
Robust Semidefinite Programming Approaches for Sensor Network

Localization with Anchors

Nathan Krislock ∗ Veronica Piccialli † Henry Wolkowicz ‡

May 20, 2006

University of Waterloo
Department of Combinatorics and Optimization

Waterloo, Ontario N2L 3G1, Canada
Research Report CORR 2006-12

Key Words: Sensor Network Localization, Anchors, Graph Realization, Semidefinite Pro-
gramming, Euclidean Distance Matrix Completions, Gauss-Newton Method

AMS Subject Classification:

Contents

1 Introduction 3

1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Related Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background and Preliminary Theory 5

2.1 Linear Transformations and Adjoints Related to EDM . . . . . . . . . . . . . . . . 5
2.2 Properties of Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Invariant Cones and Perron Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 SDP Relaxation 11

3.1 EDMCProblem Reformulation using Matrices . . . . . . . . . . . . . . . . . . 11
3.2 Relaxation of the Hard Quadratic Constraint . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Facial Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Further Model Development with only X,Y . . . . . . . . . . . . . . . . . . . . . . . 16

4 Duality for EDMC-R 17

∗Research supported by Natural Sciences Engineering Research Council Canada. E-mail ngbkrislock@uwaterloo.ca
†Department of Computer and Systems Science ”Antonio Ruberti” University of Rome ”La Sapienza” Via Buonar-

roti 12, 00185 Rome, Italy. Email Veronica.Piccialli@dis.uniroma1.it
‡Research supported by Natural Sciences Engineering Research Council Canada. E-mail hwolkowicz@uwaterloo.ca

1



5 A Robust Primal-Dual Interior-Point Method 19

5.1 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 Heuristic for an Initial Strictly Feasible Point . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Diagonal Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Instability in the Model 23

6.1 Case of an Accurate Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2 Linear Independence of Constraints and Redundancy in Objective Function . . . . . 24
6.3 Instability from Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.4 Alternative Models for Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.4.1 Minimum Norm Solutions for Underdetermined Systems . . . . . . . . . . . . 27
6.4.2 Strengthened Relaxation using Lagrangian Dual . . . . . . . . . . . . . . . . 28

7 Numerical Tests 30

8 Conclusion 34

A Linear Transformations and Adjoints 35

B Composition of Transformations and Properties 37

B.1 KY : R
rn+t(n) → R

t(m+n)−n−t(m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
B.2 Y∗K∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
B.3 (KW )∗KW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

C Elements of λ2 40

D Diagonal Preconditioning Details 41

List of Tables

1 Increasing Noise: densityW = .75, densityL = .8, n = 15,m = 5, r = 2 . . . . . . . . 31
2 Convergence Rate: densityW = .80, densityL = .8, n = 20,m = 6, r = 2 . . . . . . . 32
3 Decreasing density W and L: n = 15,m = 5, r = 2 . . . . . . . . . . . . . . . . . . . 33

List of Figures

1 Sample random problem with 20 sensors, 12 anchors . . . . . . . . . . . . . . . . . . 34
2 After one iteration for randomly generated problem . . . . . . . . . . . . . . . . . . . 35
3 After two iterations for randomly generated problem . . . . . . . . . . . . . . . . . . 36
4 After eight iterations for randomly generated problem . . . . . . . . . . . . . . . . . 37
5 After twelve iterations for randomly generated problem . . . . . . . . . . . . . . . . 38
6 After 22 iterations for randomly generated problem . . . . . . . . . . . . . . . . . . . 39
7 After 29 iterations for randomly generated problem . . . . . . . . . . . . . . . . . . . 40

Abstract

2



We derive a robust primal-dual interior-point algorithm for a semidefinite programming, SDP ,
relaxation for sensor localization with anchors and with noisy distance information. The relax-
ation is based on finding a Euclidean Distance Matrix, EDM , that is nearest in the Frobenius
norm for the known noisy distances and that satisfies given upper and lower bounds on the
unknown distances.

We show that the SDP relaxation for this nearest EDM problem is usually underdeter-
mined and is an ill-posed problem. Our interior-point algorithm exploits the structure and
maintains exact feasibility at each iteration. High accuracy solutions can be obtained despite
the ill-conditioning of the optimality conditions.
Included are discussions on the strength and stability of the SDP relaxations, as well as results
on invariant cones related to the operators that map between the cones of semidefinite and
Euclidean distance matrices.

1 Introduction

Many applications use ad hoc wireless sensor networks for monitoring information, e.g. for earth-
quake detection, ocean current flows, weather, etc... Typical networks include a large number of
sensor nodes which gather data and communicate among themselves. The location of a subset
of the sensors is known; these sensor nodes are called anchors. From intercommunication among
sensor nodes within a given (radio) range, we are able to establish approximate distances between
a subset of the sensors and anchors. The sensor localization problem is to determine/estimate the
location of all the sensors from this partial information on the distances. For more details on the
various applications, see e.g. [7, 4, 14].

We model the problem by treating it as a nearest Euclidean Distance Matrix, EDM , problem
with lower bounds formed using the radio range between pairs of nodes for which no distance exists.
We also allow for existing upper bounds. When solving for the sensor locations, the problem is
nonconvex and hard to solve exactly. We study the semidefinite programming, SDP , relaxation
of the sensor localization problem. We project the feasible set onto the minimal face of the cone
of semidefinite matrices, SDP , and show that strict feasibility holds for the primal problem.
However, we illustrate that this SDP relaxation has inherent instability, is usually underdetermined
and ill-posed. This is due to both the nearest matrix model as well as the SDP relaxation. In
addition, the relaxation can be strengthened using Lagrangian relaxation. Nevertheless, we derive
a robust interior-point algorithm for the projected SDP relaxation. The algorithm exploits the
special structure of the linear transformations for both efficiency and robustness. We eliminate,
in advance, the primal and dual linear feasibility equations. We work with an overdetermined
bilinear system, rather than using a square symmetrized approach, that is common for SDP .
This uses the Gauss-Newton approach in [15] and involves a crossover step after which we use
the affine scaling direction with steplength one and without any backtracking to preserve positive
definiteness. The search direction is found using a preconditioned conjugate gradient method,
LSQR [18]. The algorithm maintains exact primal and dual feasibility throughout the iterations
and attains high accurate solutions. Our numerical tests show that, despite the illconditioning,
we are able to obtain high accuracy in the solution of the SDP problem. In addition, we obtain
surprisingly highly accurate approximations of the original sensor localization problem.
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1.1 Outline

The formulation of the sensor localization problem is outlined in Section 1.2. We continue in
Section 2 with background and notation, including information on the linear transformation and
adjoints used in the model. In Section 2.3 we present explicit representations of the Perron root and
corresponding eigenvector for the important linear transformation that maps between the cones of
EDM and SDP .

The SDP relaxation is presented in Section 3. We use the Frobenius norm rather than the `1

norm that is used in the literature. We then project the problem onto the minimal face in order to
obtain Slater’s constraint qualification (strict feasibility) and guarantee strong duality. The dual is
presented in Section 4.

The primal-dual interior-point (p-d i-p) algorithm is derived in Section 5. We include a heuristic
for obtaining a strictly feasible starting point and the details for the diagonal preconditioning using
the structure of the linear transformations. The algorithm uses a crossover technique, i.e. we use
the affine scaling step without backtracking once we get sufficient decrease in the duality gap.

The instability in the SDP relaxation, and different approaches on dealing with it, is discussed
in Section 6. We then continue with numerical tests and concluding remarks in Sections 7 and 8. We
include an appendix with the details of the composition and adjoints of the linear transformations,
as well as the details of the diagonal preconditioning.

1.2 Problem Formulation

Let the n unknown (sensor) points be p1, p2, . . . , pn ∈ R
r, r the embedding dimension; and let the

m known (anchor) points be a1, a2, . . . , am ∈ R
r. Let AT = [a1, a2, . . . , am], XT = [p1, p2, . . . , pn],

and define
P T :=

(

p1, p2, . . . , pn, a1, a2, . . . , am
)

=
(

XT AT
)

. (1.1)

Note that we can always shift all the sensors and anchors so that the anchors are centered at the
origin, AT e = 0. We can then shift them all back at the end. To avoid some special trivial cases,
we assume the following.

Assumption 1.1 The number of sensors and anchors, and the embedding dimension satisfy

n > m > r, AT e = 0, and A is full column rank.

Now define (Ne,Nu,Nl), respectively, to be the index sets of specified (distance values, upper
bounds, lower bounds), respectively, of the distances dij between pairs of nodes from {pi}n

1 (sensors);
and let (Me,Mu,Ml), denote the same for distances between a node from {pi}n

1 (sensor) and a
node from {ak}m

1 (anchor). Define (the partial Euclidean Distance Matrix) E with elements

Eij =

{

d2
ij if ij ∈ Ne ∪Me

0 otherwise.

The underlying graph is
G = (V, E), (1.2)

with node set {1, . . . ,m + n} and edge set Ne ∪Me. Similarly, we define the matrix of (squared)
upper distance bounds U and the matrix of (squared) lower distance bounds L for ij ∈ Nu ∪Mu

and Nl ∪Ml, respectively.
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Our first formulation for finding the sensor locations pj is the feasibility question for the con-
straints:

‖pi − pj‖2 = Eij ∀(i, j) ∈ Ne

(

ne = |Ne|
2

)

‖pi − ak‖2 = Eik ∀(i, k) ∈Me

(

me = |Me|
2

)

‖pi − pj‖2 ≤ Uij ∀(i, j) ∈ Nu

(

nu = |Nu|
2

)

‖pi − ak‖2 ≤ Uik ∀(i, k) ∈Mu

(

mu = |Mu|
2

)

‖pi − pj‖2 ≥ Lij ∀(i, j) ∈ Nl

(

nl = |Nl|
2

)

‖pi − ak‖2 ≥ Lik ∀(i, k) ∈Ml

(

ml = |Ml|
2

)

(1.3)

Note that the first two and the last two sets of constraints are quadratic, nonconvex, constraints.
Let Wp,Wa be weight matrices. For example, they simply could be 0, 1 matrices that indicate

when an exact distance is unknown or known. Or a weight could be used to indicate the confidence
in the value of the distance. If there is noise in the data, the exact model (1.3) can be infeasible.
Therefore, we can minimize the weighted least squares error.

(EDMC )

min f1(P ) := 1
2

∑

(i,j)∈Ne

(Wp)ij(‖pi − pj‖2 −Eij)
2

+1
2

∑

(i,k)∈Me

(Wa)ik(‖pi − ak‖2 −Eik)
2

subject to ‖pi − pj‖2 ≤ Uij ∀(i, j) ∈ Nu

(

nu = |Nu|
2

)

‖pi − ak‖2 ≤ Uik ∀(i, k) ∈Mu

(

mu = |Mu|
2

)

‖pi − pj‖2 ≥ Lij ∀(i, j) ∈ Nl

(

nl = |Nl|
2

)

‖pi − ak‖2 ≥ Lik ∀(i, k) ∈Ml

(

ml = |Ml|
2

)

.

(1.4)

This is a hard problem to solve due to the nonconvex objective and constraints. One could apply
global optimization techniques. In this paper, we use a convex relaxation approach, i.e. we use
semidefinite relaxation. This results in a surprisingly robust, strong relaxation.

1.2.1 Related Approaches

Several recent papers have developed algorithms for the semidefinite relaxation of the sensor lo-
calization problem. Recent work on this area includes e.g. [14, 6, 4, 19, 5]. These relaxations
use the `1 norm rather than the `2 norm that we use. We assume the noise in the radio signal
is from a multivariate normal distribution with mean 0 and variance-covariance matrix σ2I, i.e.
from a spherical normal distribution so that the least squares estimates are the maximum likelihood
estimates. Our approach follows that in [2] for EDM completion without anchors.

2 Background and Preliminary Theory

2.1 Linear Transformations and Adjoints Related to EDM

We work in spaces of real matrices, Ms×t, equipped with the trace inner-product 〈A,B〉 =
trace AT B and induced Frobenius norm ‖A‖2 = trace AT A. The space of n × n real symmet-
ric matrices is denoted Sn. It’s dimension is t(n) = n(n + 1)/2. For a given B ∈ Sn, we denote
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b = svec (B) ∈ R
t(n) to be the vector obtained columnwise from the upper-triangular part of B with

the strict upper-triangular part multiplied by
√

2. Thus svec is an isometry mapping Sn → R
t(n).

The inverse and adjoint mapping is B = sMat (b). We now define several linear operators on S n.
(A collection of linear transformations, adjoints and properties are given in the appendices.)

De(B) := diag (B) eT + ediag (B)T , K(B) := De(B)− 2B, (2.5)

where e is the vector of ones. The adjoint linear operators are

D∗
e(D) = 2Diag (De), K∗(D) = 2(Diag (De)−D). (2.6)

By abuse of notation we allow De to act on R
n:

De(v) = veT + evT , v ∈ R
n.

The linear operator K maps the cone of positive semidefinite matrices (denoted SDP ) onto the
cone of Euclidean distance matrices (denoted EDM ), i.e. K(SDP ) = EDM . This allows us to
change problem EDMC into a SDP problem.

We define the linear transformation sblk i(S) = Si ∈ St, on S ∈ Sn, which pulls out the i-th
diagonal block of the matrix S of dimension t. (The values of t and n can change and will be clear
from the context.) The adjoint sblk ∗

i (T ) = sBlk i(T ), where T ∈ S t, constructs a symmetric matrix
of suitable dimensions with all elements zero expect for the i-th diagonal block given by T .

Similarly, we define the linear transformation sblk ij(G) = Gij , on G ∈ Sn, which pulls out
the ij block of the matrix G of dimension k × l and multiplies it by

√
2. (The values of k, l,

and n can change and will be clear from the context.) The adjoint sblk ∗
ij(J) = sBlk ij(J), where

J ∈ Mk×l ∼= R
kl, constructs a symmetric matrix which has all elements zero expect for the block

ij which is given by J multiplied by 1√
2
, and for the block ji which is given by JT multiplied by

1√
2
. We consider J ∈ Mk×l to be a k × l matrix and equivalently J ∈ R

kl is a vector of length kl

with the positions known. The multiplication by
√

2 (or 1√
2
) guarantees that the mapping is an

isometry.

2.2 Properties of Transformations

Lemma 2.1 ([1])

• The nullspace N (K) equals the range R(De).

• The range R(K) equals the hollow subspace of Sn, denoted SH := {D ∈ Sn : diag (D) = 0}.

• The range R(K∗) equals the centered subspace of Sn, denoted Sc := {B ∈ Sn : Be = 0}.

Corollary 2.1 1. Let SD denote the cone of diagonal matrices in Sn. Then

Sc = N (D∗
e) = R(K∗) ⊥ N (K) = R(De)

SH = R(K) = N (De) ⊥ SD = N (K∗) = R(D∗
e).
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2. Let
(

V 1√
n
e
)

be an n× n orthogonal matrix. Then

Y � 0 ⇐⇒ Y = V Ŷ V T +De(v) � 0, for some Ŷ ∈ Sn−1, v ∈ R
n.

Proof. Item (1) follows immediately from the definitions of the range R(K∗) = Sc and the
nullspace N (K) = R(De). Item (2) now follows from the definition of V , i.e. the subspace of
centered matrices Sc = V Sn−1V T .

Let B = PP T . Then

Dij = ‖pi − pj‖2 = (diag (B)eT + ediag (B)T − 2B)ij = (K(B))ij , (2.7)

i.e. the EDM D = (Dij) and the points pi in P are related by D = K(B), see (2.5).

Lemma 2.2 Suppose that 0 � B ∈ Sn. Then D = K(B) is EDM.

Proof. Suppose that rank (B) = r. Since B � 0, there exists P ∈ Mr×n such that B = PP T .
Thus

dij = (K(B))ij = (K(PP T ))ij = (diag (PP T ) eT )ij + (ediag (PP T ))ij − 2(PP T )ij

= (pi)T pi + (pj)T pj − 2(pi)T pj = ‖pi − pj‖2,

where pi is the i-th column of P . Thus D = K(B) is EDM.

The following shows that we can assume B is centered.

Lemma 2.3 Let 0 � B ∈ Sn and define

v := − 1

n
Be +

eT Be

2n2
e, C := B + veT + evT .

Then C � 0, D = K(B) = K(C) and, moreover, Ce = 0.

Proof. First, note that K(B) = K(C) ⇐⇒ K(veT + evT ) = 0. But (veT + evT ) ∈ N (K), by
Lemma 2.1. Hence K(B) = K(C). Moreover

Ce = Be− 1

n
BeeT e +

eT Be

2n2
eeT e− 1

n
eeT Be +

eT Be

2n2
eeT e

= Be−Be +
eT Be

2n
e− eT Be

n
e +

eT Be

2n
e = 0.

Finally, let P = ( e V ) be orthogonal. Then

P T CP =

(

0 0
0 V T CV

)

=

(

0 0
0 V T BV

)

� 0.

Therefore, by Sylvester’s Theorem on congruence, C � 0.
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2.3 Invariant Cones and Perron Roots

We digress in order to illustrate some of the relationships between the SDP and EDM cones.
These relationships give rise to elegant results including generalizations of the Perron-Frobenius
Theorem.

Lemma 2.4 Suppose that 0 ≤ H ∈ Sn, i.e. H is symmetric and nonnegative elementwise. Define
the linear operator on Sn

U := (H ◦ K)∗(H ◦ K).

Then
U(Sn

+) ⊂ FE , (2.8)

where the face of Sn
+

FE := Sn
+ ∩ SC .

Proof. Let X ∈ Sn
+ be given. We first show that U(X) ∈ Sn

+; equivalently, we show that
trace QU(X) ≥ 0, ∀Q � 0.

Let Q � 0. We have

trace QU(X) = 〈Q, (H ◦ K)∗(H ◦ K)(X)〉 = 〈H ◦ K(Q),H ◦ K(X)〉 = 〈H ◦D1,H ◦D2〉 ≥ 0,

since D1, D2 ∈ EDM and H ≥ 0. Therefore U(X) = (H ◦ K)∗(H ◦ K)(X) ∈ Sn
+. The result (2.8)

now follows since Lemma 2.1 implies U(X) ∈ R(K∗) = Sc.

Corollary 2.2 Suppose that 0 ≤ H ∈ Sn is defined as in Lemma 2.4. And suppose that diag H = 0
and H has no zero row. Then the face FE (and its relative interior relintFE) are invariant under
the operator U = (H ◦ K)∗(H ◦ K), i.e.

U(FE ) ⊂ FE , U(relintFE) ⊂ relintFE .

Proof. That the face FE is invariant follows immediately from Lemma 2.4.
Note that nI − E ∈ FE and has rank n− 1; and B ∈ FE ⇒ trace BE = 0 implies that rank B

is at most n − 1. Therefore, the relative interior of the face FE consists of the centered, positive
semidefinite matrices of rank exactly n− 1.

Suppose that B ∈ relintFE , i.e. B � 0, trace BE = 0 and rankB = n− 1. Then we know that
U(B) ∈ FE , by Lemma 2.4. It remains to show that U(B) is in the relative interior of the face, i.e.
the rank of U(B) is n− 1.

We show this by contradiction. Suppose that U(B)v = 0, 0 6= v 6= αe, α ∈ <. Then 0 =
vTU(B)v = trace vvTU(B) = traceU∗(vvT )B. Denote C = U∗(vvT ) = K∗

(

H(2) ◦ K(vvT )
)

. Since
B ∈ relintFE , U(vvT ) � 0, and U∗(vvT )B = U(vvT )B = 0, we conclude C is in the conjugate
face of FE , i.e. C = αE, for some α ≥ 0. By Lemma 2.1, we get C is centered. This implies that
C = 0. Lemma 2.1 also implies that N (K∗) is the set of diagonal matrices. Since H has no zero
row, Lemma 2.1 implies that vvT ∈ N (K) = R(De). We now have vvT = weT + ewT , for some w,
i.e. v = .5e, the desired contradiction.
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The above Lemma means that we can apply the generalized Perron-Frobenius Theorem, e.g.
[20] to the operator U , i.e. the spectral radius corresponds to a positive real eigenvalue with a
corresponding eigenvector in the relative interior of the face FE . In particular, we can get the
following expression for the Perron eigenpair.

Theorem 2.1 Suppose that 0 ≤ H ∈ Sn is defined as in Lemma 2.4 and that Hij ∈ {0, 1}. Suppose
further that diag H = 0 and H has no zero row. Denote the maximum eigenvalue

α := max
i
{λi (H + Diag (He))} ,

and let x be the corresponding eigenvector. Then the Perron root and eigenvector for the linear
operator UH = K∗(H(2) ◦ K) = K∗(H ◦ K) are, respectively,

λ = 2α− 2, X = Diag (x) + offDiag

(

− 1

α
Hij(xi + xj)

)

,

where offDiag (S) := S −Diag (diag (S)).

Proof. By the the expression for K∗, (2.6), we see that the graph of the eigenvector X is the
same as for matrices in the range of H ◦ K, i.e. the graph of X is a subgraph of the graph of H.
Moreover, since X ∈ R(K∗), we have Xe = 0.

Now, the eigenvalue-eigenvector equation gives

λX = K∗(H ◦ K(X)) = 2Diag ({H ◦ K(X)}e) − 2H ◦ K(X)

= 2Diag
(

{H ◦ (diag (X)eT )}e
)

+ 2Diag
(

{H ◦ (ediag (X)T )}e
)

− 4Diag ({H ◦X}e)
−2H ◦ (diag (X)eT )− 2H ◦ (ediag (X)T ) + 4H ◦X.

Since Hij ∈ {0, 1}, we have
H ◦X = X −Diag (diag (X))

Hence, we get

λX = 2Diag
(

{H ◦ (diag (X)eT )}e
)

+ 2Diag
(

{H ◦ (ediag (X)T )}e
)

− 4Diag (Xe)

−4Diag (Diag (diag (X))e) − 2H ◦ (diag (X)eT )− 2H ◦ (ediag (X)T ) + 4X + 4Diag (diag (X)).

Combining with Xe = 0, this can be rewritten as

(

λ

2
− 2

)

X = Diag
(

{H ◦ (diag (X)eT )}e
)

+ Diag
(

{H ◦ (ediag (X)T )}e
)

−H ◦ (diag (X)eT )−H ◦ (ediag (X)T ).

By the above equation we get for the elements on the diagonal

αxii = (

n
∑

k=1

Hik)xii +

k
∑

i=i

Hikxkk, i = 1, . . . , n,

i.e.
αx = (H + Diag (He))x.
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As for the off-diagonal elements, we have

αxij = −Hij(xii + xjj), i 6= j.

Corollary 2.3 The Perron root and eigenvector for the linear operator

UE (·) := K∗K(·)

are
λ = 4n > 0, X = βI + γE � 0,

where γ = −β
n , β > 0, and X ∈ relintFE .

Proof. By Corollary 2.2 and the invariant cone results in [20], we conclude that the spectral
radius of UE is a positive eigenvalue and the corresponding eigenvector X ∈ relintFE . We set
H = E − I and we verify that λ and X satisfy Theorem 2.1. By setting H = E − I, we get

α = max{λi (H + Diag (He)) } = max{λi (E − I + Diag ((n− 1)e)) }
= max{λi (E + (n− 2)I) } = 2n− 2

that implies λ = 4n. On the other hand we know that X has the same graph of H, and hence
X = βI + γE. Now we have that

diag (X) = x = (γ + β)e = (−β

n
+ β)e = (

(n− 1)β

n
)e

and we can see by substitution that x is the eigenvector of the matrix (H+Diag (He)) corresponding
to the eigenvalue α = 2n− 2. Moreover we have that

Xij = −β

n
= − 1

α
(xi + xj).

Finally,

X = (αE + βI) = β

(

I − 1

n
E

)

∈ relintFE .

.

The eigenvector matrix can be written as X = βI − β
nE, where the spectral radius ρ( β

nE) ≤ β,
and E is nonnegative, i.e. X is an M -matrix, e.g. [3].

From the above proof we note that the corresponding EDM for the eigenvector X is D =
K(X) = 2β(E − I).

Corollary 2.4 Suppose that 0 ≤ H ∈ Sn is the banded matrix H = E − I but with H(1, n) =
H(n, 1) = 0. Then the Perron root and eigenvector for the linear operator

U(·) := K∗(H ◦ K(·))
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are given by

λ = 3n− 2+
√

n2 + 4n− 12 > 0, X =

















X11 −β −β . . . . . . −β 0
−β X22 −α . . . . . . −α −β
−β −α X33 −α . . . −α −β

. . . . . .
−β −α −α −α . . . Xn−1,n−1 −β
0 −β −β . . . . . . −β X11

















, (2.9)

where the diagonal of X is defined by Xe = 0, and the Perron root λ and vector v =

(

β
α

)

are

found from the spectral radius and corresponding eigenvector of the matrix

A = 2

(

n + 2 n− 3
4 2(n− 4)

)

, (2.10)

i.e. Av = λv, with

β =

(

3

4
− 1

8
n +

1

8

√

n2 + 4n− 12

)

α, α > 0.

Proof. With X defined in (2.9), we find that H ◦ K(X) has the same structure as X but with
zero diagonal and −β replaced by (n + 2)β + (n− 3)α and −α replaced by 4β + (2n− 4)α. Then
K∗(H ◦ K(X)) doubles and negates these values. Therefore, the eigenpair λ,X can be found by

solving the eigenpair equation given by Av = λv, where v =

(

β
α

)

and A is given by (2.10).

3 SDPRelaxation

3.1 EDMC Problem Reformulation using Matrices

Now let Ȳ := PP T =

(

XXT XAT

AXT AAT

)

and Z =

(

I
P

)(

I
P

)T

=

(

I P T

P Ȳ

)

. Therefore we have

the dimensions:

X n× r; A m× r; P m + n× r; Ȳ = Ȳ T m + n×m + n; Z = ZT m + n + r ×m + n + r.

We can reformulate EDMC using matrix notation to get the equivalent problem

(EDMC )

min f2(Ȳ ) := 1
2‖W ◦ (K(Ȳ )−E)‖2

F

subject to gu(Ȳ ) := Hu ◦ (K(Ȳ )− U) ≤ 0
gl(Ȳ ) := Hl ◦ (K(Ȳ )− L) ≥ 0

Ȳ − PP T = 0,

(3.11)

where W is the (n+m) × (n+m) weight matrix having a positive ij-element if (i, j) ∈ Ne ∪Me, 0
otherwise. Hu,Hl are 0, 1-matrices where the ij-th element equals 1 if (i, j) ∈ Nu ∪Mu ((i, j) ∈
Nl ∪Ml), 0 otherwise. By abuse of notation, we consider the functions gu, gl as implicitly acting
on only the nonzero components in the upper triangular parts of the matrices that result from the
Hadamard products with Hu,Hl, respectively.
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Remark 3.1 The function f2(Ȳ ) = f2(PP T ), and it is clear that f2(PP T ) = f1(P ) in (1.4). Note
that the functions f2, gu, gl act only on Ȳ and the locations of the anchors and sensors is completely

hiding in the hard, nonconvex quadratic constraint Ȳ = PP T =

(

XXT XAT

AXT AAT

)

.

The problem EDMC is a linear least squares problem with nonlinear constraints. As we show
in Section 6, the objective function can be either overdetermined or underdetermined, depending on
the weights W . This can result in ill-conditioning problems, e.g. [12].

3.2 Relaxation of the Hard Quadratic Constraint

We now consider the hard quadratic constraint Ȳ = PP T =

(

XXT XAT

AXT AAT

)

, P is defined in (1.1).

We study the standard semidefinite relaxation. We include details on problems and weaknesses with
the relaxation.

The constraint in (3.11) has the (blocked) property

Ȳ = PP T =

(

XXT XAT

AXT AAT

)

⇐⇒ Ȳ11 = XXT and Ȳ21 = AXT , Ȳ22 = AAT . (3.12)

With P defined in (1.1) and Ȳ =

(

Ȳ11 Ȳ T
21

Ȳ21 AAT

)

, it is common practice to relax (3.12) to the

semidefinite constraint

G(P, Ȳ ) := PP T − Ȳ � 0, FG := {(P, Ȳ ) : G(P, Ȳ ) � 0}. (3.13)

The function G is convex in the Löwner (semidefinite) partial order. Therefore, the feasible set FG

is a convex set. By a Schur complement argument, the constraint is equivalent to the semidefinite

constraint Z =

(

I
P

)(

I
P

)T

� 0, where Z has the following block structure.

Z :=

(

I P T

P Ȳ

)

, P =

(

X
A

)

, Ȳ :=

(

Y Y T
21

Y21 Y2

)

, (3.14)

and we equate Y = Ȳ11, Y21 = Ȳ21, Y2 = Ȳ22. When we fix the 2, 2 block of Ȳ to be AAT (which is
equivalent to fixing the anchors), we get the following semidefinite constraint:

0 � Z =

(

I P T

P Ȳ

)

, P =

(

X
A

)

, Ȳ =

(

Y Y T
21

Y21 AAT

)

, Y21 = AXT (3.15)

Equivalently,

Z =





I XT AT

X Y Y T
21

A Y21 AAT



 � 0, Y21 = AXT . (3.16)

We denote the corresponding (convex) feasible set for the relaxation

FZ := {(X,Y, Y21) : (3.16) holds}, P, Ȳ formed using (3.15). (3.17)
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Remark 3.2 We emphasize two points in the above relaxation.
First, we relax from the hard nonlinear, nonconvex quadratic equality constraint in (3.12) to

the convex quadratic constraint in (3.13), i.e. the latter is a convex constraint in the Löwner
(semidefinite) partial order. And, using the identifications for P, Ȳ in (3.15) above, and by abuse
of notation, the feasible sets are equal, i.e.

{(Ȳ , P ) : Ȳ = PP T } ⊂ FG = FZ .

However, the rationale for relaxing from = to � is based on obtaining a simple convexification,
rather than obtaining a strong convexification. We see below, in Section 6.4.2, that the Lagrangian
relaxation of Ȳ = PP T provides a stronger semidefinite relaxation.

Second, the Schur complement is used to change the quadratic function to a linear one. The
fact that the two feasible sets are equal, FZ = FG, does not mean that the two relaxations are
numerically equivalent. In fact, the Jacobian of the convex function G acting on HP ,HY is

G′(P, Ȳ )(HP ,HY ) = PHT
P + HPP T −HY .

This immediately implies that G′ is onto. In fact, this is a Lyapunov type equation with known
stability properties, e.g. [13, Chap. 15]. In addition, if G′(P, Ȳ )(0,HY ) = 0, then HY = 0. And, if
HY = 0, then one can take the singular value decomposition of the full rank P = UΣV T , where Σ
contains the r × r nonsingular diagonal block Σr. Upon taking the orthogonal congruence U T · U ,
we see immediately that HP = 0 as well. Therefore, the Jacobian G′ is full rank and the columns
corresponding to the variables P, Y are separately linearly independent.

However, the constants in the matrix Z = Z(X,Y, Y21) imply that the Jacobian is never onto.
Therefore, though this constraint has been linearized/simplified, the problem has become numerically
unstable. This is evident in our numerical tests below.

3.3 Facial Reduction

As seen in [2], the cone of EDM has a one-one correspondence to a proper face of the cone of
SDP . Therefore, to apply interior-point methods on an equivalent SDP , one needs to reduce
the problem to a smaller dimensional cone of SDP where Slater’s constraint qualification holds.
This guarantees both strictly feasible points for interior-point methods as well as the existence of
dual variables. We now find the minimal face containing Z defined above in (3.15), and then we
reduce the problem in order to obtain strictly feasible points. Strict feasibility (Slater’s constraint
qualification) also guarantees strong duality.

Define the (compact) singular value decomposition

A = UΣV T , Σ = Diag (σ) � 0, U ∈Mm×r, UT U = I, V ∈Mr×n, V T V = I, (3.18)

and define the following matrix:

Zs :=

(

I XT

X Y

)

(the 2× 2 block from (3.16))

We now see that checking semidefiniteness of the big 3×3 block matrix Z � 0 in (3.15) is equivalent
to just checking semidefiniteness of the smaller 2× 2 block matrix Zs as long as we set Y21 = AXT ,
i.e. we can ignore the last row and column of blocks in Z.
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Theorem 3.1 Suppose that Z is defined by (3.15) and the corresponding feasible set FZ is defined
in (3.17). Then

{Z � 0} ⇔
{

Zs � 0, and Y21 = AXT
}

,

and the feasible set

FZ = FS :=
{

(X,Y, Y21) : Zs(X,Y ) � 0, and Y21 = AXT
}

.

Proof. By substituting the singular value decomposition of A into (3.15) for Z, we get Z � 0 if
and only if

Z1 := Z1(X,Y, Y21) =





I XT V ΣUT

X Y Y T
21

UΣV T Y21 UΣ2UT



 � 0. (3.19)

We have I = Ir ∈ Sr, Y ∈ Sn, and UΣ2UT ∈ Sm with rank r. Therefore,

max
X,Y,Y21,Z1�0

rankZ1 = r + n + r = 2r + n, (attained if Y ∈ Sn
+). (3.20)

The corresponding feasible set is

FZ1
:= {(X,Y, Y21) : Z1(X,Y, Y21) � 0}, (3.21)

and it is clear that FZ1
= FZ .

Now, choose Ū so that (U Ū ) is orthogonal; and, consider the nonsingular congruence

0 � Z2 := T T ZT =





V T 0 0
0 I 0
0 0 ( U Ū )T



Z





V 0 0
0 I 0
0 0 (U Ū )





=









I V T XT (Σ 0 )

XV Y ( Y T
21U Y T

21Ū )
(

Σ
0

) (

UT Y21

ŪT Y21

) (

Σ2 0
0 0

)









.

(3.22)

This shows that Z � 0 is equivalent to

0 � Z3 := Z3(X,Y, Y21) =





I V T XT Σ
XV Y Y T

21U
Σ UT Y21 Σ2



 , and Y T
21Ū = 0. (3.23)

The corresponding feasible set is

FZ3
:= {(X,Y, Y21) : Z3(X,Y, Y21) � 0 and Y T

21Ū = 0}. (3.24)

And, it is clear that FZ3
= FZ1

= FZ .
Note that with Z1 in (3.19), we have

Z1Q = 0, where Q =





0 0 0
0 0 0
0 0 Ū ŪT



 � 0, rankQ = m− r,
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i.e. Q is in the relative interior of the conjugate face to the minimal face containing FZ , and the
minimal face (the generated cone) is

FZ = SDP ∩Q⊥ =





I 0 0
0 I 0
0 0 U



S2r+n
+





I 0 0
0 I 0
0 0 U





T

. (3.25)

We now apply a Schur complement argument to Z3, i.e. (3.23) holds if and only if Y T
21Ū = 0

and

0 �
(

I V T XT

XV Y

)

−
(

Σ
Y T

21U

)

Σ−2 ( Σ UT Y21 )

=

(

0 V T XT − Σ−1UT Y21

XV − Y T
21UΣ−1 Y − Y T

21UΣ−2UT Y21

)

.

(3.26)

And this is equivalent to

Y − Y T
21UΣ−2UT Y21 � 0, ΣV T XT − UT Y21 = 0, Y T

21Ū = 0. (3.27)

We define the corresponding feasible set

FS := {(X,Y, Y21) : (3.27) holds}. (3.28)

We conclude that Z � 0 if and only if (3.27) holds and the feasible sets FS = FZ3
= FZ1

= FZ .
Now, (3.27) is equivalent to

Y −XV V T XT = Y −XXT � 0, and V T XT = Σ−1UT Y21, Y T
21Ū = 0, (3.29)

which is equivalent to
(

I XT

X Y

)

� 0, and V T XT = Σ−1UT Y21 Y T
21Ū = 0. (3.30)

Therefore
FS = {(X,Y, Y21) : (3.30) holds}. (3.31)

Define the full column rank matrix

K :=





V T 0
0 I

ΣV T 0



 . (3.32)

Then (3.30) is equivalent to

0 �





I V T XT Σ
XV Y XV Σ
Σ ΣV T XT Σ2



 = K

(

I XT

X Y

)

KT , and ΣV T XT = UT Y21, (3.33)

Since this implies that Y T
21Ū = 0. Or equivalently





I V T XT Σ
XV Y XV Σ
Σ ΣV T XT Σ2



 = K

(

I XT

X Y

)

KT ,

(

I XT

X Y

)

� 0,ΣV T XT = UT Y21. (3.34)
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The constraint in (3.34) is equivalent to

(

I XT

X Y

)

� 0, UΣV T XT = Y21. The result now follows

since A = UΣV T .

Corollary 3.1 The minimal face containing the feasible set FZ has dimension 2r +n and is given
in the cone in (3.25). In particular, each given Z in (3.16),

Z =





I XT AT

X Y Y T
21

A Y21 AAT



 � 0,

can be expressed as

Z =





I 0 0
0 I 0
0 0 U









I XT V Σ
X Y XV Σ

ΣV T ΣV T XT Σ2









I 0 0
0 I 0
0 0 U





T

.

3.4 Further Model Development with only X, Y

The above reduction from Z to Y allows us to replace the constraint Z � 0 with the smaller
dimensional constraint

Zs =

(

I XT

X Y

)

� 0, Y21 = AXT .

To develop the model, we introduce the following notation.

x := vec

(

sblk 21

(

0 XT

X 0

))

=
√

2vec (X), y := svec (Y ),

where we add
√

2 to the definition of x since X appears together with XT in Zs and implicitly in
Ȳ , with Y21 = AXT . We define the following matrices and linear transformations:

Zx
s (x) := sBlk 21(Mat (x)), Zy

s (y) := sBlk 2(sMat (y)),
Zs(x, y) := Zx

s (x) + Zy
s (y), Zs := sBlk 1(I) + Zs(x, y),

Yx(x) := sBlk 21(AMat (x)T ), Yy(y) := sBlk 1(sMat (y))
Y(x, y) := Yx(x) + Yy(y), Ȳ := sBlk 2(AAT ) + Y(x, y).

Ē := W ◦
[

E −K(sBlk 2(AAT ))
]

,

Ū := Hu ◦
[

K(sBlk 2(AAT ))− U
]

,

L̄ := Hl ◦
[

L−K(sBlk 2(AAT ))
]

.

The unknown matrix Ȳ in (3.11) is equal to Y(x, y) with the additional constant in the 2, 2 block,
i.e. our unknowns are the vectors x, y which are used to build Ȳ and Zs. Using this notation we
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can introduce the following relaxation of EDMC in (3.11).

(EDMC −R )

min f3(x, y) := 1
2‖W ◦ (K(Y(x, y))) − Ē‖2F

subject to gu(x, y) := Hu ◦ K(Y(x, y)) − Ū ≤ 0
gl(x, y) := L̄−Hl ◦ K(Y(x, y)) ≤ 0

sBlk 1(I) + Zs(x, y) � 0.

(3.35)

As above, we consider the functions gu, gl as implicitly acting only on the nonzero parts of the upper
triangular part of the matrix that results from the Hadamard products with Hu,Hl, respectively.

Remark 3.3 The constraint Zs � 0 in EDMC − R is equivalent to that used in e.g. [14, 4] and
the references therein. However, the objective function is different, i.e. we use an `2 nearest matrix
problem and a quadratic objective SDP ; whereas the papers in the literature generally use the `1

nearest matrix problem in order to obtain a linear SDP .

4 Duality for EDMC-R

We begin with the Lagrangian of EDMC − R , problem (3.35),

L(x, y,Λu,Λl,Λ) = 1
2‖W ◦ K(Y(x, y)) − Ē‖2F +

〈

Λu,Hu ◦ K(Y(x, y)) − Ū
〉

+
〈

Λl, L̄−Hl ◦ K(Y(x, y))
〉

− 〈Λ, sBlk 1(I) + Zs(x, y)〉 , (4.36)

where 0 ≤ Λu, 0 ≤ Λl ∈ Sm+n, and 0 � Λ ∈ Sm+n. We partition the multiplier Λ as

Λ =

(

Λ1 ΛT
21

Λ21 Λ2

)

, (4.37)

corresponding to the blocks of Zs. Recall that x =
√

2vec (X), y := svec (Y ). In addition, we
denote

λu := svec (Λu), λl := svec (Λl), hu := svec (Hu), hl := svec (Hl),
λ := svec (Λ), λ1 := svec (Λ1), λ2 := svec (Λ2), λ21 := vec sblk 21(Λ).

And, for numerical implementation, we define the linear transformations

hnz
u = svec u(Hu) ∈ R

nzu , hnz
l = svec l(Hl) ∈ R

nzl, (4.38)

where hnz
u is obtained from hu by removing the zeros; thus, nzu is the number of nonzeros in the

upper-triangular part of Hu. Thus the indices are fixed from the given matrix Hu. Similarly, for
hnz

l with indices fixed from Hl. We then get the vectors

λnz
u = svec u(Λu) ∈ R

nzu, λnz
l = svec l(Λl) ∈ R

nzl .

The adjoints are sMat u, sMat l; and, for any matrix M we get

Hu ◦M = sMat usvec u(Hu ◦M).

This holds similarly for Hl ◦M . Therefore, we could rewrite the Lagrangian as

L(x, y,Λu,Λl,Λ) = L(x, y, λnz
u , λnz

l ,Λ)

= 1
2‖W ◦ K(Y(x, y)) − Ē‖2F +

〈

Λu,Hu ◦ K(Y(x, y)) − Ū
〉

+
〈

Λl, L̄−Hl ◦ K(Y(x, y))
〉

− 〈Λ, sBlk 1(I) + Zs(x, y)〉
= 1

2‖W ◦ K(Y(x, y)) − Ē‖2F +
〈

svec u(Λu), svec u

(

Hu ◦ K(Y(x, y)) − Ū
)〉

+
〈

svec l(Λl), svec l

(

L̄−Hl ◦ K(Y(x, y))
)〉

− 〈Λ, sBlk 1(I) + Zs(x, y)〉 .
(4.39)
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To simplify the dual of EDMC − R , i.e. the max-min of the Lagrangian, we now find the
stationarity conditions of the inner minimization problem, i.e. we take the derivatives of L with
respect to x and y. We get

0 = ∇xL(x, y,Λu,Λl,Λ)
= [W ◦ (KYx)]∗

(

W ◦ K(Y(x, y)) − Ē
)

+ [Hu ◦ (KYx)]∗ (Λu)
− [Hl ◦ (KYx)]∗ (Λl)− (Zx

s )∗(Λ).
(4.40)

Note that both the Hadamard product and the transpose, · ◦ ·, ·T , are self-adjoint linear transfor-
mations. Let H denote a weight matrix. Then

[H ◦ (KYx)]∗ (S) = (Yx)∗K∗(H ◦ (S)) = vec
[

{sblk 21K∗(H ◦ (S))}T A
]

. (4.41)

Similarly,

0 = ∇yL(x, y,Λu,Λl,Λ)
= [W ◦ (KYy)]∗

(

W ◦ K(Y(x, y)) − Ē
)

+ [Hu ◦ (KYy)]∗ (Λu)
− [Hl ◦ (KYy)]∗ (Λl)− (Zy

s )∗(Λ).
(4.42)

And
[H ◦ (KYy)]∗ (S) = (Yy)∗K∗(H ◦ (S)) = svec {sblk 1K∗(H ◦ (S))} . (4.43)

Then (Zx
s )∗(Λ) = vec sblk 21(Λ) = λ21. The first stationarity equation (4.40) yields

(Zx
s )∗(Λ) = λ21

= [W ◦ (KYx)]∗
(

W ◦ K(Y(x, y)) − Ē
)

+ [Hu ◦ (KYx)]∗ (Λu)− [Hl ◦ (KYx)]∗ (Λl).
(4.44)

Similarly, the second stationarity equation (4.42) yields

(Zy
s )∗(Λ) = λ2

= [W ◦ (KYy)]∗
(

W ◦ K(Y(x, y)) − Ē
)

+ [Hu ◦ (KYy)]∗ (Λu)− [Hl ◦ (KYy)]∗ (Λl).
(4.45)

The Wolfe dual is obtained from applying the stationarity conditions to the inner minimization of
the Lagrangian dual (max-min of the Lagrangian), i.e. we get the (dual EDMC ) problem:

(EDMC − D )

max L(x, y, λu, λl, λ1, λ2, λ21)
subject to (4.44), (4.45)

sMat (λu) ≥ 0, sMat (λl) ≥ 0
sBlk 1sMat (λ1) + sBlk 2sMat (λ2) + sBlk 21Mat (λ21) � 0.

(4.46)
We denote

Su := Ū −Hu ◦ (K (Y(x, y))) , su = svec Su

Sl := Hl ◦ (K (Y(x, y)))− L̄, sl = svec Sl.
(4.47)

We can now present the primal-dual characterization of optimality.

Theorem 4.1 The primal-dual variables x, y,Λ, λu, λl are optimal for EDMC − R if and only
if:
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1. Primal Feasibility:
su ≥ 0, sl ≥ 0, in (4.47),

Zs = sBlk 1(I) + sBlk 2sMat (y) + sBlk 21Mat (x) � 0. (4.48)

2. Dual Feasibility: Stationarity equations (4.44),(4.45) hold and

Λ = sBlk 1sMat (λ1) + sBlk 2sMat (λ2) + sBlk 21Mat (λ21) � 0;λu ≥ 0;λl ≥ 0. (4.49)

3. Complementary Slackness:

λu ◦ su = 0

λl ◦ sl = 0

ΛZs = 0.

We can use the structure of the optimality conditions to eliminate the linear dual equations
and obtain a characterization of optimality based solely on a bilinear equation and nonnegativ-
ity/semidefiniteness.

Corollary 4.1 The dual linear equality constraints (4.44),(4.45) in Theorem 4.1 can be eliminated
after using them to substitute for λ2, λ21 in (4.49). The complementarity conditions now yield a
bilinear system of equations

F (x, y, λu, λl, λ1) = 0,

with nonnegativity and semidefinite conditions that characterize optimality of EDMC − R .

In addition, we can guarantee a strictly feasible primal starting point from the facial reduction in
Theorem 3.1. This, along with a strictly feasible dual starting point are found using the heuristic
in Section 5.2.

5 A Robust Primal-Dual Interior-Point Method

To solve EDMC − R we use the Gauss-Newton method on the perturbed complementary slack-
ness conditions (written with the block vector notation):

Fµ(x, y, λu, λl, λ1) :=





λu ◦ su − µue
λl ◦ sl − µle
ΛZs − µcI



 = 0, (5.50)

where su = su(x, y), sl = sl(x, y), Λ = Λ(λ1, x, y, λu, λl), and Zs = Zs(x, y). This is an overdeter-
mined system with

(mu + nu) + (ml + nl) + (n + r)2 equations; nr + t(n) + (mu + nu) + (ml + nl) + t(r) variables.
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5.1 Linearization

We denote the Gauss-Newton search direction for (5.50) by

∆s :=













∆x
∆y
∆λu

∆λl

∆λ1













.

The linearized system for the search direction ∆s is:

F ′
µ(∆s) ∼= F ′

µ(x, y, λu, λl, λ1)(∆s) = −Fµ(x, y, λu, λl, λ1).

To further simplify notation, we use the following composition of linear transformations. Let
H be symmetric. Then

Kx
H(x) := H ◦ (K(Yx(x))),

Ky
H(y) := H ◦ (K(Yy(y))),

KH(x, y) := H ◦ (K(Y(x, y))).

The linearization of the complementary slackness conditions results in three blocks of equations

1.

λu ◦ svecKHu(∆x,∆y) + su ◦∆λu = µue− λu ◦ su

2.

λl ◦ svecKHl
(∆x,∆y) + sl ◦∆λl = µle− λl ◦ sl

3.

ΛZs(∆x,∆y) + [sBlk 1 (sMat (∆λ1)) + sBlk 2 (sMat (∆λ2)) + sBlk 21 (sMat (∆λ21))] Zs

= ΛZs(∆x,∆y) + [sBlk 1 (sMat (∆λ1))

+ sBlk 2

(

sMat
{

(Ky
W )∗KW (∆x,∆y) + (Ky

Hu
)∗ (sMat (∆λu))− (Ky

Hl
)∗ (sMat (∆λl))

})

+sBlk 21

(

Mat
{

(Kx
W )∗KW (∆x,∆y) + (Kx

Hu
)∗ (sMat (∆λu))− (Kx

Hl
)∗ (sMat (∆λl))

})]

Zs

= µcI − ΛZs

and hence

F ′
µ(∆s) =

















λu ◦ svecKHu(∆x,∆y) + su ◦∆λu

λl ◦ svecKHl
(∆x,∆y) + sl ◦∆λl

ΛZs(∆x,∆y) + [sBlk 1 (sMat (∆λ1)) +

sBlk 2

(

sMat
{

(Ky
W )∗KW (∆x,∆y) + (Ky

Hu
)∗ (sMat (∆λu))− (Ky

Hl
)∗ (sMat (∆λl))

})

+

sBlk 21

(

Mat
{

(Kx
W )∗KW (∆x,∆y) + (Kx

Hu
)∗ (sMat (∆λu))− (Kx

Hl
)∗ (sMat (∆λl))

})]

Zs

















where F ′
µ : Mr×n × <t(n) × <t(m+n) × <t(m+n) × <t(m+n) → <t(m+n) × <t(m+n) ×<(r+n)2 , i.e. the

linear system is overdetermined.
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We need to calculate the adjoint (F ′
µ)∗. We first find Z∗

s , (Kx
H)∗, (Ky

H)∗, and (KH)∗. By the
expression of Zs we get

Z∗
s (S) =

(

(Zx
s )∗(S)

(Zy
s )∗(S)

)

=

(

Mat ∗(sblk 21(S))
sMat ∗(sblk 2(S))

)

=

(

vec (sblk 21(S))
svec (sblk 2(S))

)

. (5.51)

By the expression of Y(∆x,∆y), we get

Y∗(S) =

(

(Yx)∗(S)
(Yy)∗(S)

)

=

(

Mat ∗(sblk 21(S)T A)
sMat ∗(sblk 1(S))

)

=

(

vec (sblk 21(S)T A)
svec (sblk 1(S))

)

. (5.52)

By the expression of KH(∆x,∆y), we get

K∗H(S) =

(

(Kx
H)∗(S)

(Ky
H)∗(S)

)

=

(

(Yx)∗(K∗(H ◦ S))
(Yy)∗(K∗(H ◦ S))

)

. (5.53)

We have:
〈ΛZs(∆x,∆y),M〉 = trace (MT ΛZs(∆x,∆y))

=
〈

1
2

(

MT Λ + ΛM
)

,Zs(∆x,∆y))
〉

=

〈

1
2Z∗

s (
(

MT Λ + ΛM
)

),

(

∆x
∆y

)〉

.

(5.54)

The left half of the inner-product in the final row of (5.54) defines the required adjoint. Moreover,

〈sBlk 1 (sMat (∆λ1)) Zs,M〉 = trace
(

ZsM
T
)

sBlk 1 (sMat (∆λ1))

=

〈

1

2

(

ZsM
T + MZs

)

, sBlk 1 (sMat (∆λ1))

〉

=

〈

1

2
svec

(

sblk 1

(

ZsM
T + MZs

))

,∆λ1

〉

Similarly,

〈

sBlk 2

(

sMat
{

(Ky
H)∗KH(∆x,∆y)

})

Zs,M
〉

= trace ZsM
T sBlk 2

(

sMat
{

(Ky
H)∗KH(∆x,∆y)

})

=

〈

1

2
(ZsM

T + MZs), sBlk 2

(

sMat ((Ky
H )∗KH(∆x,∆y))

)

〉

=

〈

1

2
(KH)∗Ky

H

(

svec
(

sblk 2

(

ZsM
T + MZs

)))

,

(

∆x
∆y

)〉

and

〈sBlk 21 (Mat ((Kx
H)∗KH(∆x,∆y)))Zs,M〉 = trace

(

ZsM
T
)

sBlk 21 (Mat ((Kx
H)∗KH(∆x,∆y))))

=

〈

1

2

(

ZsM
T + MZs

)

, sBlk 21 (Mat ((Kx
H)∗KH(∆x,∆y)))

〉

=

〈

1

2
(KH)∗Kx

H

(

vec
(

sblk 21(ZsM
T + MZs)

))

,

(

∆x
∆y

)〉

again yielding the desired adjoints on the left of the last inner-products. Now we can evaluate
(F ′

µ)∗(w1, w2,W3). This consists of three columns of blocks with five rows per column. We list this
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by columns C1, C2, C3.

C1 =













(Kx
Hu

)∗ (sMat (λu ◦ w1))
(Ky

Hu
)∗ (sMat (λu ◦ w1))

w1 ◦ su

0
0













C2 =













(Kx
Hl

)∗ (sMat (λl ◦ w2))
(Ky

Hl
)∗ (sMat (λl ◦ w2))

0
w2 ◦ sl

0













C3 =













C13

C23

C33

C43

C53













with elements of C3

C13 =
1

2
(Zx

s )∗(W T
3 Λ + ΛT W3) +

1

2
(Kx

W )∗Kx
W

(

vec
(

sblk 21(ZsW
T
3 + W3Zs)

))

+
1

2
(Kx

W )∗Ky
W

(

svec
(

sblk 2

(

ZsW
T
3 + W3Zs

)))

C23 =
1

2
(Zy

s )∗(W T
3 Λ + ΛT W3) +

1

2
(Ky

W )∗Kx
W

(

vec
(

sblk 21(ZsW
T
3 + W3Zs)

))

+
1

2
(Ky

W )∗Ky
W

(

svec
(

sblk 2

(

ZsW
T
3 + W3Zs

)))

C33 =
1

2
svec

(

Ky
Hu

(

svec
(

sblk 2(ZsW
T
3 + W3Zs)

)))

+
1

2
svec

(

Kx
Hu

(

vec
(

sblk 21(ZsW
T
3 + W3Zs)

)))

C43 = −1

2
svec

(

Ky
Hl

(

svec
(

sblk 2(ZsW
T
3 + W3Zs)

))

)

− 1

2
svec

(

Kx
Hl

(

vec
(

sblk 21(ZsW
T
3 + W3Zs)

)))

C53 =
1

2
svec

(

sblk 1

(

ZsW
T
3 + W3Zs

))

,

where w1 ∈ <t(m+n), w2 ∈ <t(m+n),W3 ∈ Mr+n. Thus the desired adjoint is given by (F ′
µ)∗ =

C1 + C2 + C3.

5.2 Heuristic for an Initial Strictly Feasible Point

To compute an initial strictly feasible point, we begin by considering x = 0 and y = svec (Y ), where
Y = αI. Then for any α > 0 we have

Zs =

(

I 0
0 αI

)

� 0 and K(Y(x, y)) =

(

2α(E − I) αET

αE 0

)

,
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where E is a matrix of ones of appropriate size. Since we require for strict primal feasibility that
snz
l := svec l(Sl) = svec l(Hl ◦ K(Y(x, y))− L̄) > 0, it suffices to choose α > L̄ij , for all ij such that

(Hl)ij = 1. In practice, we choose

α = (2.1 + ε)max

{

1,max
ij
|L̄ij |

}

,

where 0 ≤ ε ≤ 1 is a random number. For the initial strictly feasible dual variables, we choose
Λl = 1

100Sl so that λnz
l = svec lΛl > 0. Defining λ21 and λ2 according to equations (4.44) and

(4.45), respectively, we find that Λ2 = sMat (λ2) � 0. We would now like to choose Λ1 = βI, for
some β > 0, so that

Λ =

(

βI ΛT
21

Λ21 Λ2

)

� 0.

The last inequality holds if and only if Λ2 − 1
βΛ21Λ

T
21 � 0. We can therefore guarantee Λ � 0 by

choosing

β =
trace (Λ21Λ

T
21)

λmin(Λ2)
.

5.3 Diagonal Preconditioning

It has been shown in [11] that for a full rank matrix A ∈ Mm×n, m ≥ n, and using the condition

number of a positive definite matrix K, given by ω(K) := trace (K)/n

det(K)1/n , we conclude that the optimal

diagonal scaling, i.e the solution of

minω
(

(AD)T (AD)
)

, D positive diagonal matrix,

is given by D = diag (dii = 1/‖A:,i‖). Therefore, we need to evaluate the columns of the linear
transformation F ′

µ(·). The details are presented in Appendix D, page 41.

6 Instability in the Model

The use of the matrix Zs is equivalent to the matrix of unknown variables used in the literature, e.g.
in [4]. We include the facial reduction in Theorem 3.1 to emphasize that we are finding the smallest
face containing the feasible set FZ and obtaining an equivalent problem. Such a reduction allows
for Slater’s constraint qualification to hold, i.e. for a strictly feasible solution. It also guarantees
strong duality, i.e. the existence of a nonempty (compact) set of Lagrange multipliers. This should
result in stabilizing the program. However, as mentioned above, we still have instability due in
part to the constant I in Zs.

We now see that we have a conundrum; a stronger SDP relaxation, as seen by Y −XX T ∼= 0,
results in increased ill-conditioning.

6.1 Case of an Accurate Relaxation

We first suppose that at optimality the relaxation Zs � 0 is a good approximation of the original
constraint in (3.12), i.e. ‖Ȳ − PP T ‖F < ε, ε small. Therefore, the norm of the first leading block
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is small as well ‖Y −XXT ‖F < ε. Now

Zs :=

(

I XT

X Y

)

=

(

I 0
−X I

)−1(
I 0
0 Y −XXT

)(

I −XT

0 I

)−1

.

Therefore, if 0 < ε << 1, then Zs has r eigenvalues order 1, O(1), and the rest are approximately
0, i.e. Zs has numerical rank r. Therefore, for strict complementarity to hold, the dual variable
Λ to the constraint sBlk 1(I) + Zs(x, y) � 0 in (3.35) must have numerical rank n − r. This also
follows from Cauchy’s interlacing property extended to Schur complements, see [17, Theorem 2.1,
Page 49]

But, our numerical tests show that this is not the case, i.e. strict complementarity fails. In fact,
when the noise factor is low and the approximation is good, we lose strict complementarity and
have an ill-conditioned problem. Paradoxically, a good SDP approximation theoretically results
in a poor approximation numerically and/or slow convergence to the optimum.

Note that if the approximation is good, i.e. ‖Y − XXT ‖F is small, then, by interlacing of
eigenvalues, this means that Zs has many small eigenvalues and so has vectors that are numerically

in the nullspace of Zs, i.e. numerically ZsN = 0, where N =

(

NX

NY

)

∈ R
n+r×t is a full column

rank t matrix of (numerical) orthonormal eigenvectors in the nullspace. This implies that the linear
transformation NZ(X,Y ) : R

nr+t(n) → R
nt

NZ(X,Y ) = (X Y )

(

NX

NY

)

= XNX + Y NY = 0. (6.55)

The adjoint is
N ∗

Z(M) = M (NT
X NT

Y ) .

Since the nullity of N ∗
Z is 0, we conclude that NZ is onto and so we can eliminate nt variables

using (6.55), i.e. nt is an estimate on the (numerical) nullity of the optimality conditions for the
SDP relaxation.

The above arguments emphasize the fact that as we get closer to the optimum and Zs gets
closer to being singular, the SDP optimality conditions become more ill-conditioned. To correct
this we use the strengthened relaxation in Section 6.4.2. Alternatively, we can deflate. Suppose
that we detect that the smallest eigenvalue 0 < λmin(Zs) << 1, Zsv = λmin(Zs)v, ‖v‖ = 1 is close to
zero. Let P = ( v V ) be an orthogonal matrix. Then we can replace the complementary slackness
ΛZ with Λ̄Z̄ = 0, where Λ̄ = V T ΛV, Z̄ = V T ZV . This reduces the dimension of the symmetric
matrix space by one and removes the singularity. We can recover X,Y at each iteration using P .
This avoids the ill-conditioning as we can repeat this for each small eigenvalue of Z.

6.2 Linear Independence of Constraints and Redundancy in Objective Function

Suppose that the distances in the data matrix E are exact. Then our problem is a feasibility
question, i.e. an EDM completion problem. We could add the constraints W ◦(K(Y(x, y)))−Ē = 0
to our model problem. Since there are rn+ t(n) variables, we would get a unique solution if we had
the same number of linear independent constraints. (This is pointed out in [4, Proposition 1].) But,
as we now see, this can rarely happen. To determine which constraints are linearly independent we
could use the following Lemma. Recall that AT e = 0 and rank (A) = r < m < n.
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Lemma 6.1 Let
(

V 1√
n
e
)

be an n× n orthogonal matrix. Under the assumption that AT e = 0
and rank (A) = r < m < n, we have:

1. The nullspace N (KY) = 0; the range space R (Y∗K∗) = R
rn+t(n); rank (Y∗K∗) = rn + t(n);

and dimR (KY)− dimR (Y∗K∗) = n(m− r − 1) ≥ 0, i.e. the corresponding linear system is
either square or overdetermined and always full column rank.

2. Suppose that W ≥ 0 is a given weight matrix with corresponding index sets Ne,Me for the
positive elements. We let y = (yk) = (yij) = svec(Y ) ∈ R

t(n), where the indices k = ij refer
to both the position in R

t(n) as well as the position in the matrix Y . Similarly, x = (xk) =
(xij) =

√
2vec X, where the indices refer to both the position in R

rn as well as the position in
the matrix X.

(a) The nullspace of vectors (x,y) is given by the span of the orthogonal unit vectors,

N (W ◦ KY) = span [{(0, ek) : ek = eij , i < j, ij /∈ Ne}
∪ {(0, ek) : ek = eii, it /∈Me,∀t}
∪ {(ek, 0) : ek = eij , 1 ≤ j ≤ r, it /∈Me,∀t}] .

Therefore,

dimN (W ◦ KY) = t(n− 1)− |Ne|+ (r + 1)|{i : it /∈Me,∀t}|

and

rank (W ◦ KY) = [t(m + n− 1)− t(m− 1)] − t(n− 1) + |Ne| − (r + 1)|{i : it /∈Me,∀t}|
= mn + |Ne| − (r + 1)|{i : it /∈Me,∀t}|.

In the nontrivial case, |{i : it /∈ Me,∀t}| = 0, we conclude that W ◦ KY is full column
rank if and only if

mn + |Ne| ≥ rn + t(n). (6.56)

(b) The range space

R (W ◦ KY) = span [{KY(0, ek) : ek = eij , i < j, ij ∈ Ne}
∪ {KY(0, ek) : ek = eii, it ∈Me, for some t}
∪ {KY(ek, 0) : ek = eij , 1 ≤ j ≤ r, it ∈Me, for some t}] .

3. Consider the blocked matrix W =

(

W1 W T
21

W21 W2

)

. The nullspace

N (Y∗K∗) =

{

W =

(

W1 W T
21

W21 W2

)

: W1 = Diag (w), W T
21 (A e ) = 0

}

.

Proof.

1. The nullspace of KY is determined using the details of the composite linear transforma-
tion given in the Appendix (B.74), i.e. with notation K(Y(x, y)) = 0, Y = sMat (y), ȳ =
diag (Y ), X = 1√

2
vec x, we get De(ȳ)− 2Y = 0 ⇒ Y = 0 ⇒ AXT = 0 ⇒ X = 0. This implies

that R (Y∗K∗) = R
rn+t(n). The difference in the dimensions is calculated in the Appendix

B.1.
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2a. The unit vectors are found using the expression in (B.74). The nullspace is given by the span
of these unit vectors since −2XAT + ȳeT = 0 and AT e = 0 implies that ȳ = 0.

2b. The range is found using the expression in (B.74).

3. Suppose that Y∗K∗(W ) = 0. From (B.75), we get W T
21 = 0 and

svec (Diag ((W1 W T
21 ) e)−W1) = 0.

This implies that W1 = Diag (w) is a diagonal matrix. We get

svec
(

Diag
(

w + W T
21e
)

−Diag (w)
)

= 0,

and so W T
21e = 0.

For given distances in E, we can now determine when a unique solution x, y exists.

Corollary 6.1 Suppose that the assumption AT e = 0, rank (A) = r holds.

1. If the number of specified distances ne +me < nr+ t(n), then W ◦K(Y(x, y)) has a nontrivial
nullspace, i.e. the least squares objective function f3(x, y) is underdetermined.

2. If the number of anchors is one more than the embedding dimension, m = r+1, then, there is
a unique solution x, y that satisfies W ◦(K(Y(x, y)−Ē) = 0 if and only if all the exact distances
in E are specified (known). If some of the distances are not specified, then W ◦ K(Y(x, y))
has a nontrivial nullspace.

Remark 6.1 The above Corollary 6.1 states that if m = r + 1 and for an arbitrary number of
sensors n > 0, we need to know all the distances in E exactly to guarantee that we have a unique
solution x, y. Moreover, the least squares problem is underdetermined if some of the distances are
not specified. This is also the case if the number of specified distances is less than nr + t(n). This
means that the least squares problem is ill-conditioned. We should replace the objective function
with finding the least squares solution of minimum norm, i.e. minimize ‖(x, y)‖ and use the current
objective as a linear constraint, after projecting Ē appropriately. See e.g. [16, 12, 10] for related
work on underdetermined least squares problems.

6.3 Instability from Linearization

The original relaxation replaced Ȳ = PP T by Ȳ � PP T or equivalently XXT − Y = 0 is replaced
by

G(x, y) = G(X,Y ) = XXT − Y � 0,

where x =
√

2vec X, y = svec (Y ). In the formulation used in the literature, we replaced this by

the equivalent linearized form Zs(x, y) =

(

I XT

X Y

)

� 0. Though this is equivalent in theory, it
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is not equivalent numerically, since the dimensions of the range of G and that of range of Zs are
different, while the domains are the same.

Consider the simple case where W is the matrix of all ones and there are no upper or lower
bound constraints. The Lagrangian is now

L(x, y,Λ) = 1
2‖K(Y(x, y) − Ē‖2F + 〈Λ, G(x, y)〉 , (6.57)

where 0 � Λ = svec (λ) ∈ Sn. Note that

〈Λ, G(x, 0)〉 = 1
2 〈Mat (x),ΛMat (x)〉 = 1

2xT vec (ΛMat (x)) ;
〈Λ, G(0, y)〉 = 〈sMat (y),Λ〉 = yT svec (Λ).

We now find the stationarity conditions of the inner minimization problem of the Lagrangian dual,
i.e. we take the derivatives of L with respect to x and y. We get

0 = ∇xL(x, y,Λ)
= [(KYx)]∗

(

(KY)(x, y)) − Ē
)

+ vec (ΛMat (x)) .
(6.58)

Similarly,
0 = ∇yL(x, y,Λ)

= [(KYy)]∗
(

(KY)(x, y)) − Ē
)

− svec (Λ).
(6.59)

The Wolfe dual is obtained from applying the stationarity conditions to the inner minimization of
the Lagrangian dual (max-min of the Lagrangian), i.e. we get the dual problem:

(EDMC − nonlin)
max L(x, y, λ)

subject to (6.58), (6.59)
sMat (λ) � 0.

(6.60)

Equivalently,

(EDMC − nonlin)
max L(x, y, λ)

subject to [(KYx)]∗
(

(KY)(x, y)) − Ē
)

+ vec (ΛMat (x)) = 0
sMat

(

[(KYy)]∗
(

(KY)(x, y)) − Ē
))

� 0.
(6.61)

6.4 Alternative Models for Stability

Following are two approaches that avoid the ill-conditioning problems discussed above. (These are
studied in a forthcoming research report.)

6.4.1 Minimum Norm Solutions for Underdetermined Systems

Underdetermined least squares problems suffer from ill-conditioning (as our numerics confirm for
our problems). The usual approach, see e.g. [8], is to use the underdetermined system as a
constraint and to find the solution of minimum norm. Therefore, we can follow the approach in
[1] and change the nearest EDM problem into a minimum norm interpolation problem. For given
data Ē, and weight matrix W , we add the constraint W ◦ (KY(x, y)) = W ◦ Ē = 0.

(EDMC −RC )
min 1

2‖(x, y)‖2

subject to W ◦ (K(Y(x, y))) = W ◦ Ē
sBlk 1(I) +Zs(x, y) � 0.

(6.62)

For simplicity we have ignored the upper and lower bound constraints.
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6.4.2 Strengthened Relaxation using Lagrangian Dual

A stronger relaxation is obtained if we take the Lagrangian relaxation of (3.35) but with the
constraint Ȳ = PP T rather than the weaker Ȳ � PP T .

We partition

Ȳ =

(

Y Y21

Y T
21 Y2

)

.

(EDMC −R )

min 1
2‖W ◦ K(Y )− Ē‖2

F

subject to Hu ◦ (K(Y ))− Ū ≤ 0
L̄−Hl ◦ (K(Y )) ≤ 0

Y =

(

XXT XAT

AXT AAT

)

.

(6.63)

The Lagrangian is quadratic and convex in Y but not convex in X.

L(X,Y,Λu,Λl,Λ) =
1

2
‖W ◦ K(Y )− Ē‖2F

+
〈

Λu,Hu ◦ K(Y )− Ū
〉

+
〈

Λl, L̄−Hl ◦ K(Y )
〉

−
〈

Λ, Y −
(

XXT XAT

AXT AAT

)〉

.

After homogenizing the Lagrangian, the optimality conditions for the Lagrangian dual include
stationarity as well as a semidefiniteness condition, i.e. we get a semidefinite form for the Lagrangian
dual.

As an illustration of the relative strength of the different relaxations, suppose that we have the
simplified problem

µ∗ := min f(P )
subject to PP T = Y

P ∈Mm×n.
(6.64)

The two different relaxations for (6.64) are:

µ∗I := min f(P )
subject to PP T � Y

P ∈Mm×n;
(6.65)

µ∗E := max
S∈Sn

min
P

f(P ) + trace (S(PP T − Y )). (6.66)

We now show that if the relaxation (6.65) does not solve the original problem (6.64) exactly, then
the Lagrangian relaxation (6.66) is a stronger relaxation.

Theorem 6.1 Suppose that Y � 0 is given and that f is a strictly convex coercive function of
P ∈Mmn. Then µ∗I in (6.65) is finite and attained at a single matrix P ∗. Moreover, if

Y − P ∗P ∗T 6= 0, (6.67)

then µ∗ ≥ µ∗E > µ∗I .
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Proof. First, note that g(P ) := trace S(PP T − Y ). Then the Hessian ∇2g(P ) = I ⊗ S � 0, for
all S � 0. (Here ⊗ denotes Kronecker product.) Therefore, g(P ) is a Löwner convex function, i.e.
it is convex with respect to the Löwner partial order, g(λM1 +(1−λ)M2) � λg(M1)+(1−λ)g(M2),
for all 0 ≤ λ ≤ 1. Therefore, strong duality holds, i.e. This implies that the feasible set of (6.65) is
a closed convex set.

Now, since Y � 0, we get (6.65) is feasible, i.e. µ∗I < ∞. In addition, by coercivity of f and
the fact that the feasible set in (6.65) is closed and convex, we conclude that µ∗I > −∞ and µ∗I is
attained at a single matrix P ∗ since the problem is strictly convex.

Now let Y = Q

(

0 0
0 DY

)

QT be an orthogonal block diagonalization of Y , with DY � 0. Then

PP T � Y if and only if

(QT P )(QT P )T �
(

0 0
0 DY

)

. (6.68)

If we partition W = QT P =

(

W1 W2

W3 W4

)

, then

(QT P )(QT P )T =

(

W1W
T
1 + W2W

T
2 . . .

. . . . . .

)

and (6.68) implies that both W1 = 0,W2 = 0, i.e. without loss of generality we can assume that

P =

(

0 0
P3 P4

)

. After substitution into the objective function f , we can discard the zeros in P

and we can assume, without loss of generality, that Slater’s condition holds in (6.65) respect to the
Löwner partial order, i.e.

µ∗E = max
S�0

min
P

f(P ) + trace (S(PP T − Y )) = min
P

f(P ) + trace (S∗(PP T − Y )),

for some S∗ � 0.
Now, by our assumption, 0 � Q := Y − P ∗P ∗T 6= 0 and

µ∗I = f(P ∗)
= maxS�0 minP f(P ) + trace (S(PP T − Y ))
= maxS�0 φ(S)
= φ(S∗) = minP f(P ) + trace (S∗(PP T − Y ))

= f(P ∗) + trace (S∗(P ∗P ∗T − Y )).

Now consider the concave function φ(S) = minP f(P ) + trace (S(PP T − Y )). We have φ(S∗) =
µ∗I . Denote by PS the set of matrices such that PS = arg min f(P ) + trace (S∗(PP T − Y ) The
directional derivative of φ(S) at any matrix S along a direction T is given by [9, Page 6]

DT φ(S) = minPS

〈

T, ∂
∂S (f(PS) + trace (S(PSPS

T − Y ))
〉

= minPS

〈

T, (PSPS
T − Y )

〉

.

Thus if we consider T = −Q and S = S∗, then PS∗ = P ∗, and

D−Qφ(S∗) =< −Q,−Q >
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and hence the directional derivative along the direction −Q is positive. Thus if we consider the
matrix Ŝ = S∗− εQ, for ε > 0 sufficiently small, we get φ(Ŝ) > φ(S∗) = µ∗I , which implies µ∗E > µ∗I .

A numerical study for the strengthened relaxation is in progress.

7 Numerical Tests

We now present results on randomly generated problems with connected underlying graphs. The
tests were done using MATLAB 7.1. These tests illustrate the robustness of the algorithm and the
relaxation, i.e. high accuracy solutions can be obtained.

Table 1: Problems with increasing noise factor are presented in Table 1, page 31. The densities
for the weight matrices in the objective and lower bound matrix in the constraint are: W.75, L.8,
respectively. The dimensions of the problem are: n = 15,m = 5, r = 2, respectively. The results
illustrate the robustness of the algorithm, i.e. though both linear transformations corresponding
to Zs and the Jacobian F ′

µ have many zero singular values (last two columns of the table), the

optimal value and norm of the error in the relaxation, ‖PP T−Ȳ ‖
‖PP T , are the same order as the noise

factor. Our tests showed that strict complementarity fails. In fact, the dual multiplier Λ is often
0. Though failure of strict complementarity indicates singularity in the Jacobian of the optimality
conditions, the shadow price interpretation of a small dual multiplier Λ indicates stability in the
objective value under small perturbations in the data. This appears to be one of the good effects
from using the `2 norm.

Table 2: In Table 2, page 32, we illustrate the typical convergence rate as well as the high
accuracy in the solution. We include the steplength and the centering parameter σ. The values for
n,m, r are 20, 6, 2, respectively. The system of optimality conditions is underdetermined, i.e. the
number of known distances is less than the number of variables: 182 < 250. The relative error in the
relaxation is small: ‖Y bar−PP ′‖

‖PP ′‖ = 2.2985e−007, ||Y−XX′||
||XX′|| = 2.8256e−007. Strict complementarity

fails, but we do get high accuracy in the solution, i.e. we get the 10 decimals accuracy in the duality
gap that is set in the algorithm. The crossover to the affine scaling direction with step length 1 and
no backtracking is started after 2 decimal accuracy is obtained. However, we do not see quadratic
convergence after the crossover, most likely due to the lack of strict complementarity.

Table 3: In Table 3, page 33, we start with density .999 for both W,L and decrease to density
.14495. We can see that the quality of the relaxation decreases once the density decreases below
.5. The decrease is from order .00001 to order 1.5. The number of singular values in F ′

µ increases,
while the number of zero eigenvalues in Zs decreases.

The progress of one random problem is illustrated in Figures 1 to Figure 7.

• Figure 1, page 34, shows the original positions of the anchors as stars and the sensors as dots
labelled with R#. The anchors and sensors are generated randomly. Once they are fixed,
then the distances within radio range are calculated. Only the distances and positions of the
anchors are used by the program.

• Figure 2, page 35, shows the positions found by the algorithm after one iteration, i.e. the
points marked N# indicate the corresponding sensor that is searching for R#. The original
positions for N# are all clustered together, since x = 0 is used as the initial solution. The
value −log10(relative duality gap) is −4.69e − 01.
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nf optvalue relaxation cond.number F ′
µ sv(Zs) sv(F ′

µ)

0.0000e+000 3.9909e-009 1.1248e-005 3.8547e+006 15 19

5.0000e-002 7.5156e-004 4.4637e-002 1.0244e+011 6 27

1.0000e-001 3.7103e-003 1.1286e-001 1.9989e+010 5 25

1.5000e-001 6.2623e-003 1.3125e-001 1.0065e+010 6 14

2.0000e-001 1.3735e-002 1.3073e-001 6.8833e+009 7 12

2.5000e-001 2.3426e-002 2.4828e-001 2.4823e+010 8 6

3.0000e-001 6.0509e-002 2.3677e-001 3.4795e+010 7 7

3.5000e-001 5.5367e-002 3.7260e-001 2.3340e+008 6 4

4.0000e-001 7.6703e-002 3.6343e-001 8.9745e+010 8 3

4.5000e-001 1.2493e-001 6.9625e-001 3.2590e+010 6 9

5.0000e-001 1.3913e-001 3.9052e-001 2.2870e+005 8 0

5.5000e-001 8.8552e-002 3.8742e-001 5.8879e+007 8 2

6.0000e-001 4.2425e-001 4.1399e-001 4.9251e+012 8 4

6.5000e-001 2.0414e-001 6.6054e-001 2.4221e+010 7 4

7.0000e-001 1.2028e-001 3.4328e-001 1.9402e+010 7 6

7.5000e-001 2.6590e-001 7.9316e-001 1.3643e+011 7 4

8.0000e-001 4.7155e-001 3.7822e-001 6.6910e+009 8 2

8.5000e-001 1.8951e-001 5.8652e-001 1.4185e+011 6 7

9.0000e-001 2.1741e-001 9.8757e-001 2.9077e+005 8 0

9.5000e-001 4.4698e-001 4.6648e-001 2.7013e+006 9 2

Table 1: Increasing Noise: densityW = .75, densityL = .8, n = 15,m = 5, r = 2
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noiter -log10(relgapp) step σ optval

1 -4.15e-001 7.6000e-001 1.0e+000 1.9185e+003

2 -4.38e-001 9.5000e-001 7.7e-001 1.0141e+003

3 -4.52e-001 7.6000e-001 5.7e-001 4.3623e+002

4 -4.69e-001 9.5000e-001 7.7e-001 2.2990e+002

5 -4.52e-001 7.6000e-001 5.7e-001 1.0327e+002

6 -4.70e-001 9.5000e-001 7.7e-001 5.3836e+001

7 -4.58e-001 6.0800e-001 5.7e-001 2.8919e+001

8 -4.74e-001 9.5000e-001 8.2e-001 1.5349e+001

9 -4.29e-001 7.6000e-001 5.7e-001 6.6988e+000

10 -4.11e-001 9.5000e-001 7.7e-001 3.3713e+000

11 -2.02e-001 9.5000e-001 5.7e-001 1.1047e+000

12 1.11e-001 9.5000e-001 5.7e-001 3.5139e-001

13 5.53e-001 9.8085e-001 5.7e-001 1.0648e-001

14 1.06e+000 9.9503e-001 5.6e-001 3.1561e-002

15 1.60e+000 9.9875e-001 5.5e-001 9.3173e-003

16 2.13e+000 9.9967e-001 5.5e-001 2.7479e-003

CROSSOVER

17 2.66e+000 1.0000e+000 0.0e+000 8.0958e-004

18 3.39e+000 1.0000e+000 0.0e+000 2.0202e-004

19 4.00e+000 1.0000e+000 0.0e+000 5.0503e-005

20 4.60e+000 1.0000e+000 0.0e+000 1.2626e-005

21 5.20e+000 1.0000e+000 0.0e+000 3.1564e-006

22 5.80e+000 1.0000e+000 0.0e+000 7.8911e-007

23 6.40e+000 1.0000e+000 0.0e+000 1.9728e-007

24 7.01e+000 1.0000e+000 0.0e+000 4.9319e-008

25 7.61e+000 1.0000e+000 0.0e+000 1.2330e-008

26 8.21e+000 1.0000e+000 0.0e+000 3.0825e-009

27 8.81e+000 1.0000e+000 0.0e+000 7.7062e-010

28 9.41e+000 1.0000e+000 0.0e+000 1.9265e-010

29 1.00e+001 1.0000e+000 0.0e+000 4.8163e-011

30 1.06e+001 1.0000e+000 0.0e+000 1.2041e-011

Table 2: Convergence Rate: densityW = .80, densityL = .8, n = 20,m = 6, r = 2
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densityW optvalue ‖Y −XX‖/‖XXT ‖ ‖Ȳ − PP T ‖/‖PP T ‖ sv(Zs) sv(F ′
µ)

9.9900e-001 9.4954e-009 2.8991e-005 2.3742e-005 15 6

9.5405e-001 5.1134e-009 1.5913e-005 1.3441e-005 15 10

9.0910e-001 5.9131e-009 2.0394e-005 1.8625e-005 15 12

8.6415e-001 3.9076e-009 1.4313e-005 1.0464e-005 15 18

8.1920e-001 4.0578e-009 2.7828e-005 1.7884e-005 15 18

7.7425e-001 6.8738e-009 4.0661e-005 2.7265e-005 15 15

7.2930e-001 3.6859e-009 8.4506e-006 6.1864e-006 15 21

6.8435e-001 4.6248e-009 1.9904e-005 1.3379e-005 15 22

6.3940e-001 4.6809e-009 2.0534e-005 1.5896e-005 15 29

5.9445e-001 9.6305e-009 3.3416e-005 2.6535e-005 15 18

5.4950e-001 8.2301e-010 1.0282e-005 8.8234e-006 15 91

5.0455e-001 6.3663e-009 1.2188e-004 1.0635e-004 13 51

4.5960e-001 6.4292e-010 4.6191e-004 3.7895e-004 12 95

4.1465e-001 3.0968e-009 7.4456e-005 6.1611e-005 14 54

3.6970e-001 9.7092e-010 3.5303e-004 2.8009e-004 14 98

3.2475e-001 5.5651e-011 2.7590e-002 2.2310e-002 7 101

2.7980e-001 1.3733e-015 4.7867e-001 3.6324e-001 5 104

2.3485e-001 9.4798e-012 2.0052e+000 1.1612e+000 6 110

1.8990e-001 2.3922e-010 7.5653e-001 6.2430e-001 4 119

1.4495e-001 3.2174e-029 2.5984e+000 1.7237e+000 0 122

Table 3: Decreasing density W and L: n = 15,m = 5, r = 2
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• Figures 3,4,5,6,7, on pages 36,37,38,39, 40, respectively, show the positions found after
2,8,12,22,29 iterations, respectively, with values for−log10(relative duality gap): −.391,−.405, 3.58, 9.02,
respectively. We see that the sensors are almost found after 8 iterations and essentially found
exactly after 12 iterations.

The crossover occurred after iteration 20. Though the density of W was low (approx. .3), the
quality of the relaxation was excellent, i.e. correct to approximately 7 digits.
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Figure 1: Sample random problem with 20 sensors, 12 anchors

8 Conclusion

In this paper we studied a robust algorithm for a semidefinite relaxation of the sensor localiza-
tion problem with anchors. We showed that the linearization step used in the literature on the
SDP relaxation has several problems with instability. But, our algorithm was able to obtain high
accuracy solutions. In addition, contrary to other approaches in the literature, we solve a nearest
Euclidean Matrix problem with the Frobenius norm rather than the `1 norm.

Our numerical tests show that the robust algorithm obtains high accuracy solutions for the
SDP relaxation; and the relaxation yields surprisingly strong approximations to the original sensor
localization problem. In fact, when the underlying graph is connected, it is difficult to find examples
where the original true sensor positions are not found. These tests are preliminary and the algorithm
is currently being modified to handle large instances.

We also discussed stronger and more robust relaxations. Numerical tests with these are in
progress.

34



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Iteration # 1 Star anchors; R# orig. sensors; N# new sensors

R1

R2
R3

R4

R5
R6

R7

R8

R9

R10

R11

R12

R13
R14

R15

R16
R17

R18

R19

R20

N1N2N3N4N5N6N7N8N9N10N11N12N13N14N15N16N17N18N19N20

Figure 2: After one iteration for randomly generated problem

A Linear Transformations and Adjoints

From (3.14) : Z :=

(

I P T

P Ȳ

)

, P =

(

X
A

)

, Ȳ :=

(

Y Y T
21

Y21 Y2

)

,

Zs =

(

I XT

X Y

)

� 0, Y21 = AXT , Y2 = AAT .

x :=
√

2vec (X) y := svec (Y ),

De(B) := diag (B) eT + ediag (B)T , K(B) := De(B)− 2B, (A.69)

D∗
e(D) = 2Diag (De), K∗(D) = 2(Diag (De)−D) (A.70)

Zx
s (x) := sBlk 21(Mat (x)), Zy

s (y) := sBlk 2(sMat (y)),
Zs(x, y) := Zx

s (x) + Zy
s (y), Zs := sBlk 1(I) + Zs(x, y),

Yx(x) := sBlk 21(AMat (x)T ), Yy(y) := sBlk 1(sMat (y))
Y(x, y) := Yx(x) + Yy(y), Ȳ := sBlk 2(AAT ) + Y(x, y).

Z∗
s (S) =

(

(Zx
s )∗(S)

(Zy
s )∗(S)

)(

Mat ∗(sblk 21(S))
sMat ∗(sblk 2(S))

)

=

(

vec (S21)
svec (S2)

)

(A.71)
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Figure 3: After two iterations for randomly generated problem

Y∗(S) =

(

(Yx)∗(S)
(Yy)∗(S)

)

=

(

Mat ∗(
√

2sblk 21(S)T A)
sMat ∗(sblk 1(S))

)

=

(

vec (
√

2ST
21A)

svec (S1)

)

(A.72)

Kx
H(x) := H ◦ (K(Yx(x))),

Ky
H(y) := H ◦ (K(Yy(y))),

KH(x, y) := H ◦ (K(Y(x, y))).

K∗H(S) =

(

(Kx
H)∗(S)

(Ky
H)∗(S)

)

=

(

(Yx)∗(K∗(H ◦ S))
(Yy)∗(K∗(H ◦ S))

)

(A.73)

Ē := W ◦
[

E −K(sBlk 2(AAT ))
]

,
Ū := Hu ◦

[

K(sBlk 2(AAT ))− U
]

,
L̄ := Hl ◦

[

L−K(sBlk 2(AAT ))
]

.

Λ =

(

Λ1 ΛT
21

Λ21 Λ2

)

,

λu := svec (Λu), λl := svec (Λl), hu := svec (Hu), hl := svec (Hl),
λ := svec (Λ), λ1 := svec (Λ1), λ2 := svec (Λ2), λ21 := vec sblk 21(Λ).

For a given symmetric matrix H:

Kx
H(x) := H ◦ (K(Yx(x))),

Ky
H(y) := H ◦ (K(Yy(y))),

KH(x, y) := H ◦ (K(Y(x, y))).
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Figure 4: After eight iterations for randomly generated problem

B Composition of Transformations and Properties

B.1 KY : R
rn+t(n) → R

t(m+n)−n−t(m)

Note that

2 (rn + t(n)− (t(m + n)− n− t(m))) = 2rn + n2 + n− (m + n)(m + n + 1) + 2n + m(m + 1)
= 2rn + 2n− 2mn
= 2n(r + 1−m),

i.e. KY has nontrivial nullspace if r + 1 −m > 0. Now, recall that x =
√

2vec (X), y = svec (Y ).
Let ȳ = diag (Y ).

KY(x, y) = K
(

sBlk 21(AMat (x)T ) + sBlk 1(sMat (y))
)

= K
(

Y XAT

AXT 0

)

= De

(

ȳ
0

)

− 2

(

Y XAT

AXT 0

)

=

(

De(ȳ)− 2Y −2XAT + ȳeT

−2AXT + eȳT 0

)

.

(B.74)
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Figure 5: After twelve iterations for randomly generated problem

B.2 Y∗K∗

Consider the blocked matrix W =

(

W1 W T
21

W21 W2

)

. Let w = We =

(

w1

w2

)

. Then

Y∗K∗(W ) = Y∗2 (Diag (We)−W )

= Y∗2
(

Diag

(

w1

w2

)

−W

)

= Y∗2
(

Diag (w1)−W1 W T
21

W21 Diag (w2)−W2

)

= 2

(

vec
(√

2W T
21A
)

svec (Diag (w1)−W1)

)

.

(B.75)

B.3 (KW )∗KW

We consider the linear transformation

(KW )∗KW (x, y) =

(

(Kx
W )∗KW (x, y)

(Ky
W )∗KW (x, y)

)

.

We have that

KW (x, y) = W ◦











K(Y )







ȳ1e
T
m

...
ȳneT

m






− 2XAT

(

ȳ1em · · · ȳnem

)

− 2AXT 0m×m










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Figure 6: After 22 iterations for randomly generated problem

where Y = sMat (y) and ȳ = diag (Y ). Let W (2) := W ◦W . Then

K∗(W ◦ KW (x, y)) = K∗











W (2) ◦











K(Y )







ȳ1e
T
m

...
ȳneT

m






− 2XAT

(

ȳ1em · · · ȳnem

)

− 2AXT 0m×m





















= 2Diag





















W (2) ◦











K(Y )







ȳ1e
T
m

...
ȳneT

m






− 2XAT

(

ȳ1em · · · ȳnem

)

− 2AXT 0m×m





















e











− 2W (2) ◦











K(Y )







ȳ1e
T
m

...
ȳneT

m






− 2XAT

(

ȳ1em · · · ȳnem

)

− 2AXT 0m×m











.

Thus

(Kx
W )∗KW (x, y) = −2vec







W (2)(1 : n, n + 1 : n + m) ◦









ȳ1e
T
m

...
ȳneT

m



− 2XAT







A



 .

Moreover,
(Ky

W )∗KW (x, y) = svec sblk 1 (K∗(W ◦ KW (x, y))) .
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Figure 7: After 29 iterations for randomly generated problem

To evaluate this quantity, note that

sblk 1 (K∗(W ◦ KW (x, y))) = 2Diag







W (2)(1 : n, 1 : n + m) ◦



K(Y )







ȳ1e
T
m

...
ȳneT

m

− 2XAT













 e





−2W (2)(1 : n, 1 : n) ◦ K(Y ).

By the expression of K(Y ), we get







W (2)(1 : n, 1 : n + m) ◦



K(Y )







ȳ1e
T
m

...
ȳneT

m

− 2XAT













 e





i

=

n
∑

j=1

W 2
ij(ȳi + ȳj − 2Yij) +

m
∑

j=1

W 2
i,j+n(ȳi + X(:, i)A(j, :)).

C Elements of λ2

From (4.45),
λ2 = L2(x, y, λu, λl)− [W ◦ (KYy)]∗ (Ē),

where the linear transformation

L2(x, y, λu, λl) = [W ◦ (KYy)]∗ (W ◦ K(Y(x, y))) + [Hu ◦ (KYy)]∗ (Λu)− [Hl ◦ (KYy)]∗ (Λl).
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We now evaluate the columns of the matrix representation of L2. For x = ei, i = 1, . . . , nr, we get
X = 1√

2
Est. By the expression of (Ky

W )KW (x, y), we get

L2(ei, 0t(n)+2t(m+n)) = svec sblk 1

[

K∗
(

W (2) ◦ K
(

0n×n
1√
2
EstA

T

1√
2
AET

st 0m×m

))]

= −2
√

2svec



Diag





0s−1
∑m

j=1 W 2
s,j+nAjt

0n−s







 ,

i.e. the first nr columns of the matrix representation of L2 have only one element that can be
different from zero. Moreover if the s-th sensor is not related to any anchor, in the sense that
there is no information on the distances between this sensor and any of the anchors, then the r
corresponding columns of L2 are zero.

Now, suppose that x = 0nr and y = ei with i such that sMat (Y ) = Diag (es). Then, by the
expression of (Ky

W )∗KW , we get

L2(0nr, ei, 02t(m+n)) = svec sblk 1

[

K∗
(

W (2) ◦ K
(

Diag (es) 0n×m

0m×n 0m×m

))]

= svec



2Diag







W (2)(1 : n, 1 : n + m) ◦



K(Diag (es))

0(s−1)×m

eT
m

0(n−s)×m







 e





−2W (2)(1 : n, 1 : n) ◦ K(Diag (es))
)

.

Moreover,

K(Diag (es)) =





0(s−1)×(s−1) e 0(s−1)×(n−s)

eT 0 eT

0(n−s)×(s−1) e 0(n−s)×(n−s)



 ,

where e is the vector of all ones of the right dimension. Thus

L2(0nr, ei, 02t(m+n)) = svec (2Diag





W (2)(1 : s− 1, s)
∑n+m

k=1,k 6=s W
(2)
s,k

W (2)(s + 1 : n, s)





−2





0(s−1)×(s−1) W (2)(1 : s− 1, s) 0(s−1)×(n−s)

W (2)(s, 1 : s− 1) 0 W (2)(s, s + 1 : n)
0(n−s)×(s−1) W (2)(s + 1 : n, s) 0(n−s)×(n−s)



)

= 2







Diag (W (2)(1 : s− 1, s)) −W (2)(1 : s− 1, s) 0(s−1)×(n−s)

−W (2)(s, 1 : s− 1)
∑n+m

k=1,k 6=s W
(2)
s,k −W (2)(s, s + 1 : n)

0(n−s)×(s−1) −W (2)(s + 1 : n, s) Diag (W (2)(s + 1 : n, s))






.

D Diagonal Preconditioning Details

To clarify some of the calculations, we recall the notation for the nonzeros in a 0, 1 symmetric matrix
H, see (4.38); i.e. hnz

H = svec H(H) ∈ R
nzH , where hnz

H is obtained from svec (H) by removing the
zeros. Therefore, for a symmetric matrix S,

H ◦ S = sMat Hsvec H(H) ◦ sMat Hsvec H(S) = sMat H (snz
H ) . (D.76)
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To evaluate the first nr columns, we need to evaluate F ′
µ(ei, 0t(n)+t(m+n)+t(r)), i = 1, . . . , nr.

We note that if ∆x = ei, then Mat (x) = Est, where we denote by Est the n× r matrix of all zeros
except for the (s, t) element which is equal to 1. Thus we get

F ′
µ(ei, 0t(n)+nzu+nzl+t(r)) =









λu ◦ svec HuKHu(ei, 0t(n))

λl ◦ svec Hl
KHl

(ei, 0t(n))

ΛZs(ei, 0t(n)) + [sBlk 2

(

sMat
{

(Ky
W )∗KW (ei, 0t(n))

})

+

sBlk 21

(

Mat
{

(Kx
W )∗KW (ei, 0t(n))

})]

Zs









First, we note that, given a matrix H,

KH(ei, 0t(n)) = H ◦ K
(

Y(ei, 0t(n))
)

= H ◦ K
(

0 1√
2
EstA

T

1√
2
AEts 0

)

= −2H ◦
(

0 1√
2
EstA

T

1√
2
AEts 0

)

(D.76)

=









0

0(s−1)×m

− 2√
2
h̄T

s ◦A(:, t)T

0(n−s)×m

0m×(s−1) − 2√
2
h̄s ◦ A(:, t) 0m×(n−s) 0









,

where h̄s = H(n + 1 : n + m, s). By this relation we get

λu◦svecKHu(ei, 0t(n)) = λu◦svec Hu









0

0(s−1)×m

− 2√
2
(h̄u

s )T ◦ A(:, t)T

0(n−s)×m

0m×(s−1) − 2√
2
h̄u

s ◦A(:, t) 0m×(n−s) 0









λl◦svecKHl
(ei, 0t(n)) = λl◦svec Hl









0

0(s−1)×m

− 2√
2
(h̄l

s)
T ◦ A(:, t)T

0(n−s)×m

0m×(s−1) − 2√
2
h̄l

s ◦ A(:, t) 0m×(n−s) 0









.

To get the last (r + n)2 elements of F ′
µ(ei, 0t(n)+t(m+n)+t(r)), we need the following quantities:

ΛZs(ei, 0t(n)) =
(

0(r+n)×(t−1)
1√
2
Λ(:, r + s) 0(r+n)×(r+s−t−1)

1√
2
Λ(:, t) 0(r+n)×(n−s)

)

Moreover, by (D.76)

(KW )∗KW (ei, 0t(n)) = −2Y∗
(

K∗
(

W (2) ◦
(

0 1√
2
EstA

T

1√
2
AEts 0

)))

= −4Y∗



















Diag



















0s−1
∑m

k=1 W (s, n + k)2A(k, t)
0n−s

W (s, n + 1)2A(1, t)
...

W (s, n + m)2A(m, t)



















−
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−









0n×n

0(s−1)×m
1√
2
w̄T

s ◦ A(:, t)T

0(n−s)×m

0m×(s−1)
1√
2
w̄s ◦ A(:, t) 0m×(n−s) 0m×m

















= −4Y∗(Q)

where w̄s = W (n + 1 : n + m, s)2. By the expression of Y∗, we get

Mat ((Yx)∗(Q)) = sblk 21











0(s−1)×(s−1) 0(s−1)×1 0(s−1)×(n−s)

01×(s−1) w̄T
s A(:, t) 0(1)×(n−s)

0(n−s)×(s−1) 0(n−s)×1 0(n−s)×(n−s)

0(s−1)×m

− 1√
2
w̄T

s ◦ A(:, t)T

0(n−s)×m

0m×(s−1) − 1√
2
w̄s ◦ A(:, t) 0m×(n−s) diag (w̄s ◦A(:, t))











T

A

=





0(s−1)×r

−(w̄s ◦ A(:, t))T A
0(n−s)×r





and

sMat ((Yy)∗(Q)) = sblk 1











0(s−1)×(s−1) 0(s−1)×1 0(s−1)×(n−s)

01×(s−1) w̄T
s A(:, t) 0(1)×(n−s)

0(n−s)×(s−1) 0(n−s)×1 0(n−s)×(n−s)

0(s−1)×m

− 1√
2
w̄T

s ◦ A(:, t)T

0(n−s)×m

0m×(s−1) − 1√
2
w̄s ◦A(:, t) 0m×(n−s) diag (w̄s ◦ A(:, t))











=





0(s−1)×(s−1) 0(s−1)×1 0(s−1)×(n−s)

01×(s−1) w̄T
s A(:, t) 0(1)×(n−s)

0(n−s)×(s−1) 0(n−s)×1 0(n−s)×(n−s)





and hence
[

sBlk 2

(

sMat
{

(Ky
W )∗KW (ei, 0t(n))

})

+ sBlk 21

(

Mat
{

(Kx
W )∗KW (ei, 0t(n))

})]

Zs

=









0r×r 0r×(s−1) 4AT (w̄s ◦A(:, t)) 0r×(n−s)

0(s−1)×r

4(w̄s ◦ A(:, t))T A
0(n−s)×r

0(s−1)×(s−1) 0(s−1)×1 0(s−1)×(n−s)

01×(s−1) −4w̄T
s A(:, t) 0(1)×(n−s)

0(n−s)×(s−1) 0(n−s)×1 0(n−s)×(n−s)









Zs

Now assume that ∆x = ∆λl = ∆λ1 = 0, and that ∆y = ei, with i such that sMat (y) = Diag (es).
We get

F ′
µ(0nr, ei, 0nzl+nzu+t(r)) =









λu ◦ svecKHu(0nr, ei)
λl ◦ svecKHl

(0nr, ei)
ΛZs(0nr, ei) + [sBlk 2

(

sMat
{

(Ky
W )∗KW (0nr, ei)

})

+
sBlk 21 (Mat {(Kx

W )∗KW (0nr, ei)})] Zs









Moreover, given a matrix H, we have

KH(0nr, ei) = H ◦











K(Diag (es)) es . . . es

eT
s
...

eT
s

0m×m










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and

K(Diag (es)) =





0(s−1)×(s−1) e 0(s−1)×(n−s)

eT 0 eT

0(n−s)×(s−1) e 0(n−s)×(n−s)



 ,

Thus the first rows of F ′
µ are given by

λu ◦ svec Hu



















Hu ◦



















0(s−1)×(s−1) e 0(s−1)×(n−s)

eT 0 eT

0(n−s)×(s−1) e 0(n−s)×(n−s)

es . . . es

eT
s
...

eT
s

0m×m





































λl ◦ svec Hl



















Hl ◦



















0(s−1)×(s−1) e 0(s−1)×(n−s)

eT 0 eT

0(n−s)×(s−1) e 0(n−s)×(n−s)

es . . . es

eT
s
...

eT
s

0m×m





































As for the last (n + r)2 rows, we get

ΛZ(0nr, ei) = ( 0n×(s−1) Λ(:, s) 0n×(n−s) ) ,

sBlk 2

(

sMat
{

(Ky
W )∗KW (0nr, ei)

})

=

2









0r×r 0r×n

0n×r

Diag (W (2)(1 : s− 1, s)) −W (2)(1 : s− 1, s) 0(s−1)×(n−s)

−W (2)(s, 1 : s− 1)
∑n+m

k=1,k 6=s W
(2)
s,k −W (2)(s, s + 1 : n)

0(n−s)×(s−1) −W (2)(s + 1 : n, s) Diag (W (2)(s + 1 : n, s))









,

and

sBlk 21 (Mat {(Kx
W )∗KW (0nr, ei)}) =

2

















0r×r

0r×s−1

AT W (2)(n + 1 : n + m, s)
0r×n−s

0s−1×r

W (2)(s, n + 1 : n + m)A
0n−s×r

0n×n

















.

Now suppose that ∆x = ∆λl = ∆λ1 = 0 and ∆y = ei, where i is an index such that sMat (∆y) =
1√
2
Est. This in particular implies s 6= t. Then given a matrix H, we have

KH(0nr, ei) = H ◦
(

− 2√
2
Est 0n×m

0m×n 0m×m

)
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Thus the first rows of F ′
µ are given by

λu ◦ svec Hu

(

Hu ◦
(

− 2√
2
Est 0n×m

0m×n 0m×m

))

λl ◦ svec Hl

(

Hl ◦
(

− 2√
2
Est 0n×m

0m×n 0m×m

))

As for the last (n + r)2 rows, we get

sBlk 2

(

sMat
{

(Ky
W )∗KW (0nr, ei)

})

=

sBlk 2

(

2
[

Diag (W (2)(1 : n, 1 : n + m) ◦
(− 2√

2
Est 0n×m

)

)
]

e
)

,

and

sBlk 21 (Mat {(Kx
W )∗KW (0nr, ei)}) = 0n+m×n+m.

Assume ∆x = ∆y = ∆λl = ∆λ1 = 0 and ∆λu = ei, where i is an index such that sMat (∆λu) =
1√
2
Est, with (s, t) such that Hu(s, t) 6= 0. This in particular implies s 6= t. The first two blocks of

rows of F ′
µ are given by

F ′
µ(0nr+t(n), ei, 0nzl+t(r)) =

(

su ◦ ei

0nl

)

We note that Hu ◦ Est = Est. Thus the last (n + r)2 rows of F ′
µ are given by

[

sBlk 2

(

sMat

(

(Ky
Hu

)∗(
1√
2
Est)

))

+ sBlk 21

(

sMat

(

(Kx
Hu

)∗(
1√
2
Est)

))]

Zs

with

sMat

(

(Ky
Hu

)∗(
1√
2
Est)

)

=
1√
2
sblk 1 (K∗(Est))

and

sMat

(

(Kx
Hu

)∗(
1√
2
Est)

)

=
1√
2
sblk 21 (K∗(Est))

Moreover,

K∗(Est) =





0(s−1)×(t−1) 0s−1 0(s−1)×(s−t−1) 0s−1 0(s−1)×(t−s−1) 0s−1 0(s−1)×(n+m−t−s)

0
T

t−1 0 0
T

s−1−t
1 0

T

t−s−1 −1 0
T

n+m−t−s

0(t−s−1)×(t−1) 0 0(t−s−1)×(s−t−1) 0t−s−1 0(t−s−1)×(t−s−1) 0t−s−1 0(t−s−1)×(n+m−t−s)

0
T

t−1 −1 0
T

s−1−t
0

T

t−s−1 0
T

t−s−1 0 0
T

n+m−t−s

0(n+m−s−t)×(t−1) 0 0(n+m−s−t)×(s−t−1) 0(n+m−s−t) 0(n+m−s−t)×(t−s−1) 0n+m−s−t 0(n+m−s−t)×(n+m−t−s)





Similar reasoning can be done for the columns corresponding to ∆λl = ei, where i is an index
such that sMat (∆λl) = 1√

2
Est, with (s, t) such that Hl(s, t) 6= 0. Now, to evaluate the last t(r)

columns of F ′
µ, we set ∆x = ∆y = ∆λu = ∆λl = 0, and Λ1 = ei, i = 1, . . . , t(r). We have two cases:

sMat (λ1) = Diag (es) or sMat (λ1) = 1/
√

2Est. Suppose sMat (λ1) = Diag (es). Then, recalling
the expression of F ′

µ and the expression of Zs:

F ′
µ(0nr+t(n)+nzl+nzu, ei) =

(

0nzl+nzu

sBlk 1(Diag (es))Zs

)
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where

sBlk 1(Diag (es))Zs =







Diag (es)

0(s−1)×n

X(:, s)T

0(r−s)×n
0r×n 0n×n







If sMat (λ1) = 1/
√

2Est, then

F ′
µ(0nr+t(n)+2t(m+n) , ei) =

(

0nzl+nzu

sBlk 1(
1√
2
Est)Zs

)

where

sBlk 1(
1√
2
Est)Zs =

1√
2

















Est

0(s−1)×n

X(:, s)T

0(r−s−t−1)×n

X(:, t)T

0(r−t)×n

0r×n 0n×n

















.
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