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1 Introduction

Semidefinite Programming, denoted SDP, has been studied (under various names) as far back
as the 1940s. The interest has grown tremendously since the early 1990s and it is currently
considered to be the hottest area in Optimization. The research activity was motivated by
the discovery of new applications in several areas, combined with the development of efficient
new algorithms. This article serves as an introduction to the basics of SDP.

2 What is SDP?

Primal and dual SDPs look like Linear Programs, LPs, i.e. the primal SDP is

(PSDP)
p∗ := min C •X := traceCX

subject to AX = b
X � 0

and its dual is

(DSDP)
d∗ := max bTy

subject to A ∗y + Z = C
Z � 0.

Here: Sn is the vector space of n × n real symmetric matrices and X,Z,C ∈ Sn equipped
with the trace inner product; the nonnegativity symbol � 0 (resp. � 0) denotes positive
(semi) definiteness, often referred to as the Löwner partial order. A : Sn → <m is a linear
operator and A ∗ is the adjoint operator (reduces to transpose for LP), i.e. the adjoint
satisfies

A(X) • y = X • A∗(y), ∀X ∈ Sn ,∀y ∈ <m.

The action of the linear operator can be expressed as the vector

AX = (traceAiX) ∈ <m,

where Ai ∈ Sn , i = 1, . . . ,m. The adjoint operator is then the matrix

A ∗y =
m∑
i=1

yiAi ∈ Sn .

For LP, x ≥ 0 denotes nonnegativity elementwise, i.e. x ∈ <n the nonnegative orthant, a
polyhedral cone. For SDP, X � 0 denotes positive semidefiniteness, i.e. X is in the nonlinear
cone (closed convex) of positive semidefinite matrices.

2.1 Duality

We now use the concept of a hidden constraint and derive the dual and the principle of weak
duality. (The notion of hidden constraint appears again in the derivation of SDP relaxations
below.)
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Let P denote the cone of positive semidefinite matrices in Sn . The polar cone of P is

P + = {S ∈ Sn : S • T ≥ 0, ∀T ∈ P }.

Lemma 2.1

P + = P ,

i.e. P is self-polar.

Proof. Note that trace is commutative, i.e. traceMN = traceNM . Suppose that
S, T ∈ Sn , T � 0 and T

1
2 � 0 is its square root. Then

traceST ≥ 0, ∀T ∈ P ⇔ traceT
1
2ST

1
2 ≥ 0, ∀T ∈ P .

The result now follows from Sylvester’s Theorem of Inertia.

Theorem 2.2 (Weak Duality) The primal-dual pair of SDPs satisfy

p∗ ≥ d∗.

Proof. We show the following

p∗ = min
X�0

max
y
C •X + yT (b−AX)

≥ max
y

min
X�0

yT b+ (C −A∗y) •X
= max

C−A∗y�0
yT b = d∗ (DSDP ).

(2.1)

In the first equality, the inner maximization is unconstrained in y. Therefore, there is
a hidden constraint for the minimization problem that b − AX = 0. Once we add this
constraint under the minimization, the maximization problem disappears and we are left
with PSDP, the primal problem.

The inequality follows by interchanging the minimization and maximization and using the
adjoint equation. This second line now has a hidden constraint for the inner minimization,
i.e. C − A ∗y � 0. For if T := C − A ∗y is not positive semidefinite, let T = QDQT be its
orthogonal diagonalization. Let X = QDaQT , where the diagonal matrix

Da
ij =

{
Dij if Dij < 0
0 otherwise.

Then lim
α→∞

αXT = −∞. Once we add this constraint under the maximization, the equiva-

lence with DSDP results.
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If X, y, Z are primal-dual feasible, then the relations in (2.1) show that p∗ = d∗ if and
only if complementary slackness Z · X = (C − A ∗y) · X = 0. However, using the same
argument given in Lemma 2.1, we get

Z ·X = 0 ⇔ ZX = 0.

This and the duality theory yields the elegant characterization of optimality which drives
interior- point methods.

Theorem 2.3 The variables X, y, Z are a primal-dual optimal pair for the SDPs if and only
if the following hold.

A∗y + Z − C = 0 dual feasibility
b−A(X) = 0 primal feasibility
ZX = 0 complementary slackness

Z,X � 0.

Primal-dual interior-point (p-d i-p) methods perturb the complementarity equation to

ZX = µI, µ > 0.

They then apply Newton’s method and stay interior, X,Z ∈ intP equivalently X,Z � 0,
while reducing µ ↓ 0.

2.1.1 Comparisons with LP

The above arguments are similar to those for LP, where Z,X usually represent diagonal
matrices formed from the nonnegative elementwise vectors x, z ≥ 0. The product of diag-
onal matrices ZX is a diagonal matrix. However, for Z,X ∈ Sn the matrix ZX is not
necessarily symmetric! Therefore, the system of equations in Theorem 2.3 is overdetermined
and Newton’s method cannot be directly applied.

There are other interesting differences between LP and SDP. These are both cone pro-
grams, i.e. the minimization of a linear function subject to linear and cone constraints. In
the LP case, we use the nonnegative orthant. The partial order x ≥ y means that x− y ≥ 0
elementwise, or x − y is in the nonnegative orthant. For SDP, the nonnegative orthant is
replaced by the nonpolyhedral cone P . The geometry of this cone is well understood, see
e.g. [21]. For 2 × 2 matrices we can visualize P as an ice-cream cone in <3. However,
the nonpolyhedral nature of the cone introduces several nonlinear complications which differ
from LP.

1. Just as in LP, a zero duality gap holds p∗ = d∗ if and only if complementary slackness
Z · X = 0 if and only if ZX = 0. However, in LP the zero duality gap always
holds (unless both problems are infeasible). Nonzero duality gaps can occur for SDP.
Constraint qualifications (CQ) are needed to guarantee a zero duality gap and also
attainment. The standard CQ is Slater’s Condition: strict feasibility. However, a
regularization process is possible which closes the duality gaps, [4, 25].
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2. Strict complementarity for SDP is equivalent to Z +X � 0. However, the Theorem of
Goldman and Tucker [7], that guarantees the existence of a strictly complementary pair,
can fail for SDP even if the Slater constraint qualification holds for both primal-dual
SDPs. The strict complementarity conditions (and nondegeneracy) hold generically,
see e.g. [28, 22, 1].

3. The existence of polynomial time algorithms for LP was shown in [11]. Polynomial time
algorithms for more general convex programs, including SDP, was shown in [17, 18].
The development of p-d i-p methods for SDP followed those for LP, i.e. as mentioned
above a Newton type method is applied to the perturbed optimality conditions. The
solution to the perturbed conditions for each µ > 0 is called the central path. For
LP the central path converges to the analytic center of the set of optimal solutions.
However, this does not hold true for SDP if strict complementarity fails, see e.g. [29, 9].

3 Why Use SDP?

For many computationally hard problems, quadratic programs provide stronger models than
linear programs. These quadratic programs (quadratic objective and quadratic constraint)
are, in general, intractable. However, the Lagrangian relaxations can be solved efficiently
using SDP.

We now look at two applications. We start with perhaps the simplest and most successful
SDP relaxation, the Max-Cut problem, (MC). We then look at the Quadratic Assignment
Problem, (QAP). Both of these are hard combinatorial problems. There are many other such
applications, e.g. Max-Clique, Graph-Partitioning, Graph-Colouring, Max-Satisfiability,
closest correlation matrix, Ricatti equations, min-max eigenvalue problems, matrix norm
minimization, eigenvalue localization, etc. . . , see [32].

3.1 Tractable Relaxations of Max-Cut

The Max-Cut problem consists in finding a partition of the set of vertices of a given undi-
rected graph with weights on the edges so that the sum of the weights of the edges cut by
the partition is maximized. This NP-hard discrete optimization problem can be formulated
as the following (quadratic) program (e.g. Q is a multiple of the Laplacian matrix of the
graph).

(MC0)
mc∗ := max vTQv

s.t. v2
i = 1, i = 1, . . . , n.

More generally, it is a special case of quadratic boolean programming.

(MCQ) µ∗ := max
x∈F

q0(x) (:= xTQx− 2cTx).

where F = {±1}n. Perturbing the diagonal of Q on F yields an equivalent problem:

qu(x) := xT (Q+ Diag (u))x− 2cTx− uT e
= q0(x), ∀x ∈ F ,
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where e is the vector of ones, Diag (u) denotes the diagonal matrix formed from u.
MCQ is an NP-hard problem. Therefore, one usually attempts to solve relaxations. Exact

solutions often use branch and bound methods. We now look at several different bounds
obtained by relaxing the feasible set F .

3.1.1 Simple Relaxation

A trivial bound formed from the diagonal perturbations is

µ∗ ≤ f0(u) := max
x

qu(x).

Define the set of perturbations

S :=
{
u : uT e = 0, Q+ Diag (u) � 0

}
.

Then we get

µ∗ ≤ B0 := min
u
f0(u)(

= min
uT e=0

f0(u), if S 6= ∅
)
.

We can use the hidden semidefinite constraint that: qu(x) bounded above implies that the
Hessian ∇2qu � 0. This yields our first bound B0:

µ∗ ≤ B0 = min
Q+Diag (u)�0

f0(u).

3.1.2 Trust Region Relaxation

We now relax the feasible set to the sphere of radius
√
n. This uses the tractable trust region

subproblem, TRS,
µ∗ ≤ f1(u) := max

||x||2=n
qu(x),

i.e. TRS is a hidden convex problem in that strong duality holds and the Lagrangian dual is
the maximization of a concave function over an interval, [30], or an unconstrained concave
maximization, [27]. This yields our next bound

µ∗ ≤ B1 := min
u
f1(u).

3.1.3 Box Constraint Relaxation

Another relaxation uses the box constraint

µ∗ ≤ f2(u) := max
|xi|≤1

qu(x).
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This relaxation can still be NP-hard unless qu(x) is concave, [20]. Therefore, we add the
hidden semidefinite constraint to make the bound tractable.

µ∗ ≤ min
u
f2(u)

and

µ∗ ≤ B2 := min
Q+Diag (u)�0

f2(u).

3.1.4 Eigenvalue Bound

We can lift the problem to a higher dimension and homogenize. We use the matrix

Qc :=

[
0 −cT
−c Q

]
and the homogenized function

qcu(y) := yT (Qc + diag (u))y − uT e.

Then
µ∗ ≤ f c1(u) := max

||y||2=n+1
qcu(y)

where the maximum is an eigenvalue problem

max
||y||2=n+1

qcu(y) = (n+ 1)λmax(Qc + diag (u))− uT e.

Therefore, our min-max eigenvalue bound is

µ∗ ≤ Bc
1 := min

u
f c1(u).

Similarly, we can get equivalent other homogenized bounds from the previous listed bounds.

3.1.5 SDP Bound

After homogenization if needed (i.e. assume c = 0), we use

xTQx = tracexTQx = traceQxxT

and, for x ∈ F , yij = xixj defines a symmetric, rank one, positive semidefinite matrix Y
with diagonal elements 1. We relax the (hard) rank one condition to get

B3 := max traceQY
subject to diag (Y ) = e

Y � 0.
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3.1.6 Summary and Lagrangian Relaxation

Suppose that we restrict the perturbations with uT e = 0. Then the bounds are

B0 = min
u

max
x

qu(x)

B1 = min
u

max
xT x=n

qu(x)

B2 = min
u

max
−1≤xi≤1

qu(x)

B3 = max{traceQcY : diag (Y ) = e, Y � 0.}
Bc

1 = min
u

max
yT y=n+1

qcu(y)

We now do something that seems of no value; we replace the ±1 constraints with x2
i = 1,∀i.

This yields the following quadratic, quadratically constrained, equivalent program to MCQ.

(PE) max q0(x) = xTQx− 2cTx
subject to x2

i = 1, i = 1, · · · , n.

Then the Lagrangian relaxation bound is

BL = min
λ

max
x

q0(x) +
n∑
i=1

λi(1− x2
i ).

The following theorem is proved in [24, 23].

Theorem BL equals all the above bounds.

Thus, we see that the Lagrangian relaxation is as strong as all the other relaxations. More-
over, it can be calculated efficiently using the SDP relaxation.

3.2 Recipe for SDP relaxations

The homogenization and relaxation techniques yield the following recipe, [23].

1. add redundant constraints

2. take Lagrangian dual

3. homogenize

4. use hidden semidefinite constraint to obtain equivalent SDP (check Slater’s constraint
qualification - strict feasibility)

5. take Lagrangian dual again

6. check Slater’s CQ again - project if it fails

7. delete redundant constraints
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3.3 SDP Relaxation for the Quadratic Assignment Problem, QAP

We now apply the recipe in Section 3.2 to QAP. (See [34] for more details.) The QAP is one
of the most difficult combinatorial problems, e.g. n = 30 instances have only recently been
solved using new bounding techniques and high performance parallel computing.

The QAP in the trace formulation is

(QAP ) µ∗ := min
X∈Π

traceAXBXT − 2CXT ,

where A,B are real symmetric n × n matrices, C is a real n × n matrix, and Π is the
set of permutation matrices. (We assume n ≥ 4 to avoid trivialities.) One of the many
applications of QAP is the modelling of the allocation of a set of n facilities to a set of n
locations while minimizing the quadratic objective arising from the distance between the
locations in combination with the flow between the facilities. See e.g. [19, 5].

There are several interesting numerical and theoretical difficulties that arise, e.g. what to
do with the loss of a constraint qualification and loss of sparsity in the optimality conditions.
Can the new bound compete with other bounding techniques in speed and quality? Can we
incorporate the new bound in a branch and bound algorithm? We now apply our recipe to
QAP.

We need the following notation. E := {X : Xe = XT e = e} is the set of matrices
satisfying the assignment constraints, i.e. row and column sums are all equal to one. Z :=
{X : Xij ∈ {0, 1}} is the set of (0, 1)-matrices. N := {X : Xij ≥ 0} is the set of nonnegative
matrices. O := {X : XXT = XTX = I} is the set of orthogonal matrices.

Permutation matrices are 0, 1 matrices with exactly one element equal to 1 in each column
and each row. It is well known that

Π = E ∩ Z = O ∩ Z.

This gives us a group of redundant constraints to add to get the following equivalent program
to QAP.

min traceAXBXT − 2CXT

s.t. XXT = XTX = I (orthog.; redundancy important)
X2
ij −Xij = 0, ∀i, j. (0, 1 constraints)
||Xe− e||2 = 0
||XT e− e||2 = 0

}
(row & col. sums 1)

diag (X:iX
T
:j ) = 0, if i 6= j

X:iX
T
:j −Diag

(
diag (X:iX

T
:j )
)

= 0, if i = j

}
(gangster)

We use both XXT = I and XTX = I. These constraints are equivalent but are not
redundant in the relaxation. They provide a significant strengthening, see [2]. We change
the linear constraints in the set E into quadratic constraints, as linear constraints are ignored
in the Lagrangian relaxation. The so-called gangster constraints come from the property
that the columns of a permutation matrix are elementwise orthogonal while the elementwise
product of a column with itself is equal to itself. The term gangster comes from the fact
that the operator shoots holes in a matrix, as we see below.

9



We can now take the Lagrangian relaxation

µO ≥ µL
:= max

W,u0,v0...
min

XXT=XTX=I
{traceAXBXT − 2CXT

+
∑

ijWij(X
2
ij −Xij)

+ u0‖Xe− e‖2

+ v0‖XT e− e‖2

+ . . .}.

and homogenize the Lagrangian using a scalar x0 and constraint x2
0 = 1. We get the lower

bound (separating quadratic, linear, and constant terms in X)

max
W,Sb,So,u0v0,,w0

min
X, x0

{trace [AXBXT

+ u0‖Xe‖2 + v0‖XT e‖2

+W (X ◦X)T + w0x
2
0

+ SbXX
T + SoX

TX]
− tracex0(2C +W )XT

− 2x0u0e
T (X +XT )e

+ . . .
− w0 − traceSb − traceSo + 2nu0x

2
0}.

Applying the hidden semidefinite constraint that the Hessian of a quadratic bounded below
is positive semidefinite, leads to the SDP:

max −w0 − traceSb − traceSo + . . .
s.t. LQ + Arrow (w) + B0Diag (Sb)

+ O0Diag (So) + u0D + . . . � 0.
(3.1)

where the matrix LQ is formed using the Kronecker product

LQ :=

[
0 −vec (C)T

−vec (C) B ⊗ A

]
,

the matrix

D :=

[
n −eT ⊗ eT

−e⊗ e I ⊗ E

]
+

[
n −eT ⊗ eT

−e⊗ e E ⊗ I

]
and the linear operators

Arrow (w) :=

[
w0 −1

2
wT1:n2

−1
2
w1:n2 Diag (w1:n2)

]
, (3.2)

B0Diag (S) :=

[
0 0
0 I ⊗ Sb

]
, block diagonal (3.3)

O0Diag (S) :=

[
0 0
0 So ⊗ I

]
, block off-diagonal. (3.4)
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Slater’s constraint qualification (strict feasibility) holds for (3.1). Therefore, we can take
the Lagrangian dual again which yields an SDP relaxation

min traceLQY
s.t. b0diag (Y ) = I, o0diag (Y ) = I

arrow (Y ) = e0, traceDY = 0
Y � 0,

where the arrow operator, acting on the (n2 + 1)× (n2 + 1) matrix Y , is the adjoint operator
to Arrow (·) and is defined by

arrow (Y ) := diag (Y )−
(
0, (Y0,1:n2)T

)
, (3.5)

i.e. the arrow constraint guarantees that the diagonal and 0-th row (or column) are identical.
The block-0-diagonal operator and off-0-diagonal operator acting on Y are defined by

b0diag (Y ) :=
n∑
k=1

Y(k,·),(k,·) (3.6)

and

o0diag (Y ) :=
n∑
k=1

Y(·,k),(·,k). (3.7)

These are the adjoint operators of B0Diag (·) and O0Diag (·), respectively. The block-0-
diagonal operator guarantees that the sum of the diagonal blocks equals the identity. The
off-0-diagonal operator guarantees that the trace of each diagonal block is 1, while the trace
of the off-diagonal blocks is 0. These constraints come from the orthogonality constraints,
XXT = I and XTX = I, respectively.

We now check Slater’s CQ again. But 0 6= D � 0, traceY D = 0, implies that Y
is singular. However, we can project onto the minimal face of the semidefinite cone that
contains the feasible set. Define the following (n2 + 1)× ((n− 1)2 + 1) matrix

V̂ :=

[
1 0

1
n
(e⊗ e) V ⊗ V

]
, (3.8)

where V is an n× (n− 1) matrix containing a basis of the orthogonal complement of e, i.e.
V T e = 0, e.g.

V :=

[
In−1

−eTn−1

]
.

After removing redundant constraints, we get the following simplified projected relaxation
with n3 − 2n2 + 1 constraints.

µR2 := min trace (V̂ TLQV̂ )R

s.t. GJ̄(V̂ RV̂ T ) = E00

R � 0.
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Sol. GLB ELI EVB3 SDP rel. error SDP
Nug20 2570 2057 2196 2290 2386 0.0771
Nug21 2438 1833 1979 2116 2253 0.0821
Nug22 3596 2483 2966 3174 3396 0.0589
Nug24 3488 2676 2960 3074 3235 0.0782
Nug25 3744 2869 3190 3287 3454 0.0840
Nug30 6124 4539 5266 5448 5695 0.0753

QAPLIB (Nugent) instances
NEOS Server time for n=30; 1400 hours on SUN E6500

The above description uses the so-called gangster operator. Let J ⊂ {(i, j) : 1 ≤ i, j ≤
n2 + 1}. The operator GJ : Sn2+1 → Sn2+1 is called the Gangster operator. For matrix Y ,
and i, j = 1, . . . , n2 + 1, the ij component of the image of the gangster operator is defined as

(GJ(Y ))ij :=

{
Yij if (i, j) ∈ J
0 otherwise.

(3.9)

(The indices for J̄ are given in [34].)
The dual problem is (the gangster operator is self-adjoint)

µR2 = max −Y00

s.t. V̂ T (LQ + G∗
J̄
(Y ))V̂ � 0.

Table 3.3 illustrates the strength of the SDP relaxation on several Nugent problems from
QAPLIB compared to other bounds in the literature: Gilmore-Lawler bound (GLB) [6, 14],
the projection or elimination bound ELI of [8], and the improved eigenvalue bound EVB3
from [26]. We note the high cost of the SDP bound for n=30 in the table and the low relative
error for the bounds. A relaxed form of the SDP bound played a major role in the solution
to optimality of several hard QAPs, see [3].

4 How to Solve SDP?

The similarity of SDP with Linear Programming, LP, motivated researchers to apply tech-
niques that proved successful for LP, in particular primal-dual interior-point (p-d i-p) meth-
ods, see e.g. [32]. Newton type methods are applied on a perturbation of the characterization
of optimality for the primal-dual pair, i.e. suppose that

Xc � 0, Zc � 0

are the current strictly positive estimates. And µ > 0 is the barrier parameter. Then we
would like to solve the following system of nonlinear equations

RD := A∗y − Z − C = 0 (dual feasibility)
RP := AX − b = 0 (primal feasibility)
RC := ZX − µI = 0 (perturbed complementary slackness)

12



Linearization leads to the following system for the search direction ∆s =

∆X
∆y
∆Z


A∗∆y −∆Z = −RD

A∆X = −RP

Zc∆X + ∆ZXc = −RC .
(4.1)

However, the product ZX is not necessarily symmetric, though Z,X are. Therefore, the
above is an overdetermined linear system. This has led to symmetrization schemes that
apply Newton’s method, see e.g. [15]. Alternatively, a Gauss-Newton approach is used in
[13]. See also the recent books [31, 33].

The HKM search direction [10, 12, 16] is, arguably, the most popular and efficient among
the primal-dual interior-point (p-d i-p) directions for SDP. It is based on applying Newton’s
method to a symmetrized form of the optimality conditions for PSDP. Therefore, in theory,
we get fast asymptotic and polynomial time algorithms. We now derive the HKM search

direction ∆s =

∆X
∆y
∆Z

 from the above linearization (4.1) of the perturbed optimality

conditions. We get
∆Z = A ∗(∆y) +RD (4.2)

and
∆X = −Z−1(∆Z)X − Z−1RC = −Z−1(A ∗(∆y) +RD)X + µZ−1 −X. (4.3)

We substitute this into the second equation and solve for ∆y using

A (Z−1A ∗(∆y)X) = A (µZ−1 −X − Z−1RDX) +RP = A (µZ−1 − Z−1RDX)− b. (4.4)

We can now backsubstitute to get the symmetric matrix ∆Z using (4.2). However, ∆X in
(4.3) need not be symmetric. Therefore we cheat and symmetrize ∆X after backsubstition in
(4.3), i.e. we solve for the system by assuming ∆X is a general matrix and then symmetrize
by projecting the solution back into Sn .

The p-d i-p algorithms have the following simple framework. The reduction in µ is
adaptive. In addition, an adaptive centering parameter is used.
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Given (X0, y0, Z0) ∈ F0 (strictly feasible)
for k = 0, 1, 2 . . .
solve the linearization for the search direction

F ′µ(Xk, yk, Zk)

 ∆Xk

∆yk

∆Zk

 =

 −RD

−RP

−XkZk + σkµkI


where σk centering, µk = traceXkZk/n

(Xk+1, yk+1, Zk+1) =
(Xk, yk, Zk) + αk(∆X

k,∆yk,∆Zk)

so that (Xk+1, Zk+1) � 0
end (for).

The above need to symmetrize illustrates one of the subtle differences between SDP
and LP. Other differences include: possible duality gaps for SDP in the absence of strictly
feasible solutions (Slater’s constraint qualification, CQ); strict complementarity can fail at
the optimum. Two illustrations follow.

Example 4.1 (Duality gap)

(P)

p∗ = max x2

s. t.

 x2 0 0
0 x1 x2

0 x2 0

 �
 1 0 0

0 0 0
0 0 0



(D)

d∗ = min traceU11

s. t. U22 = 0
U11 + 2U23 = 1

U � 0.

Then p∗ = 0 < d∗ = 1.

Example 4.2 (Strict complementarity)

(P)

p∗ = max x1

s. t.

 x1 x3 x2

x3 x2 0
x2 0 x3

 �
 0 0 0

0 0 0
0 0 1



(D)

d∗ = min traceU33

s. t. U11 = 1
U22 + 2U13 = 0
U33 + 2U12 = 0

U � 0.

Then the (unique) optimum pair is: U =

 1 0 0
0 0 0
0 0 0

, x =

 0
0
0

 with slack Z =

 0 0 0
0 0 0
0 0 1

.
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5 Conclusion

We have presented an introduction to SDP. We started with the basic properties and opti-
mality conditions and emphasized the similarities/differences with LP.

We then motivated the many applications by illustrating its use on quadratic models.
These quadratic models are generally stronger relaxations of NP-hard problems than linear
models, though they are often themselves NP-hard problems. However, we can solve the
Lagrangian relaxation of these quadratic models efficiently using SDP.

We included a discussion on numerical approaches and software for solving SDP.
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