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Abstract The elegant theoretical results for strong duality and strict complemen-
tarity for linear programming, LP, lie behind the success of current algorithms. In
addition, preprocessing is an essential step for efficiency in both simplex type and
interior-point methods. However, the theory and preprocessing techniques can fail
for cone programming over nonpolyhedral cones. We take a fresh look at known and
new results for duality, optimality, constraint qualifications, CQ, and strict comple-
mentarity, for linear cone optimization problems in finite dimensions. One theme is
the notion of minimal representation of the cone and the constraints. This provides a
framework for preprocessing cone optimization problems in order to avoid both the
theoretical and numerical difficulties that arise due to the (near) loss of the strong
CQ, strict feasibility. We include results and examples on the surprising theoretical
connection between duality gaps in the original primal-dual pair and lack of strict
complementarity in their homogeneous counterpart. Our emphasis is on results that
deal with Semidefinite Programming, SDP.

Keywords Cone optimization - Duality - Preprocessing - Constraint qualification -
Duality gap - Semidefinite programming - Strict complementarity - Nice cones -
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1 Introduction
In this paper we study duality, optimality conditions, and preprocessing for the conic

optimization problem, i.e., the problem of optimizing a linear objective function over
the intersection of a convex cone with an affine space. We include both the linear
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transformation and the subspace forms for the formulation of our optimization prob-
lems; we study known and new characterizations of optimality that hold without any
constraint qualification, CQ; and, we collect needed technical results on the cone
facial structure.

In addition, as new results, we derive new CQs including a universal constraint
qualification, UCQ, i.e., a CQ that holds independent of the data b, c; and, we study
the geometry of nice and devious cones and the relationship that lack of closure has
to both strong duality and zero duality gaps, including characterizations for a zero
duality gap, and a surprising new connection between duality gaps and the failure of
strict complementarity in the homogeneous problems.

One theme is the notion of minimal representation of the cone and the constraints
in order to preprocess and regularize the problem and thus avoid both the theoretical
and numerical difficulties that arise due to (near) loss of strict feasibility, i.e., we see
that loss of this strong CQ is a modeling issue rather than inherent to the problem
instance. As it is well-known that the existence of a strong CQ of the Mangasarian-
Fromovitz or Robinson type is equivalent to stability of the problem, e.g., [66], this
justifies the pleasing paradigm: efficient modeling provides for a stable program.

1.1 Background and motivation

The cone programming model has been studied for a long time, e.g., [23], as a gen-
eralization of the classical linear program, LP. More recently, many important ap-
plications have arisen for more general nonpolyhedral cones. This includes the case
when K is the cone of positive semidefinite matrices, S'i; then we get semidefinite
programming, SDP, e.g., [73]. Another important case is second order cone program-
ming, SOCP, where K = SOC;| @ - - - & SOCy, a direct sum of second order (Lorentz)
cones, e.g., [4, 45]. These research areas remain very active, see e.g., [2, 33, 38, 41,
49, 67, 73, 77] and URL: www-user.tu-chemnitz.de/~helmberg/semidef.html. Opti-
mality conditions and CQs have been studied in e.g., [23, 31, 62] and more recently
for both linear and nonlinear problems in e.g., [66]. (See the historical notes in [66,
Sect. 4.1.5].) Optimality conditions and strong duality results without a CQ have ap-
peared in e.g., [13-16, 35, 36, 53, 57, 58].

Both strong duality and strict complementarity behave differently for general cone
optimization problems, compared to the LP case. First, strong duality for a cone pro-
gram can fail in the absence of a CQ, i.e., there may not exist a dual optimal solution
and there may be a nonzero duality gap. In addition, the (near) failure of the Slater
CQ (strict feasibility) has been used in complexity measures, [60, 61]. Moreover, nu-
merical difficulties are well correlated with (near) failure of the Slater CQ, see [25,
26]. Similarly, unlike the LP case, [28], there are general cone optimization prob-
lems for which there does not exist a primal-dual optimal solution that satisfies strict
complementarity, see e.g., [73] for examples. Theoretical difficulties arise, e.g., for
local convergence rate analysis. Again, we have that numerical difficulties are well
correlated with loss of strict complementarity, see [71]. An algorithm for generating
SDP problems where strict complementarity fails, independent of whether the Slater
CQ holds or not, is also given in [71].

Connections between weakest CQs and the closure of the sum of a subspace and a
cone date back to e.g., [31]. We present a surprising theoretical connection between
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strict complementarity of the homogeneous problem and duality gaps, as well as show
that both loss of strict complementarity and strong duality are connected to the lack
of closure of the sum of a cone and a subspace.

Examples where no CQ holds arise in surprisingly many cases. For example,
Slater’s CQ fails for many SDP relaxations of hard combinatorial problems, see
e.g., [5, 74, 75]. A unifying approach to remedy this situation is given in [68]. An-
other instance is the SDP that arises from relaxations of polynomial optimization
problems, e.g., [69]. Exploiting the absence of Slater’s CQ is done in [42]. Current
public domain codes for SDP are based on interior-point methods and do not take
into account loss of Slater’s CQ (strict feasibility) or loss of strict complementarity.
As discussed above, both of these conditions can result in theoretical and numerical
problems, e.g., [25, 69, 71]. Contrary to the LP case, e.g., [29, 39, 48], current SDP
codes do not perform extensive preprocessing to avoid these difficulties. (Though
some preprocessing is done to take advantage of sparsity, e.g., [27]. A projection
technique for the cases where Slater’s CQ fails is studied in [18].)

1.2 Outline

In Sect. 2 we present the notation and preliminary results. We introduce: the subspace
forms for the cone optimization in Sect. 2.1.1 and the complementarity partition and
minimal sets in Sect. 2.1.2. Technical facial properties are presented in Sects. 3.1
and 3.2. The notions of nice and devious cones are described in Sect. 3.3. We include
many relationships for the facial structure of the cone optimization problems.

The strong duality results, with and without CQs, and the CQs and UCQ, are
presented in Sect. 4, see e.g., Theorem 4.10. We use both the minimal cone known in
the literature and introduce the minimal subspace in order to obtain a regularization
that guarantees that Slater’s CQ holds, rather than the weaker generalized Slater CQ
given in the literature, see (4.9) in Theorem 4.10. We study the failure of strong
duality and strict complementarity in Sect. 5. This includes a characterization for a
zero duality gap in Sect. 5.1. The surprising relation between duality gaps and the
failure of the strict complementarity property for the homogeneous problem, is given
in Sect. 5.1.2, see e.g., Theorems 5.9 and 5.7. Our concluding remarks are in Sect. 6.

2 Notation and preliminary results

The set K is a convex cone if it is a cone, i.e., it is closed under nonnegative scalar
multiplication, AK C K,VA > 0, and, it is also closed under addition K + K C K.
The cone K is a proper cone if it is closed, pointed, and has nonempty interior. We let
u <k v (respectively, u <k v) denote the partial order induced by K, i.e.,v —u € K
(respectively, v —u € int K).

We use S to denote closure, precl S = S\S to denote the preclosure of a set S.
We let convS denote the convex hull of the set S and cone S denote the con-
vex cone generated by S. (By abuse of notation, we use cones := cone{s}, for a
single element s. This holds similarly for, e.g., st= {s}L and other operations
that act on single element sets.) The dual or nonnegative polar cone of a set § is
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S*:={x:(x,s) >0, Vs € S}. In particular, for the space of n x n symmetric matri-
ces, S, we use the trace inner-product (x, s) = trace xs, i.e., the trace of the product
of the matrices x and s. We use R(-) and N(-) to denote range space and nullspace,
respectively. We let §' C S denote the cone of positive semidefinite matrices. In
particular, setting K = S| yields the partial order induced by the cone of positive
semidefinite matrices in S", i.e., the so-called Lowner partial order, x =g 8.

We let ¢; denote the ith unit vector of appropriate dimension, and E;; denote the
(i, j)th unit matrix in S", i.e., E;; = eieiT andifi # j, Ejj = e,-eJT + ejeiT. By abuse
of notation, we let x;; denote the ij element of x € S".

The subset F C K is a face of the cone K, denoted F < K, if

(se F,0=<gu=<gs) implies (coneu C F). 2.1

If F <K butisnotequal to K, we write F < K. If {0} C F < K, then F is a proper
face of K. (Similarly, S; C S, denotes a proper subset, i.e., S C S, S1 # S».) For
S C K, we let face S denote the smallest face of K that contains S; equivalently face S
is the intersection of all faces containing S. A face F < K is an exposed face if it is
the intersection of K with a hyperplane. The cone K is facially exposed if every face
F <K is exposed. If F <0 K, then the conjugate face is F€ := K* N F-. Note that if
the conjugate face F° is a proper face, then it is exposed using any s € relint F, i.e.,
FC=KNst, Vs erelint F.

We study the following pair of dual conic optimization problems in standard form:

() vp:=sup{(b,y): A"y <k c} 22)
y
D) vp:= igf{ (c,x): Ax =b, x =g~ 0}, (2.3)

where: A:V — W is a (onto) linear transformation between two finite dimensional
inner-product spaces; .A* denotes the adjoint transformation; and K is a convex cone.
Throughout, we assume that the optimal value vp is finite. Weak duality holds for any
pair of primal-dual feasible solutions y, x, i.e., if s =¢c — A*y > 0, Ax = b, x =g+
0, then we get

(b, y) = (Ax,y) =(A"y,x)=(c—s,x) < (c,x) (Weak Duality).

The usual constraint qualification, CQ, used for the primal (2.2) is the Slater condi-
tion, i.e., strict feasibility A*y < c. If we assume Slater’s CQ holds and the primal
optimal value is finite, then strong duality holds, i.e., we have a zero duality gap and
attainment of the dual optimal value,

vp=vp = (c, x*), for some dual feasible x*  (Strong Duality).
Denote the primal-dual feasible sets of (2.2) and (2.3) by

Fp=Fplc)={y: A*y =k c}, Fh=Fp®) ={x: Ax =b, x =g+ 0},
2.4
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respectively. The set of feasible slacks for (2.2) is
}}:f}(c):{s:s:c—A*yzKO, forsomey}. (2.5)

We allow for the dependence on the parameters b and c. Similarly, the optimal so-
lution sets are denoted by O3, Oi;, O} Moreover, the pair of feasible primal-dual
solutions s, x are said to satisfy strict complementarity, SC if

s €relint Fp and x €relint F§, for some Fp <K,
(SC) or (2.6)
s erelint Fj) and x e relint Fp, for some Fp < K*.

(Note that this implies s 4+ x € int(K + K*), see Proposition 3.3, part 1, below.)
2.1 Subspace form, complementarity partitions, and minimal sets
2.1.1 Subspace form for primal-dual pair (P) and (D)
Suppose that 5, y, and X satisfy

A*y+5=c, Ax =b. 2.7
Then, for any feasible primal-dual triple (x, y, s), where s is, as usual, the primal
slack given by s = ¢ — A*y, we have (c, X) = (A*y +s,x) = (b, y) + (s, X). There-

fore, the objective in (2.2) can be rewritten as

sup(b, y) = sup({c, ) — (s, X)) = (c, X) — inf(s, X).
y s s

We let £ denote the nullspace N'(A) of the operator A. Then
S=Fp@)=(+LY)NK=(E+LYNK. (2.8)

In addition, for x € x4+ L, we get (¢, x) = (A*y+5,x) = (5§, x)+(A*y, x) = (5, x)+
(¥, b). We can now write the primal and dual conic pair, (2.2) and (2.3), in the so-
called subspace form (see e.g., [50, Sect. 4.1]):

vpz(c,i)—irslf{(s,i):s€(§+£J‘)ﬂK}, (2.9)

vp = (3, b) +inf{(, x) :x € F+ L) N K™}, (2.10)

The symmetry means that we can directly extend results proved for (2.9) to (2.10).
Note that we have much flexibility in the choice of § and X. In particular, if (2.9)
and (2.10) are feasible, we may choose § € F}, and X € Fj,, and in the case that the
optimal values are attained, we may choose § € O} and X € O7,.

Proposition 2.1 Let 5, y, and x satisfy (2.7). Then (2.9) and (2.10) are a dual pair

of cone optimization problems equivalent to (2.2) and (2.3), respectively. Moreover,
(2.2) (resp. (2.3)) is feasible if, and only if, § € K + L+ (resp. X € K* + L).
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2.1.2 Complementarity partitions, CP, and minimal sets

Denote the minimal faces for the homogeneous problems (recession directions) by
fp = face F5(0) = face(L- N K) (2.11)
3, = face F},(0) = face(£ N K*). (2.12)

For connections between recession directions and optimality conditions, see e.g., [1,
6, 11]. Note that fp € (f)¢ (equivalently, £3 S (f2)).

Definition 2.2 The pair of faces F; < K, F, < K* form a complementarity partition
of K, K*, denoted CP, if Fy C F3. (Equivalently, F> C Fy.) The partition is proper
if both F| and F, are proper faces. The partition is strict if (F1)¢ = F, or (Fp)¢ = Fj.

It is well known that
F<LK,GLK,FCG = FG. (2.13)

Therefore, we can assume F; < cm and Fp < Ff in Definition 2.2. Moreover, for
every linear subspace L, the pair of faces

(fp, fp) form a complementarity partition, CP (2.14)

of K, K*; and, if K is a polyhedral cone, then the partition is strict. The minimal face
of (2.2) is the face of K generated by the feasible slack vectors; while the minimal
face for (2.3) is the face of K* generated by the feasible set of the dual problem,
i.e., we denote fp :=face F},, fp := face Fj,. Note that both fp and fp depend
implicitly on the points §, X in the subspace formulations (2.9) and (2.10). Sometimes,
to use this dependence more explicitly, we write fp(5) for fp and fp(X) for fp.

Given a set S, span(S) denotes the set of all linear combinations of the elements
in S.

An immediate important property of the complementarity partitions is:

if (F1, F») form a CP,

then|0£p e F| = F, C{p}t = intF,=0| (2.15)

We now obtain the following complementarity partitions and the corresponding the-
orems of the alternative from (2.15).

Proposition 2.3 Let y, 5, X satisfy (2.7). Then the five pairs of faces

i rr b ]
face((L* + spans) N K) face(fp N5+)
face(fg N )EJ-) face((ﬁ + spanx) N K*) (2.16)
fr face(f3 N35L)
face(fp Nxt) I ]
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form complementarity partitions of K, K*.

Proof That the first pair in (2.16) forms a complementarity partition follows from the
definitions. The result for the second and third pairs follow from replacing £+ with
L + span§, and from replacing £ with £ + span X, respectively. The result for the
final two pairs follows from

]—"}g(ﬂL—i—spanﬂﬂK, F}, € (L+spank) N K*. O

If int K* # ¢ (respectively, int K # (J), then the first pair in Proposition 2.3 is
related to the following characterization for Slater’s CQ when ¢ = 0 (respectively,

b=0):
9={0) < LnNintK*#¢
fp=1{0} # @17
(respectively, =10 <<= rLinintk # 0).

Equivalent characterizations for strict feasibility are related to the remaining four
pairs in Proposition 2.3.

The primal and dual minimal subspace representations of £+ and of L, respec-
tively, are given by

Ly =LY0(fp—fp).  Lom:=LN(fp— fp). 2.18)
The cone of feasible directions at y € F }y, is
D§ ) = cone(}";v, — )7) (2.19)

We similarly define the cones D§ (), Dg (x). For these three cones, we assume
that 3,5, X are suitable feasible points in .7-'{,, Fp, Fp, respectively. The closures
of these cones of feasible directions yield the standard tangent cones, denoted
Tp(y), Tp(s), Tp(x), respectively. (See e.g., [9, 21].) Note that if the primal fea-
sible set is simply K, the cone of feasible directions corresponds to the so-called
radial cone.

Proposition 2.4 [65, 70] Let K be closed. Then K is a polyhedral cone if, and only
if, at every point § € K, the radial cone of K, cone(K — §), at § is closed.

Example 2.5 We now look at two examples that illustrate the lack of closure for
nonpolyhedral cones, e.g., in each instance we get

K +span £9 C K +span 3 =K + ((£)°)". (2.20)

The lack of closure in (2.20) can be used to find examples with both finite and infinite
positive duality gaps; see e.g., the following example in item 1.

1. First, let n =2 and £ in (2.9) and (2.10) be such that £+ = span{E,}. Then
fg = cone{E»} and fg = cone{E1;}. Therefore, fg = (fg)c and fg = (fg)c,
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i.e., this is a strict complementarity partition. Moreover, (2.20) holds e.g., E13 €
(fp)N(fp)* and

i— 00

Eip = lim <|:1{i ll] — iEzz) IS (Si_ + (fg)L)\(Si_ + spanfg)
= precl(Si + span fg).

We can now choose § = E13, X = Eq1. Then the primal is infeasible, e.g., Propo-
sition 2.1, while the dual optimal value vp = 0.

2. Now, let n = 3 and suppose that £ = span{Es3, Ex» + Ei3}. Then fp =
cone{E33} and fg = cone{E11}. Therefore, fg C (fg)c and fg C (fg)c, i.e., this
is not a strict complementarity partition. In addition, note that (2.20) holds and
moreover, if we choose § = x = Ep € (fg)” N (fg)c, then Ej; € precl(L +
(faces))N precl(EJ- + (face 5)¢). This means that 0 £ 5§ = X = Eyj is both primal
and dual optimal, see Proposition 5.2, below. Since (s, x) > 0, we have obtained
a finite positive duality gap.

Example 2.6 We can use K = K* =8 and the algorithm in [71] to generate A so
that we have ( fg)c N(f B)C # {0}. Here the linear transformation A*y = >/ | y; A;
for given A; € §", i = 1, ..., m. The main idea is to start with [Qp Qg Op] an
orthogonal matrix; and then we construct one of the m matrices representing A as

o o vl
Ar=[0p Qg 0Qpl| 0 vl |1er Q¢ Opl",
Y 13 Yy

where Y| > 0, Y4 symmetric, and Q pY> # 0. The other matrices A; € S" are chosen
so thatthe set {A;Qp, ..., A,;; Qp}is linearly independent. Then we get the partition
in positions given by
i
.G - |,
b

where G represents the gap in the partition.

All instances in the above examples have the facial block structure

0 0
0 0 0
0 0 fp

Viz., the matrices in f g are nonzero only in the (1, 1) block, and the matrices in fg
are nonzero only in the (3, 3) block. We now formalize the concept of such block
structure for S” in the following definition and lemma. (These may be extended to
more general cones using appropriate bases.)
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Definition 2.7 The support of x € §" is S(x) :={(ij) : x;; # 0}.

In the next lemma, as we formalize the concept of the above-mentioned block
structure, kp corresponds to the size of the block f B, and (n — kp + 1) corresponds
to the size of the block fg.

Lemma 2.8 Let K :=¥§/} .

1. There exists an orthogonal matrix Q and integers 0 <kp < kp <n + 1 such that
xefp.ij)eS(0"xQ) = max{i,j} <kp, (2.21)
and

sef i) eS(QTsQ) = min{i, j}>kp. (2.22)

2. Let n > 3 and suppose the subspace L is such that the complementarity partition
( fg, fg) is not strict. Then, there exists an orthogonal matrix Q and integers
1 <kp <kp—1=<n—1suchthat (2.21) and (2.22) hold.

Proof We can choose x = Q. D, Q){ € relintfg and s = Q; Dy QsT € relintff,?,
where Qy, Qs has orthonormal columns (of eigenvectors) and both D, and D; are
diagonal positive definite. Choose Q, so that Q :=[Q, O, Q;] is an orthogonal
matrix. Then this Q does what we want, since fg g =0. O

3 Facial properties

We now collect some interesting though technical facial properties for general convex
cones K . These results are particularly useful for SDP. We include the notions of nice
and devious cones. Further results are given in e.g., [7, 8, 17, 51].

3.1 Faces of general cones

Recall that a nonempty face F < K is exposed if F = ¢+ N K, for some ¢ € K*.
Note that the faces of K are closed if K is closed.

Proposition 3.1 Let K be closed and ) # F < K. Then:

. (F—F)NK=(spanF)NK =F.

2. F°“ = F if,and only if, F is exposed.

3. K*+span F¢ C K*+ FL. Moreover, if K is facially exposed, then
K* +span F¢ = K* 4+ FL.

Proof

1. That F — F = span F follows from the definition of a cone. Further, suppose
s=fi— fowiths e K and f; € F,i =1,2. Then s + f, = f; € F. Therefore,
s € F, by the definition of a face.
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2. The result follows from the facts: the conjugate of G := F¢ is exposed by any
x erelint G; and, every exposed face is exposed by any point in the relative interior
of its conjugate face.

3. That K* + span F¢ C K* + F1 is clear from the definition of the conjugate face
F¢. To prove equality, suppose that K is facially exposed and that w = (x + f) €
(K* 4+ FH\K* + span F¢, with x € K*, f € F. Then there exists ¢ such that
(¢, w) <0< (¢, (K* + span F)). This implies that ¢ € K N (F)* =K NF,
since K is facially exposed. This in turn implies (¢, w) = (¢, x + f) > 0, a con-
tradiction.

Proposition 3.2 Let s e relint S and S C K be a convex set. Then:

1. faces = face S,

2. cone(K — s) =cone(K — S) = K — faces = K — face S = K + spanfaces =
K + spanface S.

Proof

1. That faces C face S is clear. To prove the converse inclusion, suppose that z € S C
K,z #s.Since s e relint S, there exists w € S,0 <6 < 1, such thats = 0w+ (1 —
0)z,ie., s € (w, z). Since s € faces, we conclude that both w, z € faces.

2. That cone(K — 5) € K — cones € K — faces € K — spanfaces is clear. The
other inclusions follow from part 1 and cone(K — s) D cone(face(s) — s) =
spanfaces. U

We can combine Proposition 2.4 and Proposition 3.2, and conclude that K is poly-
hedral if, and only if, K + span F is closed, for all ¥ < K. The following Proposi-
tion 3.3 illustrates some technical properties of faces, conjugates, and closure.

Proposition 3.3 Let T be a convex cone and F 4 T.
1. Suppose that 5 € relint F and x € relint F¢. Then
§+xeint(T +T%).

2. Suppose that s € relint F'. Then

cone(T —5) = (F)™;

IR G.1)

cone(T —5) 2 rehnt((FC) )
Proof
1. First, note that if int(7 + T*) = @, then we have

0£(T+T* CT*NT*=TNT*<T +T*

a contradiction, i.e., this shows that int(7" + T*) # @.
Now suppose that s + x ¢ int(7 + 7*). Then we can find a supporting hyper-
plane ¢t sothat 5 +x € (T +T*)Npt 9T +T* and 0 £ ¢ € (T + T*)* =
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T N T*. Therefore, we conclude (¢, 5 + ) = 0 implies that both (¢, 5) = 0 and
(¢, %) = 0. This means that ¢ € T* N5 = F and ¢ € T Nx+ = (F°), giving
0+# ¢ € (F°) N (F°)° = {0}, which is a contradiction.
2. The first result follows from: cone(T — 5) = (T — 5)** = (T*Ns1)".
For the second result, we use the first result and Theorem 6.3 of Rockafel-
lar [63] to deduce

relint(cone(T — E)) = relint(cone(T — E)) = relint[(FC)*]
which implies the desired conclusion.

3.2 Faces for primal-dual pair (P) and (D)

We now present facial properties specific to the primal-dual pair (2.2) and (2.3). In
particular, this includes relationships between the minimal faces fp, fp and the min-
imal faces for the homogeneous problems, fg, f g.

Proposition 3.4 Suppose that both (2.2) and (2.3) are feasible, i.e., equivalently 5 €
K+ Lt and% e K*+ L. Let § € Fp(3) and x € Fp(F). Then the following hold.

1.
fp Sface(S+ fp) S fp(®),  fpSface(R+ fp) S fo(®).  (32)

Se(f) +Lre fr® (£  Fe(f) +Le fo@ ().

Proof Since both problems are feasible, we can assume, without loss of generality,
thats =5 e K,x =X € K*.

1. Since cones and fg are convex cones containing the origin, cones + fg =
conv(cones U fg); see e.g., [63, Theorem 3.8]. Hence,

fg - conV(E U fg) - conv(conei U fg) =cones + fg = cone(E + fg)
- face(E + fg).

This proves the first inclusion. It is clear that § + (£- N K) € (5 + £1) N K. This
yields the second inclusion. The final two inclusions follow similarly.

2. Suppose that § € (fg)c + L1 and § +r € K with r € £, Then, for all £ €
LNK*C f), we have (5 +r, £) = (5, £) = 0, since § € (f3)¢ + L. This implies
that fp(5) = face((§ + £1) N K) is orthogonal to fg =face(L N K¥), i.e., the first
implication holds. (This also follows from part 1, using fp(5) < [ fp(x)]¢.)

For the converse implication, since (2.2) is feasible, we have s € fp(5). So if
fp(3) S (fp)°, then 5 € (fp)°.

The second equivalence follows similarly. O

Additional relationships between the faces follow. First, we need a lemma that is
of interest in its own right.
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Lemma 3.5 Lets € fg, and suppose that s = § + £ is feasible for (2.2) with £ € L.
Then £ € span fg.

Proof Letv e relint(L+ N K). Then v € relint fg, and since 5 € fg, we have v —es €

fg for some € > 0. Now if £ is such that s = § + £ is feasible for (2.2), thens+ £ € K,
and

év—i—ﬁzé(v—ei)—i—(i—k@)efg—i—K:K.
For convenience, define o := 1/€. Since av € L+ and ¢ € £+, we in fact have
av+leKNLECfY, (3.3)
which implies £ € fg - fg. g

Proposition 3.6

l.§efOUult= fr@) =flandie fOUL= fp(¥) = f).
2. Let fg <1 K*. Then there exists 0% ¢ € K N L.

Proof 1. We begin by proving the first statement. If § € £+, then § + £+ = L1,
so the desired result holds. If instead § € fg, then it follows from Lemma 3.5 that
£ € span fg for all feasible points of the form s = § + £. Hence all feasible s lie in
the set span (fg) N K, which by Proposition 3.1, part 1, equals fg. So fp(s) € fg;
but, the reverse inclusion holds by Proposition 3.4, part 1.

The second statement for f g in proven in a similar way.

2. Existence is by the theorem of the alternative for the Slater CQ; see (2.15) and
the related Proposition 2.3. O

We conclude this subsection with a new result indicating that the failure of strict
complementarity in ( fg, fg) can be related to the lack of closure in the sum of the
cone and the subspace.

Proposition 3.7 Let K be closed. If there exists a nonzero x € —(K N K*) such that
xe(KnLH n(k*ne)t, (3.4)

then x € precl(K + L£+) N precl(K* + £). Hence, neither K + L+ nor K* + L is
closed.

Proof To obtain a contradiction, suppose that (3.4) holds for a nonzero x € —(K N
K*), but x € K 4+ £+, Then there exists w € K such that x — w € £+. Moreover,
x—we—K—K=—K,sox —we —(KNL). It follows from (3.4) that (x, x —
w) = 0. However, (x,x — w) = (x, x) + (—x, w) > 0, where we have used the fact
that x € —K*. Hence, x ¢ K + L. A similar argument shows that x ¢ K* + L.
Since K and £ are closed convex cones, we have (K N £1)* = K* + (LL)* =
K* + L. It follows from (3.4) that x € K* + £. Similarly, x € K + £+. This com-
pletes the proof. O
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The reader might naturally ask: when does such an x satisfying the conditions
of the last proposition exist? As an answer, consider the case K = K* and a linear
subspace L such that ( fg, fg) is a proper partition but is not strictly complementary.
Let G := (fg)" N (fg)". Then every x € —G \ {0} satisfies the assumption of the
above proposition.

3.3 Nice cones, devious cones, and SDP

Definition 3.8 A face F < K is called nice if K* + F~ is closed. A closed convex
cone K is called a nice cone or a facially dual-complete cone, FDC, if

K* + Ftis closed forall F < K. 3.5)

The condition in (3.5) was used in [13] to allow for extended Lagrange multipliers
in f to be split into a sum using K* and f I}. This allowed for restricted Lagrange
multiplier results with the multiplier in K*. The condition (3.5) was also used in [52]
where the term nice cone was introduced. In addition, it was shown by Pataki (forth-
coming paper) that a FDC cone must be facially exposed.

Moreover, the FDC property has an implication for Proposition 3.1, part 3. We
now see that this holds for SDP.

Lemma 3.9 58, 73] Suppose that F is a proper face of S} , i.e., {0} # F <S'|.. Then:

F*:S’1+FL=S’i+spanFC,

S% + span F€ is not closed.

From Lemma 3.9, we see that §'} is a nice cone. In fact, as pointed out in [52],
many other classes of cones are nice cones, e.g., polyhedral and p-cones. However,
the lack of closure property in Lemma 3.9 is not a nice property. In fact, from Propo-
sition 3.2, part 2, this corresponds to the lack of closure for radial cones, see [65]
which can result in duality problems. Therefore, we add the following.

Definition 3.10 A face F' < K is called devious if the set K + span F' is not closed.
A cone K is called devious if

the set K + span F is not closed for all {0} # F < K.

By Lemma 3.9, S} is a nice but devious cone. On the other hand, polyhedral cones
are nice and not devious, since sums of polyhedral cones and subspaces are closed,
e.g., [63, Chap. 9].

The facial structure of Si is well known, e.g., [58, 73]. Each face F J Si is
characterized by a unique subspace S C R":

F={xeS}:Nx)2S} relint F = {x € S} : N(x) = §}.
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The conjugate face satisfies
Fcz{xeS'J’r:./\/(x)QSJ‘}; relintF:{xeSi:N(x):SJ‘}.

The description of span F' for F* 1§’} is now clear.

Another useful property of SDPs (and the Lowner partial order) is given by the
following lemma. This lemma played a critical role in the explicit description of a
dual SDP problem for which strong duality holds.

Lemma 3.11 [57] Let K C S} be a closed convex cone. Then

I wT

c\c1L T.
[ (face K)°] :{W+W .WeR”X",[W -

]zO,forsomeUeI%}.

Properties 3.12 The following three properties of the cone S| are needed for the
strong duality approach in Ramana [57]. The first two also make the Borwein-
Wolkowicz approach in [15] behave particularly well:

1. K is facially exposed.
2. K is FDC.
3. Lemma 3.11.

Suppose that the cone K describing the problem (P) is SDP-representable. (That
is, there exists d and a linear subspace V C S¢ such that V N Si+ # @ and K is
isomorphic to (V N Si).) Then by [20, Corollary 1, Proposition 4], K is facially
exposed and FDC, since Si is. Moreover, by [20, Proposition 3], every proper face
of K is a proper face of S‘i intersected with the subspace V. Hence, assuming that a
suitable representation of K is given, an analogue of Lemma 3.11 is also available in
this case. Therefore, SDP-representable cones (which strictly include homogeneous
cones, due to a result of Chua [19] and Faybusovich [24]) satisfy all three of the
above-mentioned Properties 3.12. For related recent results on homogeneous cones
and strong duality, see Pélik and Terlaky [53].

4 Duality and minimal representations

In this section, we see that minimal representations of the problem guarantee strong
duality and stability results, i.e., combining the minimal cone and the minimal sub-
space together reduces both the dimension of the problem and the number of con-
straints, and also guarantees Slater’s constraint qualification. We first use the minimal
subspaces and extend the known strong duality results without any constraint quali-
fication, see e.g., [13—15, 72]. Equivalent strong duality results based on an extended
Lagrangian are given in [56, 57]. (See [58, 73] for comparison and summaries of the
two types of duality results.) By strong duality for (2.2), we mean that there is a zero
duality gap, vp = vp, and the dual optimal value vp in (2.3) is attained.
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4.1 Strong duality and constraint qualifications

We now present strong duality results that hold with and without CQs. We also
present: a weakest constraint qualification (WCQ), i.e., a CQ at a given feasible point
yeF f, (c) that is independent of b; and a universal constraint qualification, (UCQ),
i.e., a CQ that is independent of both b and c. Following is the classical, well-known,
strong duality result for (2.2) under the standard Slater CQ.

Theorem 4.1 (See, e.g., [46, 660]) Suppose that Slater’s CQ (strict feasibility) holds
for (2.2). Then strong duality holds for (2.2), i.e., vp = vp and the dual value vp
in (2.3) is attained. Equivalently, there exists x € K* such that

(b, y) +(c— A*y, %)= vp, VyeR"

Moreover, if vp is attained at y € F», then (¢ — A*y, %) = 0 (complementary slack-
ness holds).

A nice compact formulation follows.

Corollary 4.2 Suppose that Slater’s CQ (strict feasibility) holds for (2.2) and
ye .7:1y,. Then, y is optimal for (2.2) if, and only if,

be A[(K —5*], “.D
where s = c — A*y.

Proof The result follows from the observation that (faces)¢ = K* N5+ = (K — 5)*,
i.e., (4.1) is equivalent to dual feasibility and complementary slackness. |

Strong duality can fail if Slater’s CQ does not hold. In [13-15], an equivalent
regularized primal problem that is based on the minimal face,

vrp ==sup{(b,y) : A*y <y, c} (4.2)

is considered. Its Lagrangian dual is given by
UDRP = inf{(c,x) cAx=b, x =13 O}. 4.3)
Theorem 4.3 [13] Strong duality holds for the pair (4.2) and (4.3), or equivalently,

for the pair (2.2) and (4.3); i.e., vp = vrp = Vprp and the dual optimal value vpgp
is attained. Equivalently, there exists x* € (fp)* such that

(b, y) +(c — Ay, x*) = vp, Vye (A7 (fp — fr).

Moreover, if vp is attained at y € F>, then (c — A*y, x*) = 0 (complementary slack-
ness holds).
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Corollary 4.4 Let y € F %. Then y is optimal for (2.2) if, and only if,
be Al(fr -],
where § = c — A*y.

Proof As above, in the proof of Corollary 4.2, the result follows from the observation
that £ N5+ = (fp — 5" O

The next result uses the minimal subspace representation of L1, introduced
in (2.18), L5, =L 0 (fp — fp).

Corollary 4.5 Let y, s, and X satisfy (2.7) with s € fp — fp and let
K* + (fp) = (fp)". 4.4)
Consider the following pair of dual programs.

vRRy = (€, %) —inf{(s. %) 15 € (54 Lpy)NK}, (4.5)

vprpy = (b, y)+i2f{<§,x):xe(i+,cpM)mK*}. (4.6)

Then, vgp,, = VRp = Vp = UpRrpP, = VDRP, and strong duality holds for (4.5) and
(4.6), or equivalently, for the pair (2.2) and (4.6).

Proof That vp = vgp,, = vgp follows from the definition of the minimal subspace
representation in (2.18):

Fpc) = FpS)
=(5+L£%) N fp, by definition of fp,
=(+Lpy)NK, sincese fp— fp.
For the regularized dual, we see that
vprp =inf{(c, x) : Ax = b, x > ; 0}
= (7,b) +inf{(5, x) : Ax =b,x =xx +x7,x, € K*,xp € fp}, by (44)
X
= (y,b) +inf{(§,x> x=xp+xr=X+x,x€K* x5 € fﬁ,x; eﬁ}
X

:<y,b>+i§f{<§,xk);xke()z+£+f,+)mK*}=vDRpM. 0

Remark 4.6 The condition in (4.4) is equivalent to K* + ( fp)+ being closed, and is
clearly true for every face of K, if K is a FDC cone.

Remark 4.7 Using the minimal subspace representations of £ in (2.3), i.e., replacing
L in (2.3) by Lpys in (2.18), we may obtain a result similar to Corollary 4.5.
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Note that if the Slater CQ holds, then the minimal sets (face and subspace) satisfy
fp = K and (2.18). We now see that if at least one of these conditions holds, then
strong duality holds.

Corollary 4.8 Suppose that int K = (§ but the generalized Slater CQ (relative strict
feasibility) holds for (2.2), i.e.,

s:=c—A*y crelintK, forsomey cW (Generalized Slater CQ).  (4.7)

(Equivalently, suppose that the minimal face satisfies fp = K.) Then strong duality
holds for (2.2).

Proof The proof follows immediately from Theorem 4.3 after noting that K = fp. [

The following corollary illustrates strong duality for a variation of the general-
ized Slater constraint qualification, i.e., for the case that the minimal subspace satis-
fies (2.18).

Corollary 4.9 Lets € fp — fp and K be FDC. Suppose that
LYN(K—K)C fp— fp (Subspace CQ). (4.8)

(Equivalently, suppose that E# u= LY N (K — K).) Then strong duality holds
for (2.2).
Proof Follows directly from Corollary 4.5. g

We now summarize the results in the special case that K is FDC (a nice cone).
The first item presents a regularized problem that satisfies Slater’s CQ. This is the
approach used in [18]. Note that early results on weakest constraint qualifications for
general nonlinear problems are given in e.g., [31].

Theorem 4.10 Let 5, x satisfy linear feasibility (2.7) with s € fp — fp and let K be
FDC. Then we have the following conclusions.

1. The primal optimal values are all equal, vp = vrp = vgp,,. Moreover, strong
duality holds for the primal, where the primal is chosen from the set

{(2.9), 4.2), (4.5)} (set of primal programs)
and the dual is chosen from the set
{(4.3), (4.6)} (set of dual programs)

i.e., the optimal values are all equal and the dual optimal value is attained.
2. Furthermore, let T : R — V be a one-one linear transformation with R(T) =
fp — fp. Then Slater’s CQ holds for the regularized problem

vRpy = (e, %) — inf {{v, 77%): v e (TT5+T7(Lpy))NTT(fP)}). (49

veR!
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3. The following are CQs for (2.2):

(a) fp = K (equivalently generalized Slater CQ (4.7));

(b) LN (K —K) C fp — fp (equivalently L,, = L N (K — K));
4. Lety € Fp(c) and § = c — A*y. Then,

D;(y)* = —A((K - E)*) isa WCQ for (2.2) at (y,5). (4.10)
Equivalently,
A[(fp - E)*] = .A((K — E)*) is a WCQ for (2.2) at (¥, 5). (4.11)

Proof

1. These results summarize Theorem 4.3 and Corollary 4.5.

2. From the definitions, we know that there exists £ € Lﬁ; » With §=5+¢ erelint fp.
Therefore, v:=T§ =TT (5 +£) €int T (fp).

3. The results follow from Corollaries 4.8, 4.9, respectively.

4. The so-called Rockafellar-Pshenichnyi condition, e.g., [55], [31, Theorem 1],
states that y is optimal if, and only if, b € —D,SD ()*. From Theorem 4.3, y is
optimal if, and only if, Ax = b, (5, x) =0, for some x € f7; equivalently, if, and
only if, b € A((fp —5)*). The result follows from the fact that strong duality holds
at an optimal y if, and only if, Ax = b, (5, x) = 0, for some x € K*; equivalently,

Ax = b, for some X € (K — 5)*. O

Remark 4.11 The WCQ in (4.10) follows the approach in e.g., [22, 31, 43, 44, 76].
Moreover, since for any set S, A(S) is closed if, and only if, S+ L is closed (e.g., [10,
34]), we conclude that a necessary condition for the WCQ to hold at a feasible 5 € F7,
is that

(K —5)* + L is closed. (4.12)

(For a recent detailed study of when the linear image of a closed convex set is closed,
see e.g., [52]. For related perturbation results, see [12].)

4.1.1 Universal constraint qualifications

A universal CQ, denoted UCQ, is a CQ that holds independent of the data b, c, i.e., as
in LP, strong duality holds for arbitrary perturbations of the data b, ¢ as long as fea-
sibility is not lost.

Theorem 4.12 Suppose that K is FDC, and 5 € K, X € K* in the primal-dual sub-
space representation in (2.9) and (2.10). Then

Lrc -1
is a UCQ, i.e., a universal CQ for (2.2).

Proof The result follows from Corollary 4.9 and the fact that s € K, x € K™ implies
f € fpand f) € fp, see Proposition 3.4. 0
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Corollary 4.13 Suppose that K = S"_, both vp and vp are finite, and n < 2. Then
strong duality holds for at least one of (2.2) or (2.3).

Proof We have both 7}, # @ and F7j, # . By going through the possible cases, we
see that one of the CQs L+ C fg - fg or LC fg - fg must hold. g

5 Failure of Strong Duality and Strict Complementarity

As discussed above, the absence of a CQ for (2.2) can result in the failure of strong
duality, i.e., we have theoretical difficulties. In addition, it has been shown that near
loss of Slater’s CQ is closely correlated with an increase in the expected number of
iterations in interior-point methods both in theory [59, 61] and empirically, [25, 26].
Therefore, a regularization step should be an essential preprocessor for SDP solvers.

It is also known that the lack of strict complementarity for SDP may result in the-
oretical difficulties. For example, superlinear and quadratic convergence results for
interior-point methods depend on the strict complementarity assumption, e.g., [3, 37,
40, 47, 54]. This is also the case for convergence of the central path to the analytic
center of the optimal face, [32]. In addition, it is shown empirically in [71] that the
loss of strict complementarity is closely correlated with the expected number of it-
erations in interior-point methods. However, one can generate problems where strict
complementarity fails independent of whether or not Slater’s CQ holds for the pri-
mal and/or the dual, [71]. Therefore, we see a connection between the theoretical
difficulty from an absence of Slater’s CQ and numerical algorithms, and a similar
connection for the absence of strict complementarity. We see below that duality and
strict complementarity of the homogeneous problem have a surprising theoretical
connection as well.

Strong duality for (2.2) means a zero duality gap, vp = vp and dual attainment,
vp = {c, x*), for some x* € F7},. The CQs (resp. UCQs), introduced above in Sect. 4,
guarantee that strong duality holds independent of the data b (resp. b and c¢). Under
our assumption that vp is finite valued, there are three cases of failure to consider:
(i) a zero duality gap but no dual attainment; (ii) an infinite duality gap (dual infeasi-
bility); (iii) a finite positive duality gap.

5.1 Finite positive duality gaps

5.1.1 Positive gaps and cones of feasible directions

We present characterizations for a finite positive duality gap under attainment as-
sumptions in Proposition 5.2. We first give sufficient conditions for a positive duality
gap using well known optimality conditions based on feasible directions.
Proposition 5.1 Let s € F},, x € F, and (5, x) > 0. Suppose that 5 € Dg(f)* and
X € DIS, (8)*. Then § is optimal for (2.2), X is optimal for (2.3), and —c0 < vp <

Up < OQ.
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Proof The optimality of § and x follows immediately from the definition of the cones
of feasible directions and the Rockafellar-Pshenichnyi condition, see e.g., the proof
of Theorem 4.10. The finite positive duality gap follows from the hypotheses that
both (2.2) and (2.3) are feasible, and that (s, x) > 0. O

A well-known characterization for a zero duality gap can be given using the per-
turbation function. For example, define

vp(e) = sup{(b, vy Ay <g ¢+ e}, where € € V.
y
The connection with the dual functional ¢ (x) := sup, (b, y) + (x,c — A*y) is given
in e.g., [46]. Then the geometry shows that the closure of the epigraph of vp char-
acterizes a zero duality gap. We now use representations of the cones of feasible
directions and the optimal solution sets O}, O7,, to present a characterization for a

finite positive duality gap in the case of attainment of the primal and dual optimal
values.

Proposition 5.2 Suppose that K is closed, y is feasible for (2.2), with corresponding
slack 5, and that X is feasible for (2.3). Then

5€0%,5€0}, (5,%)>0,
if, and only if,
FeDr®*\ (K —5)* and §eD3E*\(K*-X)"
Proof Using the subspace problem formulations, the Rockafellar-Pshenichnyi con-
dition implies that
€0} (resp. ¥ € 0}) < €D (resp. ¥ € D5()*).
However, X € (K — §)* (or § € (K* — X)*) holds if, and only if, (§, x) =0. O

5.1.2 Positive gaps and strict complementarity

In this section, we study the relationships between complementarity partitions and
positive duality gaps. In particular, we consider cases where the complementarity
partition for the pair of faces ( fg, f 8) fails to be strict. An instance with a finite
positive gap is given in Example 2.5, item 2. We provide another example to illustrate
the application of the optimality conditions that use the minimal sets.

Example 5.3 We let K = K* =S%, with A*y = Y"; A;y; and

Ay =Eqy, Ay = En, A3 = E34, A4 =Ei3+ Ess,
As=Eu+Eeg,  5=0, c¢=§=Ep+Es b=0 0 2 0 DT,
X = E34 + Egs.
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The primal and dual recession cones (first complementarity partition) are

S 0 «
f}?:[()* 0]<1K, fo=0S20" <K*, where Q=[e3 eul;

and positionwise

fpo0 0
0 f3 of,
0 0 G

where G = 0; represents the gap in strict complementarity. We note that fg N{c}t =
f g. We apply (2.15) with the second (or fourth) complementarity partition in Propo-
sition 2.3. We choose

0, 0 0
x=[0 L 0 |erelintfp=relint(fN{c}).
0 0 0,

We get fp < fi:=KnN {x}* and the equivalent problem to (P)
(P) vp =sup{(b,y): A"y <y, c}.
However, we need one more step to find fp. We again apply (2.15) and choose
0% x = Ess e relint(fi N {c} ).
This yields fp = QSiQT, where O = [e] e; eg].

Similarly, we can work on the dual problem. In summary, we get that the faces
and recession cones of the primal and dual are

2
fp9=[SO+ g]ﬁK, fp=0870" 9K*, where Q=[es eal,

fr=0830", where Q=[e; e el
fp=0S30", where Q=[es es egl.

The optimal values are vp =0 and vp = 1.

A connection between optimality and complementarity can be seen in the follow-
ing proposition.

Proposition 5.4 Suppose that (2.2) has optimal solution y with corresponding opti-
mal slack 5, and that (2.3) has optimal solution x. Then

(5, %) :inf{(s,x) iseFp,x e]-'}‘)}.
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Proof Since 5 is feasible, there exists £’ € L+ such that ¢ = § + ¢'. Then for every
feasible solution x of (2.3) and every feasible solution (y, s) of (2.2), we have

constant

The second equation above uses the facts ¢’ € Lt (X — x) € L. Now, using the sub-
space form (2.9), (2.10) of the primal-dual pair, we conclude the desired result.  [J

Example 5.5 (S. Schurr [64]) It is possible to have a finite positive duality gap even if
the complementarity partition for the pair of faces (fg, fg) is strict. Let K = K* =
Si, and

Al =Eq, Ay =Ep, A3z = E3q4, A4 = E13 4+ E45 + Ess,
b=0 1 2 DT, ¢ = Eq + Ess.

Then
2
o_|S% O o_|0 0 cd AT {0 O
fP_[O 0}9 fD_[O Si_ ) fP_QS+Q7 fD_O Si )

where Q = [e] ez es es]. The primal optimal value is zero and the dual optimal
value is (+/5 — 1)/2, and both are attained. This can be seen using the optimal
§ = ¢ for (2.2), and X optimal for (2.3) (optimal x* = X has values 1/+/5 and
(3 — v/5)/(24/5) for the diagonal (5, 5) and (4, 4) elements, respectively).

We also have an example without the attainment of the optimal values.

Example 5.6 Consider the SDP with data K = K* =S, and

Ay =Eqy, Ay =Ep, Az = E34, Ay = E13+ Ess,
b=0 1 2 DT, ¢=E»+ Ess + Ess.

The primal optimal value is zero and the dual optimal value is 1, but neither value is
attained.

We now consider cases when the assumption that the complementarity partition
for the pair of faces ( fg, f g) fails to be strict implies a finite positive duality gap.
Our main result for the relationship between the failure of strict complementarity and
finite nonzero duality gaps follows. We focus on the SDP case.
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Theorem 5.7 Let K =S, suppose that the subspace L C S" is such that the com-
plementarity partition for the pair of faces ( fg, fg) minimally fails to be strict
(dim G = 1, where the face G := (fg)c N (fg)c < K). Then for every M > 0, there
exist X, § € relint G such that the underlying problems (2.9) and (2.10) have a duality
gap of exactly M.

Proof First note that £ N K = {0} if, and only if, LA NintK # ¢ if, and only if,
fg = K. Using this and a similar result for £+ N K = {0}, we conclude that both
fg and fg are proper faces of K. Let M > 0O be arbitrary and § € relintG such
that (s,s5) = M. Let X := 5. We claim that § is optimal in (P) and (D). We prove
the optimality claim by contradiction. Suppose § is not optimal in (IP). Since it is
feasible, with objective value M, there must exist another feasible solution of (D)
with strictly better objective value. The latter implies, there exists u € S” such that
wuelt u>—5and (s, u) < 0. Under an orthogonal similarity transformation, we
have the following representation of the faces:

G 0 0
0 f2 0
0 0 f)

Then, s =+ ME|1, and u > —s implies that the 3 x 3 block of u is zero. Thus,

a o7 0
u=|(v V 0],
0 0 0

where o < 0. Now let § € relint fg, that is,
0 0 0
s=10 & 0],
0 0 0

where & > 0. For every 8 € R, (85 — u) € L. Moreover,

_ _ =T
o v 0 1
BS—u=|—-0 BE—-V 0|>=0 < (BE-V)+—v0! =0,
0 0 0 o

and,
—o =t V) + 1557 = 0
5 BE—V > = (BE— )—i—avv > 0.

The latter is true for all sufficiently large 8 > 0. Hence, for all sufficiently large g > 0,
Bs—u)eLtn S% with rank(BS — u) = rank(s) + 1, a contradiction. This proves,
s is optimal in (P). Similarly, X is optimal in (D). The duality gap is (X, §) = (5, §) =
M, as claimed. O
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Example 5.8 We now see that choosing one of §, x in relint G may not result in a
positive duality gap. Consider the SDP with data K = K* = Sﬁ_, and

Al = Eya, Ay = Exq + E33, A3 =E;3+ Enn.

Then
o_|0 0 o_|R+ O «
= < = <

fP [0 R+}_K7 fD [O 0 _Kv

and
G:=(fp) N (fp) =0sio",

where Q = [es e3]. If § and X are chosen such that § € relint(G) and X € G, with
X33 > 0, then the optimal values are both x33(s33 — s§3 /s22). However, there exist
matrices §, X € G that are singular on G such that (2.2) and (2.3) admit a positive
duality gap. For example, if § = x is the diagonal matrix s = x = Diag((0 0 s33 0)),

then the primal optimal value is zero and the dual optimal value is x33533.1 Both
values are attained at § = X.

Note that the construction in the proof of Theorem 5.7 resulted in a primal-dual
pair for which every feasible solution is optimal. We further investigate this connec-
tion in the next two results.

Theorem 5.9 Let K be a closed convex cone. Suppose that the partition ( f 2, f 8) is
strictly complementary and that the following condition holds:

Se(fOF+Lt,  Te(fd)+L (5.1)

Then every feasible solution in (IP) and every feasible solution in (D) is optimal and
strong duality holds for both (P) and (D).

Proof Suppose that (5.1) holds. Then by Proposition 3.4, part 2, fp C ( fg)c and
fp C( fg)c . Further suppose that ( fg, f g) forms a strict complementarity partition.
Then (f3)¢ = f5. Since for all feasible problems, f5 C fp and fp C fp (Proposi-
tion 3.4, part 1), we actually have fg = fp and fg = fp. Then, (fp, fp) =0, i.c.
every feasible point is optimal (and we have no duality gap). d

Corollary 5.10 Suppose that both (2.9) and (2.10) are feasible but strong duality
fails either problem. In addition, suppose that all feasible points for (2.2) and (2.3)
are optimal. Then the complementarity partition for the pair of faces ( fg, fg) fails
to be strict.

Proof Suppose that all feasible points for (2.2) are optimal. Then the primal objective
function is constant along all primal recession directions. That is, (X, LN K)={0},

1Similarly, we can use the (2, 2) position rather than the (3, 3) position.
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ie., ¥ € (Lt NK)L. Now by construction, X is dual feasible, i.e., X € LENnK)En
K*=( fl.(@))L NK*=( fg)c. Finally, as argued previously, translating X by a point in
L leaves the dual problem unchanged, giving the condition on x in (5.1). In a similar
way we can show that if all feasible points for (2.3) are optimal, then the condition
on 5 in (5.1) holds. The desired result now follows from Theorem 5.9. O

5.2 Infinite duality gap and devious faces

As we have already noted, (2.3) is feasible if, and only if, X € K* + L. Moreover the
feasibility of (2.3) is equivalent to a finite duality gap (possibly zero), recalling our
assumption that the primal optimal value vp is finite. We now see that if a nice cone
has a devious face, then it is easy to construct examples with an infinite duality gap.

Proposition 5.11 Suppose that K is a nice, proper cone and F is a devious face of
K*, ie.,

K*+ (FC)J‘ =K*+spanF and (K*+ spanF) isnot closed.

Let £ = span F and choose ¢ =5 =0 and ¥ € (K* + (F¢)M)\(K* + L). Then
(X +L£)NK* = and we get vp = +00. Moreover, L+ = F* and, for every feasible
se FXNK,

(X,5) = (Xk* + X(peyr,5) = 0,
ie,0=vp <vp=o00.

Proof The proof follows from the definitions. g

Proposition 5.11 can be extended to choosing any £ that satisfies K* + L is not
closed and K* 4+ £ C K* 4 (F¢)L.

Example 5.12 Let K = S%r, and suppose that (2.2) and (2.3) admit a nonzero dual-
ity gap. Then Slater’s CQ fails for both primal and dual, i.e., {0} # fg C Si and
{0} # f 8 C Si. After a rotation (see Lemma 2.8) we can assume the problem has the

structure
B0
0o £

viz., the matrices in fg are nonzero only in the (1, 1) position, and the matrices

in fg are nonzero only in the (2, 2) position. There are only three possible options
for L: span{E11}, span{E2}, span{E11, E12}, or span{E2,, E1>}. In each case, either
£ is one-dimensional and £ is two-dimensional, or vice versa. So without loss of
generality, we may choose £ = span{E1;}. Now take X = E|» € S%r + (fg)J‘. Then

¢S24+ L=S2 +span 3 CS2+ (9", (5.2)

and the dual program (2.3) is infeasible. But choosing ¢ = 5§ = E», implies that the
primal optimal value vp = (¢, X) — y1(E22,x) =0 < vp = +00.
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Corollary 5.13 If K =SZ, then a finite positive duality gap cannot occur.
Proof See Corollary 4.13. O

The above Corollary 5.13 also follows from [65, Proposition 4], i.e., it states that
a finite positive duality gap cannot happen if dim W < 3.

5.3 Regularization for Slater condition

In terms of worst-case performance, deciding whether the Slater condition holds for a
given SDP problem seems no easier than solving an SDP problem. However, in many
applications, there may be enough structure or a priori information which allows the
user to regularize for the Slater condition. For example, if we consider applications
of SDP arising as relaxations of nonconvex optimization problems, there are general
methods (see [68]) that can be used for regularization so that the new problem has
Slater points. The methods of [68] only require the prior knowledge of the affine hull
(or linear span depending on the SDP relaxation used) of the nonconvex solution set.

In practice, due to the special structure present, heuristics can be effective
(see [42]).

5.4 Regularization for strict complementarity

Suppose that strong duality holds for both the primal and dual SDPs, but strict com-
plementarity fails for every primal-dual optimal solution (5, ) € S'} @ S’ . Follow-
ing [71], (s, x) is called a maximal complementary solution pair if the pair maximizes
the sum rank(s) 4+ rank(x) over all primal-dual optimal (s, x). The strict complemen-
tarity nullity, g := n — rank(s) — rank(x).

Let 4 = N(5) N N (x) be the common nullspace of dimension g, and U be
the n x g matrix with orthonormal columns satisfying R(U) = U. Let [U Q]
be an orthogonal matrix. Then we can regularize so that strict complementarity
holds by replacing both primal-dual variables s, x by QsQ7, QxQT, respectively.
This is equivalent to replacing the matrices C, A;,i = 1,...,m that define A by
QTCQ, QTAiQ,i =1,...,m. Note that we would then have to check for possi-
ble linear dependence of the new matrices Q7 A; Q, as well as possible loss of Slater
CQ. Checking for linear dependence is indeed easy. Even though the loss of Slater
condition seems to be more problematic, as we discussed in the previous subsection,
in many applications this too may be relatively easy. Finding the common nullspace
can be done dynamically during the solution process. This is done by checking the
ratios of eigenvalues of s and x between iterates to see if the convergence is to O or
to O(1). (In the case of LP, this corresponds to identifying nonbasic variables using
the so-called Tapia indices, see e.g., [30].)

6 Conclusion

In this paper we have looked at known and new, duality and optimality results for
the cone optimization problem (2.2). We have used the subspace formulations of
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the primal and dual problems, (2.9), (2.10), to provide new CQs and new optimality
conditions that hold without any CQ. This includes a UCQ, i.e., a CQ that holds in-
dependent of both data vectors b and c. In particular, the optimality characterizations
show that a minimal representation of the cone and/or the linear transformation of
the problem results in regularization, i.e., efficient modeling for the cone K and for
the primal and dual constraints results in a stable formulation of the problem. In addi-
tion, we have discussed conditions for a zero duality gap and the surprising relations
to the lack of strict complementarity in the homogeneous problem and to the closure
of sums of cones. The (near) failure of Slater’s CQ relates to both theoretical and nu-
merical difficulties. The same holds true for the failure of strict complementarity. We
have discussed regularization procedures for both failures. We hope that these results
will lead to preprocessing for current cone optimization software packages.
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