum of some principal submatrices of ZV (i.e.,
b0diag4ZV 51o

0diag4ZV 5) to be positive semidefinite, whereas VSDR2 restricts the whole matrix ZV positive
semidefinite. So the semidefinite constraints in MSDR2 are not as strong as in VSDR2. Moreover, the entries
of YV involved in b0diag4 · 51o0diag4 · 5 form a partial semidefinite matrix that is not chordal and does not nec-
essarily have a semidefinite completion. Therefore, the semidefinite completion technique we used to prove the
equivalence between VSDR1 and MSDR1 is not applicable here. Instead, we will prove the equivalence of their
dual programs. It is well known that the primal equals the dual when the generalized Slater condition holds
(Jeyakumar and Wolkowicz [19], Rockafellar [29]), and in this case we will then conclude that VSDR2 and
MSDR2 generate the same bound.
Definition 3.1. For � ∈�

m, let

�� 2= �0 +

m
∑

j=1

�j�j1

and let C�, Q�, P� be defined similarly.
After substituting �← �� −�, we see that the dual of VSDR2 is equivalent to

(DVSDR2) max �� −�1

s.t.

[

� vec4C�5
T

vec4C�5 Ir ⊗Q� +P� ⊗ In

]

� 01

� ∈�1 � ∈�
m
+
0

The dual of MSDR2 is

(DMSDR2) max �� − traceS1 − traceS21

s.t.

[

S1 RT
1

R1 Q� − tIn

]

� 01
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[

S2 R2

RT
2 P� + tIr

]

� 01

R1 +R2 =C�1

� ∈�
m
+
1 S1 ∈ Sr 1 S2 ∈ Sn1 R11R2 ∈�

n×r 1 t ∈R0

The Slater condition for DVSDR2 is equivalent to the following:

∃� ∈�
m
+
1 s.t. Ir ⊗Q� +P� ⊗ In ≻ 00 (21)

The corresponding constraint qualification condition for DMSDR2 is

∃ t ∈�1 � ∈�
m
+
1 s.t. Q� − tIr ≻ 01 P� + tIn ≻ 00 (22)

These two conditions are equivalent because of the following lemma, which will also be used in our subsequent
analysis.

Lemma 3.2. Let Q ∈ Sn, P ∈ Sr . Then

Ir ⊗Q+P ⊗ In ≻ 01 4resp. � 05

if, and only if,

∃ t ∈�1 s.t. Q− tIn ≻ 01 P + tIr ≻ 01 4resp. � 050

Proof. Assume 8�i4Q59i=1121 : : : 1n and 8�j4P59j=1121 : : : 1r are the sets of eigenvalues of Q and P , respectively.
Thus, we get the equivalences Ir ⊗Q+ P ⊗ In ≻ 0 if, and only if, �i4Q5+ �j4P5 > 0, ∀ i1 j if, and only if,

mini �i4Q5+minj �j4P5 > 0 if, and only if,

min
i

�i4Q5− t > 01 min
j

�j4P5+ t > 01 for some t ∈�0

The equivalences hold if the strict inequalities, ≻ 0 and > are replaced by the inequalities � 0 and ≥,
respectively. �

Now we state the main theorem of this paper on the equivalence of the two SDP relaxations for QMP2.

Theorem 3.1. Suppose that DVSDR2 is strictly feasible. As numbers in the extended real line 4−�1+�7,
the optimal values of the two relaxations VSDR2, MSDR2, obtained using vector and matrix liftings, are

equal; i.e.,

�∗

V 2 =�∗

M20

3.1.1. Proof of (main) Theorem 3.1. Because DVSDR2 is strictly feasible, Lemma 3.2 implies that
both dual programs satisfy constraint qualifications. Therefore, both programs satisfy strong duality (see e.g.,
Rockafellar [29]). Therefore, both have zero duality gaps; i.e., the optimal values of DVSDR2, DMSDR2, are
�∗

V 21�
∗
M2, respectively.

Now assume that
� is feasible for DVSDR20 (23)

Lemma 3.2 implies that � is also feasible for DMSDR2, i.e., that there exists t ∈� such that

Q 2=Q� − tIn � 01 P 2= P� + tIr � 00 (24)

(To simplify notation, we use Q, P to denote these dual slack matrices.) The spectral decomposition of Q, P
can be expressed as

Q= VåQV
T
= 6V1 V27

[

åQ+ 0

0 0

]

6V1 V27
T 1 P =UåPU

T
= 6U1 U27

[

åP+ 0

0 0

]

6U1 U27
T 1

where the columns of the submatrices U1, V1 form an orthonormal basis that spans the range spaces ℛ4P5
and ℛ4Q5, respectively, and the columns of U2, V2 span the orthogonal complements ℛ4P5⊥ and ℛ4Q5⊥,
respectively. åQ+ is a diagonal matrix where diagonal entries are nonzero eigenvalues of matrix Q, and åP+ is
defined similarly. Let 8�i9, 8�i9 denote the eigenvalues of P , Q, respectively.
We similarly simplify the notation

C 2=C�1 c 2= vec4C51 � 2= ��0 (25)

Let A† denote the Moore-Penrose pseudoinverse of matrix A (e.g., Ben-Israel and Greville [7]). The following
lemma allows us to express �∗

V 2 as a function of Q, P , c, and �.
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Lemma 3.3. Let �, P , Q, c, � be defined as above in (23), (24), (25). Let

�∗ 2= cT 44Ir ⊗Q+P ⊗ In5
†5c0 (26)

Then �∗, � is a feasible pair for DVSDR2. For any pair �, � feasible to DVSDR2, we have

−�+�≤−�∗ +�0

Proof. A general quadratic function f 4x5= xT Q̄x+ 2c̄T x+ �̄ is nonnegative for any x ∈ Rn if, and only

if, the matrix
[

�̄ c̄T

c̄ Q̄

]

� 0 (e.g., Ben-Tal and Nemirovski [8, p. 163]). Therefore,

[

� cT

c Ir ⊗Q� +P� ⊗ In

]

=

[

� cT

c Ir ⊗Q+P ⊗ In

]

� 0 (27)

if, and only if,
xT 4Ir ⊗Q+P ⊗ In5x+ 2cT x+�≥ 01 ∀x ∈�

nr 0

For a fixed �, this is further equivalent to

−� ≤ min
x

xT 4Ir ⊗Q+P ⊗ In5x+ 2cT x

= −cT 44Ir ⊗Q+P ⊗ In5
†5c0

Therefore, we can choose �∗ as in (26). �

To further explore the structure of (26), we note that c can be decomposed as

c= 4U1 ⊗V15r11 + 4U1 ⊗V25r12 + 4U2 ⊗V15r21 + 4U2 ⊗V25r220 (28)

The validity of such an expression follows from the fact that the columns of 6U1 U27 ⊗ 6V1 V27 form an

orthonormal basis of �nr . Furthermore, the dual feasibility of DVSDR2 includes the constraint
[

� cT

c Ir⊗Q+P⊗In

]

� 0,
which implies c ∈ℛ4Ir ⊗Q+ P ⊗ In5. This range space is spanned by the columns in the matrices U1 ⊗ V1,
U2 ⊗V1, and U1 ⊗V2, which implies that c has no component in ℛ4U2 ⊗V25; i.e., r22 = 0 in (28).
The following lemma provides a key observation for the connections between the two dual programs. It

deduces that if c is in ℛ4U1 ⊗V15, then the � component of the objective value of DVSDR2 in Lemma 3.3 has
a specific representation.

Lemma 3.4. If c ∈ ℛ4U1 ⊗ V15, then the � component of the objective value of DVSDR2 in Lemma 3.3

satisfies
−� = −cT 44Ir ⊗Q+P ⊗ In5

†5c

=















max −vec4R15
T 4Ir ⊗Q5† vec4R15− vec4R25

T 4P ⊗ In5
† vec4R251

s.t. R1 +R2 =C1

R11R2 ∈�
n×r 0

(29)

Proof. We can eliminate R2 and express the maximization problem on the right-hand side of the equality
as maxR1

�4R15, where

�4R15 2= −vec4R15
T 44Ir ⊗Q5† + 4P ⊗ In5

†5vec4R15

+ 2cT 4P ⊗ In5
† vec4R15− cT 4P ⊗ In5

†c0 (30)

Because P and Q are both positive semidefinite, we get Ir ⊗Q� 0, P ⊗ In � 0 and, therefore, 4Ir ⊗Q5† + 4P ⊗

In5
† � 0. Hence � is concave. It is not difficult to verify that 4P ⊗ In5

†c ∈ℛ44Ir ⊗Q5† + 4P ⊗ In5
†5. Therefore,

the maximum of the quadratic concave function �4R15 is finite and attained at R∗
1,

vec4R∗
15 = 44Ir ⊗Q5† + 4P ⊗ In5

†5†4P ⊗ In5
†c

= 4P ⊗Q† +PP † ⊗ In5
†c3 (31)

and this corresponds to a value

�4R∗
15 = cT 44P ⊗Q† +P †P ⊗ In5

†4P ⊗ In5
† − 4P ⊗ In5

†5c

= −cT 4U ⊗V 5å̂4U ⊗V 5T c1
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where

å̂ 2=å†
P ⊗ In − 4å2

P ⊗å†
Q +åP ⊗ In5

†0

Matrix å̂ is diagonal. Its diagonal entries can be calculated as

å̂i1 j =











1

�i + �j
if �i > 01 �j > 01

0 if �i = 0 or �j = 00

We now compare �4R∗
15 with −cT 4Ir ⊗Q+P ⊗ In5

†c. Let

å̄ 2= 4Ir ⊗Q+P ⊗ In5
† = 4U ⊗V 54Ir ⊗åQ +åP ⊗ In5

†4U ⊗V 5T

= 4U ⊗V 544I�+
⊗åQ +åP ⊗ I�+5

† + I�0
⊗å†

Q +å†
P ⊗ℐ�0

54U ⊗V 5T 1
(32)

where matrix I�+
(resp. I�0

) is r × r , diagonal, and zero, except for the ith diagonal entries that are equal to one

if �i > 0 (resp. �i = 0); and matrix I�+ (resp. I�0 ) is defined in the same way. Hence we know that matrix å̄ is

also diagonal. Its diagonal entries can be calculated as

�̄i1 j =



















































1

�i + �j
if �i > 01 �j > 01

1

�i

if �i > 01 �j = 01

1

�j
if �i = 01 �j > 01

0 if �i = 01 �j = 00

(33)

By assumption, c = 4U1 ⊗ V15r11, for some r11 of appropriate size. Note that 4U1 ⊗ V15r11 is orthogonal to the

columns in U2 ⊗V1 and U1 ⊗V2. Thus, only the part 4I�+
⊗åQ +åP ⊗ I�+5

† in the diagonal matrix is involved

in computations, i.e.,

−cT 4Ir ⊗Q+P ⊗ In5
†c = −rT114U1 ⊗V15

T 4U ⊗V 5å̄4U ⊗V 5T 4U1 ⊗V15r11

= −rT114U1 ⊗V15
T 4U ⊗V 54I�+

⊗åQ +åP ⊗ I�+5
†4U ⊗V 5T 4U1 ⊗V15r11

= −rT114U1 ⊗V15
T 4U ⊗V 5å̂4U ⊗V 5T 4U1 ⊗V15r11

= �4R∗
150 �

For the given feasible �∗1� of Lemma 3.3, we will construct a feasible solution for DMSDR2 that generates

the same objective value. Using Lemma 3.2, we choose t ∈� satisfying Q=Q� − tIn � 0, P = P� + tIr � 0.

We can now find a lower bound for the optimal value of DMSDR2.

Proposition 3.1. Let �, t, P , Q, C, c, � be as above. Let R∗
1 denote the maximizer of �4R15 in the proof

of Lemma 3.4 and R∗
2 =C −R∗

1. Construct R1 R2 as follows:

vec4R15= vec4R∗
15+ 4U2 ⊗V15r211

vec4R25= vec4R∗
25+ 4U1 ⊗V25r120

(34)

Then we obtain a lower bound for the optimal value of DMSDR2.

�∗
M2 ≥−vec4R15

T 4Ir ⊗Q5† vec4R15− vec4R25
T 4P ⊗ In5

† vec4R25+�0 (35)

Proof. Consider the subproblem that maximizes the objective with �, t, R1, and R2 defined as above.

max �− traceS1 − traceS21

s.t.

[

S1 RT
1

R1 Q

]

� 01

[

S2 R2

RT
2 P

]

� 01

S1 ∈ Sr S2 ∈ Sn0

(36)
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Because �, t, R1, and R2 are all feasible for DMSDR2, this subproblem will generate a lower bound for �∗

M2.

We now invoke a result from Beck [6], i.e., that there exists a symmetric matrix S such that traceS ≤ � and
[

S CT

C Q

]

� 0 if, and only if, f 4X5= trace4XTQX+ 2CTX5+� ≥ 0 for any X ∈�
n×r . This is equivalent to

−� ≤ min
X∈�n×r

trace4XTQX+ 2CTX5=− trace4CTQ†C50

Therefore, the subproblem (36) can be reformulated as

max �− traceS1 − traceS21

s.t. − traceS1 ≤− trace4RT
1Q

†R151

− traceS2 ≤− trace4R2Q
†RT

2 51

S1 ∈ Sr 1 S2 ∈ Sn0

(37)

Hence, the optimal value of (37) has an explicit expression and provides a lower bound for DMSDR2

�∗

M2 ≥−vec4R15
T 4Ir ⊗Q5† vec4R15− vec4R25

T 4P ⊗ In5
† vec4R25+�0 �

With all the above preparations, we now complete the proof of (main) Theorem 3.1.

Proof of Theorem 3.1. We now compare �∗

V 2 obtained by using �∗ from the expression (26) with �∗

M2

based on the lower bound expression in (35). By writing c in the form of (28), we get

�∗

V 2 = −6rT114U1 ⊗V15
T + rT124U1 ⊗V25

T + rT214U2 ⊗V15
T 74Ir ⊗Q+P ⊗ In5

†

· 64U1 ⊗V15r11 + 4U1 ⊗V25r12 + 4U2 ⊗V15r217+�0
(38)

Consider the cross-term such as rT114U1⊗V15
T 4Ir ⊗Q+P ⊗ In5

†4U1⊗V25r12. Because 4U1⊗V15r11 is orthogonal

to 4U1⊗V25r12 and 4Ir ⊗Q+P⊗ In5
† is diagonalizable by 6U1 U27⊗ 6V1 V27, this term is actually zero. Similarly,

we can verify that the other cross-terms equal zero. As a result, only the following sum of three quadratic terms

remain, which we label using C11C21C3, respectively.

�∗

V 2 = −rT114U1 ⊗V15
T 4Ir ⊗Q+P ⊗ In5

†4U1 ⊗V15r111

− rT214U2 ⊗V15
T 4Ir ⊗Q+P ⊗ In5

†4U2 ⊗V15r211

− rT124U1 ⊗V25
T 4Ir ⊗Q+P ⊗ In5

†4U1 ⊗V25r12 +�

=2 C1+C2+C3+�0

(39)

We can also formulate the lower bound for �∗

M2 based on (35):

�∗

M2 ≥ −vec4R15
T 4Ir ⊗Q5† vec4R15− vec4R25

T 4P ⊗ In5
† vec4R25+�

= −4vec4R∗

15+ 4U2 ⊗V15r215
T 4Ir ⊗Q5† vec4R∗

1 + 4U2 ⊗V15r215

− 4vec4R∗

25+ 4U1 ⊗V25r125
T 4P ⊗ In5

†4vec4R∗

25+ 4U1 ⊗V25r125+�0

(40)

Because vec4R∗

15 and vec4R∗

25 are both in ℛ4U1 ⊗ V15, and this is orthogonal to both 4U1 ⊗ V25r12 and

4U2 ⊗ V15r21, and both matrices 4Ir ⊗Q5† and 4P ⊗ In5
† are diagonalizable by 6U1 U27⊗ 6V1 V27, we conclude

that the cross-terms, such as vec4R∗

15
T 4Ir ⊗Q5†4U2⊗V15r21, all equal zero. Therefore, the lower bound for �∗

M2

can be reformulated as

�∗

M2 ≥ −4vec4R∗

154Ir ⊗Q5† vec4R∗

15+ vec4R∗

254P ⊗ In5
† vec4R∗

2551

− rT214U2 ⊗V15
T 4Ir ⊗Q5†4U2 ⊗V15r211

− rT124U1 ⊗V25
T 4P ⊗ In5

†4U1 ⊗V25r12 +�

=2 T 1+ T 2+ T 3+�0

(41)

As above, denote the first three quadratic terms by T 1, T 2, and T 3, respectively.

We will show that terms C1, C2, and C3 equal T 1, T 2, and T 3, respectively. The equality between C1 and

T 1 follows from Lemma 3.4. For the other terms, consider C2 first. Write 4Ir ⊗Q+ P ⊗ In5
† as the diagonal
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matrix å̄ by (32). Note that 4U2 ⊗ V15r21 is orthogonal with the columns in U1 ⊗ V1 and U1 ⊗ V2. Thus, only

part I�0
⊗å†

Q in diagonal matrix å̄ is involved in computing term C2, i.e.,

−rT214U2⊗V15
T 4Ir⊗Q+P⊗In5

†4U2⊗V15r21=−rT214U2⊗V15
T 4U⊗V 54I�0

⊗å†
Q54U⊗V 5T 4U2⊗V15r210 (42)

Similarly, because 4U2 ⊗V15r21 is orthogonal with eigenvectors in U1 ⊗V2, we have

− rT214U2 ⊗V15
T 4Ir ⊗Q5†4U2 ⊗V15r21 = −rT214U2 ⊗V15

T 4U ⊗V 54I�+
⊗å†

Q + I�0
⊗å†

Q54U ⊗V 5T 4U2 ⊗V15r21

= −rT214U2 ⊗V15
T 4U ⊗V 54I�0

⊗å†
Q54U ⊗V 5T 4U2 ⊗V15r210 (43)

By (42) and (43), we conclude that that the term C2 equals T 2. We may use the same argument to prove the

equality of C3 and T 3. Therefore, we conclude that

−cT 44Ir ⊗Q+P ⊗ In5
†5c+�=−vec4R15

T 44Ir ⊗Q5†5vec4R15− vec4R25
T 44P ⊗ In5

†5vec4R25+�0 (44)

Then by (26) and (35), we have established �∗
V 2 ≤ �∗

M2. The other direction has been proved in

Corollary 3.1. �

Remark 3.1. Our result implies that the dual optimal solution �∗ to DVSDR2 coincides with that from

DMSDR2. Therefore, if a QCQP contains constraints that cannot be formulated into DMSDR2, we can first solve

the corresponding DMSDR2 without these constraints, and then we can use the dual solution in a warm-start

strategy and continue solving the original QCQP.

3.1.2. Unbalanced orthogonal Procrustes problem

Example 3.1. In the unbalanced orthogonal Procrustes problem (Eldén and Park [15]) one seeks to solve

the following minimizing problem:
min �AX−B�2F 1

s.t. XTX = Ir 1

X ∈ℳ
nr 1

(45)

where A ∈ℳ
nn, B ∈ℳ

nr , and n≥ r .

The balanced case n = r can be solved efficiently (Schönemann [30]), and this special case also admits a

QMP1 relaxation (Beck [6]). Note that the unbalanced case is a typical QMP2. Its VSDR2 can be written as

min trace44Ir ⊗ATA5Y 5− trace42BTAX51

s.t. trace44Eij ⊗ In5Y 5= �i1 j1 i1 j = 1121 : : : 1 r1
[

1 x

xT Y

]

� 00

(46)

It is easy to check that the SDP in (46) is feasible and its dual is strictly feasible, which implies the equivalence

between MSDR2 and VSDR2. Thus we can obtain a nontrivial lower bound from its MSDR2 relaxation:

min trace4ATAY − 2BTAX51

s.t.

[

Ir XT

X Y

]

� 01

[

In X

XT Ir

]

� 01

traceY = r0

(47)

Preliminary computational experiments appear in Table 1. The matrices in the five instances are randomly

generated, and they are solved using SeDuMi 1.1 and a 32-bit version of Matlab R2009a on a laptop running

Windows XP, with a 2.53 GHz Intel Core 2 Duo processor and with 3 GB of RAM. Table 1 illustrates the

computational advantage of MSDR2 over VSDR2.
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Table 1. Solution times (CPU seconds) of two SDP relaxations on the

orthogonal Procrustes problem.

Problem size 4n1 r5 415155 4201105 4301105 4301155 4401205

VSDR2 (CPU sec) 2.14 23003 65001 196070 954070

MSDR2 (CPU sec) 0.37 1075 7063 11081 70096

3.2. An extension to QMP with conic constraints. Some QMP problems include conic constraints such

as XTX � 4�5S, where S is a given positive semidefinite matrix. We can prove that the corresponding MSDR2

and VSDR2 are still equivalent for such problems.

Consider the following general form of QMP2 with conic constraints:

4QMP35 min trace4XTQ0X5+ trace4XP0X
T 5+ 2 trace4CT

0 X5+ trace4HT
0 Z51

s.t. trace4XTQjX5+ trace4XPjX
T 5+ 2 trace4CT

j X5+ trace4HT
j Z5+�j ≤ 01 j = 1121 : : : 1m1

X ∈�
n×r 1 Z ∈K1

where K can be the direct sum of convex cones (e.g., second-order cones, semidefinite cones). Note that the

constraint XTX � 4�5S can be formulated as

trace4XTXEij5+ 4−5 trace4ZEij5= Sij1

Z � 00
(48)

The formulations of VSDR2 and MSDR2 for QMP3 are the same as for QMP2 except for the additional term

Hj ·Z and the conic constraint Z ∈K. Correspondingly, the dual programs DVSDR2 and DMSDR2 for QMP3

will both have an additional constraint

H0 −
m∑

j=1

�jHj ∈K∗0 (49)

If a dual solution �∗ is feasible for DVSDR2, then it satisfies the constraint (49) in both DVSDR2 and DMSDR2.

Therefore, we can follow the proof of Theorem 3.1 and construct a feasible solution for DMSDR2 with �∗,

which generates the same objective value as �∗
V 2. This yields the following.

Corollary 3.2. Assume VSDR2 for QMP3 is strictly feasible and its dual DVSDR2 is feasible. Then

DVSDR2 and DMSDR2 both attain their optimum at the same � and generate the same optimal value �∗
V 2 =�∗

M2.

3.2.1. Graph partition problem

Example 3.2 (GPP). GPP is an important combinatorial optimization problem with broad applications in

network design and floor planning (Alpert and Kahng [3], Povh [28]). Given a graph with n vertices, the

problem is to find an r partition S11 S21 : : : 1 Sr of the vertex set, such that �Si� = mi with m 2= 4mi5i=11 : : : 1r

given cardinalities of subsets, and the total number of edges across different subsets is minimized. Define matrix

X ∈ �
n×r to be the assignment of vertices; i.e., Xij = 1 if vertex i is assigned to subset j; Xij = 0 otherwise.

With L the Laplacian matrix, the GPP can be formulated as an optimization problem:

�∗
GPP =min 1

2
trace4XTLX51

s.t. XTX =Diag4m51

diag4XXT 5= en1

X ≥ 00

(50)

This formulation involves quadratic matrix constraints of both types trace4XTEiiX5 = 1, i = 11 : : : 1 n and

trace4XEijX
T 5=mi�4i1 j5, i1 j = 11 : : : 1 r . Thus it can be formulated as a QMP2 but not a QMP1 c. Anstreicher

and Wolkowicz [4] proposed a semidefinite program relaxation with O4n45 variables and proved that its optimal
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value equals the so-called Donath-Hoffman lower bound (Donath and Hoffman [14]). This SDP formulation can

be written in a more compact way, as Povh [28] suggested:

�∗

DH =min 1
2
trace44Ir ⊗L5V 51

s.t.
r
∑

i=1

1

mi

V ii
+W = In1

trace4V ij5=mi�i1j1 i1 j = 11 : : : 1 r1

trace44I ⊗Eii5V 5= 11 i= 11 : : : 1 n1

V ∈ S+

rn1 W ∈ S+

n 1

(51)

where V has been partitioned into r2 square blocks, with each block size of n by n, and V ij is the 4i1 j5-th block

of V . Note that formulation (51) reduces the number of variables to O4n2r25.

An interesting application is the graph equipartition problem in which mi4=m15s are all the same. Povh’s

SDP formulation is actually a VSDR2 for QMP3:

min 1
2
trace4XTLX51

s.t. trace

(

1

m1

XTEijX+EijW

)

= �i1 j1 i1 j = 11 : : : 1 n1

trace4XEijX
T 5=m1�i1 j1 i1 j = 11 : : : 1 r1

trace4XTEiiX5= 11 i= 11 : : : 1 n1

W ∈ S+

n 0

(52)

It is easy to check that (51) is feasible and its dual is strictly feasible. Hence, by Corollary 3.2, the equivalence

between MSDR2 and VSDR2 for QMP3 implies that the Donath-Hoffman bound can be computed by solving a

small MSDR2:
�∗

DH =min 1
2
L · Y11

s.t. Y1 �m1In1

Y2 =m1Ir 1

diag4Y15= en1
[

Ir X
T

X Y1

]

� 01

[

In X

XT Y2

]

� 00

(53)

Because X and Y2 do not appear in the objective, formulation (53) can be reduced to a very simple form:

�∗

DH =min 1
2
L · Y11

s.t. diag4Y15= en1

0� Y1 �m1In0

(54)

This MSDR formulation has only O4n25 variables, which is a significant reduction from O4n2r25.

This result coincides with Karisch and Rendl’s result (Karisch and Rendl [21]) for the graph equipartition.

Their proof derives from the particular problem structure, while our result is based on the general equivalence

of VSDR2 and MSDR2.

4. Conclusion. This paper proves the equivalence of two SDP bounds for the hard QCQP in QMP2. Thus,

it is clear that a user should use the smaller/inexpensive MSDR bound from matrix lifting, rather than the more

expensive VSDR bound from vector lifting. In particular, our results show that the large VSDR2 relaxation for

the unbalanced orthogonal Procrustes problem can be replaced by the smaller MSDR2. And, with an extension

of the main theorem, we proved the Karisch and Rendl result (Karisch and Rendl [21]) that the Donath-Hoffman

bound for graph equipartition can be computed with a small SDP.

The key idea of the paper is to simplify the semidefinite constraint using a sparse completion technique. Most

existing literature on this topic requires the matrix to have a chordal structure (Grone et al. [17], Beck [6], Wang
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et al. [33]); whereas in our case, the dual matrix of QMP2 is not chordal, but it can be decomposed as a sum

of two matrices, each of which admits a chordal structure. This idea, we hope, will lead to further studies on

identifying other nonchordal sparse patterns that can be used to simplify the semidefinite constraints. The sparse

matrix completion results and semidefinite inequality techniques used in our proofs are of independent interest.

Unfortunately, it is not clear how to formulate a general QCQP as an MSDR. For example, the objective

function for the QAP, traceAXBXT , does not immediately admit an MSDR representation (though a relaxed

MSDR is presented in Ding and Wolkowicz [13] that generally has a strictly lower bound than the vectorized

SDP relaxation proposed in Zhao et al. [36]). The above motivates the need for finding efficient matrix-lifting

representations for hard QCQP problems.
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