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Abstract

The problem of nonlinear dimensionality reduction is often formulated as a semidefinite
programming (SDP) problem. However, only SDP problems of limited size can be directly
solved directly using current SDP solvers. To overcome this difficulty, we propose a novel
SDP formulation for dimensionality reduction based on semidefinite facial reduction that
significantly reduces the number of variables and constraints of the SDP problem, allowing
us to solve very large manifold learning problems. Moreover, our reduction is exact, so we
obtain high quality solutions without the need for post-processing by local gradient descent
search methods, as is often required by other SDP-based methods for manifold learning.
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1. Introduction

The problem of nonlinear dimensionality reduction has received a great deal of attention
recently. A number of authors have formulated this problem as a semidefinite programming
(SDP) problem, such as: Weinberger and Saul (2004); Weinberger et al. (2006); Song et al.
(2007); Shaw and Jebara (2007, 2009). All of these methods preserve the local structure
of the data by fixing the Euclidean distance between data points that are ‘similar’. Using
various different intuitions, these methods determine the distances between all the data
points, while preserving distances between points that are close to each other. Maximum
Variance Unfolding (MVU) (Weinberger and Saul, 2004) tries to flatten the nonlinear data
manifold by pulling all points as far apart as possible, while fixing the distances between
similar points. Colored MVU (Song et al., 2007) follows an approach similar to MVU, but
incorporates side-information (such as class labels).

A significant problem with all of these algorithms is the high computational cost of
solving SDP problems. Even after exploiting the sparsity of the constraint matrix, each
iteration of a typical SDP solver takes O(n3 + m3) time and O(n2 + m2) space, where n is
the size of the matrix variable and m is the number of constraints (Borchers and Young,
2007). On the other hand, SDP solvers usually converge in less than one hundred iterations,
regardless of the problem size. In the MVU method, we have m ∈ O(n); as a result, an
SDP solver requires O(n3) time and O(n2) space to solve this problem. In practice, solving
such SDP problems is only efficient when n is at most a few hundred.

Due to this limitation in the size of SDP problems that can be solved efficiently, Fast-
MVU (Weinberger et al., 2006) has been proposed. This is a scalable variation of MVU.
However, FastMVU uses an approximation to reduce the size of the SDP, resulting in sub-
optimal solutions that require post-processing by a local gradient descent search method.
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In this paper, we propose a novel SDP formulation for nonlinear dimensionality reduction
algorithm called ‘semidefinite facial reduction unfolding’ or SFU for short. SFU is stable,
fast, scalable, and has no tuning parameters. Unlike existing large-scale variations of SDP-
based methods, SFU does not need post-processing steps because the reduction we propose
is exact.

The SFU method introduced in this paper, dramatically reduces the complexity of
SDP problems by restricting the search space of the SDP problem to a small face of the
semidefinite cone—this is not an approximation, meaning that very large SDP problems
can be solved exactly and efficiently by this technique. Although we only show the details
of this method when applied to the problem of dimensionality reduction (a reformulation
of MVU), this technique is general and could be applied to many existing machine learning
algorithms that are cast as an instance of SDP but where their effectiveness is limited by the
computational complexity of SDP solvers. In addition, this ‘semidefinite facial reduction’
technique has been recently used with great success in the related problems of protein
structure determination (see Alipanahi et al. (2012)) and sensor network localization (see
Krislock and Wolkowicz (2010)). In this paper we show the theoretical validity of the
proposed ‘semidefinite facial reduction’ procedure by presenting a new shorter proof of the
variable reduction theorem from Krislock and Wolkowicz (2010) extend this theoretical
result by establishing an important and practical constraint reduction theorem.

The rest of this paper is organized as follows. Sections 2 and 3 introduce the notation
and background material, including MVU, and FastMVU. Section 4 develops our proposed
method, which is conceptually divided into three major steps. Section 5 presents the ex-
perimental results of our algorithm and we draw our conclusions in Section 6.

2. Notation

Scalars, vectors, sets, and matrices are shown in small, small bold italic, script, and capital
letters, respectively. We let Rp be the space of real p-dimensional vectors, Rp×q be the
space of real p× q matrices, Sp be the space of symmetric p× p matrices, Sp+ be the set of
symmetric positive semidefinite p × p matrices, and Sp++ be the set of symmetric positive
definite p×p matrices. Furthermore, we let Ip be the p×p identity (subscript omitted when
dimension is clear), ep be the p × 1, all-ones vector (subscript omitted when dimension is
clear), and |B| be the cardinality of a set B. For a matrix A ∈ Rp×q we let Aij be the (i, j)-th
entry of A, A[B, :] be the submatrix of A consisting of rows indexed by B ⊆ {1, . . . , p} and
all columns {1, . . . , q}, A> be the transpose of A, rank(A) be the rank of A, and range(A)
be the range-space of A. For a square matrix A ∈ Rp×p, we let A[B] be the principal
submatrix of A indexed by B ⊆ {1, . . . , p}, trace(A) be the sum of diagonal elements of A,
and diag(A) be the vector made from diagonal elements of A. Finally, for a vector v ∈ Rp,
we let Diag(v) be the p× p diagonal matrix with the vector v along its diagonal.

3. Background

In order to motivate our algorithm, we provide a brief overview of some related methods.
Many nonlinear dimensionality reduction techniques have been proposed in the last decade,
including kernel PCA (Mika et al., 1999), locally linear embedding (LLE) (Roweis and Saul,
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2000), Laplacian Eigenmaps (Belkin and Niyogi, 2001), and Isomap (Tenenbaum, 1998). It
has been shown that all of these algorithms can be formulated as kernel PCA (Ham et al.,
2004). The difference lies mainly in the choice of the kernel. Common kernels such as radial
basis functions and polynomial kernels generally perform poorly at manifold learning, which
is perhaps what motivated the development of algorithms such as LLE and Isomap.

The problem of choosing an appropriate kernel remained a crucial problem until more
recently, when Weinberger and Saul (2004) introduced MVU. The MVU method learns a
kernel matrix K instead of choosing a kernel function a priori. It formulates the problem
of learning a kernel K from the data as an SDP problem. A low-dimensional embedding of
the data can then be determined by running kernel PCA on the learned kernel K.

The connection between a kernel matrix K and the distances between the data points
is as follows. Let D ∈ Sn be the Euclidean distance matrix (EDM) of the data points and
K ∈ Sn+ the kernel matrix (or Gram matrix) of the same set of points; that is, given a
collection of data points x1, . . . ,xn ∈ Rd, we have

Dij = ‖xi − xj‖22 and Kij = x>i xj , for all i, j = 1, . . . , n.

Using the linear operator K(·) defined by

K(K)ij = Kii + Kjj − 2Kij , for all i, j = 1, . . . , n, (1)

we have D = K(K). Moreover, given an EDM D ∈ Sn, we can determine the unique kernel
matrix K ∈ Sn+ of a set of centered points whose EDM is D using the T (·) operator,

K = T (D) = −1

2
HDH, D ∈ Sn, (2)

where H = I − 1
nee

>. It can be shown that a matrix D with all zeros on its diagonal is
an EDM if and only if K = T (D) is positive semidefinite (Schoenberg, 1935; Cox and Cox,
2001, p. 397).

In MVU, in addition to the semidefinite constraint, neighborhood constraints are used
to preserve the local distances of neighboring points i ∼ j in a k-nearest neighbor graph.
By adding an objective function to maximize trace(K), which ensures maximal variance in
the resulting embedding, MVU constructs an SDP problem for learning the kernel matrix
K. In its last step, MVU performs an eigendecomposition on the kernel K to extract
the coordinates of the low-dimensional points in the embedded space. This algorithm is
summarized in Algorithm 1.

FastMVU reduces the size of the SDP problem by decomposing the kernel matrix K as
K ≈ QY Q>, where Q ∈ Rn×v is computed from the v nontrivial bottom eigenvectors of the
Laplacian matrix of the k-nearest neighbor graph (Weinberger et al., 2006). However, since
the decomposition K ≈ QY Q> is only approximate, it is not possible to preserve the local
distance constraints exactly, so FastMVU adopts a least-squares approach to satisfy the
local distance constraints. FastMVU is summarized in Algorithm 2. The objective function
in this optimization problem is quadratic, so problem (4) is a quadratic SDP, or QSDP.
FastMVU uses the well-known Schur complement technique to obtain an equivalent SDP
problem with a linear objective function. As a result, although the size of the Y matrix in
the QSDP in problem (4) is only v×v, the size of the semidefinite variable in the equivalent
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Alg. 1 Maximum Variance Unfolding

1: Construct the neighborhood graph, using k-nearest neighbors.
2: Solve the SDP problem,

maximize trace(K) (3)

subject to Kii + Kjj − 2Kij = Dij , if i ∼ j∑
ij Kij = 0

K � 0

3: Run Kernel PCA on the learned kernel, K.

Alg. 2 Fast Maximum Variance Unfolding

1: Construct the neighborhood graph, using k-nearest neighbors.
2: Compute graph Laplacian matrix and find its v nontrivial bottom eigenvectors Q ∈ Rn×v.
3: Solve the following SDP problem

maximize trace(Y )− ω
∑

i∼j [(QY Q>)ii + (QY Q>)jj − 2(QY Q>)ij −Dij ]
2

subject to Y � 0 (4)

4: Run Kernel PCA on the learned kernel, K = QY Q>.
5: Perform gradient descent post-processing on the embedded points.

linear SDP problem is v2 + v + 1. Solving this SDP problem has complexity O(v6) and
is inefficient to solve when v ≥ 30. Since the optimal K is only an approximate solution,
gradient descent post-processing is performed on the embedded points in order to improve
the quality of the embedding.

An improved version of FastMVU was formulated by Wu et al. (2009). Using a well-
known technique (see, e.g., (Ben-Tal and Nemirovski, 2001, Lecture 1?)) Wu et al. (2009)
observed that the QSDP in problem (4) is in fact equivalent to a semidefinite-quadratic-
linear programming (SQLP) problem having a linear objective function, linear equality
constraints, a quadratic (or second-order cone) constraint, and a semidefinite constraint.
Furthermore, Wu et al. (2009) demonstrate that the SQLP formulation of problem (4)
can be solved much more efficiently than the QSDP formulation used by Weinberger et al.
(2006).

4. Large-scale manifold learning by semidefinite facial reduction (SFU)

We follow an intuition similar to MVU—we preserve the local structure of a manifold when
maximizing the total variance in the embedding space. However, our proposed method
differs from the FastMVU approach in two key areas.

The first key point of our proposed method is that the structure of a reasonably large
cluster of the data should be preserved as a whole. This idea is motivated by the following:

1. the data lies on a low-dimensional nonlinear manifold;
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2. manifolds are locally approximately linear.

Therefore, we propose using what we call the cluster graph, G = (V,E), where the set of
vertices V = {1, . . . , n} is partitioned into clusters C1, . . . , Cq such that the data in each
cluster is approximately linear. Points within clusters are all connected to each other, and
additional edges are added to the edge set E that connect neighbouring clusters.

The next key step in our proposed method is, given a clustering of the data, we prove that
an exact decomposition K = UZU> is possible and give an explicit expression for U ; note
that U is a known matrix and Z is the unknown matrix variable. Since the decomposition
of K is exact, the final result of the algorithm is optimal for the original SDP problem and
thus does not require a post-processing step to improve the quality of the solution. This
exact decomposition also implies that a least-squares approach, as is used in FastMVU, is
not necessary in our method.

4.1. Overview of the SFU method

In this section, we will first give the intuition and a sketch of the proposed algorithm;
secondly, we will give the formal justification and describe the algorithm in detail. Suppose
a given data set has been divided into clusters. SFU takes an approach similar to MVU
but treats each cluster as a single point. That is, we construct a neighborhood graph
between clusters, and preserve only the distances of the neighboring clusters while pulling
the non-neighbor clusters as far apart as possible.

More formally, suppose a given data set is divided into q clusters {C`}q`=1 of size n` =
|C`| > d, where d is the dimension of the embedding. Let D` ∈ Sn` denote the EDM of the
points in C`. Clearly the EDM of all data points {xi}ni=1 can be represented as

D =


D1 . . . . .
. D2 . . . .
...

...
. . .

...
. . . . . Dq

 ∈ Sn , (5)

where only the block-diagonal elements are known. The goal is to determine the non-block-
diagonal elements of D. This problem can be cast as an SDP problem.

Given clusters of a given data set, SFU has three major steps: (I) form the cluster graph
G = (V,E) from the clusters {C`}q`=1; (II) decompose the kernel matrix K as K = UZU>,
where the matrix U is computed from clusters {C`}q`=1; (III) the positive semidefinite matrix
Z is computed by solving a reduced SDP problem. A sketch of this algorithm is given in
Algorithm 3; the algorithm will be given in detail in Algorithm 4 after discussing the formal
justification.

4.2. Determine clusters and form the cluster graph (Step I)

Most prominent dimensionality reduction methods assume that a sensible neighborhood
graph is given as input for learning. They usually compute the neighborhood graph by
finding the k-nearest neighbors of each point. The number of neighbors k is also an input
to these algorithms. This is in contrast with our proposed SFU method that requires a
partitioning of the given data as the input.
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Alg. 3 Sketch of the proposed method

1: Determine the clusters {C`}q`=1 and form the cluster graph G = (V,E).
2: Compute the matrix U from the clusters {C`}q`=1.
3: Determine Z by maximizing trace(UZU>) subject to distance constraints for preserv-
ing structure of the clusters and constraints for preserving distances between neighboring
clusters.
4: Run Kernel PCA on the learned kernel K = UZU>.

In this paper, and in all of the experiments, we used affinity propagation clustering
(APC) (Frey and Dueck, 2007) to cluster a given data set. The input to APC is a set of
similarities between data points, which is usually the negative of the Euclidean distance
between them, and a ‘preference’ value. APC does not require the user to predetermine
the number of clusters. Instead the number of clusters will be implicitly determined by the
preference value. In all of the experiments of this paper, we set the preference value as the
median of similarities, removing the need for tuning the clustering parameters. The run
time of APC is O(n2).

After clustering, we define a cluster as a set of indices, C`, such that {xi}i∈C` are the
points in the `-th cluster. We assume that there are q clusters {C`}q`=1 of size n` = |C`| > d,
such that n =

∑
` n`, that x1, . . . ,xn1 denote the points of the first cluster, xn1+1, . . . ,xn2

denote the points of the second cluster, and so on. We also assume that each cluster is
nearly on an affine space with dimensionality close to the intrinsic dimensionality of the
manifold. Note that it is always possible to provide such clusters for a given data set if the
size of the clusters are small enough.

4.2.1. Finding the neighbors in the cluster graph

In order to preserve the local structure of each cluster, we need to fix the distances between
each pair of points in the same cluster. The corresponding (i, j) pairs will be put in the
constraint set EW , or the set of “within” cluster constraints. That is, we have

EW = {(i, j) : i, j ∈ C`, for some ` = 1, . . . , q} .

Next, to keep the neighboring clusters close to each other, we link the clusters together, by
first finding the extreme points of the convex hull of each cluster. Then, for each extreme
point, we find its closest neighbor among all the extreme points of the convex hulls of the
other clusters. We then say that two extreme points from different clusters are neighbors
if they are mutually closest to each other. We put all such cluster linking edges in the
constraint set EB, or the set of “between” cluster constraints.

4.2.2. Unfolding the cluster graph

Now that we have constructed the cluster graph G = (V,E), with V = {1, . . . , n} and
E = EW ∪ EB, we get the following (unreduced) SDP problem whose solution will give us
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the maximum variance unfolding of the cluster graph:

maximize trace(K) (6)

subject to Kii + Kjj − 2Kij = Dij , (i, j) ∈ EW ,

Kii + Kjj − 2Kij ≤ Dij , (i, j) ∈ EB,∑
ij Kij = 0,

K � 0.

Note that we allow the cluster linking distances to become shorter when unfolding the
manifold since we need to prevent the graph from “locking-up” as we unfold it.

We could solve the SDP problem (6) directly, but we are limited in the size of problems
we can solve. For example, if we have a data set with 15, 000 points that has been grouped
into 100 clusters, each of size 150, and there are 500 cluster links, then the resulting SDP
problem would have a matrix variable of size n = 15, 000 and |E| = |EW |+|EB| = 100

(
150
2

)
+

200 = 1, 118, 000 constraints—this is far beyond the limit of current SDP solvers. However,
as we show next, we are able to significantly reduce the size of the manifold unfolding SDP
problem (6) and solve many such large scale problems, as we will show in the computational
results in Section 5.

4.3. Decomposing the matrix K (Step II)

We now provide the details on the how we can obtain an SDP problem that is equivalent
to problem (6), but with much fewer variables and constraints. In particular, we show
that if K is a kernel matrix that satisfies all the constraints in the SDP problem (6), then

K ∈ USq(d+1)
+ U>; that is, K = UZU> for some Z ∈ Sq(d+1)

+ . This technique is known

as semidefinite facial reduction because the set of matrices USq(d+1)
+ U> is geometrically a

face of the semidefinite matrix cone Sn+; for more information, see (Borwein and Wolkowicz,
1981; Ramana et al., 1997).

4.3.1. Semidefinite facial reduction for manifold unfolding

We begin by stating a known result that gives us the needed reduction in the number of
variables. Although Theorem 1 is known, in this paper we contribute a new shorter proof
of the main part of this theorem.

Theorem 1 ((Krislock and Wolkowicz, 2010, Theorem 2.3)) Let D ∈ Sp be a Eu-
clidean distance matrix with embedding dimension d and let F be the set of n× n centered
Gram matrices K whose first p points agree with the distances given in D; that is,

F =
{
K ∈ Sn+ ∩ SnC : Kii + Kjj − 2Kij = Dij , ∀i, j = 1, . . . , p

}
.

Let G be the centered Gram matrix corresponding to D; that is, G = T (D), where T (·) is
defined in equation (2). Let P ∈ Rd×p be centered points whose Gram matrix is G; that is,
Pe = 0 and G = P>P . Let Ū ∈ Rp×(d+1) be a matrix with orthonormal columns such that

range(Ū) = range(
[
P> e

]
) and let U =

[
Ū 0
0 In−p

]
∈ Rn×(n−p+d+1). Let

[
V U>e

‖U>e‖

]
be

orthogonal. Then:
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1. for each K ∈ F , there exists Z ∈ Sn−p+d+1
+ such that K = UZU>;

2. for each K ∈ F , there exists Z̄ ∈ Sn−p+d
+ such that K = (UV )Z̄(UV )>;

3. there exists Z̄ ∈ Sn−p+d
++ such that (UV )Z̄(UV )> ∈ F .

Proof We now give a new proof of item 1. For this proof, we need to define some notation.
The inner-product of matrices A,B ∈ Rm×n is defined as 〈A,B〉 =

∑m
i=1

∑n
j=1AijBij =

trace(A>B). We extend the definition of the linear map T to accept matrices without a
zero diagonal as follows:

T (B) = −1

2
HoffDiag(B)H ;

here we have offDiag(B) = B − Diag(diag(B)), for B ∈ Sn. The adjoint of T is the
linear map T ∗ which satisfies, 〈T ∗(A), B〉 = 〈A, T (B)〉, for all A,B ∈ Sn, and is given by
T ∗(A) = −1

2offDiag(HAH). Similarly, the adjoint of K, defined in equation (1), is given
by K∗(A) = 2(Diag(Ae)−A).

We begin the proof by letting V̄ such that
[
Ū V̄

]
is orthogonal. Then, by the definition

of Ū , we have that V̄ >P> = 0 and V̄ >e = 0. Next we let Λ = T ∗(V̄ V̄ >). Since V̄ >e = 0,
we have that HV̄ V̄ >H = V̄ V̄ >. Thus, Λ = −1

2offDiag(V̄ V̄ >) and

K∗(Λ) = 2(Diag(Λe)− Λ) = offDiag(V̄ V̄ >)−Diag(offDiag(V̄ V̄ >)e) = V̄ V̄ >,

since V̄ V̄ Te = 0. Let K ∈ F . Then〈
K,

[
V̄ V̄ > 0

0 0

]〉
=
〈
K[1:p], V̄ V̄ >

〉
= 〈K[1:p],K∗(Λ)〉 = 〈K(K[1:p]),Λ〉

=
〈
D, T ∗(V̄ V̄ >)

〉
=
〈
T (D), V̄ V̄ >

〉
=
〈
G, V̄ V̄ >

〉
=
〈
P>P, V̄ V̄ >

〉
= 0,

which implies that K

[
V̄
0

]
= 0. Therefore, all the eigenvectors of K corresponding to its

nonzero eigenvalues must be linear combinations of the columns of the matrix U . Therefore,
K = UZU> for some Z ∈ Sn−p+d+1

+ , which proves item 1. See Krislock and Wolkowicz
(2010) for the proofs of item 2 and item 3.

We now extend this result to include a reduction in the number of distance constraints.

Theorem 2 Let D ∈ Sp be an EDM with embedding dimension d and let F be the set of
n × n centered Gram matrices K whose first p points agree with the distances given in D;
that is,

F =
{
K ∈ Sn+ ∩ SnC : Kii + Kjj − 2Kij = Dij , ∀i, j = 1, . . . , p

}
.

Let U ∈ Rn×(n−p+d+1) be defined as in Theorem 1. Let B ⊆ {1, . . . , p} for which the principal
submatrix D[B] has embedding dimension d. Then

F =
{
K ∈

(
USn−p+d+1

+ U>
)
∩ SnC : Kii + Kjj − 2Kij = Dij ,∀i, j ∈ B

}
. (7)
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Proof Let K ∈ F . Then by Theorem 1, K ∈
(
USn−p+d+1

+ U>
)
∩ SnC . Moreover, since

K ∈ F and B ⊆ {1, . . . , p}, we clearly have that Kii + Kjj − 2Kij = Dij , for all i, j ∈ B.

We now prove the other direction. Let K ∈
(
USn−p+d+1

+ U>
)
∩ SnC such that

Kii + Kjj − 2Kij = Dij , for all i, j ∈ B . (8)

Then there exists Z ∈ Sn−p+d+1
+ such that

K = UZU> =

[
Ū 0
0 I

]
Z

[
Ū> 0
0 I

]
,

so K[1:p] = Ū Z̄ŪT , for some Z̄ ∈ Sd+1
+ . Let K̄ = HK[1:p]H = (HŪ)Z̄(HŪ)>. Then K̄ is

a centered Gram matrix that satisfies

K̄ii + K̄jj − 2K̄ij = Kii + Kjj − 2Kij , for all i, j = 1, . . . , p. (9)

Note that

HŪ =

(
I − 1

p
ee>

)
Ū = Ū − 1

p
e
(
e>Ū

)
.

Thus, since e ∈ range(Ū), we have that range(HŪ) ⊆ range(Ū). Therefore,

range(K̄) ⊆ range(HŪ) ⊆ range(Ū) ,

so we have that K̄ ∈ ŪSd+1
+ Ū>. Now let V̄ be a (d + 1)× d matrix that satisfies

range(V̄ ) =
{
ŪTe

}⊥
(10)

Then K̄ = (Ū V̄ )Φ(Ū V̄ )>, for some Φ ∈ Sd+. Next we note that (9) and (10) imply that

K̄ii + K̄jj − 2K̄ij = Dij , for all i, j ∈ B . (11)

Moreover, (12) tells us that K̄[B] is a Gram matrix for the EDM D[B]. Therefore, HK̄[B]H
is the centered Gram matrix for D[B]; that is, HK̄[B]H = T (D[B]). Since K̄[B] = (ŪBV̄ )Φ
(ŪBV̄ )>, where ŪB := Ū [B, :], we have that

(HŪBV̄ )Φ(HŪBV̄ )> = T (D[B]) . (12)

Since D[B] has embedding dimension d, we have that rank(T (D[B])) = d; therefore,
rank(HŪBV̄ ) ≥ d. Notice that the matrix HŪBV̄ is |B| × d; therefore, HŪBV̄ has full-
column rank. Thus, Φ is the unique solution of equation (13), implying that there is a
unique centered Gram matrix K̄ ∈ ŪSd+1

+ Ū> that satisfies (12). Therefore, K̄ = G, where
G = T (D). Since

Gii + Gjj − 2Gij = Dij , for all i, j = 1, . . . , p , (13)

we have by equation (10) that K ∈ F .
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Theorem 1 implies that we can replace a large n×n semidefinite variable K with UZU>,
where Z is a much smaller (n−p+d+1)× (n−p+d+1) semidefinite variable. In addition,
Theorem 2 implies we also get a drastic reduction in the number of constraints—in fact,
we only need distance constraints between |B| = d + 1 noncoplanar points. This amounts
to a major reduction in both variables and constraints. Most importantly, this reduction is
exact and loses no information.

We now provide the intuition behind the reduction in the number of distance con-
straints. Suppose you have p points in Rd with known distances between all of them. By
fixing d + 1 points which are noncoplanar, the positions of all the other points are now
uniquely determined. The matrix U encodes enough information that specifying the dis-
tances between just d+ 1 non-coplanar points is enough to fully describe all possible Gram
matrices corresponding to the EDM D.

For each cluster C`, we compute the matrix U` as in Theorem 1. After computing the
matrices U`, for ` = 1, . . . , q, we form the block-diagonal matrix

U =


U1 0 . . . 0
0 U2 . . . 0
...

...
. . .

...
0 0 . . . Uq

 ∈ Rn×q(d+1) . (14)

Since we can choose U` such that U>` U` = I, for ` = 1, . . . , q, we can also have U>U = I. It
then follows from the disjoint cluster result (Krislock and Wolkowicz, 2010, Corollary 2.6),
and from Theorem 1 and Theorem 2, that K ∈ Sn+ is a Gram matrix for the partial EDM
D in (5) if and only if

K = UZU>, for some Z ∈ Sq(d+1)
+ , (15)

and K satisfies the distances between at least d + 1 noncoplanar points in each cluster.
Recall now the example where we have a data set with n = 15, 000 points that have been

grouped into q = 100 clusters, each of size 150, and an additional |EB| = 500 cluster links.
Suppose the embedding dimension of our data is d = 2. Then our reduced SDP problem
would have a matrix variable of size q(d+ 1) = 300 and the number of constraints would be
q
(
d+1
2

)
+ |EB| = 800. This is in contrast to the original SDP problem which had a matrix

variable of size 15, 000 and 1, 118, 000 constraints.

4.4. Solving the SDP (Step III)

In this section, we present the reduced formulation the SDP problem (6) that unfolds the
manifold. From the results in the previous section, we know that we have the exact decom-
position of any feasible kernel matrix as K = UZU>, where U is given by equation (15).
Since U>U = I, we have that trace(K) = trace(Z). Therefore, in order to stretch the
manifold, we maximize trace(Z).

For the constraint reduction, recall that we originally had

EW = {(i, j) : i, j ∈ C`, for some ` = 1, . . . , q} .

10
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Alg. 4 Semidefinite Facial reduction Unfolding (SFU)

1: Determine the clusters using the APC method.
2: Determine the neighborhood relation between clusters.
3: Compute the matrix U in equation (15) for the decomposition, K = UZU>.
4: Solve the SDP problem in equation (17).
5: Run Kernel PCA on the learned kernel, K = UZU>.

However, after making the substitution K = UZU>, Theorem 2 implies that only
(
d+1
2

)
constraints are required for each cluster. Suppose we choose the distance constraints be-
tween the nodes in B` for cluster C`, for ` = 1, . . . , q. Then we only need to have the distance
constraints in the set

ĒW = {(i, j) : i, j ∈ B`, for some ` = 1, . . . , q} .

Adding these distance constraints, the SDP problem (6) is equivalent to the reduced SDP
problem

maximize trace(Z) (16)

subject to (UZU>)ii + (UZU>)jj − 2(UZU>)ij = Dij , (i, j) ∈ ĒW ,

(UZU>)ii + (UZU>)jj − 2(UZU>)ij ≤ Dij , (i, j) ∈ EB ,∑
ij(UZU>)ij = 0 ,

Z � 0 .

After the SDP problem (17) has been solved, we need to compute the eigendecomposition
of K to find the coordinates of the points. However, since K = UZU>, we only need to
solve for the eigenvectors VZ of Z, and then compute the eigenvectors of K as VK = UVZ .
Since Z is much smaller than K, this last step will also be much faster.

The overall number of constraints is m = q(a+(d+1)d/2); where a, the average number
of neighbors per cluster, is O(1), and is usually around 5 ∼ 10. Moreover, the embedding
dimensionality, d, is usually small and fixed, so m ∈ O(q). This is in contrast with the other
SDP-based methods (e.g., MVU and MVE) where m ∈ O(n).

In terms of computational complexity, size of the reduced matrix Z is q(d+1)×q(d+1);
considering that number of constraints is m ∈ O(q), the overall complexity of solving the
SDP problem boils down to O(q3). In our experiments we found q ∈ O(

√
n), giving rise to

a significant reduction in the problem size (see Table 1).

5. Experiments

In order to evaluate the performance of SFU and compare to other methods, we have
conducted several experiments on real and synthetic data sets. All of these experiments
except one were run on a 2.8 GHz quad-core Windows computer with 8 GB of memory.
SFU is implemented in Matlab. We used SDPT3 Tütüncü et al. (2003); Toh et al. (2006)
as the SDP solver in all experiments. All of the SDP run times are listed in Table 1.
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SFU FastMVU
Data Set n run time q v = 10(111) v = 20(421) v = 30(931)

Swiss Roll 15,000 18 82 (246) 47 442 8497
World Map 15,040 11 84 (252) 128 351 -
Frey Faces 1,965 5 70 (210) 59 489 -

Table 1: Run times of SFU and FastMVU for different data sets in seconds. The numbers
in parenthesis show the actual size of the SDP matrix: q(d + 1) for SFU (where q
is the number of clusters), and v2 + v + 1 for FastMVU (where v is the number of
Laplacian eigenvectors).

5.1. Synthetic Data Sets

5.1.1. Swiss Roll

We first consider the famous Swiss Roll data set, depicted in Fig. 1. Although it only has
three dimensions, it tends to be one of the more challenging data sets due to its complex
global structure. We applied SFU to a randomly generated Swiss roll data set of size 15,000
and used APC to cluster the data, which found 82 clusters (q = 82). The size of the reduced
matrix, Z, is less than two percent of the original matrix K. We also applied FastMVU to
this data set with ten eigenvectors of the graph Laplacian matrix (v = 10), on the same data
set. The unfolded manifolds are depicted in Fig. 1; it can be seen that the SFU produces a
conformal embedding.

It should be noted that increasing the number of Laplacian eigenvectors (v) in FastMVU
does not affect the results noticeably, while the run time grows dramatically. In fact, v = 10
is mentioned as the “sweet spot” of FastMVU by Weinberger et al. (2006). We also tried
different values of v, however increasing v does not noticeably affect the output results. It
is also interesting to note that for v = 30, the run times are a couple of hours.

5.2. Real Data Sets

5.2.1. Map of Cities

The first real data set we have considered was the map of randomly selected cities from
Europe, Asia, and Africa. We downloaded the “Worldcities” data set1, which includes the
lattitude and longitude of nearly 2.7 million cities. We selected the cities in Europe, Asia,
and Africa; randomly sampled 15,040 cities and mapped their spherical coordinates to the
three dimensional Cartesian coordinates.

We applied SFU to the three dimensional data set, APC found 84 clusters and SDP
was solved in 11 seconds. FastMVU was also applied to the same data set with k = 30 and
v = 10. FastMVU finished in 128 seconds. The two dimensional embeddings are depicted
in Figure 2. SFU produces a better result, which is loyal to the original map. But the
two-dimensional map generated by FastMVU is compressed.

1. Available from http://geolite.maxmind.com/download/worldcities/cities.txt.gz.
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Figure 1: Left: manifold divided into small clusters, right: two-dimensional embedding.
Bottom row: embedding of FastMVU.

Figure 2: Left: The original data set consisting of 15,040 randomly selected cities in Europe,
Africa, and Asia. Right: FastMVU (top) and SFU (bottom) embedding in two
dimensions.

5.2.2. Images of Faces

In this experiment, we have used 1965 28 × 20 pixel images of Brendan Frey’s face taken
from a short video2. These images show his face in different moods: happy, angry, frowning,

2. Available from http://cs.nyu.edu/~roweis/data/frey_rawface.mat.
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and so on. We applied SFU to this data set. APC found 70 clusters and SDP was solved
in 5 seconds. We also applied FastMVU with k = 30 and v = 10, which terminated in
59 seconds. The embeddings are depicted in Fig. 3. It can be observed that in SFU’s
embedding the images on the lower left show him in a happy mood, while the images on the
upper right show him in a frowning/unhappy mood. Moreover, similar facial expressions
are all clustered together. On the other hand, FastMVU produces an embedding, where no
clear pattern can be observed.

6. Conclusions

In this paper, we have proposed a new large-scale nonlinear dimensionality reduction method
based on semidefinite facial reduction. While there are several well-known SDP-based di-
mensionality reduction methods, their effectiveness is limited by the computational com-
plexity of the SDP solvers. Our experimental results have demonstrated the effectiveness
of SFU on a variety of very large data sets.
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